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Abstract:

Using daily return data from the four major Central and Eastern European stock
markets including fourteen highly liquid stocks and ATX (Vienna), PX (Prague),
BUX (Budapest), and WIG20 (Warsaw) market indices, we model the value-at-risk
using a set of univariate GARCH-type models. Our results show that, in both in-
sample and out-of-sample value-at-risk estimations, the models based on
asymmetric distribution of the error term tend to perform better or at least as well
as the models based on symmetric distribution (i.e., Normal or Student) when the
left tails of daily return distributions are concerned. Evaluation of the same models
is less clear, however, when the right tails of the distribution of daily returns must
be modelled. We suggest an asset-specific approach to selecting the correct
parametric VaR model that depends not only on the risk level considered but also
on the position in the underlying asset.
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1 Introduction

Careful management of financial risk assumes not only understanding the nature (or types)
of financial risk but also the techniques that allow for the measurement of the risk exposure
associated with a particular asset or portfolio of assets. Over the last two decades,' one tool
has proved to be especially useful in the measurement of the (financial) risk exposure: the
value at risk (VaR).

VaR summarizes the expected (financial) loss that - under normal market conditions -
one can expect to incur on a given asset or a portfolio of assets over a given time horizon
within a given confidence interval. Hence, as a single number that measures the market
risk in the same units as bank’s (or, in general, any other risk management party’s) bottom
line, VaR provides for a summary measure of market risk that is not only easily understood
but, also, relatively simple to use. As a result, the use of some form of VaR methodology
is nowadays advocated by a majority of regulators while, at the same time, it is thought
appropriate by most of the leading practitioners dealing in financial risk management.

Several approaches exist to measuring the VaR. In every case, the focus is on the em-
pirical distribution of returns on the given asset or a portfolio of assets as it is the sample
quantile from this distribution that effectively defines the VaR. In the study at hand, we
model the VaR by attempting to fit several parametric conditional volatility models to the
asset returns data and then use the modeled conditional variance in constructing the sample
(VaR) quantiles. In order to make our results more general, we compute both left and right
quantiles of the distribution of asset returns, corresponding to the practical cases when the
trader or, in general, a risk manager, has a long/short position in the underlying asset and
is concerned with a drop/rise in its price.?

Further in the analysis, we proceed by assessing the (forecasting) performance of the
models in correctly modeling the VaR. We use the models that differ not only in the way
they treat the relationship between the conditional variance and the lagged squared error
term (i.e., we use both symmetric and asymmetric time-varying volatility models), but also
in the assumption they make on the distribution of the error term. In fact, with respect to
the latter and, for the purpose of the analysis, we divide the models in two groups based
on whether the distribution of the error term is assumed to be symmetric (i.e., normal
or Student) or asymmetric (in our case, skewed Student). The division makes sense both
er-ante - as both the usual symmetric and asymmetric models were previously shown to

have a tough job in modelling correctly the left and right tails of the distribution,® as

'"Two decades have passed since the landmark Basle Accord of 1988. The agreement set the
minimum capital requirements that must be met by commercial banks to guard against credit risk.

’In other words, the construction of the left (or right) quantile is necessary to obtain the VaR for
the negative (or positive) returns on a given asset.

*This finding is not at all surprising given that the distribution of assets returns is often not



well as ezx-post - as later in the study we show that, compared to the models based on
asymmetric distribution, both the (conditionally) symmetric and asymmetric models used
in the analysis tend to underperform in correctly modelling either the left or right tails of
the return distributions when the distribution of the error term is symmetric.

The evaluation of the performance of the models is based on calculating the VaR for
long and short trading positions on four major Central and Eastern European (CEE) daily
stock market indices (ATX, PX, BUX, and WIG20) and fourteen of the most liquid CEE
stocks traded in these markets. We hope this way to extend the previous research concerned
with the evaluation of alternative volatility forecasting methods used in VaR modeling via
not only a wide class of models employed in the analysis but also through its focus on the
CEE markets. The latter aspect of the study seems to be all the more relevant since, as
of today, no study has appeared that would analyze the VaR for the same markets to the
extent comparable to the present study.

Several studies have attempted to evaluate the performance of various GARCH models
in the way similar to the present paper. GIOT AND LAURENT (2003) estimated the daily
VaR for both long and short trading positions by employing three symmetric and one asym-
metric conditional volatility model (APARCH) concluding that the latter performed better
overall compared to the symmetric models. BROOKS AND PERSAND (2003) also considered
the issue of asymmetry. In their analysis, they found that the models which did not allow
for asymmetries either in the unconditional return distribution or in the volatility specifi-
cation underestimated the true VaR. More recently, BALI AND THEODOSSIOU (2007) used
ten popular variations of the GARCH models based on skewed generalized t-distribution
to calculate the VaR. The authors argued that TS-GARCH and EGARCH models pro-
vided the best overall performance.® Finally, MCMILLAN AND SPEIGHT (2007) claimed both
asymmetric and long memory volatility features to be important considerations in providing
improved VaR estimates.

The rest of the paper is organized as follows. In Section 2 we provide a detailed de-
scription of the data used in the analysis. In Section 3, we describe basic methodology and
develop the estimation techniques employed in the analysis further in the paper. Section 4
describes the results and provides the discussion of the results of estimation. Finally, Section

5 summarizes and concludes the study.

symmetric. See GIOT AND LAURENT (2003) and EL BABSIRI AND ZAKOIAN (1999) for a more
detailed analysis of these findings.

*EL BABSIRI AND ZAKOIAN (1999) note that, in the (conditionally) asymmetric GARCH models
(e.g., EGARCH or TGARCH), the two components of the innovation have - up to a constant - the
same volatilities. Given what we said about the distribution of the asset returns, it makes sense to
allow an asymmetric confidence interval around the forecasted volatility in the VaR computation.

"The TS-GARCH model is due to Tavyror (1986) and Scuwerr (1989). The EGARCH model is
discussed in Section 3.2 of this study.



2 Data Description

In the analysis, we compute the VaR for both negative and positive returns on four major
CEE stock indices (ATX, PX, BUX, and WIG) as well as on fourteen major CEE stocks
including three ATX stocks, four PX stocks, four BUX stocks, and three WIG stocks.5

All four market indices are based on the period that starts on 10.04.1995 (April 10, 1995)
and ends on 10.04.2008. The data for the fourteen stocks is of variable length although in
each case the series ends on 10.04.2008. In the description of the stocks that follows, we
include a shortcut that used to refer to the stock in the latter parts of the study as well as
the date when the series starts.

The three ATX stocks include Erste Bank der dsterreichischen Sparkassen (EBS: 10.12.
1997), OMV (OMV: 10.04.1995), and Telekom Austria (TKA: 03.12.2000), the four PX
stocks include CEZ (CEZ: 10.04.1996), Erste Bank (ERS: 10.10.2002), Komeréni Banka
(KOB: 10.04.1996), and Telefénica O2 Czech Republic (TEF: 10.06.1998), the four BUX
stocks include MOL (MOL: 10.04.1996 to 10.04.2008), Magyar Telekom (MTE: 10.12.1997),
OTP Bank (OTP: 10.04.1996), Richter Gedeon (RCH: 10.04.1996), and the three WIG
stocks include PKO Bank Polski (PKO: 12.07.1998), PKN Orlen (PKN: 12.12.1992), and
Telekom Polska (TPS: 10.12.1998).7

The combined capitalization of the three ATX stocks (as well as of the three WIG stocks)
represents around 40% of the ATX (WIG) market index, while the market capitalizations
of the combined four PX stocks and the combined four BUX stocks represent about 80%
of their respective market indices (see Table 1). In addition, majority of the stocks just
described belongs to the most actively traded stocks on their home stock markets, a fact
that makes them especially suitable for the VaR calculations, as well as a reason why we

chose these stocks for the analysis in the first place.
[ Insert Table 1 |

Table 2 gives the descriptive statistics for the daily returns on the four market indices

and the fourteen stocks.® We notice that both across the indices and the stocks, the returns

SThe indices mentioned correspond, respectivelly, to the stock exchanges in Vienna
(http://en.wienerborse.at), Prague (http://www.pse.cz), Warsaw (http://www.gpw.pl/index.asp),
and Budapest (http://www.bse.hu). We used Bloomberg® as source for the data.

"We used a standard procedure to adjust the data to account for the stock splits. For example,
in case of a 2-for-1 stock split, we cut all of the prices that occured before the stock split in half to
ensure continuity in the pricing. A special instance of a stock split (a stock merger, to be exact)
occured on Feb 15, 1999, when two previous issues of CEZ shares with face values of CZK 1,000 and
CZK 1,100 were merged and subsequently split into shares with the face value of CZK 100. In that
case, we split the stocks according to a 10.5-for-1 ratio although it is clear that a more appropriate
way would have been to use two different stock-split ratios, weighting the CZK 1,000 and the CZK
1,000 stocks by the corresponding market capitalization existing at the time of the stock split.

$We defined the daily returns in usual way as r; = 100 [In (p;) — In (p:—1)], where In (p;) is a natural



exhibit relatively high excess kurtosis. In general, this is a result of relatively large skewness
combined with large minimum and maximum values. Especially pronounced in this regard
are the cases of BUX stock index or the cases of the TKA, KOB, and RCH stocks - in all
these instances, the skewness is smaller than -0.6 and the returns reach easily over 20% in
absolute value (KOB). The Ljung-Box Q-statistics computed on the squared return series
indicates a high serial correlation in the variance with KOB and RCH giving especially large

values of the @J-statistics.
[ Insert Table 2 |

Figures 1 and 2 provide a graphical way to investigate the empirical properties of the
asset return series - namely, those of the four stock indices and four representative stocks.
As already noted (see Table 1), the histograms tend to show long stretches on their left sides
due to the fact that the minimum (negative) returns are generally larger in absolute value
than the maximum (positive) values. Compared to the normal distribution, the returns also
show fat tails - note PX and WIG indices as cases that are particularly visible. The QQ-plots
present the sample quantiles of the corresponding asset’s returns against the quantiles of the
N (0,1) distribution. They are indicative not only of the fact that both tails of the empirical
distribution are heavier than those of normal distribution but, perhaps more importantly,

that they are not symmetric.”

[ Insert Figures 1 and 2 |

The description of the returns provided so far shows that the data series used in the
study exhibit several of the stylized features that have been repeatedly found in many similar
financial series.!’ Heavy-tailed by nature, classical ARCH (or, GARCH) -type models have
been used to model some of these features (e.g., heavy tails, volatility clustering) while a
little more recent extensions of these models (e.g., EGARCH and/or fractionally integrated
GARCH) have been developed to model the features such as asymmetry and long-range

dependence.!!

logarithm of the price of the corresponding asset. One way to see why this particular transformation
is used is to note that (p: — pi—1)/re—1 ~ In[l + (pr — pe—1)/pe—1] = In(p¢) — In (pe—1).

