
Witzany, Jiří

Working Paper

Estimating default and recovery rate correlations

IES Working Paper, No. 03/2013

Provided in Cooperation with:
Charles University, Institute of Economic Studies (IES)

Suggested Citation: Witzany, Jiří (2013) : Estimating default and recovery rate correlations, IES
Working Paper, No. 03/2013, Charles University in Prague, Institute of Economic Studies (IES),
Prague

This Version is available at:
https://hdl.handle.net/10419/83318

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/83318
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 
Institute of Economic Studies, Faculty of Social Sciences 

Charles University in Prague 

 

 

 

 
 

Estimating Default and 
Recovery Rate Correlations  

 
 

Jiří Witzany  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

IES Working Paper: 03/2013 
 
 

 

 
 



 

 

Institute of Economic Studies, 
Faculty of Social Sciences, 

Charles University in Prague 
 

[UK FSV – IES] 
 

Opletalova 26 
CZ-110 00, Prague 

E-mail : ies@fsv.cuni.cz 
http://ies.fsv.cuni.cz 

 
 
 
 

Institut ekonomických studií 
Fakulta sociálních věd 

Univerzita Karlova v Praze 
 

Opletalova 26 
110 00 Praha 1 

 
E-mail : ies@fsv.cuni.cz 

http://ies.fsv.cuni.cz 
 
 
 

Disclaimer:  The IES Working Papers is an online paper series for works by the faculty and 
students of the Institute of Economic Studies, Faculty of Social Sciences, Charles University in 
Prague, Czech Republic. The papers are peer reviewed, but they are not edited or formatted by 
the editors. The views expressed in documents served by this site do not reflect the views of the 
IES or any other Charles University Department. They are the sole property of the respective 
authors. Additional info at: ies@fsv.cuni.cz 
 
Copyright Notice: Although all documents published by the IES are provided without charge, 
they are licensed for personal, academic or educational use. All rights are reserved by the authors. 
 
Citations: All references to documents served by this site must be appropriately cited.  
 
Bibliographic information: 
Witzany, J. (2013). “Estimating Default and Recovery Rate Correlations” IES Working Paper 
03/2013. IES FSV. Charles University. 
 
This paper can be downloaded at: http://ies.fsv.cuni.cz 

mailto:IES@Mbox.FSV.CUNI.CZ�
http://ies.fsv.cuni.cz/�
mailto:IES@Mbox.FSV.CUNI.CZ�
http://ies.fsv.cuni.cz/�
mailto:ies@fsv.cuni.cz�
http://ies.fsv.cuni.cz/�


 

Estimating Default and Recovery Rate 
Correlations 

 
 
 

Jiří Witzany a 
 
 
 
 
 
 
 

 a University of Economics in Prague 
E-mail: jiri.witzany@vse.cz 

 
 
 
 
 
 
 
 
 
 

April 2013 
Abstract: 
The paper analyzes a two-factor credit risk model allowing to capture default and 
recovery rate variation, their mutual correlation, and dependence on various 
explanatory variables. At the same time, it allows computing analytically the 
unexpected credit loss. We propose and empirically implement estimation of the 
model based on aggregate and exposure level Moody’s default and recovery data. 
The results confirm existence of significantly positive default and recovery rate 
correlation. We empirically compare the unexpected loss estimates based on the 
reduced two-factor model with Monte Carlo simulation results, and with the 
current regulatory formula outputs. The results show a very good performance of 
the proposed analytical formula which could feasibly replace the current regulatory 
formula. 
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1 Introduction 

The goal of this paper is to study a viable alternative of the Basel II regulatory formula (see 

Basel, 2006). Such a formula should provide a sufficiently robust estimate of unexpected 

losses on a portfolio of banking credit exposures that should be covered by capital. The 

capital requirement of a bank in the current Basel II Internal Rating Based (IRB) approach is 

calculated as the unexpected loss (UL) less the expected loss (EL)  

 ( )    C UL EL UDR PD LGD EAD= − = − × ×  (1) 

decomposed into the product of the unexpected default rate (UDR) less the expected default 

rate (PD), loss given default (LGD), and the exposure at default (EAD). The calculation is 

done on the level of each individual exposure, but the total should correspond to portfolio 

unexpected credit loss on the 99.9% probability level. The unexpected default rate (UDR) that 

is calculated as a regulatory function of PD, asset correlation ρ (set by the regulation 

depending on the asset class and PD). The formula is based on the assumption that the event 

of default is driven by a normally distributed variable. Moreover, the account level risk 

driving factor is decomposed into a single normally distributed systematic factor and into an 

independent normally distributed idiosyncratic factor (Vasicek, 1987). While UDR is 

calculated by a relatively sophisticated model, the regulatory approach simplifies the analysis 

of the remaining two parameters just vaguely requiring that the estimates reflect downturn 

economic conditions and possible correlations with the rate of default (BCBS, 2005). This 

approach is not changed by the latest Basel III regulatory reform (BCBS, 2010). 

