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Introduction

This article describes the isobar surfaces approach, which finds a one-
dimensional ordering of multidimesional data, and surfaces in R that enclose
the u-th quantile of the data distribution according to the one-dimensional
ordering.

An isobar maps every direction to a particular distance from a center
(specified by the quantile function). The resultant surface for a fixed quantile
u is also called an isobar.

The article [1] contains the first definition of isobars. Both authors of [1]
extend their work in further articles in different ways.

M. F. Barme-Delcroix continued to study their theoretical properties and
their connections with single-dimensional extreme value theory. In [5] the
stability of multivariate intermediate order statistics is discussed. The article
[6] studies multidimensional outlier-prone and outlier-resistant distributions
and [8] extends the theory of outlier-proneness. In [7], limit laws for mul-
tidimensional extremes are studied with the usage of the one-dimensional
Fisher-Tippett theorem.

P. Jacob, the second autor of [1], focused on practical estimation of the
isobar shapes. The article [2] focuses on estimation of the edge of the bounded
support using nonparametric regression and [3] extends this method for
unbounded support using asymptotical location and isobars.

In our article, we use the shape of the isobar surfaces to test the efficient
market hypothesis stating that returns of efficient stock market indices have
the behaviour of Brownian motion. The hypothesis is stated e.g. in [4]. Various
reasons for deviations from this hypothesis for otherwise efficient markets
were discussed in the literature.

The first part is concerned with theory and estimation of isobars. In the
second part we perform a simulation study for Gaussian distribution with
different parameters and an assessment of the shape and stability of the
resulting isobars. In the third part we’ll estimate isobars for returns of seven
stock market indices and their lagged values and evaluate the efficient market
hypothesis for each index. Finally, we summarize the results and outline
future progress.

Isobar surfaces and their estimation

Isobars are defined in generalized polar coordinates, so a coordinate
transformation of data is required beforehand. The transformation of a non-



zero vector x € R? to generalized polar coordinates is
X

Il

where ||x]|, is the Euclidean norm of the vector x. Observe that the generalized
angle 0 lies on S9!, the sphere of unit radius in R

We’ll use the definition of isobar as it appears in [1], page 2. For every
u € (0, 1), the u-level isobar is defined as a mapping of a fixed 6 to the value
of the inverse distribution function of the Euclidean distance from the origin:
6 — Fp |1@ (u).

The name “u-level isobar” will also be used interchangeably for the surface
Su=TFg |1@ (u) determined by each 6 with a fixed quantile u in the inverse of

r=lxl,, 0=

the conditional distribution function F, ‘1@.

For this definition and the estimation method described later to be valid,
the random variable X = (R, ©) whose multidimensional realizations comprise
our sample needs to satify certain requirements. We assume continuity of the
mariginal density fo(f), conditional density frje(r|0) and the conditional
distribution function Fg|e(r|#). We also need the distribution function to
be a bijection so that its inverse exists. The introduced mapping is assumed
to be continuous and strictly positive.

A description of the ordering of multidimensional data by quantiles follows.
Consider a sample of n independent realizations of the random variable X,
e.g. X; = (R;,0;), 1 <i < n. For every i there exists an unique u;-level
isobar containing the point X;. Denoting X;, the realizations ordered by
their respective quantile values u;, the maximum value is given by the point
X, n which belongs to the upper-level isobar with level max;<;<, u;.

In practice, we’ll assess the 1-level isobar on the grounds of the asymptotical
location property as described in [3]. For large n, the furthest points from the
origin lie near the ”T’l—level isobar. The 1-level isobar is then simply the edge
of the bounded support. Citing Definition 3 from [3], page 175:

The distribution of r.v. X on R? is said to have the asymptotical
location property if a.s. for each € > 0 and each sample X;, 1 < <
n, with the same distribution as X and with size n > ny = ng(€, w):

inf  dist(z, X,,) < e and sup min dist(z,X;) < €,
xeS(nfl)/n SBGS(n—l)/n 1<i<n

where w is an elementary event of the sample space €.

Isobar estimation is performed by the non-parametric regression of [2, 3].
For the estimation we’ll assume homotheticity of isobars, e.g. for some strictly
positive continuous function v(#) and a distribution function G,

Frie(r|0) = G(ﬁ) for r € [0,v(8)].