9Moreover, the QQ-plots are informative for identifying the moment condition. When we com-
pared the tails of the empirical distribution of the returns to that of the ¢t-distribution, we again found
heavier tails. Moreover, in this case, the tails were relatively lighter in case of t-distribution with
8 degrees of freedom than in case of the ¢-distribution with 4 degrees, so that we could reasonably
assume that E(rf) = oo and E(|r:|*™¢) < co for any e > 0 (see FAN AND YA0, 2005).

These stylized facts include heavy tails, volatility clustering, asymmetry, aggregational gaussian-
ity, and long range dependence. We do not (explicitly) present the plots that would depict the
volatility clustering in our study. They are, nevertheless, available upon request from the author.

""See BErA AND HigaiNs (1993) and SuepHARD (1996), among others for comprehensive survey on
ARCH and extended GARCH models, respectivelly.



3 Econometric Framework

In all specifications, we model the daily return series as an AR(2) process of the form
(14 ¢y B+ ¢y B?)(ry— 1) = € or, ¢(B)(ry — p) = €, where ¢(B) is a second order polynomial
in B,and ¢ is the disturbance term, with F(e;) = 0 and E(ees) = 0, for each ¢ # s. We
note that, while we found the second order autoregressive process to be sufficient to correct

t12 in the conditional

for the serial autocorrelation that seems to be (to some degree) presen
mean of all of the daily returns series used in this study, our approach is also similar to that
of GIoT AND LAURENT (2003), who also impose a single autoregressive structure on all the
data series that they consider.

It follows that the conditional mean for the daily returns, yu;, can be determined simply

as
fy = 4 o1 (re—1 — p) + P (ri—2 — ). (1)

In the following paragraphs, we introduce several specifications for the conditional vari-
ance of ¢, defined as

€t = Zt0¢, (2)

where z; is a zero mean and unit variance i.¢.d. random variable distributed according to
some specified distribution. Later, in sections 3.4.1 to 3.4.3, we will discuss two symmetric
(Normal and student) and one asymmetric distribution (skewed Student) for z;. Both the
type of distribution assumed for z; as well as the conditional variance (see eq. 2) are used
to calculate the VaR and hence, the performance of the models in correctly modelling the

risk summary measure depends directly on the two.

3.1 General GARCH and IGARCH

A generalized autoregressive conditional heteroskedastic (GARCH) model with order p (> 1)

and ¢ (> 0) defines the conditional variance as
P q
of =w+ D aic+) bioi (3)
i=1 j=1

where w > 0, and a; (i = 0,...,p) and b; (j = 1,...,q) are assumed to be positive to ensure

that the conditional variance, o2, is always positive.'?

As already noted, the GARCH model is capable of explaining many of the stylized facts

"2The reader may refer to the descriptive statistics section of this study for the details.

¥See NELSON AND CA0 (1992) for the general conditions on the positivity of conditional variance.
We note that positive coefficients represent sufficient but not necessary conditions for the positivity
of conditional variance.



characterizing the financial time series,'* including the heavy tails.'® In fact, it is its ability
to account for large negative (or, positive) returns that is to a large extent responsible for
its performance at predicting the VaR for long/short trading positions.

Following the links that exist between GARCH(p,¢) and ARMA(p,q) models and the
fact that an (invertible) ARMA (p, ¢) process with finite p and ¢ is equivalent to an AR(o0)
process, it is also easy to see how even a lower order GARCH model (e.g., GARCH(1, 1))
can provide parsimonious representation of many complex dependence structures of (¢;) that
could otherwise be accommodated only by an ARCH(p) model with large p. With this in
mind, we again follow the approach of GIOT AND LAURENT (2003) in that we use the same
low-order GARCH(1, 1) model for most of the investigated return series to allow for a single
benchmark when evaluating the performance of the various parametric models.

In general, the ARMA(p, ¢) model can be written as (1 — > a; + Y bj) € or, in the lag
polynomial form, as (1—a(L)—b(L)) €?. Here, whenever the polynomial part contains a unit
root, the process has an integrated variance and effectively defines an integrated GARCH
(or, IGARCH) process. The RiskMetrics model (MORGAN, 1996) used in the study is
equivalent to an IGARCH model with the weight parameter (also called the decay factor)
set at 1 = 0.94 and the coefficient 6?_1 equal to 7. Formally, the RiskMetrics specification

defines the conditional variance as

of =noi_j+ (1 =n)e;, (4)
where €2_; is the first lag of the (squared) disturbance term as defined by (2). Put differently,
in the RiskMetrics model, the volatility for time ¢ is given as a weighted average of the

previous forecast and of the squared error term.

"The ability of the GARCH models to explain many of the stylized facts can be easily understood
by following the links that exist between GARCH and ARMA processes. Recall that a GARCH(p, q)
model, defined by equation (3), represents a more parsimonious version of an ARCH(p) model that is
defined only in terms of the past squared returns (e;_;). Just as an ARCH(p) model can be expressed
as an AR(p) model, however, a GARCH(p, q) model can be, similarly, expressed as an ARMA (m, q)
model, where m = maz(p,q). As an example that easily generalizes to any p and ¢, consider a
GARCH(1,1) model 07 = w + ai€7_, + bio_;. Since E;_1(e}) = o7, the same equation can be written
as a function of €7 only as €7 = w + (a1 +b1)er_; +us — brus—1, where us = €; — Ey—_1(7) ~ WN, which
clearly is an ARMA(1,1) process.

Given the value of b; (found to be around 0.9 for many weekly or daily financial time series; see
ZoT AND WANG (2006)), we can immediately see that large (small) changes in ¢;_; will be followed
by large (small) changes in €. Applying the same reasoning to a GARCH(1,1) process, it follows
similarly that large (small) values of o7_; would be followed by large (small) values of o7. Hence,
a GARCH model implies the volatility clustering. Furthermore, using the ARMA representation,
we can show that a GARCH model also implies a volatility mean-reversion. Using again the same
example of a stationary GARCH(1,1) model, for example, one can show that in this model the
long-run (mean-reverting) level of volatility of ¢ is given by w(1 —a1— b1)™'.

"We note that GARCH models can also replicate the fat tails provided that the condition for the
existence of the fourth order moment of the GARCH process is satisfied (HE AND TERASVIRTA, 1999).



3.2 EGARCH

In the basic GARCH model (eq. 3), only squared residuals efﬁi enter the equation, so that
the signs of residuals (or shocks) have no effects on conditional volatility. Still, as already
mentioned, the assumption that good or bad shocks have no (or symmetric) effect on the
volatility is frequently violated in practice. In fact, in most of the returns series, negative
shocks (corresponding to bad news) tend to have larger impact on volatility than positive
shocks (or, good news).

BLACK (1976) was the first one to attribute this effect to the fact that bad news tends
to drive down the stock price, thus increasing the leverage (D/E ratio) of the stock causing
the stock to be more volatile. Consequently, a number of so-called "second-generation"
asymmetric GARCH models have been developed to account for the asymmetric response
of volatility to such shocks (MCMILLAN AND SPEIGHT, 2007). In these models, the impact
that the asymmetric news has on the stock price is usually referred to as the leverage effect.
NELSON (1991) introduced the following exponential GARCH (EGARCH) model to allow

for leverage effects:

p q
hi =w+ Z az‘g(Et_%) + Z bjhi—j, (5)

= Jt=i j=1
where g;(€;—;) = |et—i| + v;€1—; and hy = log 0,52. (6)

In this model, the value of the function g;(-) depends on both the sign and the size (or,
magnitude) of its argument. As a result, the EGARCH can respond nonsymmetrically to
random shocks ¢;. Whenever ¢;_; > 0 (i.e., whenever a good news occurs), the total effect
of the shock to €;—; is (1 + 7;)|ei—i|; if, on the other hand, ¢;,_; < 0, the total effect is equal
to (1 —v;)|ei—i|- As bad news can have a larger impact on volatility, the value of 7, would
be expected to be negative.'6

In the next section, we introduce a more recent extension of the GARCH model of
BOLLERSLEV (1986) that, compared to EGARCH model, allows for more flexibility in mod-

elling the leverage effects.

3.3 APARCH (or PGARCH)

The asymmetric power ARCH (APARCH) model, often called power GARCH (PGARCH)
in the literature, proposed by DING, GRANGER AND ENGLE (1993), has the following spec-

ification:

5Tt is rather straightforward to identify the properties of h;. For example, provided that g(e;) is
i.i.d., then so is h¢, so that h; is causal linear AR(1) process whenever | > b;| < 1. We refer the reader
to BOLLERSLEV, ENGLE, AND NELSON (1994), for further discussion of EGARCH models.



p

q
oi=w+ Y algle )+ bk, )
=1

=1

where gi(€—i) = |er—i| + Vi€1—i- (8)

The flexibility of this model compared to that of a generic EGARCH is obvious. The
model includes not only the asymmetry coefficient (y;) but also a positive exponent d. The
asymmetry coefficient plays the same role as in case of the EGARCH model in that it models
the leverage effect. In other words, as in the previous case, a positive value of ~, translates
into the past negative shocks having a deeper impact on current conditional volatility than
the past positive shocks (again, see BLACK (1976) or, PAGAN AND SCHWERT (1990)).

The PGARCH model is interesting in that it nests at least seven other ARCH specifica-
tions as special cases. For example, when d = 2 and v; = b; = 0 (for Vi and V), the model
becomes a generic ARCH model. Given the same restrictions but with b; allowed to vary
(for Vj), the same model reduces to the basic GARCH model, while if both b; and v, are
allowed to vary and d = 1, the model reduces to TARCH of ZAKOIAN (2002).

3.4 Calculation of the VaR

Having provided a brief overview of the empirical specifications of the models used in the
study, we are now ready to consider the calculation of the Value-at-Risk for the various
models. First, however, we provide the basic methodology behind VaR calculation.

As already noted, a daily VaR is the expected loss that one can expect to incur on a
given asset or portfolio of assets over one day within a given confidence interval. Hence, in
statistical terms, the VaR corresponds to a high (low) order quantile of the distribution of

daily losses when the VaR, of long (short) positions is concerned. In general then, we have
VaR, =inf {z : F (z) > p} = F'(p), 9)

where x represents daily returns and p defines the corresponding empirical quantile at p%.

To give an example, within a 99% probability level required under the Basle Committee
rules, the daily 1% VaR on the long (short) trading position is the 99% (1%) quantile of the
distribution of daily returns. In words, there exists a 1% probability that the daily losses
will exceed VaR g9 (i.e., a 99% probability that the returns will be larger than the VaR g9)
when the VaR for the long trading positions is concerned. Similarly, there exists a 1%
probability that the daily losses will exceed VaR g1 (i.e., a 99% probability that the returns
will be larger than the VaR 1) when the VaR for the short trading positions is concerned.'”

" Along with the 99% probability level, the Basle Accord also requires the VaR to be based on a



Following the same reasoning, the calculation of VaR, reduces to the following formula
VaR, = p+ ogp(-), (10)

where gp(-) is the p% quantile of the distribution that the returns are assumed to follow.
Given (10), the computation of the VaR requires the knowledge of both the conditional
variance (and the conditional mean) as well as of the sample quantiles. Thus, its calculation
depends not only on the structure we put on the evolution of the conditional variance but
also on the distribution of the error term (see eq. (2)).