Witzany (2010a) provides an overview of several single factor models (Frye, 2000a, Pykhtin 

2003, and Tasche, 2004,or Gordy, 2003) and analyzes certain surprising effects of the 

regulatory formula that are caused by the fact that any single factor model cannot properly 

capture correlation between the default and recovery rates. In fact, it has been empirically 

shown in a number of papers by Altman et al. (2004, 2007), Gupton et al. (2000), Frye 

(2000b, 2003), Acharya et al. (2007), or Seidler (2009) that there is not only a significant 

systematic variation of recovery rates but, moreover, a negative correlation between the 

default and recovery rates, or equivalently a positive correlation between the rates of default 

and losses-given-default.  
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The correlation can be also analyzed through dependence of the default and recovery rates on 

common macroeconomic factors. For example, Jacobson et al. (2005) or De Graeve et al. 

(2008) examine the relationship between the default rate and macroeconomic factors like 

output, inflation, and interest rates. On the other hand, Casselli et al. (2008), Bellotti and 

Crook (2009), or Belyaev et al. (2012) confirm a significant relationship between LGD and a 

number of macroeconomic variables like GDP growth, unemployment rate, household 

consumption, or directly the default rate itself.  

Consequently, if the LGD parameter does not reflect the systematic correlation with the 

default rate then the regulatory formula might significantly underestimate the potential 

unexpected losses.  

Witzany (2011) estimates default, recovery and mutual default-recovery rate correlations 

based on a two systematic factor models. In this study, the recovery rate can have any 

parametric or nonparametric distribution. This generality makes the estimation procedure 

more difficult and the subsequent unexpected losses can be estimated using a Monte Carlo 

simulation only. In the presented study we will restrict ourselves to the two-systematic-factor 

model of  Rosch and Scheule (2009) where the inverse Probit transformed recovery rates are 

assumed to be normally distributed and the event of default is driven, as usual, by a normally 

distributed variable. The great advantage of this restriction is that it leads to a relatively 

simple analytical formula estimating consistently downturn LGD where the inputs are: 

expected LGD, recovery rate systematic factor loading, and a default – recovery rate 

correlation coefficient. Consequently, the formula is a viable candidate that could serve as a 

regulatory downturn LGD formula. Rosch and Scheule (2009) have formulated and estimated 

the model for a time series of aggregate portfolio level default and recovery rates. However, 

in practice probabilities of default and recovery rates need to be estimated on the level of each 

individual receivable and the estimation of the model parameters should mimic this practice. 

Our contribution is to formulate and estimate a cross-sectional, i.e. exposure level model. The 

model allows incorporating receivable-specific as well as systematic explanatory variables. 

The estimation of the model extends the estimation of the classical Probit or Logit model 

incorporating the information on recovery rates on defaulted receivables (see also Bade et al., 

2011). Analogously to Witzany (2001) we prefer the Bayesian MCMC estimation procedure, 

rather than empirically difficult likelihood maximization. The advantage of the Bayesian 

estimation approach is that we are also able to estimate the latent systematic factors and 

analyze consistently significance and various confidence intervals of the estimated 
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parameters. The theoretical model and the estimation procedure are outlined in the following 

section. Section 3 then presents the empirical results based on the Moody’s default and 

recovery database. Finally, we will compare the current Basel III capital requirements and the 

theoretical requirements under the proposed model and make a conclusion. 

2 Two Systematic-Factor Default and Recovery Rate Model 

We will focus on the model proposed by Rosch, Scheule (2009). The model captures the 

event of default on an exposure level driven by a set of known idiosyncratic, known 

systematic, and an unknown (latent) systematic factor. The recovery rates (and the 

complementary loss given default rates) are defined similarly with a different latent 

systematic factor. Specifically, the event of default of a receivable i is driven by the time t 

normally distributed “score”  

 2
0 , 1 1 D

it i t t itFS γ ω ω ξ−− −= − + +γz  (2) 

where , 1i t−z is a vector of explanatory  factors known at time 1t − , tF a systematic normally 

distributed latent factor and itξ a specific (independent and normally distributed) latent factor, 

both representing the change between times t and 1t − , and ω is the asset correlation. 

Following the classical argument used for the regulatory Vasicek’s formula (see eg Witzany, 

2010b), the expected default rate conditional on a systematic factor value t tF f=  is 

 0 , 1

2
( )

1
i t t

t

f
CDR f

γ ω

ω
− 

= Φ 
−

+ −



γz
. (3) 

In order to express to express the default rate conditional on the explanatory factors, but not 

on the latent systematic factor, we need the lemma that is formulated and proved in   

Appendix 1. 

According to the lemma, in case of the conditional default rate (3) we can integrate: 

 ( )0 , 1 0 , 1
0 , 12 22

1( )
1 11

i t t i t
t t i t

f
f df

γ ω γ
ϕ γ

ω ωω

∞
− −

−
∞

+

−

   
Φ Φ Φ   

− −−   

+ − +
= = +∫

γz γz
γz . 