2



The function v(#) corresponds to the 1-level isobar and unambiguously de-
scribes the shape of all isobars. The distribution of ﬁ is spherically symmetric
and it can be fully described by G on [0, 1].

We estimate v(6) using radial regression:

v(6)

w(0) = E(R|© = 0) = / <1 - G(%)) dr = co(9),

where ¢ is the expected value of G. The estimate of the expected value of
R given © = 6 describes the shape of 1-level isobar up to a multiplicative
constant. This constant is chosen in a way that the estimated expected value
shape w(f) contains the whole data after scaling:

b(0) = wf)’ where 1/¢ = max w%i)
The original method in [2] performs non-parametric regression on data
transformed from generalized polar coordinates (r, ) into hyperspherical coor-
dinates (r, @), resulting in the estimate of w(¢p, ..., pq_1). This parametriza-
tion, however, suffers from pole singularities in higher dimensions (d > 2),
which hurts non-parametric regression. Therefore we propose to estimate w(6)
in the domain (7, x) after projecting the data on the unit sphere S¢~! and
adding r as an extra coordinate. The estimate of w(f) then corresponds to the
estimate of w(x) constrained to x € S¢~!. This method is a little slower due
to the extra coordinate, but doesn’t suffer from degeneracies. In the following,
we’'ll use and evaluate both methods.

Simulation study — normal distribution

Since we assume Brownian motion for data obtained from efficient markets,
we need to know how non-parametric isobar shape estimation behaves in the
ideal case of normal distribution.

Computations were performed in the R environment for statistical comput-
ing. For multidimensional non-parametric regression the np package was used.
The best results were obtained by choosing locally-weighted linear regression,
Gaussian kernels and k-nearest-neighbour kernel bandwidth estimation.

We've estimated isobar shapes of two-dimensional Gaussian distribution
samples with zero mean and several covariance matrices. We've tested various
sample sizes (n: 100, 300, 1000 or 3000) from distributions with diagonal
covariance matrices (variances (1, 1) or (1, 9)) and from distributions with
non-zero covariances (variances: (1, 1), covariances: 0.2 or 0.8).

3
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Figure 1: Isobars for Gaussian distibution samples with n = 3000 and covariance

. 10 10 1 0.2 108
matrices (01), (09), (0,2 1 ) and (0.8 1 ).

An excerpt of the results is shown in Figures 1 and 2. Inner shapes represent
the expected value estimation w(#), outer shapes represent the estimation of
the 1-level isobar ©(6). The result for the hyperspherical parametrization of
2] is green while the result of the proposed projection approach is red (in
the case of overlap only the red curve is visible). The farthest point for each
parametrization is highlighted.

The obtained isobar shapes started resembling circles (uncorellated marginals
with equal variances) and ellipsoids (unequal variances or corellated marginals)
around sample sizes 300 and 1000.

The most time-consuming part of estimation is bandwidth selection. Both
parametrizations get stuck in local minima — the hyperspherical parametriza-
tion often averages all data (k = n), while the projection approach has better
details, but may overfit (k too small). We solve the problem by allowing the
algorithm to take multiple restarts of the randomized bandwidth search, but
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Figure 2: Isobars for Gaussian distibution samples with covariance matriz (., ;

and n € {100, 300, 1000, 3000}.

for larger n, the speed of this approach can become prohibitive. We’ve chosen
5 and 10 restarts for the hyperspherical and projection approach, respectively.

Since the software doesn’t support periodic domains needed in the hyper-
spherical parametrization, we had to emulate this functionality by placing
copies of the data along multiples of 2. This has slowed the estimation to
the level of the second parametrization, which needs an extra coordinate. The
results have shown that both parametrizations perform equally well, at least
in the case of d = 2.

Application — stock market indices

After the choice of methods of isobar shape assessment we’ll proceed to
their application to stock market index returns.
The efficient market hypothesis states that returns (closing—opening price)



of market indices in efficient markets follow Brownian motion (see e.g. [4]).
In practice, this assumption is mostly violated by the periodic structure
(day, week, quarter, year) of agent behaviour. Further bias mostly reveals
non-rational behaviour, non-zero information costs or delayed reactions. Our
goal is to measure the efficiency of a market using isobar shapes.