We are now ready to discuss the calculation of the VaR for each of the models of condi-
tional variance used in this study. Our goal is to define the (10) in terms of the conditional
variance (or, conditional standard error) and the sample quantile as determined by the dis-
tribution assumed for the error term. We make use of two symmetric distributions (Normal

and Student) and one asymmetric distribution (skewed Student).

3.4.1 Normal VaR

Before we provide the formula for the calculation of the VaR under the assumption that
2z ~ N(0,1), see (2), we shortly describe the procedure used to estimate the conditional
variance.'®

As with the other models used in this study (see equations (5) and (7)), the two (bench-
mark) formulations that assume the Gaussian errors (i.e., (3), (4)) were estimated using a
conditional maximum-likelihood (¢cMLE) approach. Given the structure of the mean equa-
tion (1) and assuming that the error term follows a normal distribution, the prediction error

decomposition of the log-likelihood function conditional on initial values is then given by:

T s 1 €2
_ E 2 E t
lOgL = —5 IOg(Zﬂ') — 5 £ log O — 5 O'tQ’ (11)

t=1

It is immediately clear that as the recursive evaluation of the likelihood function is
conditional on unobserved values, its estimation is less then exact. To solve this problem,
we set these quantities to their unconditional expected values (see LAURENT AND PETERS,
2002). Once the cMLE estimates of the parameters are found, the estimates of the time-
varying volatility o, (for Vt) used in calculating (10) can be obtained as a side product (see
Z1voT AND WANG (2006)).

ten day holding period. In general, assuming that the returns are i.i.d., the VaR calculated over one
day can be used to obtain the VaR for T days (periods) simply as VaR(T Pericds) — /T VaR{® pericd),

8We do not discuss the maximization process in detail. Instead, we refer the reader to HAMILTON
(1994), for example, for further discussion of this topic.



In the Normal (I)GARCH model - represented in this study by two benchmark formula-
tions (4) and (3) - the one-step-ahead VaR computed in (¢ —1) is then given by 1, +o1qp(IN)
(long positions) and by p; + 0¢qi—p(N) (short positions), where g,(N) is the p% quan-
tile of the standard normal distribution. The one-step-ahead forecasts for the RiskMetrics
formulation (IGARCH) are obtained the same way.

3.4.2 Student VaR

Assuming that the error term (2) follows a standardized Student distribution or, z; ~

t(0,1,v), the log-likelihood function conditional on initial values is given by:

logL =T {1ogr (”;“1> “logT (g) - %log[ﬂ (v — 2)]} -

T T
T o (v+1) 22
5 1tzllog (o) 5 tzllog (1 + ) (12)

where I' (+) is a gamma density function and v are the degrees of freedom.

In the Student GARCH model - the one-step-ahead VaR computed in (¢ — 1) is given by
py+0qy(t(v)) (long positions) and by p;+0:q1—p(t(v)) (short positions), where g,(¢(v)) is the
p% quantile of the standardized student distribution with v degrees of freedom estimated
from (12). The one-step-ahead forecasts for the Student EGARCH and PGARCH (or,
APARCH) formulations can be obtained similarly.

3.4.3 Skewed Student VaR

Assuming that the error term (2) follows a standardized skewed Student distribution!? or,

zi ~ sk t(0,1,v,&), the log-likelihood function conditional on initial values is given by:

logL =T {logP <V2+1> —logT (%) - %log[ﬂ (v —2)] +log <§+2§_1> } -

(v+1) L (szt+m)2 Y
: ;10g<1+y_§ 21), (13)

2

77
) Zlog (U§> -
t=1

where I'(-) and v are defined as in (12), £ the asymmetry parameter, defined as
2 =[P(z>0[6)]-[P(2<0)|¢]!, and I; a time-varying index function that is equal to

The idea of extending the Student distribution by adding a skewness parameter to account for
excess skewness (in addition to excess kurtosis) is due to FERNANDEZ AND STEEL (1998) who
expressed the new density in terms of the mode and the dispersion. It was not until LAMBERT AND
LAURENT (2001), however, who re-expressed the density in terms of the mean and the variance,
that the new framework could be applied in the GARCH framework. Most of the results in this
section are due to these two authors.
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1 whenever zz > —ms~ ' and to —1 otherwise. Also, m is the mean and s the standard
deviation of the (non=standardized) skewed Student distribution and can be expressed in

terms of the degrees of freedom and the asymmetry parameters as follows:

n=r (S ) () e m

s = \/(§2+f*2—1)—m2 (15)

To calculate the corresponding quantiles, a quantile function is needed. For the stan-

dardized skewed Student case, the function looks like

Bltr.0) = at@)F 1+ -2 itp<(1+¢)7
Bt ©) = S5 (e =" itp= (4@ )

where ¢,(t(v)) is the p% quantile of the standardized student distribution with v degrees of
freedom.

In order to compute the one-step-ahead VaR for the GARCH, EGARCH, and PGARCH
models, we will also need the stationary solutions to these models in the presence of skewed
Student distribution.?? We focus on the more interesting cases of EGARCH and PGARCH
models here. For the EGARCH formulation, the solution to eq. (5) depends on the expected

value of |z]| or,
462/ =2I'[0.5(1 + v)]
E(|zl) = 5 : (17)
E+ & rm(v—1)T(0.5v)
where £ = 1 implies the case of the symmetric Student density (LAURENT AND PETERS,
2002). In PGARCH case, the solution to eq. (7) is less straightforward as it requires finding

the expected value of (|z| —7,2)%. A closed-form solution to this expectation was first

derived by DING, GRANGER AND ENGLE (1993) for the Gaussian case and by LAMBERT
AND LAURENT (2001) for the standardized skewed Student case

(v —2)%MHD T (0.5(1 4+ d)) T (0.5(v — d))
E+ & Hy/m(v—2)T(0.50)

B (jul) = {£ 0D (1) 4 €04 (1 - 57}

18)
where, as in case of (17), £ = 1 implies the case of the symmetric Student density.

In the skewed Student GARCH model - the one-step-ahead VaR computed in (f — 1) is
then given by p, +0:qp(t(v,§)) (long positions) and by p, +o0¢q1—p(t(v,€)) (short positions),

20We have not focused on the stationary solutions to our models in neither the Gaussian nor the
symmetric Student density cases as their derivation is rather straightforward.

11



where ¢,(t(v,&)) is the p% quantile of the standardized skewed student distribution with
the degrees of freedom (v) and the asymmetry coefficient (¢) both estimated from (13).2!
It is important to note that if £ < 1, the third moment of the density of z; will be negative.
As a result, the density of z; will be skewed to the left and the VaR for the long trading
positions (corresponding to large negative returns) will be larger than for the short trading
positions since |g,(t(v,€))| > |q1—p(t(v,§))|. The same reasoning, of course, holds for the

case when £ < 1.

3.5 Model Estimation

The calculation of the VaR is based on estimating the models specified above (see the
mean equation (1) combined with different specifications for the conditional variance (2)
described in sections 3.1-3.3). To recall, in addition to estimating the GARCH (3) and (4)
specifications as benchmarks (in which case both models are based on normal distribution of
the error term), we also estimate the GARCH, EGARCH (5), and PGARCH (7) formulations
under the assumption that the error term has either a Student or an (asymmetric) skewed
Student distribution described in sections 3.4.2 and 3.4.3.

As the ultimate goal of this study is not the analysis of how well the different parametric
models can model the time-varying variance (instead, the focus is on how well the different
models can compute the VaR), we do not report the estimation results for the various models
in this study.??

3.6 VaR Model: In-Sample and Out-of-Sample Evaluation

The internally generated VaR models are nowadays a commonplace in risk-management
departments around the world.?® The rule of the game, however, is that the validity of
these models be evaluated or, back-tested, by comparing the (internal) VaR estimates with
the actual observations. In this section, we discuss a common framework used in this study
to examine the accuracy of the VaR models, the failure rate methodology.

Before we proceed, it is important to mention the difference between in-sample and out-

of-sample VaR estimation.?* While in the former case we are simply comparing the sample

2I'The one-step-ahead forecasts for the Student EGARCH and PGARCH formulations can, once
again, be obtained similarly.

22Except where otherwise stated, the estimations were performed using a console version of Ox
4.0 (see DOORNIK (2007)) and G@QRCH 4.10 Ox Package (see LAURENT AND PETERS (2002).
Complete estimation results are available from the author upon request.

»In April 1995, Basle Committee on Banking Supervision (see the references), recognized "[] that
risk management models in use by major banks are far more advanced than anything they could
propose" (JORION, 1997, pp 41).

?"The same failure rate testing methodology is, of course, applied the same way in both in- and
out-of-sample VaR estimations.
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observations with the VaR measures based on the fitted values of the volatility estimates,
in the out-of-sample estimation, we are much closer to the real-time estimation faced by the
risk-managers in that we are comparing the sample observations for the period T' forward
with the VaR measures based on the volatility estimates forecasted for a sample of daily
returns up to time 7. As a result, the out-of-sample forecasts are not only much more
demanding to construct from the computational point-of-view than the in-sample forecasts
but, even more importantly, the out-of-sample testing is also closer to reality and hence a
better evaluator of the accuracy of the different types of the parametric VaR models used

in our study.

3.6.1 The Failure Rate

Perhaps the simplest approach to verifying the accuracy of the VaR models is to record the
failure rate (JORION, 1997), which is defined as the proportion of times that the (calculated)
VaR is exceeded in a given sample of returns. Specifically, given a sample of observations,
we are interested in counting the number of times that the observed negative returns are
smaller (that is, the actual losses are larger), than the one-step-ahead VaR for the long
positions or, conversely, in counting the number of times that the observed positive returns
are larger than the one-step-ahead VaR for the short positions.

In either case, if the (internal) VaR model is well specified, the failure rate or, the
proportion of such returns in the given sample, should equal to (1 — p), where p is the
specified probability level, otherwise defined by (9). In the study, we set the probability
level p to 99% (as required by the Basle Committee rules), as well as to 95% and 97.5% (in
order to make it comparable with other studies that used the same probabilities), and to
99.5% (in order to evaluate the performance of the models with respect to their ability to
fit the extreme events).

In order to test the null hypothesis that the estimated failure rate equals to (1 — p), we
use a test proposed by KUuPIEC (1995).2° The confidence regions for this test are defined by
the tail points of the likelihood ratio

el (5) )

where (1 — p) is the correct failure rate, T' the sample size, and N the number of deviations

— 2log [(p)T*N 1-pN, (19)

that we would expect to observe at a given confidence level. Under the null hypothesis that
the observed frequency of deviations, N/T, equals to (1 — p), this statistics has a x?2 (1)

distribution.

»KUPIEC (1995) LR test is commonly used in the literature to test the accuracy of VaR models.
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Kupiec (1995) gives example confidence regions for various probability levels when the
confidence level (or, the level of significance) is 5%. The table below (based on KUPIEC, 1995)
reproduces some of the confidence regions both in levels and - explicitly in the parentheses
- also in percents (calculated as N/T') for the sample size equal to the average number of

daily return observations in one year, 255, as well as to 1, 000.