Therefore, the expected default rate (PD) is ( )0 1tPD γ −+= Φ γz , and so ( )1
0 1t PDγ −

− = Φ+ γz  

given the PD value estimated at time 1t − . If the systematic factor is set to the 1 0.1%α− =  

quantile, ie 1 1(1 ) ( )tf α α− −Φ− −Φ= =  then we obtain exactly the Basel II formula 
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1 1

2

( ) ( )( )
1

PDUDR ω αα
ω

− − Φ Φ
= Φ 

− 

+ . (4) 

Recovery Rate Model 

Similarly, the recovery rate of a receivable i that has defaulted at time t is modeled as the 

Probit transformation ( )it itRR YΦ= of a normally distributed variable itY decomposed into a 

vector of explanatory factors, latent systematic and idiosyncratic factors. Due to the effect of 

the integration given by the lemma above and in order to keep our formulas compatible with 

Rosch and Scheule (2009), we consider the debtor specific driving variable in the form 

 ( ) 2
0 , 1 1R R

it i t t itY Xbβ σ σξ− + += + +βz . (5) 

Then, according to the lemma, the recovery rate conditional on the systematic factor is given 

by  

 
( )( )

( )

2
0 , 1

0 , 1

( 1 (

,

) )R
t i t t

R
i t t

bRR X X d

Xb

β σ σξ ϕ ξ ξ

β

+∞

−
−∞

−

= Φ ++ + =+

= +Φ +

∫ βz

βz
 (6) 

in line with Rosch and Scheule (2009). Next, integrating the systematic factor we obtain the 

expected recovery rate 

 ( ) 0 , 1
0 , 1 2

)( .
1

R
i tR

i t t t tERR bX X dX
b

β
β ϕ

+∞
−

−
−∞

 
= Φ = Φ  +

+
+ +


∫

βz
βz  

 Therefore, if we are given the expect loss given default (ELGD) parameter then 

 0 , 1

21
1

R
i tD

b
ELG

β − 
Φ  +

+
− =



βz
, and so 

 1 2
0 1 1( )t ELGD bβ −

− Φ+ = − +zβ . (7) 

Given a probability level, eg 99.9%α = , and the latent factor quantile 1(1 )tx α−= Φ −  we can 

express the stand-alone downturn LGD according to (6) and (7) as  

 
( )

( )

1 1
stand-alone

1 1

1

.

( ) (1 )

( ) ( )

ELGD bDLG

ELGD b

D α

α

− −

− −

Φ Φ + Φ −

Φ Φ + Φ

= − − =

=
 (8) 
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However, it would be inconsistent to multiply the stand-alone stressed PD given by (4) and 

the stand-alone downturn LGD given by (7). If the two systematic factors were uncorrelated, 

then UDR should be multiplied by the expected LGD; if the systematic factors were perfectly 

correlated then the product of the stand-alone UDR and DLGD would be a correct choice; but 

if the correlation is somewhere in between then none of the approaches is correct.  

Rosch and Scheule (2009) propose a correlation ρ between the two normally distributed 

systematic factors and define the stressed portfolio loss rate as the product of default rate and 

LGD conditional only on the systematic default factor  t tF f= , 

 ) ( )( ( )t t tUDR f DLGCLR Df f= ×  (9) 
 

Let us assume that the systematic factors are bivariate normal with the correlation ρ , then 

tX can be written in the form 21t tF WX ρ ρ= + −  where W is a standard normal variable 

independent on tF . Applying the lemma we obtain  

 

( ) ( )

2

2
0 1

0 1 2 2

1 ) ( )

1 ( 1 ( )

.
1

( ) (

)

11
1

t t

t t

t t

DLGD f f

b f b

b f
b

CLGD w w dx

w w dw

ρ ρ ϕ

β ρ ρ ϕ

β ρ
ρ

∞

∞

∞

−

+

∞

−

−

−

+

= +

+ + +

− =

= − Φ −

 
 Φ
 −

=

= − +
+ 

+

∫

∫ βz

βz

 (10) 

  
Applying (7) and setting 1( )tf α−Φ= − we obtain the following relatively nice analytical 

formula 

 ( ) ( )
1 2 1

2 2

1( ) ( ) 1 )
1

(
1

DLGD E bLGD b
b

α ρ α
ρ

− −=
 
 Φ Φ + Φ
 − 

+
+

. (11) 

Consequently, the downturn loss rate (9) is given by an analytical formula with expected PD 

and LGD inputs, correlation parameters , ,bω ρ , and with the probability level parameter 

α which could serve as an improved regulatory formula: 
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( ) ( )

1 1

2

1 2 1
2 2

( ) ( )( )

1

1

1 )( ) (
1

.
1

PDDLR

bLGD b
b

ω αα
ω

ρ α
ρ

− −

− −

 Φ Φ
Φ × 

− 
 
 ×Φ Φ + Φ



+
−+ 

+



=

 (12) 

Generally, the two factor model downturn loss rate 2-factor ( )DLR α on the probability level 

α should be defined as the α -quantile of the loss rate 

 ( , ) ( ) ( )t t t tUDR F DLGDCLR F X X= ×  (13) 

conditional on the two systematic factors ,t tF X with a given a correlation structure. In this 

case, there is no analytical formula and we have to run a Monte Carlo simulation. We will 

empirically compare the one-factor downturn loss rate (12) and the empirical downturn loss 

rate based on the two-factor decomposition (13). 