Our data consists of weekly closing and opening prices for the past ten
years (sample size around 500) obtained from the Reuters Wealth Manager
service.

The y-axis denotes the current value of stock market index returns, the
x-axis denotes their lagged values. Under the efficient market hypothesis, the
isobar shape for this configuration should be close to a circle (since Brownian
motion is independent with itself when lagged).

We'’ve applied the method on seven stock market indices. We’ll shortly
summarize them before presenting the results:

e The NASDAQ Composite Index is comprised of 2742 stocks of the
NASDAQ Stock Market.

e The PX Index is comprised of 14 stocks of the Prague Stock Exchange
(only five of which are Czech).

e The BUX Index: 13 Hungarian stocks of the Budapest Stock Exchange.
e The BET Index: 10 Romanian stocks of the Bucharest Stock Exchange.
e The BELEX15 Index: 15 Serbian stocks of the Belgrade Stock Exchange.

e The JSX Composite Index: 379 Indonesian stocks of the Indonesia Stock
Exchange.

e The Straits Times Index: 30 stocks of the Singapore Exchange.

We’ve studied isobar shapes for lags between one and fifteen weeks.

Isobar shapes for the NASDAQ Composite Index (Figure 3) are very close
to circles except for the 13-week lag, which can be explained by the expected
quarterly periodicity of agent behaviour. Based on visual examination, the
market of NASDAQ may follow the efficient market hypothesis.

Isobar shapes for the Straits Times Index, BET and BELEX15 (Figures 9,
6 and 7, respectively) differ from circles in a few lags: for Straits Times Index
it’s the 7-, 12- and 15-week lag. Only lag 7 differs from a circle significantly —
a significant dependence can’t be conjectured. For BET, observe lags of 2,
3, 11 and 13 weeks: the deviations are distinctive, which suggests short-time
dependency in the data. For BELEX15, significant deviations can be seen for
lags 3, 7, 10, 12 and 13 — we can conjecture heavy data dependencies.
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The isobar shapes of the PX Index, BUX and JSX Composite Index
(Figures 4, 5 and 8) deviate from circles: for PX it’s the longer lags of 4, 7, and
10—14 weeks, for BX it’s 3 and 5—-15 weeks. Isobars for the JSX Composite
Index doesn’t resemble a circle for any lag. Observing a systematic deviation
from independence between current values and lagged ones, we can postulate
that the efficient market hypothesis doesn’t apply to markets described by
these indices.

A few times the search for the optimum bandwidth has resulted in a “wild”
isobar shape (appearing e.g. in the PX Index two-week lag). We postulate
that this is a local minimum of the objective function — the five-fold increase
of the number of restarts (as opposed to the simulation study) might not
be sufficient yet. This can be resolved by a further increase of the number
of restarts, or by a change of the search algorithm. Another possibility is to
switch to a different software package.

Our future goal is to create a measure of market efficiency. Since this can
be formulated as similarity of the isobar shape to a circle, this measure can
be based on the number of neighbors included in the kernel during bandwidth
selection.

Conclusion

We’ve investigated the possibilities of using the isobar surfaces approach
with homothetic isobars for both simulated and real data. In the simulation
study, we’ve found suitable methods for estimating non-parametric regression,
the sample size needed for the application of our methods, and isobar shapes
for Gaussian distrubusions with varying parameters. This knowledge was
applied during the assessment of the efficient market hypothesis using isobar
shapes. We've assessed the isobar shape for stock market index returns. For
the NASDAQ Composite Index the shapes supported the efficiency hypothesis,
for the PX Index, BUX and JSX Corporate Index we can reject the hypothesis.
For the Straits Times Index, BET and BELEX15 it will be necessary to carry
out a deeper study of dependence relations. During the estimation of the
isobar shape by nonparametric regression we’ve encountered problems during
the automated bandwidth selection — even with an increased number of
parameter search restarts, the search still stays in local minima. The problem
can be solved by changing to a different implementation of nonparametric
estimation. This will allow us to focus on finding an objective measure of
market efficiency in our future work.
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of 1-15 weeks for the BUX Index.
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Figure 8: Lags of 1-15 weeks for the JSX Composite Index.
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