(1—p) T = 255 T = 1000

99.0% N< 7 (a/m: 2.8) 4 <N<17 (3.7:6.5)
99.0% 6<N<21 (24: 82) 15<N<36 (15:3.6)
95.0% 16 <N <36 (6.3:14.1) 37<N <65 (3.7:6.5)

The table shows two facts. The first - a good one - tells us that the longer the sample
period, the easier it is to reject the VaR model if it is false (notice that the percentage
intervals become smaller as T becomes larger). The second - a disturbing one - shows that
the smaller the probability level (1 — p), the more difficult it is to confirm the deviations. In
fact, when the confidence region is N < 7, it becomes difficult if impossible to tell whether
N is just small or whether the model systematically overestimates the risk.

The problem of small (1 — p) will become clear in the next section when, in many
instances, we will have to comment on the unsatisfactory VaR results obtained using various
GARCH-type models for the case of p = 99%. This makes sense intuitively as the higher
the value of p, the more rare are the observations we try to model and, hence, the more
difficult it is to recognize correctly the systematic biases.

Before we proceed, we mention that while the Kupiec test can be used to examine
whether the model systematically overestimates or underestimates the correct VaR, it cannot
be used to determine whether the deviations are randomly distributed across time. A test
that jointly investigates the failure rate of the model and the independence of deviations was
developed by CHRISTOFFERSEN (1998). The test is based on the likelihood ratio statistic -
distributed as x? (2) under the null hypothesis - of the form

lo = 2log [(1 — mo1)™ 7 (1 — 1) 7731] — 21og |[p N (1 - p)V|, (20)
where (1 — p) is the probability level defined the same way as in (19), nj; the number
of observations such that, for example, ni; represents the number observations that can
be classified as deviations that are followed by another deviation, and m;; the appropriate

probabilities defined as 7, = nji (> njk)-26

20We do not apply CHRISTOFFERSEN’s test in the current version of the study.
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3.6.2 Out-of-Sample VaR Methodology

As already noted, in the out-of-sample forecast, we are comparing the sample observations
for the period T forward with the VaR measures based on the volatility estimates forecasted
for a sample of daily returns up to time 7.

The sample size (i.e., the number of daily return observations available) for the four
indices as well as for the eighteen stocks considered in this study are presented in Table 2
in the Appendix. In the same table we also present the size/proportion of the sample used
in the initial parameter estimation (see the column marked "OoS obs (%)").

As the sample size differs across the stocks (and with respect to the indices), we make
it a rule that for each stock and each index the number of observations used in the initial
estimation represents about 60% of the whole sample. Given the average length of one
trading year (252), this leaves 5 years of observations (1,260) that we could use for the
volatility forecasts in case of all four stock indices (ATX, PX, BUX, WIG), as well as in
case of OMV, CEZ, KOB, MOL, OTP, and RCH stocks. Similarly, we are left with 4 years
of observations (1,008) in case of EBS, TEF, MTE, PKO, and TPS, 3 years (756) in case
of TKA and PKN, and 2 years (504) in case of ERS.2"

Based on the initial estimation, we construct a one-day-ahead volatility forecast/estimate
for (T'+ 1), and use it to obtain the (one-day-ahead) VaR measure that we can compare
to the actual observed return at the same period. We follow the same procedure when
computing the one-day-ahead VaR for either large negative or positive returns (long or
short positions, respectively), saving the results along the way. The same estimation is then
repeated at period (T'+2),(T" +3),...,(T"+ 7 — 1), where 7, = 1260, 1008, 756, or 504,
based on the size of the sample left for the volatility forecast for the particular index or
stock. At each step, the size of the sample increases by one observation.

The last note concerns an update of the model parameters. We surpass the Basle Com-
mittee requirement in this regard as we re-estimate the model parameters every fifty obser-
vations effectively creating a total of 74/50 (7, = 1260, 1008, 756, 504) sub-samples for each

particular index/stocks over which the model is estimated and hence assessed.?®

*TThere is no particular reason for why we choose sixty percent as a cut-off for the number of
observations usedin the inital forecast other than to comply with the two goals we had in this
regard: a) to be consistent across the data for the reason of VaR evaluation across the models and,
b) to comply with the Basel Committee one year requirement (discussed further in the text). Aside,
we note that various lengths for parameter estimation have been previously tried in the literature.
We refer the reader to KUPIEC (1995) or BERKOWITZ (2001), among others).

28 According to the rules set forth by the Basel Committee, the computation of the VaR estimates
should be based on (at least) one year of historical return data, the probability level of p = 99
percent, and the horizon of ten trading days. In addition, the VaR estimates should be updated (at
least) once per quarter (i.e., about 60 days).
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3.6.3 Expected Shortfall

To provide the risk-managers with more information about the VaR, several measures have
been suggested in the literature. In this study, we characterize the VaR models with the
used of a sensitivity measure called expected shortfall (ES), defined as the expected value
of the losses that are greater than the VaR estimate(s). Put differently, ER calculates the
average of the negative returns smaller than the VaR for the short positions and, similarly,

the average of the positive returns greater than the VaR for the long positions.?”

4 Empirical Results

The estimation results are presented in Tables 3 to 14 in the Appendix. We first discuss
the results based on in-sample estimation (Tables 3, 5, 7, 9, and 15 for the stock indices
and the selected stocks and Tables 11-14 for the other stocks). The out-of-sample results
(Tables 4, 6, 8, 10, and 16 for the stock indices and the selected stocks) are discussed in the
paragraphs that follow. We will focus on the stock indices and the selected stocks as the
results for the other stocks are very similar.

Tables 3 and 5 suggest that - in an in-sample estimation - the models based on skewed
Student distribution (overall) perform generally better then the models based on symmetric
(either Normal or Student) distributions in case of ATX and PX indices and at least as well
as the models based on the Student distribution in case of BUX and WIG indices and most
of the selected stocks. The results for the remaining series (see Tables 11 to 14) are similar:
that is, the models based on skewed Student distribution do not tend to perform any better
than the skewed Student models. The performance of the VaR models is summarized in
Table 15 that shows the number of times (out of a hundred) that the p-value of the Kupiec
test is smaller than five percent for the combined four possible values of the confidence
levels used in the analysis. We can immediately notice a relatively worse performance of
the models when the short positions are concerned. This is especially evident in case of the
CEZ stock.

Before we proceed with the out-of-sample estimation results, we analyze the in-sample
estimation from the risk level point of view. As could be expected, the higher the confidence
level, the more difficult it is for the conditional volatility models to pick-up the extremely

large (in absolute value) returns, a fact that we already discussed in [Section 3.6.1. Failure

**Note that this average can be expected to be larger for the models based on the Student dis-
tribution. The reason for this lies in the properties of the Student distribution: namely, fatter tails
compared to those of the Normal distribution. As a result, when the model based on the Student
distribution fails, the returns affected (i.e., those that drive the calculation of the sensitivity measure)
are smaller/larger for long/short positions than if the distribution were normal, implying a larger
measure in absolute value.
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Rate]. Still, it is impossible to select a single model that would perform better than all
the other ones across all assets when the extreme VaR quantiles are at stake. Consider
the case of the 99.5% risk level, for example. If we are only interested in modeling the
short positions, Normal GARCH model seems to perform at least as well as most of the
asymmetric density models in case of the ATX index and still as well or better than all
other models in case of PX and WIG indexes and one in three stocks (OMV, TKA, MTE,
PKO: see Tables 11 to 14). The reasons for this performance lie clearly in the shape of the
distribution of extreme returns. Perhaps more important, however, is the conclusion that
the parametric VaR modeling requires an specific-asset approach, including the right choice
of the model for a given risk level and a type of position in the underlying asset.

Turning our attention to the out-of-sample estimation results, Tables 4 and 6 suggest that
the models based on Student or skewed Student distributions perform once again generally
better then the models based on symmetric (either Normal or Student) distributions.?"
Once again, the choice of the most appropriate model depends on both the underlying asset
and the confidence level. For example, while all the Student based GARCH models show
superior performance in case of the PX index and EBS and PKN stocks across all risk
levels, only the Student GARCH model seems to deliver desirable results for the BUX index
(excluding, of course, the case of the 99% probability level on short positions).

The out-of-sample results are summarized in Table 16. In case of the stock indices, the
combined success rates for the (skewed) Student models seems to be worse than for the
stock indices than for the stocks, making it clear that the models do not perform equally
well for types of assets. This only confirms the need for asset-specific approach to applied

VaR modeling using parametric conditional volatility models.

5 Conclusions

In this study, we further extend previous research concerned with the empirical evaluation
of the value-at-risk models by focusing on four Central and Eastern European (CEE) stock
markets.

Comparing a wide range of univariate conditional variance models, we show that the
models based on asymmetric distribution of the error term tend to perform better than
the models based on symmetric distributions both in in-sample and out-of-sample (one-day-
ahead) VaR forecasts. The optimal results, however, call for an asset-specific approach in
which the superior performance of the different models depends not only on the choice of

the confidence level but also on whether (extremely) small or large values be modeled.
30 Again, we note that the results for the other stocks (namely OMV, TKA, ERS, KOB, TEF,

MOL, MTP, RCH, PKO, and TPS) are very similar. The tables with the results for these stocks are
available upon request from the author.
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In fact, with regard to our findings, the VaR modeling of extremely small/large returns
deserves a standalone comment. While traditional (normal) GARCH models represent a
simple and efficient approach?! to applied VaR modeling when it comes to basic probability
levels (up to around 95%) - a point clearly demonstrated in the present study - our results
also demonstrate another (empirically well-established) fact: that for most of the assets, the
advanced class of GARCH models based on non-normal distributions of the error term and
including EGARCH and APARCH models, seriously fails at higher probability levels. In our
study, none of the models based on asymmetric distribution of the error term, including the
asymmetric time-varying volatility models, can reasonably model the VaR for the probability
levels above 99%. One way out of this problem would be to use the tools of the extreme
value theory (EVT), obtaining the corresponding VaR quantiles using the extreme values
of the distribution of asset returns only.??

There are several other ways in which the current study could be extended. For example,
instead of evaluating the performance of the parametric GARCH models for one-day time
horizons only, one could assess the performance of the same models over longer time periods.
Also, on more general level, one could compare the performance of the parametric VaR
models to the performance of the non-parametric (historical simulation) approaches.?® Last
but not least, one could employ a (fully-parametrized) multivariate framework and assess the

performance of various multivariate conditional volatility models in the portfolio settings.

3'Normal GARCH class of models may account for more than 80% of all risk models in practical
use today (see ONG (2005), p. 511).

32The statistical theory behind EVT tells us that if we are interested in the analysis of (only) the
smallest /largest observations from the distribution of asset returns, then - regardless of the overall
shape of this distribution - the tails of this distribution will asymptotically resemble one of the
following three distributions: finite ( Weibull), exponential (Gumbel), or fat (Fréchet). Consequently,
the EVT approach simplifies the traditional VaR analysis by focusing only on the extreme values
while discarding the rest of the distribution. Modeling the VaR by focusing on the behavior of
extreme return values is the focus of the next study by the author.