Estimation Methodology 

In order to apply and analyze the two-factor model we need to estimate the correlation 

parameters , ,bω ρ . The estimation may be based only on observed aggregate time dependent 

default rates and recovery rates as in Rosch, Scheule (2009). The explanatory factors can be 

only systematic or related to exposure pools on which the estimation is performed. However, 

in practice banks estimate PD and often even LGD on exposure level given all available 

exposure specific information. The unexpected risk is then relative to the information 

contained in the known explanatory factors in line with the models (2) and (5). Therefore, the 

estimation based only on aggregate numbers might overestimate the unexpected risk. 

Aggregate PD-RR Model 

Let us firstly assume that we are given aggregate time series: 1, , , 1,...,t t tdr rr t T− =z , where 

tdr is the observed default rate over a time period (eg, a year) t, trr the observed average 

recovery rate on the exposures that defaulted in t, and  1t−z is a vector of macroeconomic 

explanatory factors known at the beginning of the year t (or at the end of 1t − ). We can 

initially start with the same vector of potential explanatory factors for defaults and recovery 

rates with non-significant variables being eliminated at the end. If the observations are made 

on a large pool of exposures where idiosyncratic factors diversify away we can assume that 

the observed default rates are realizations of (3) and the observed recovery rates are 

realizations of (6). Therefore, 



 7 

 
0 1

1 2

2 0 1(

( ) ,
1

)) ( ,

t t
t t

t t t t

fdr g

rr x bx

f

g

γ ω

ω
β

−

−

 
= Φ 

− 
=

+ −
=

+ += Φ

γz

βz

 (14) 

where 
1

0;
1

,t tf x N
ρ

ρ
  
  

  
 are standard normal with correlation ρ .  

Given the parameters 0 0, , , , ,bγ β ωγ β  and the explanatory variables 1t−z  the systematic 

factors ,t tf x can be obtained by inverting the equations (14). The likelihood of the pair of 

observations ,t tdr rr conditional on the parameters and the explanatory variables then equals 

to the bivariate normal density ( )2 , ;t tf xϕ ρ divided by the Jacobian of the transformation 

1 2,g g . Since the observations, conditional on the explanatory variables, are assumed to be 

independent the unknown parameters 0 0, , , , , ,bγ γ β β ω ρ  can be estimated maximizing the 

total likelihood function:  

( )2

1 2

;
( (

,
) )
t t

t tt

x
g

f
L

g f x
ϕ ρ

=
′ ′∏ , 

or rather its logarithm ln L , where 

2 1
1 0 1

1
(( 1 )) t t

t t
z drf g dr γ γ ω

ω

−
− − −+ Φ

==
−

, 

1
0 1)( t t

t
rrx z

b
β β−

−−
=
Φ −

, 

( )1
1 2

) )
1

( (t tg f drω ϕ
ω

−Φ′ =
−

, and 

( )1
2 )( ( )t tbg x rrϕ −Φ′ = . 

 

The terms ( )1( )tdrϕ −Φ , ( )1(1 )tlgdϕ − −Φ  do not depend on the parameters to be estimated 

and can be taken out during the maximization. In order to make the estimation 

computationally efficient we maximize the log-likelihood ln L where the independent terms 

are taken out: 
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2 2
2 2

2

( 2 0.5ln() ) ln 0.5ln(1 ) l1
2

n
(1 )

t t t t

t

f xL bxfL ρ ρ ω ω
ρ

 − − +
= − − −

+ −


− −∑ . (15) 

The maximization can be performed numerically and the parameter variance can be obtained 

from the inverse Fisher information matrix (Greene, 2003). Alternatively, we may apply the 

Bayesian Markov chain Monte Carlo (MCMC) simulation, specifically the Metropolis-

Hastings random walk algorithm (see Appendix 2). The advantage of the approach is that we 

obtain a full Bayesian distribution, and hence confidence intervals, of the estimated 

parameters.  