33Possibly the simplest method of forecasting the future volatility is to use a sample estimate of
the unconditional variance of the data. This method is also referred to as the an equally weighted
moving average model (EWMA).
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Appendix

Table 1: Weights of Stocks in the Indices

ATX PX BUX WIG
stock % ATX stock % PX stock % BUX stock % WIG
OMV 18.028 ERS 27.885 MOL 32.570 PKO 15.254
EBS 17.212 CEZ 25.149 OTP 29.334 PKN 12.071
TKA 8.844 TEF 15.006 RCH 15.852 TPS 10.285

KOB 14.512 MTE 13.312
Total 44.084 Total 82.552 Total 77.756 Total 37.610

Notes: The stocks used in the study sorted according to their weights in the indices to which they
belong. The data is as of May 1, 2008. Source: Bloomberg.

Table 2: Summary Statistics for Daily Returns

obs AVG ASD MIN MAX SK EK Q2(10)
Indices
ATX 3,219 | 0.043 17.336 -8.699 5.359 -0.739 4.790 767.0
PX 3,252 | 0.040 19.248 -7.077 8.084 -0.230 3.134 667.9
BUX 3,246 | 0.088 27.351 -17.90 13.62 -0.858 12.554 756.9
WIG 3,247 | 0.043 27912 -10.32 7.647 -0.154 2.194 863.3
Stocks
EBS 2,558 | 0.052 29.909 -11.52 8.701 -0.102 2.427 3994
OMV 3,220 | 0.059 30.641 -10.23 8.374 -0.200 2.087 593.5
TKA 1,820 | 0.030 28.780 -21.68 7.647 -1.613 19.59 18.7*
CEZ 3,016 | 0.083 34.122 -23.26 13.11 -0.321 7.756 250.1
ERS 1,382 | 0.066 25.415 -8.610 6.899 -0.105 2.203 183.6
KOB 3,016 | 0.022 41.016 -24.09 20.05 -0.739 12.60 1,907
TEF 2,474 | 0.007 34.488 -15.60 12.03 -0.189 4.158 309.2
MOL 2,996 | 0.090 35.807 -22.10 13.19 -0.341 6.211 353.7
MTE 2,579 | -0.004 33.323 -11.33 11.99 -0.133 3.272 283.4
OTP 2,996 | 0.131 39.629 -25.13 18.68 -0.299 8.282 490.1
RCH 2,996 | 0.062 41.492 -22.10 21.78 -0.617 14.31 2,034
PKN 2,088 | 0.027 31.083 -9.298 8.456 0.074  0.906 63.01
PKO 2,445 | 0.052 35.733 -10.54 11.92 0.031 2.629 419.7
TPS 2,337 | 0.011 36.684 -8.622 10.18 0.206 1.324 537.0

Notes: Descriptive statistics for the daily returns on the four stock indices (ATX, PX, BUX, WIG)
and the fourteen stocks analyzed in the study. AVG stand for mean, ASD for annual standard
deviation, SK for skewness, EK for excess kurtosis, and Q(10) for Ljung-Box Q-statistic of order
10 based on the squared returns. We note that, for the TKA stock, the Q-statistic is significant
at 5 percent (p-value = 0.044). All values are computed using R.
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Table 3: VaR Failure Rates (in %): Stock Indices (In-Sample Results)

Table 4: VaR Failure Rates (in %): Stock Indices (Out-of-Sample Results)

(Long Positions) (Short Positions)

(Long Positions) (Short Positions)

conf. level (%) 95.0 975 99.0 995 95.0 975 99.0  99.5 conf. level (%) 95.0 975 99.0 995 95.0 975 99.0 995
ATX Index ATX Index
RiskMetrics 593  3.85 227 155 429 224 121 0.78 RiskMetrics 532 349 1.90 1.27 484 294 1.67 087
N GARCH 525 342 171 1.24 351 1.90 084 044 N GARCH 524  3.65 1.90 1.27 405 230 119 048
ST GARCH 5.65 817 127  0.90 3.82 1.68 0.56 0.16 ST GARCH 532 357 121 1.03 437 222 056  NA
ST EGARCH 544 %11 130 075 432 171 053 028 ST EGARCH 611 %41 159  0.95 548 246 040  0.08
ST APARCH 550 208 130  0.84 43%  1.68 053 034 ST APARCH 611 241 119 1.03 516 230 040  0.16
skST GARCH 5039 267 121 (.81 46637 2.18% .93 0.3418 skST GARCH 4767 2943 1195 1.03 52470 2705 0.95% (.16
skST EGARCH 4.75%2 267 1125 0.6816 5138 218 (0.81% (.44 skST EGARCH 52470 3.10%° 1.19° 0.87%° 60310 2.78% 7128 (.24
skST APARCH 47247 27047 11290 0.68°1¢ 51080 2182 0.751%  0.4459 skST APARCH 5484 3.0220 1195 0.87:09 58717 2,627 10390 0241
PX Index PX Index
RiskMetrics 5.32 3.17 2.06 1.38 4.34 2.89 1.54 0.95 Riskmetrics 5.16 3.25 2.06 1.67 4.21 2.54 1.51 1.03
N GARCH 492 274 1.69 111 406 221 098  0.74 N GARCH 476 270 1.83  1.59 381 222 119 0.95
ST GARCH 535 264 120 068 437 191 074 0.28 ST GARCH 500 270 159 0.87 437 206 095 048
ST EGARCH 529 268 120 052 440 197 07T 0.22 ST EGARCH 508 254 159 0.79 429 L75 095 0.2
ST APARCH 523 258 11T 055 449 200 074  0.25 ST APARCH 492 254 175 087 492 214 087 048
skST GARCH 5147 246% 1119 (.58% 4714 21216 (8332 (3416 skST GARCH 50010 2.70%6 1599 .95 413 1982 0.95%  0.40%
skST EGARCH 500197 24380 1144 528 4.64% 2151 089 (.31 skST EGARCH 4767 2549 15005 0.87:09 4.29% 19116 0.95% 0.2414
skST APARCH 5078 2529 1144 05250 4.61%0 2212 0895 0.28 skST APARCH 5.089 2549 1.90 1.11 4767 21441 0794 0.4059
BUX Index BUX Index
Riskmetrics 5.08 2.77 1.48 1.17 5.05 2.80 1.69 0.96 Riskmetrics 5.16 2.62 1.27 0.87 4.84 2.70 1.67 0.71
N GARCH 431 240 132 1.05 428 216 120 0.7 N GARCH 265 183 111 079 373 191 0.87 040
ST GARCH 484 237 102 062 505 216 077 0.34 ST GARCH 476 175 071 024 452 183 040 024
ST EGARCH 468 209 099 068 468 243 096 034 ST EGARCH 421 159 071 024 3.65 175 040 024
ST APARCH 468 225 099 059 521 231 092 037 ST APARCH 484 151 079 024 484 191 040 024
skST GARCH 4.6840 22535 09680  (0.5950 5157 2,192 0.8642 0.37%7 skST GARCH 4689 167 0712 0241 4847 19116 0.40 0.24:14
skST EGARCH 4.592% 2,000 0,999 0.6817 4785 2479 1,029 0.3417 skST EGARCH 3.8000 1.43 0712 0241 3.81 1.9822 0.48 0.2414
skST APARCH 4562 21620 0.96%0  0.5950 5.24% 2376 09680 0.3727 skST APARCH 4767 1.51 0.794  0.241 4.52% 19116 048 0.24:14
WIG Index WIG Index
Riskmetrics 5.33 3.33 1.79 1.17 5.48 3.27 1.60 0.83 Riskmetrics 4.68 2.86 1.75 1.35 6.51 3.81 1.35 0.48
N GARCH 480 293 148 1.08 508 283 136 0.5 N GARCH 3.33 198 135 095 468 246 056  0.08
ST GARCH 493 2.8 123 062 524 268 083  0.25 ST GARCH 3.49 183 119 0.56 492 238  0.08 NA
ST EGARCH 480 256 123 068 536 290 096  0.28 ST EGARCH 257 175 127 0.79 484 262 024 NA
ST APARCH 484 268 123 062 539 268 092  0.25 ST APARCH 257 183 119 0.63 492 262 016 NA
skST GARCH 5.05% 29016 12320 0.652¢ 51470 2509 0.719% (.25 skST GARCH 3.65  1.98% 1.19°1 0.63°! 4847 2387 0.08  NA
skST EGARCH 499 25684 12320 (.71 51470 2743 0802 0.22 skST EGARCH .57 1831 12736 07917 4524 230% 016  NA
skST APARCH 5.029 2773 1261 0.65%0 53340 2597 0.89%% 0.25 skST APARCH 3.65  1.90% 1.35% 0.71-% 4767 22292 0.08  NA

Notes: Percentage of negative daily returns smaller than one-step-ahead VaR (left column, long positions) and the
percentage of positive daily returns larger than one-step-ahead VaR (right column, short positions) corresponding to 95,
97.5, 99, and 99.5 percent confidence levels. The (percentage) values found significant at 1 percent (5 percent) level are
shown in bold (italics). The p-values for the Kupiee LR test are shown explicitly (viz superscripts) only at the models
estimated with skewed Student density. The results are from in-sample estimation.

Table 5: VaR Failure Rates (in %): Selected Stocks (In-Sample Results)

Notes: Percentage of negative daily returns smaller than one-step-ahead VaR (left column, long positions) and the
percentage of positive daily returns larger than one-step-ahead VaR (right column, short positions) corresponding to 95,
97.5, 99, and 99.5 percent confidence levels. The (percentage) values found significant at 1 percent (5 percent) level are
shown in bold (italics). The p-values for the Kupice LR test are shown explicitly (viz superscripts) only at the models
estimated with skewed Student density. The results are from out-of-sample estimation.