Cross-Sectional PD-RR Model 

As explained above, it is preferable to estimate the parameters given historical records of 

individual defaults and recovery rates in case of default. Moreover, the cross-sectional model 

differs from the aggregate model by allowing individual debtor information in the default and 

recovery rate drivers (2) and (5). Let us assume that we are given a set of observations of 

exposures i with {0,1}itd ∈ indicating default at the end of the period t, recovery rate 

(0,1)itrr ∈  observed if 1itd = , and , 1i t−z  the vector (systematic and exposure specific) of 

explanatory factors known at the beginning of the period t. Following the approach of Bade et 

al. (2011) we set up the following likelihood function conditional on the unknown systematic 

factors tf and tx : 

 1

1

) ) )( , (1 (
t

it it it

n
d d d

t t t it it it
i

CPD rrL f x CPD h−

=

−=∏ , where 

 0 , 1

21
i t t

it

f
CPD

γ ω

ω
− 

= Φ 
−

+



−γz
 (16) 

and ( )ith rr is the probability density according to the model specification (5). That is 

( ) ( )R
it it itYr fr ξΦ= = , (0,1)R

it Nξ  , and so  

1

( )
(

( )
( ))

R
it

it
it

h rr
rr

ϕ ξ
ϕ σ−Φ

= , where 

 
( )1 2

0 , 1) 1( R
it i t tR

it

r Xr bβ σ
ξ

σ

−
−+ +Φ − +

=
βz

. (17) 

In order to estimate the parameters by MLE we firstly need to integrate out the latent 

systematic factors from the total conditional likelihood, ie  
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2

1

1 )( ,
t t

T

t f y
t t t t t tL L f df dyf yρ ρ

=

+= −∏ ∫∫  where 

21t t tf yx ρ ρ+ −= is decomposed into two normally distributed components with 

(0,1)ty N independent on tf . 

Bade et al. (2011) have implemented this approach in a one-factor model numerically 

integrating out the systematic factor, but the estimation becomes numerically even more 

difficult and less stable given the two systematic factors requiring numerical double 

integration. Therefore, we will prefer again the Bayesian MCMC algorithm outlined in 

Appendix 2 where the latent factors are sampled along with the unknown model parameters. 

To make the estimation efficient we work with the following modified log-likelihood function 

where we eliminate those components that do not depend on the variables estimated: 

  ( )ln (1 ) ln(1 ) 2 ln lnit it it it it
t i

CPD d CPd DLL ξ σ= + − − − −∑∑ . (18) 

In fact, estimating the latent factors tf and tx we can work only with the part depending on t, 

etc.  

3 Empirical Study 

In order to estimate the parameters of the outlined aggregate and cross-sectional PD-LGD 

model we use the Moody’s Corporate Default Risk Service (DRS) database which contains 

for almost 36 000 corporate and sovereign entities and more than 525 000 debts. The data 

spans from 1970 to 2011 and contains the Moody’s rating history, default and recovery 

information, debt enhancement, issuer industry and other basic information. Since the 

database contains only 1058 sovereigns where just 42 defaults (out of 2258 total observed 

defaults) were observed, we perform the study without separating the corporate and sovereign 

entities. Lagged U.S. GDP growth1

Aggregate Model 

 from 1969 to 2011 will be used as a global 

macroeconomic variable in line with Casseli et al. (2008) or Belyaev et al. (2012). 

Regarding the aggregate model, Figure 1 shows the annual default rates calculated as the 

number of issuers that defaulted during a year divided by the number of all rated issuers at the 

beginning of the year according to DRS. Moreover, it shows the average recovery rate of all 

exposures that defaulted during that year. The two series are apparently visually negatively 

                                                 
1 U.S. Department of Commerce Bureau of Economic Analysis (www.bea.gov)  

http://www.bea.gov/�
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correlated, in particular since the mid eighties. Complementarily, we expect the default rate – 

LGD correlation to be positive. In order to deal with autocorrelation and external 

dependencies in the aggregate model (14) we use the lagged default rates ( 1−Φ transformed) 

and US GDP growth as the default rate explanatory variables. The lagged average recovery 

rate ( 1−Φ transformed) and the US GDP growth are used as the recovery rate explanatory 

variables. Since the number of observed defaults in years 1971-1981 has been very low (less 

than 10 per year, only 1 in 1979 and 2 in 1981) we can hardly assume that the specific 

recovery risk has been diversified away taking the annual averages. Therefore we have used 

only the observations spanning the years 1982-2011 where the number of defaults is at least 

10 per year.  

Table 1 shows the estimation results based on 5000 MCMC iterations where we dropped the 

first 1000. Figure 2 and Figure 3 indicate a relatively good convergence of the estimation 

procedure for the two parameters b  and ρ . The results in  

Table 1 show that the default rate series is (not surprisingly) strongly auto-correlated (the 

coefficient 1γ ), the recovery rate series surprisingly does not show a significant 

autocorrelation (the coefficient 1β ), and that the dependence of the default rates and LGDs on 

the US GDP growth is weak (coefficients 2γ  and 2β ). The estimated default and LGD 

correlations (systematic factors’ loading coefficients ω  and b ) turn out to be relatively large 

(21.8% and 31.3%), positive, and significant with a low estimation error. The default – 

recovery rate correlation ρ mean estimate is as expected positive 49%, however, with a larger 

estimation error (15.8%), and being significant on the 5% probability level.  
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Figure 1: Annual default rate (left axis) of all rated issuers and average recovery rates (right 

axis) of all defaulted issues in the Moody’s DRS database 1970-2011 
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Table 1: Estimation results based on 5000 MCMC iterations with 1000 burnout period 

 0γ  1γ  2γ  0β  1β  2β  ω  b  ρ  

Mean -0.7818 0.6237 1.3048 -0.1118 -0.0894 0.5842 0.2179 0.3128 0.4901 

Std 0.3229 0.1565 1.5744 0.0968 0.2148 2.3036 0.0285 0.0446 0.1594 

q5% -1.2552 0.3840 -1.3591 -0.2642    -0.4308 -4.0723 0.1749 0.2506 0.1961 

q95% -0.2186 0.8984 3.9674 0.0557     0.2631 3.6651 0.2694 0.3935 0.7281 

  

Figure 2: MCMC iterations (left chart) and the Bayesian distribution (right chart) of the 

correlation parameter ρ  
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Figure 3: MCMC iterations (left chart) and the Bayesian distribution (right chart) of the 

correlation parameter (LGD systematic factor loading) b  
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Cross-sectional Model 

In order to estimate the cross-sectional model (16) we had to select a random subsample from 

the set of all observations that can be obtained from the DRS database. By an observation we 

mean an exposure rated at the beginning of a year, with a default indicator at the end of the 

year, and an observed LGD value in case the default took place. Since there are more than 

380 000 exposures, and each can be observed for several years, there are over 1 million of 

possible observations. However, the numerical MCMC procedure (implemented in Matlab) 

based on the likelihood function (18) takes hours already with 5 000 exposures in spite of the 

proposed efficiency improvements.  

Similarly to default logistic regression function development practice, we have selected a 

random subsample of 5000 cases with 2500 defaults and 2500 non-defaults. The defaulted 

cases are given a larger weight in order to capture better the information on realized recovery 

rates. Regarding explanatory factors, we have used debt specific information given by the 

rating and seniority at the beginning of the observation period, lagged average default rate, 

lagged average recovery rate, and the lagged US GDP growth that was used again as a global 

macroeconomic indicator. The categorical rating and seniority information were translated 

into numerical variables using average default rates and realized LGDs based on the DRS 

database (see Figure 4) and transformed in both cases by the inverse normal cumulative 

distribution function 1−Φ .  

The estimations results shown in Table 2 are based on 5 000 MCMC iterations. As indicated 

by Figure 5, in this case it was necessary to discard the first 2000 iterations. The results show 

a strong explanatory power of the rating and seniority variables (coefficients 1γ  and 1β ), a 
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weaker explanatory power of the lagged default rate ( 2γ ), non-significant lagged recovery 

rate similarly to the aggregate model  ( 2β ). The default rate sensitivity to the US GDP growth 

( 3γ ) is significant with the negative sign (as expected), while the recovery rate sensitivity to 

the US GDP growth ( 3β ) is weakly significant positive (again as expected). The mean 

estimate of the default and recovery rate systematic factor loadings ( ˆ 0.266ω =  and 

ˆ 0.286b = ) come out relatively close to the estimates from the aggregate model and with a low 

estimation error. The estimation error of ˆ 0.62ρ = is larger (0.12), but it is significant on the 

5% confidence level. The difference between the aggregate model and the cross-sectional 

model (Table 2) is more pronounced in case of the default – recovery correlation. This can be 

generally explained by the fact that the models use different explanatory factors and that the 

parameters , ,bω ρ  characterize the residual variability and correlation not explained by these 

explanatory factors. As explained in the introduction, the cross-sectional model corresponds 

better to the banking practice where account level PDs and LGDs are estimated. The MCMC 

procedure also estimates, as a by-product, the default ( tF ) and recovery rate ( tX ) systematic 

factors. The sampled mean values and 90% confidence intervals are shown in Figure 6. For 

example, the significant drop of both factors during 2008 corresponds to an unexpected 

increase in default rates and an unexpected decline of the recovery rates. 

Our results, based on the cross-sectional model, are consistent with the results of Rosch, 

Scheule (2009) where the Moody’s data ending in 2007 were also used, but only on the 

aggregate level, and separately for various rating and seniority pools. 

 

Figure 4: Default rates conditional on rating (left chart) and average recovery rates 

conditional on seniority (right chart) according to the DRS database 
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Table 2: Cross-sectional model estimation results based on 5000 MCMC iterations and 2000 

burnout period 

 0γ  1γ  2γ  3γ  0β  1β  2β  3β  ω  b  ρ  σ  

Mean 0.4788     1.5328     0.2916    -2.479 2.1520    1.1711    -0.123     0.6852     0.2661     0.2864     0.6199     0.9787 

Std 0.1000     0.0728     0.1339     0.7351 0.2550     0.0396     0.1090     0.6471     0.0435     0.0412     0.1213     0.0136 

q5% 0.3359     1.4111     0.0652    -3.453 1.7420    1.2307    -0.351    -0.571     0.2059     0.2240     0.4035     0.9561 

q95% 0.6464     1.6514     0.5027    -1.077 2.4993    1.1038     0.0285     1.5355     0.3403     0.3639     0.7932     1.0012 