Table 6: VaR Failure Rates (in %): Selected Stocks (Out-of-Sample Results)

(Long Positions) (Short Positions)

(Long Positions) (Short Positions)

conf. level (%) 95.0 975 990 995 95.0 975 99.0  99.5 conf. level (%) 95.0 975 99.0 995 95.0 975 99.0 995
EBS EBS Stock
586  3.44 1.80 1.06 536 3.68 2.03 1.29 6.05 337 159 109 536 373 218 139
531 285 141 078 508 293  1.64 121 446 268 149  1.19 546 258  1.69  0.89
ST GARCH 551 246 070 0.55 555 282 11T 039 ST GARCH 565 228 079 0.50 526 268 109 030
ST EGARCH 543 231 074 039 571 297 117 051 ST EGARCH 546 248 0.60  0.20 476 248 099 020
ST APARCH 532 238 074 039 583 282 110 051 ST APARCH 506 248  0.60  0.30 536 228 129 030
skST GARCH 5.7907 2,627 0.78% (.55 53741 2,660 0.989 0.35% skST GARCH 6.2508 27898 (.794 (.49 4.86%  2.68™ 0.897 0.30%2
skST EGARCH 5797 254% 08647 0.47%2 5512 2.70%% 1,029 0.311° skST EGARCH 5852 2.58% 0.6016 0400 4272 1.98% 060 0.10
skST APARCH 57500 25480 0.7417 .51 5512 26660 0.989 0.35% skST APARCH 58528 25887 (.69 0.40%% 4561 2.08%  0.794°  0.2012
CEZ CEZ Stock
Riskmetrics 547  3.58 219  1.62 521  3.42 1.89 1.26 Riskmetrics 492 310 1.83 1.43 611 365 214 119
N GARCH 487 295 176  1.29 415 262 136 0.90 N GARCH 373 222 135 1.27 373 230 111 0.79
ST GARCH 550 292 119 053 491 235 073 0.23 ST GARCH 437 190 095 040 429 175 064  0.08
ST EGARCH 527 282 119 043 481 232 086 023 ST EGARCH 2.81 190 095 024 468 175 056  NA
ST APARCH 531 285 109 0.56 484 235 073 0.27 ST APARCH 405 183 079 032 421 1.67 056  0.08
skST GARCH 5314 2724 1,006 (.50 53440 2427 0802 .23 skST GARCH 4292 1.831 0.95% 0.39° 5.08% 1982 0.64'% 0.08
skST EGARCH 51170 27245 11349 0.4358 5078 2499 1.00% 0.23 skST EGARCH 3.65  1.831 0.958 0.24:14 4.929° 19116 0.71* 0.08
skST APARCH 52160 2,656 0.999  0.56:%% 50492 2427 07617 0.3316 skST APARCH 3.979% 1831 0.794 (.32:%2 4524 1.67  056° 0.08
OTP OTP Stock
Riskmetrics 517 314 177 130 551  3.37  1.84 114 Riskmetrics 571 325  1.67 135 587 294 151 087
N GARCH 464 274 167 083 451 210 144  0.90 N GARCH 413 206 111 0.32 257 214 087 048
ST GARCH 497 254 087 0.50 501 280 100 037 ST GARCH 452 183 032 024 413 175 048  0.08
ST EGARCH 504 237 080 047 521 277 107 043 ST EGARCH 421 175  0.32  0.08 421 191 048 NA
ST APARCH 491 254 090  0.50 497 284 1.04 040 ST APARCH 476 190  0.32 024 421 191 048  0.08
skST GARCH 5179 2704 1.1347  0.5010 4714 24792 090 0.3317 skST GARCH 50040 2,063 0.6316 0.2414 3.73 159  0.24  0.08
skST EGARCH 52160 24792 1009 04780 4.7451 2,549 0,947 0.4042 skST EGARCH 4,601 1.8311 0.32  0.16 3.89% 1.59 040 NA
skST APARCH 5.07% 2,607 1.077" 0.50'0 47757 24792 1.04% 0402 skST APARCH 5.08% 19822 048 024 39708 1.51 0.40  0.08
PKN PKN Stock
Riskmetrics 5.12 3.26 1.48 1.05 5.13 3.26 1.77 1.29 Riskmetrics 5.16 3.31 1.59 1.06 5.03 3.04 1.46 0.93
N GARCH 445 278 105 0.72 469 302 149 086 N GARCH 542 370 172 1.06 569 304 172 079
ST GARCH 465 254 077 053 489 297 115 048 ST GARCH 582 317 132 079 6.09 304 132 040
ST EGARCH 460 254 091 029 527 302 115 058 ST EGARCH 569 331 146  0.79 595 304 119 040
ST APARCH 460 254 091 0.29 522 292 115 053 ST APARCH 5690 317 146  0.79 595 291 119 040
skST GARCH 4.9897 27842 0.96% 0.624 4.69°%  2.872 0.96% 0.384 skST GARCH 63510 370 1591 1.06°0 55640 2519 .79 0.275!
skST EGARCH 503 2689 1.019 0.43% 5.03% 27842 0.9167 (.43 skST EGARCH 6.3510 35798 15913 (.792° 52072 26580 09381 0273
skST APARCH 5127 2,689 1.05%  0.53% 4.93% 2784 0.96% 0435 skST APARCH 6.081 3442 15913 0.792 5165 26580 0.79%  0.27-31

Percentage of negative dail
entage of positive daily retur)

returns smaller than one-step-ahead VaR (left column, long positions) and the
1 than one-step-ahead VaR (right column, short positions) corresponding to 95,
5,99, and 99.5 percent cunﬁl cls. The (percentage) values found significant at 1 percent (5 percent) level are
shown in bold (italics). The r the Kupice LR test are shown explicitly (viz superscripts) only at the models
Cstimated with skewed Student density, The results are from in-sample cetimation.
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Table 7: Sensitivity Analysis: Expected Shortfall: Indices (In-Sample) Table 8: Sensitivity Analysis: Expected Shortfall: Indices (Out-of-Sample)

(Long Positions) (Short Positions) (Long Positions) (Short Positions)
conf. level (%) 95.0 975  99.0 99.5 95.0 975 99.0 99.5 conf. level (%) 95.0 975 99.0 99.5 95.0 97.5 99.0 99.5
ATX Index ATX Index
Riskmetrics -2.26  -2.60 -3.07 -3.38 1.98 234 241 2.66 Riskmetrics -2.44  -2.82 -343 -4.00 2.00 230 237 275
N GARCH -2.42 -2.84 -3.35 -3.74 2.15 234 275 292 N GARCH -2.59 -2.92 -3.51 -3.91 2.19 237 289 271
ST GARCH -2.39 -291 -3.69 -3.95 2.13 244 295 277 ST GARCH -2.57 -2.99 -4.00 -4.20 2.14 243 3.09 NA
ST EGARCH -2.42 -294 -3.66 -4.07 2.08 241 283 283 ST EGARCH -2.38  -2.97 -3.69 -4.27 2.00 233 275 2.68
ST APARCH -2.39 -2.90 -3.60 -3.96 2.06 244 284 280 ST APARCH -2.41 -298 -3.71 -4.21 2.05 239 279 259
skST GARCH -2.49  3.05 -3.77 -3.99 2.06 235 276 2.78 skST GARCH -2.68 -3.12 -4.03 -4.20 2.06 235 3.00 2.82

skST EGARCH -2.52 -3.01 -3.80 -4.09 199 235 270 287 skST EGARCH -2.58 -3.07 -4.14 -4.21 1.98 232 319 272
skST APARCH -2.53 -2.95 -3.80 -3.91 2.01 227 269 287 skST APARCH -2.54 -3.06 -4.03 -4.21 1.98 231 283 272

PX Index PX Index
Riskmetrics -2.42 -2.76 -3.07 -3.30 233 246 2.86 3.10 Riskmetrics -249 -2.94 -3.38 -3.55 2.28 2.58 3.08 3.40
N GARCH -2.52 -2.90 -3.24 -3.53 241 274 321 3.52 N GARCH -2.59 -3.11 -3.46 -3.58 2.28 274 325 3.48
ST GARCH -2.43 -2.88 -3.43 -3.98 231 280 3.41 4.20 ST GARCH -2.52 -3.07 -3.58 -3.83 2.16 2.67 3.48 3.80
ST EGARCH -2.46 -2.86 -3.49 -4.30 234 272 349 4.24 ST EGARCH -2.55 -3.17 -3.62 -3.99 2.24 280 348 4.94
ST APARCH -2.44 -2.88 -3.56 -4.25 233 270 230 4.01 ST APARCH -2.55 -3.24 -3.63 -4.31 224 270 339 3.58
skST GARCH -2.46  -2.96 -3.50 -4.16 2.27 273 3.34 3.86 skST GARCH -2.52 -3.07 -3.58 -3.77 220 278 348 4.26

skST EGARCH -2.48 -2.95 -3.53 -4.30 230 267 3.34 3.78 skST EGARCH -2.57 -3.17
skST APARCH -2.46  -2.90 -3.57 -4.29 230 260 3.14 4.09 skST APARCH -2.52 -3.26

-3.95 2.27 282 348 4.94
-3.85 1.98 234 241 266

BUX Index BUX Index
Riskmetrics -3.34 -4.08 -5.21 -551 3.22 3.65 4.18 4.46 Riskmetrics -2.55 -3.11 -3.71 -4.00 2.63 2.83 3.00 3.42
N GARCH -3.71 -4.38 -5.58 -5.91 3.35 391 455 441 N GARCH -2.79 -3.32 -3.81 -4.10 2.73 3.02 348 3.75
ST GARCH -3.55 -4.42 -6.30 -6.96 3.23 3.96 4.61 5.13 ST GARCH -2.64 -3.39 -4.18 -4.59 2.66 3.11 3.75 4.15
ST EGARCH -3.67 -5.01 -6.47 -7.20 3.27 3.79 4.73 5.07 ST EGARCH -2.70 -3.51 -4.15 -5.29 2.71 3.07 3.75 4.15
ST APARCH -3.59 -4.64 -6.40 -7.06 3.25 3.88 441 4.96 ST APARCH -2.63 -3.50 -4.16 -4.76 2.65 3.06 3.63 4.15
skST GARCH -3.60 -4.49 -6.52 -7.03 321 3.94 444 5.14 skST GARCH -2.67 -3.45 -4.18 -4.59 2.65 3.13 3.75 4.15

skST EGARCH -3.71 511 -6.47 -7.20 326 3.77 4.64 5.07 skST EGARCH -2.78 -3.56 -4.15 -5.29 2.68 3.00 3.50 4.15
skST APARCH -3.63 -4.75 -6.49 -7.06 324 3.85 435 4.96 skST APARCH -2.64 -3.50 -4.16 -4.76 2.65 3.06 3.63 4.15

WIG Index WIG Index
Riskmetrics -3.50 -3.86 -4.33 -4.70 3.35 377 421 4.24 Riskmetrics -2.97 -3.24 -3.70 -3.96 2.67 298 3.36 2.83
N GARCH -3.70 -4.09 -4.66 -4.98 3.60 4.02 4.56 4.52 N GARCH =342 -3.76 -4.09 -4.58 3.02 3.34 399 3.70
ST GARCH -3.67 -4.10 -5.00 -5.80 3.57 4.00 4.54 5.16 ST GARCH -3.36 -3.81 -4.24 -5.06 297 3.36 3.70 NA
ST EGARCH -3.73 -4.24 -5.02 -5.53 3.58 4.00 4.53 5.18 ST EGARCH -3.29 -3.88 -4.16 -4.37 297 3.25 354 NA
ST APARCH -3.71 -4.16 -4.95 -5.68 3.55 4.02 4.53 5.16 ST APARCH -3.33 -3.81 -4.26 -4.83 294 329 384 NA
skST GARCH -3.64 -4.07 -5.00 -5.66 3.68 4.09 445 5.16 skST GARCH -3.31 -3.71 -4.24 -4.83 298 3.36 3.70 NA

skST EGARCH -3.69 -4.24 -5.02 -5.59 3.61 3.98 4.63 5.26 skST EGARCH -3.29 -3.85 -4.16 -4.37 3.01 325 332 NA
skST APARCH -3.66 -4.12 -4.90 -5.77 3.56 4.07 4.60 5.16 skST APARCH -3.30 -3.79 -4.09 -4.70 2.97 3.38 370 NA

Notes: Expected values of the losses greater than VaR for long (left column) and short (right Notes: Expected values of the losses greater than VaR for long (left column) and short (right
column) positions for the ATX, PX, BUX, and WIG stock indices. The results are based on column) positions for the ATX, PX, BUX, and WIG stock indices. The results are based on
in-sample estimations. out-of-sample estimations.

Table 9: Sensitivity Analysis: Expected Shortfall: Selected Stocks (In-Sample) — Table 10: Sensitivity Analysis: Expected Shortfall: Selected Stocks (Out-of-Sample)

(Long Positions) (Short Positions) (Long Positions) (Short Positions)
conf. level (%) 95.0 975  99.0 99.5 95.0 97.5 99.0 99.5 conf. level (%) 95.0 975 99.0 99.5 95.0 975 99.0 99.5
EBS Stock EBS Stock
Riskmetrics -3.73 417 -4.78 3.80 4.13 459 4.84 Riskmetrics -3.63 -4.04 -446 -4.74 3.73 419 440 4.69
N GARCH -3.95 -4.67 -5.52 3.99 4.53 5.03 5.06 N GARCH -3.87 -4.49 -4.92 -5.08 3.99 459 491 4.76
ST GARCH -3.91 -4.78 -6.50 3.90 455 5.11 597 ST GARCH -3.83 -4.60 -5.22 -5.60 3.82 459 4.82 6.35
ST EGARCH -3.90 -4.86 -6.51 3.85 4.40 5.06 5.50 ST EGARCH -3.89 -4.58 -5.69 -6.09 3.93 441 486 6.88
ST APARCH -3.91 -4.84 -6.37 -6.63 3.80 3.39 4.90 5.40 ST APARCH -3.92 -4.57 -5.69 -5.88 3.80 4.55 4.81 6.35
skST GARCH -3.84 -469 -6.24 -6.90 3.93 4.60 5.09 6.02 skST GARCH -3.69 -4.39 -522 -5.60 3.89 459 501 6.35
skST EGARCH -3.83 -4.76 -6.32 -6.48 3.90 449 507 544 skST EGARCH -3.81 -4.56 -5.69 -5.44 3.98 4.62 524 5.05
skST APARCH -3.83 -4.75 -6.37 -6.95 3.80 4.56 5.01 5.77 skST APARCH -3.72 -4.49 -539 -5.44 3.92 460 512 6.88
CEZ Stock CEZ Stock
Riskmetrics -4.42  -4.91 -5.56 -6.02 4.41 497 572 6.26 Riskmetrics -3.91 -4.31 -5.07 -5.40 3.66 4.19 4.72 5.34
N GARCH -3.50 -3.81 -4.37 -4.76 3.45 3.83 4.52 4.94 N GARCH -4.21 -4.79 -5.45 -5.56 4.17 466 543 6.02
ST GARCH -4.39 -5.25 -6.37 -7.51 4.51 5.38 6.63 7.01 ST GARCH -3.98 -4.98 -5.74 -6.21 3.88 4.69 6.41 6.32
ST EGARCH -4.52 -5.29 -6.40 -7.71 4.53 5.58 6.91 6.95 ST EGARCH -4.18 -4.92 -597 -598 3.90 484 6.63 NA
ST APARCH -4.43 -5.28 -6.40 -7.33 453 544 643 742 ST APARCH -4.12 -4.94 -592 -591 3.92 496 5.66 6.32
skST GARCH -4.43 -5.35 -6.45 -7.73 443 534 683 7.01 skST GARCH -3.94 -499 -574 -6.21 3.72 458 6.41 6.32
skST EGARCH -4.57 -5.37 -6.47 -7.71 444 552 6.61 6.95 skST EGARCH -4.20 -4.99 -5.97 -5.98 3.84 474 626 6.32
skST APARCH -4.47 -5.45 -6.58 -7.33 448 541 6.60 6.87 skST APARCH -4.15 -4.94 -5.92 -591 3.85 4.96 5.66 6.32
OTP Stock OTP Stock
Riskmetrics -4.81 -5.60 -6.66 -7.33 488 5.64 6.53 7.09 Riskmetrics -3.89 -4.33 -4.95 -5.26 4.02 452 514 520
N GARCH -5.07 -5.95 -6.93 -8.93 538 598 6.88 T7.72 N GARCH -4.26 -4.81 -531 -6.57 4.53 495 523 5.63
ST GARCH -5.04 - -8.82 -10.3 524 620 7.55 9.57 ST GARCH -4.25 -4.98 -6.57 -6.99 442 513 5.63 7.53
ST EGARCH -5.07 -8.95 -10.4 512 6.15 7.39 9.66 ST EGARCH -4.19 -4.89 -6.57 -6.87 431 495 563 NA
ST APARCH -5.06 -6.14 -8.74 -10.3 5.23 6.16 7.47 9.44 ST APARCH -4.20 -4.95 -6.57 -6.99 4.39 5.09 5.63 7.53
skST GARCH -5.00 -5.99 -7.90 -10.3 5.34 639 7.72 9.77 skST GARCH -4.16  -4.83 -5.81 -6.99 4.51 521 6.08 7.53
skST EGARCH -5.06 -6.21 -8.22 -10.4 525 6.26 7.60 9.57 skST EGARCH -4.08 -4.83 -6.57 -6.47 441 510 5.85 NA
skST APARCH -5.00 -6.09 -8.20 -10.3 530 6.32 7.47 9.44 skST APARCH -4.16 -4.88 -6.13 -6.99 4.45 518 586 7.53
PKN Stock PKN Stock
Riskmetrics -3.95 -4.35 -5.06 -5.36 412 4.66 4.87 4.97 Riskmetrics -4.40 -4.90 -5.83 427 475 5.00 5.22
N GARCH -4.17 -4.67 -5.60 -6.14 4.38 4.83 530 5.71 N GARCH -4.48 -4.97 -5.84 426 4.83 538 6.08
ST GARCH -4.13 -6.06 -6.43 4.33 4.84 557 6.12 ST GARCH -4.39 -5.19 -6.18 421 483 552 6.14
ST EGARCH -4.14 -5.76  -6.92 4.24 483 549 5.91 ST EGARCH -4.42  -5.13  -6.02 4.24 483 557 6.14
ST APARCH -4.14 -5.76  -6.92 4.25 4.87 549 5.74 ST APARCH -4.43  -5.19 -6.02 4.21 488 557 6.14
skST GARCH -4.06 -5.71  -6.32 4.37 489 568 6.49 skST GARCH -4.26  -4.97 -5.92 4.30 5.04 6.08 6.73
skST EGARCH -4.03 -5.65 -6.44 4.27 488 572 592 skST EGARCH -4.28 -5.02 -5.88 4.35 499 588 6.73
skST APARCH -4.03 -5.59 -6.28 431 490 566 5.92 skST APARCH -4.33 -5.06 -5.92 437 499 6.08 6.73
Notes: Expected values of the losses greater than VaR for long (left column) and short (right Notes: Expected values of the losses greater than VaR for long (left column) and short (right
column) positions for the EBS, CEZ, OTP, and PKN stocks. The results are based on in-sample column) positions for the EBS, CEZ, OTP, and PKN stocks. The results are based on out-of-
estimations. sample estimations.
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Table 11: VaR Failure Rates (in %): ATX (In-Sample)

Table 12: VaR Failure Rates (in %): WIG Stocks (In-Sample)

ATX Index (Long Positions) (Short Positions) WIG Index (Long Positions) (Short Positions)
conf. level (%) 95.0 975 990 995 95.0 975 99.0  99.5 conf. level (%) 95.0 975 99.0 995 95.0 975 99.0 995
EBS PRN
Riskmetrics 586 3.44 1.80 1.06 536 3.68 2.03 1.29 Riskmetrics 512 326 148  1.05 513 326 177 1.29
N GARCH 531 285 141 078 508 293  1.64 121 N GARCH 445 278 105 0.72 469 302 149  0.86
ST GARCH 551 246 070  0.55 555 282 11T 0.39 ST GARCH 465 254 077 053 489 297 115 048
ST EGARCH 543 231 074 039 571 297 117 051 ST EGARCH 460 254 091 029 527  3.02 115 058
ST APARCH 532 238 074 039 583 282 110 051 ST APARCH 460 254 091 0.29 522 292 115 053
skST GARCH 5.7907 2,627 0.78% (.55 53741 26661 0.989 0.35% skST GARCH 4.9897 27842 0.96% 0.62:4 4.69°% 2.87% 0.96% 0.384
skST EGARCH 57907 2,548 0.8617  0.47%2 5512 2.70°% 1,029 0.311° skST EGARCH 5.03% 2686 1019 0.43% 5.03% 27842 09167 (.436°
skST APARCH 57500 2548 0.7417 .51 5512 26660 0989 0.35% skST APARCH 5127 2686 1058 0.535 4.93% 27842 0.96% 0.43%
oMV PKO
Riskmetrics 575  3.35 1.96  1.37 525 301 152 1.09 Riskmetrics 470 219 1.88 115 5690 335 1.68  1.06
N GARCH 509 323 1.80 1.27 453 267 118 0.5 N GARCH 454 274 143 0.86 515 290  1.4% 078
ST GARCH 553 276 115 0.65 469 245 084 034 ST GARCH 462 258 090 045 577 286 078 041
ST EGARCH 543 280 112 053 500 227 0.68 037 ST EGARCH 466 258 090 049 552 295  0.86 045
ST APARCH 537 289 118  0.56 5.03 242 078 0.34 ST APARCH 454 254 094 041 589 270 086 045
skST GARCH 543%  267° 1.12°0 0.53% 48568 2489 08434 0372 skST GARCH 47962 2744 1,029 0457 5.40%7 2,662 0.78% 0.41°
skST EGARCH 5196 26461 1.02% 04778 53734 23969 0.8126 (.44 skST EGARCH 49590 2.783%  0.9477 (.53 ; 157 2.6270 0.78%  0.457
skST APARCH 50080 2,619 1.0962 0.477 52592 2529 (8431 (.37 skST APARCH 47456 27838 09477 04572 5620 25880 0.78% 0.41°!
TKA TPS
Riskmetrics 478 308 181 137 495 346 192  1.43 Riskmetrics 501 261 145 107 573  3.68 2.01 1.24
N GARCH 423 236 1.59  1.04 407 264 126 0.82 N GARCH 454 240 128 0.86 561 3.3, 1.5/ 0.94
ST GARCH 478 247 110 055 539 269 077 0.39 ST GARCH 462 214 011 026 595 325  1.2{ 047
ST EGARCH 418 214 093 044 539 280  0.88 039 ST EGARCH 432 227 094 026 5.95 325 128 051
ST APARCH 423 225 088 044 533 253  0.82 033 ST APARCH 449 210 111 030 591 321 124 056
skST GARCH 1.89% 2,696 1109 05577 50690 24282 0.6007 (.33 skST GARCH 53939 25291 12819 (.64:% 5187 270 0.9891 0.34%
skST EGARCH 4739 24282 1.04% 05577 4.959% 2479 07730 0.33%7 skST EGARCH 5354 2407 1.24% 0.68% 52263 2539 09062 0.34%
skST APARCH 4.73% 25852 1.04% 04997 4898 24282 0712 0.33% skST APARCH 5260 2578 13313 0.68% 5197 287% 09092 0.3

Notes: Percentage of negative daily returns smaller than one-step-ahead VaR (left column, long positions) and the
percentage of ve daily returns larger than one-step-ahead VaR (left column, short positions) corresponding to 95,
97.5, 99, and 99.5 percent confidence levels. The (percentage) values found significant at 1 percent (5 percent) level are
shown in bold (italics). The p-values for the Kupiee LR test are shown explicitly (viz superscripts) only at the models
estimated with skewed Student density. The results are from in-sample estimation.