  

Figure 5: MCMC iterations (left chart) and the Bayesian distribution (right chart) of the 

correlation parameter ρ  (cross-sectional model) 
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Figure 6: Estimated default (left chart) and recovery rate (right chart) systematic factors and 

their confidence intervals (90%) 
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Unexpected loss Estimation 

We are going to compare four different approaches to unexpected loss estimation on the 

portfolio of equally weighted investments in issues from the DRS database that were assigned 
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a valid rating as of 1.1.2012. There are 928 issues satisfying this condition and our portfolio 

value is 928 million USD, assuming that 1 million USD has been invested into each of those 

issues. For each issue we use the expected probability of default given by the 2011 rating and 

the expected recovery rate conditional on the seniority of the issue as key inputs of our 

models: 

- Four-factor model will be the model where the event of default and the recovery rate 

in case of default are driven by the variables (2) and (5). In order to simulate a 

scenario we have to sample the two correlated systematic factors common for the 

portfolio, and then the two independent idiosyncratic factors for every issue i in the 

portfolio. The portfolio loss in a scenario is calculated as 
1

i i

N

i
iLGDEAD Def

=

× ×∑ where 

{0,1}iDef ∈ is the default indicator determined by the simulated default driver 

variable, iLGD the simulated loss given default, and N = 928 the number of issues in 

the portfolio. To estimate the desired loss quantiles we need to run the Monte Carlo 

simulation sufficiently many times. 

- Two-factor model will be based on the equations (3) and (6), ie in this case only the 

two correlated systematic variables are sampled and the loss conditional on those 

factors is calculated as 
1

( ) ( )i i t i

N

i
tUDR F DE LG XA DD

=

× ×∑ . This model implicitly 

assumes that the specific risk is diversified away and takes into account only the risk 

of the two systematic variables. Again, the loss distribution is sampled by the Monte 

Carlo simulation. 

- Reduced two-factor model calculation is based on the formula (12). In this case, no 

simulation is needed. Given a probability level α  the unexpected loss is directly 

calculated as 
1

( (( ) ) )
N

i
i i iUDR DLU EAD GDL α α α

=

= × ×∑ where ( )iDLGD α is given by 

(11). The model is called reduced two-factor because it is based on the two factor 

model, but the unexpected loss is conditional only on the appropriate quantile of the 

first (default-related) systematic factor. 

- Single factor-model is the current Basel II model based on (4) and on a vague 

downturn LGD concept. In order to make the LGD input more precise, we will stress 

the parameter by the stand-alone formula (8) given a probability level 1α . In this case 
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the unexpected loss is again calculated without any Monte Carlo simulation directly 

by the formula 
1

1) (( ( ) )
N

i
i i iUDR DLGU AD DL Eα α α

=

= × ×∑ . 

The parameters used in the computation are the mean estimates from Table 2, ie 0.27ω = , 

0.29b = , 0.62ρ = , and  0.98σ = . The Monte Carlo simulation has been run 100 000 

times. The estimated unexpected loss rates (as a percentage of total exposure) according to 

the four models and with different 1,α α  values are given in Table 3. The results could be 

compared with the expected loss rate of 2.44%. The average expected PD on the portfolio 

is 3.91% and the average expected recovery rate is 39%. The results are in line with our 

expectations: the unexpected loss according to the four-factor model is larger than in the 

two-factor model since the former takes into account the idiosyncratic risk which does not 

diversify perfectly even in the large testing portfolio (see Figure 7). The results of the 

reduced two-factor model on different probability levels are only slightly below the two-

factor model. Therefore, the reduced two-factor model provides a very good 

approximation of unexpected loss quantiles. The unexpected loss according to the (Basel 

II) one-factor model is dramatically lower if we use the concept of expected or median 

LGD ( 1 50%α = ). The last three rows in Table 3 show the results for different LGD 

stressing levels. The interesting conclusion is that LGD must be stressed at least on the 

95% level (with 97.5% being more or less optimal in this case) in order to get comparable 

values. 

 

Table 3: Unexpected loss rates (as a percentage of total EAD) estimated by the four 

models and for different 1,α α  values 

 95%α=  99%α=  99.9%α=  
Four-Factor Model 5.02% 6.59% 8.72% 
Two-Factor Model 4.91% 6.46% 8.42% 

Reduced Two-Factor Model 4.82% 6.29% 8.27% 
One-Factor Model ( 01 5 %α = ) 4.16% 5.15% 6.42% 

01 9 %α =  5.01% 6.21% 7.75% 
51 9 %α =  5.22% 6.48% 8.09% 
51 97. %α =  5.39% 6.69% 8.36% 
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Figure 7: Loss distributions in the four-factor and two-factor models 
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4 Conclusion 