Table 13: VaR Failure Rates (in %): BUX Stocks (In-Sample)

Notes: Percentage of negative daily returns smaller than one-step-ahead VaR (left column, long positions) and the
percentage of positive daily returns larger than one-step-ahead VaR (left column, short positions) corresponding to 95,
97.5, 99, and 99.5 percent confidence levels. The (percentage) values found significant at 1 percent (5 percent) level are
shown in bold (italics). The p-values for the Kupice LR test are shown explicitly (viz superscripts) only at the models
estimated with skewed Student density. The results are from in-sample estimation.

Table 14: VaR Failure Rates (in %): PX Stocks (In-Sample)

BUX Index (Long Positions) (Short Positions) PX Index (Long Positions) (Short Positions)
conf. level (%) 95.0 975 990 995 95.0 975 99.0  99.5 conf. level (%) 95.0 975 99.0 995 95.0 975 99.0 995
MOL CEZ
Riskmetrics 494 210 174 0.93 547  3.44 207 1.34 Riskmetrics 547  3.58 219  1.62 521  3.42 1.89 1.26
N GARCH 414 217 117 093 474 314 157 117 N GARCH 487 295 176  1.29 415 262 136 0.90
ST GARCH 484 214 090 050 554 297 124 053 ST GARCH 550 292 119 053 491 235 073 0.23
ST EGARCH 461 224 080 050 507 290 114 043 ST EGARCH 527 282 119 043 481 232 086  0.23
ST APARCH 467 214 087 047 547 284 127 053 ST APARCH 531 285 109 056 484 235 073 0.27
skST GARCH 5147 23456 0.97%6 (5761 5179 2704 10770 04750 skST GARCH 5314 2724 10061 0509 53440 24278 080 0.23
skST EGARCH 4979 24792 0937 0.67% 4918 2578 11447 0309 skST EGARCH 5117 27245 11349 .43 5.07% 2499 100 0.23
skST APARCH 5019 24452 0937 (.57 5.24%° 267 11447 (.43 skST APARCH 52160 26560 0.999 (.56 5.0492 2427 0.7617 0.3316
MTE ERS
Riskmetrics 481 291 1.90 1.40 520 310 1.4/  0.93 Riskmetrics 579 362 224 137 492 318 210 130
N GARCH 427 225 151 101 458 240 120  0.78 N GARCH 507 355 1.88  1.09 449 268 145 109
ST GARCH 477 209 105 0.81 508 225 085 031 ST GARCH 535 318 087 058 507 246 101 0.65
ST EGARCH 446 209  1.05 081 496 233 097 043 ST EGARCH 535 318 116 029 485 268 101 072
ST APARCH 446 213 109 0.81 508 225 085 043 ST APARCH 507 318 101 043 507 246 094 058
skST GARCH 4.6947 2,06 1.05% 0.81 51278 22048 (8957 (3114 skST GARCH 52172 3.04% 0804 05197 50792 2610 1234 0.654
skST EGARCH 43814 2,097 1.05% 0.81 4969  3.2760  0.8957 0.4780 skST EGARCH 5355 3.0421 09452 02209 50790 2.68%% 1.097 0801
skST APARCH 44620 21322 1.09%7 0.81 5.08% 22541 (.85 (.43% skST APARCH 4.99% 2899 1019 0437 5079 26180 1.019  0.58%°
OTP KOB
Riskmetrics 517 3.1/ 177 1.30 551  3.37  1.84 114 Riskmetrics 511 345 219 1.62 468 305 192 1.26
N GARCH 464 274 167 083 451 210 144  0.90 N GARCH 491 302  1.69 1.26 3.75 259 149 0.83
ST GARCH 497 254 087 0.50 501 280 100 0.7 ST GARCH 527 295  L13  0.66 448 235 070 037
ST EGARCH 504 237 080 047 521 277 107 043 ST EGARCH 527 275 113 0.56 487 232 086 037
ST APARCH 491 254 090  0.50 497 284 1.04 040 ST APARCH 524 282 109  0.60 481 242 080 040
skST GARCH 5179 2704 11347 0.5010 4714 24792 090 0.3317 skST GARCH 52161 26992 1.03%  0.604¢ 4.84% 26298 .86 0.37%
skST EGARCH 52160 24792 1,00  0.47% 47451 2549 0947 0404 skST EGARCH 51170 2.69°2 0.90°° 0.50%% 5147 2597 1067 0.43°
skST APARCH 5.07% 2,607 1.077" 0.50'0 47757 24792 1.04% 0402 skST APARCH 5147 2659 0999 0509 5117 26207 0.90°° 0.40*
RCH TEF
Riskmetrics 5.17 2.97 2.14 1.50 5.14 3.37 1.77 1.24 Riskmetrics 4.93 3.35 1.86 1.25 4.61 2.79 1.62 1.17
N GARCH 441 294 167 113 484 270 147 097 N GARCH 416 238 133 1.05 3.44 210 146 0.85
ST GARCH 474 274 110 040 527 274 094 0.27 ST GARCH 489 222 093 032 500 226 093 049
ST EGARCH 481 267 100 050 537 260 090 040 ST EGARCH 3.60 1.21 036 0.20 3.84 1.29 045 0.2
ST APARCH 464 274 100 043 517 277 097 040 ST APARCH 493 218 089 040 489 239 105 0.69
skST GARCH 497 277% 11347 0.404% 5147 2,607 08746 0.27 skST GARCH 4.89850 22237 0937 0.321% 5.098 2264 0937 04992
skST EGARCH 4.84% 270% 1009 0500 54131 26493 0.8716 (.37 skST EGARCH 47358 23870 09788 0446 4.81°%6 22641 09788 (.53
skST APARCH 47757 2.84% 1038 04780 5117 2744 0947 0.404? skST APARCH 51370 22237 0.97%  0.404 4.81'% 23462 1,058  0.69-2

Notes: Percentage of negative daily returns smaller than one-step-ahead VaR (left column, long positions) and the
cntage of positive daily returns larger than one-step-ahead VaR (left column, short positions) corresponding to 95,
975,99, and 99.5 percent confidence levels. The (percentage) values found significant at 1 percent (5 percent) level are
shown in bold (it r the Kupice LR test are shown explicitly (viz superscripts) only at the models
estimated with skewed Student density. The results are from in-sample estimation.
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Table 15: VaR Failure Rates (Hy view): Indices and Selected Stocks (In-Sample)

Stock Indices (Long Positions) (Short Positions)
ATX PX BUX WIG ATX PX BUX WIG
RiskMetrics 0 25 50 25 0] 50 50 25
N GARCH 25 50 75 50 50 75 75 75
ST GARCH 50 100 100 100 0 50 100 75
ST EGARCH 75 100 100 100 50 50 100 75
ST APARCH 50 100 100 100 50 75 100 75
skST GARCH 75 100 100 100 100 100 100 75
skST EGARCH 100 100 100 100 100 100 100 75
skST APARCH 100 100 100 100 100 75 100 75
Stocks (Long Positions) (Short Positions)
EBS CEZ OTP PKN EBS CEZ OTP PKN
RiskMetrics 25 25 25 25 25 25 50 25
N GARCH 100 50 50 100 50 50 25 50
ST GARCH 100 100 100 100 100 75 100 100
ST EGARCH 100 100 100 100 100 75 100 100
ST APARCH 100 100 100 100 100 75 100 100
skST GARCH 100 100 100 100 100 75 100 100
skST EGARCH 100 100 100 100 100 75 100 100
skST APARCH 100 100 100 100 100 100 100 100

Notes: Number of times out of 100 that the p-value of the Kupiec LR test is smaller than five percent
[that is, the null hypothesis that the failure rate is equal to (1 - appropriate confidence level) cannot be
rejected], for the combined four possible values of the confidence levels used in the analysis. The results
for the ATX, PX, BUX, and WIG stock indices (top) and EBS, CEZ, OTP, and PKN stocks (bottom)
are based on in-sample estimations.

Table 16: VaR Failure Rates (Hy view): Indices and Selected Stocks (Out-of-Sample)

Stock Indices (Long Positions) (Short Positions)
ATX PX BUX WIG ATX PX BUX WIG
RiskMetrics 25 50 100 50 75 75 75 50
N GARCH 25 50 75 50 100 75 75 75
ST GARCH 50 100 100 75 75 100 75 50
ST EGARCH 50 100 75 75 50 100 50 50
ST APARCH 50 100 75 75 50 100 75 50
skST GARCH 75 75 75 75 75 100 75 50
skST EGARCH 100 100 75 75 100 100 50 50
skST APARCH 100 50 75 75 100 100 75 50
Stocks (Long Positions) (Short Positions)
EBS CEZ OTP PKN EBS CEZ OTP PKN
RiskMetrics 25 25 25 25 25 25 25 25
N GARCH 100 50 50 100 50 50 25 50
ST GARCH 100 100 100 100 100 75 100 100
ST EGARCH 100 100 100 100 100 75 100 100
ST APARCH 100 100 100 100 100 75 100 100
skST GARCH 100 100 100 100 100 75 100 100
skST EGARCH 100 100 100 100 100 75 100 100
skST APARCH 100 100 100 100 100 75 100 100

Notes: Number of times out of 100 that the p-value of the Kupiec LR test is smaller than five percent
[that is, the null hypothesis that the failure rate is equal to (1 - appropriate confidence level) cannot be
rejected], for the combined four possible values of the confidence levels used in the analysis. The results
for the ATX, PX, BUX, and WIG stock indices (top) and EBS, CEZ, OTP, and PKN stocks (bottom)
are based on out-of-sample estimations.
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Figure 1. ATX, PX, BUX, and WIG Stock Indices
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Note: Density estimates for ATX, PX, BUX and WIG stock indices. The normal distribution is shown with a
dashed line. The densities are estimated using non-parametric density estimators due to Scott (1985) with h =
0.35.
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Figure 2. EBS, CEZ, OTP, and PK Stock Returns
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Note: Density estimates for EBS, CEZ, OTP and PKN stock indices. The normal distribution is shown with a
dashed line. The densities are estimated using non-parametric density estimators due to Scott (1985) with h =

0.35.
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