This study compares the current regulatory one-factor approach to unexpected loss estimation 

and the two-factor model proposed by Rosch, Scheule (2009).The advantage of the model is 

that it captures consistently the recovery rate variation and its correlation with the rate of 

default. We have proposed two approaches how to estimate the model parameters: based on 

aggregate default rate and recovery rate time series and a cross-sectional approach based on 

exposure level data. In both cases our estimation procedure uses the MCMC Bayesian 

approach. The empirical results (based on the Moody’s DRS database) confirm not only 

significant variability of the recovery rate but also a significant correlation over 50% between 

the rate of default and the recovery rates in the context of the model. Our empirical 

comparison has shown that the reduced two-factor model analytical formula proposed by 

Rosch, Scheule (2009) performs well compared to simulated results (based on our estimated 

parameter values). In contrast, the performance of the regulatory formula is poor and heavily 

depends on the discretionary conservatism in LGD stressing. In our case, approximately 

97.5% probability level LGD stressing would be needed, but this level could differ for 

different datasets or products depending on the default and recovery rate correlations. Our 

main conclusion is that the reduced two-factor analytical formula works well and could 

feasible replace the current regulatory formula with regulatory parameters based on the 

presented or similar empirical studies.    
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Appendix 1: A Probability Lemma 

Lemma: 
2

( ) ( )
1

aa bx x dx
b

ϕ
−

∞+

∞

 
Φ + = Φ 

+ 
∫ , where a  and b  are constants, Φ is the standard 

normal cdf, and ϕ is the standard normal pdf. 

Proof: Since ( ) Pr[ ]a bx Z a bxΦ + = < + where Z is standard normal, the integral on the left 

hand side equals to Pr[ ]Z a bX< +  where Z and X are independent standard normal 

variables. Consequently, 

2 2 2
( ) ( ) Pr[ ] Pr

1 1 1
Z bX a aa bx x dx Z a bX

b b b
ϕ

+

−

∞

∞

 −
Φ + = < + = < Φ 

+

 
=

 + 


 +
∫  

since 
21

Z bX
b

−

+
is a standard normal random variable. The result can be also verified by direct 

integration. � 

Appendix 2: Bayesian MCMC Estimation Procedure 
The Bayesian MCMC sampling algorithm has become a strong and frequently used tool to 

estimate complex models with multidimensional parameter vectors, including latent state 

variables. Examples are financial stochastic models with jumps, stochastic volatility 

processes, models with complex correlation structure, or switching-regime processes. For a 

more complete treatment of MCMC methods and applications we refer for example to 

Johannes, Polson (2009), Rachev et al. (2008), or Lynch (2007). 

MCMC provides a method of sampling from multivariate densities that are not easy to sample 

from directly, by breaking these densities down into more manageable univariate or lower 

dimensional multivariate densities. To estimate a vector of unknown parameters 

( )1,..., kθ θΘ = from a given dataset, where we are able to write down the Bayesian marginal 

densities ( )da a| t, ,ijp i jθ θ ≠  but not the multivariate density ( )| datap Θ  , the MCMC 

Gibbs sampler  works according to the following generic procedure: 

0. Assign a vector of initial values to ( )1

0 0 0,...,
k

θ θΘ =  and set 0j = . 

1. Set 1j j= + . 
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2. Sample 1 1
1 1 2 ,...,( )data| ,k
j j jpθ θ θ θ− −
 . 

3. Sample 1 1
2 2 1 3 ,..., da( | , , )taj j j j

kpθ θ θ θ θ− −
 . 

  

    k+1. Sample 1 2 1,...( | , , ), dataj j
k k

j
k

jpθ θ θ θ θ −  and return to step 1. 

According to the Clifford-Hammersley theorem the conditional distributions 

( )da a| t, ,ijp i jθ θ ≠ fully characterize the joint distribution ( )| datap Θ  and moreover, under 

certain mild conditions, the Gibbs sampler distribution converges to the target joint 

distribution (Johannes, Polson, 2009). 

The conditional probabilities are typically obtained applying the Bayes theorem to the 

likelihood function and a prior density, for example 

 ( ) ( ) ( )1 1 1 1 1 1
1 2 1 2 1 2,..., data data | ,..., ·prior ,...| , ., , |j j j j

k k k
j jp Lθ θ θ θ θ θ θ θ θ− − − − − −∝  (19) 

We can often use uninformative priors, ie ( )prior 1iθ ∝  and assume that the parameters are 

independent. In order to apply the Gibbs sampler the right hand-side of the proportional 

relationship needs to be normalized, ie we need to be able to integrate the right-hand side with 

respect to 1θ conditional on 1 1
2 ,..., j

k
jθ θ− − . 

Useful Gibbs sampling distributions are univariate or multivariate normal, Inverse Gamma or 

Wishart, and the Beta distribution. For example, if 1,..., Ty y=y  is an observed series and 

assuming that iid ( )2,iy N µ σ  with unknown parameters µ and σ then 

 

2
2

2
1

2

2

)1| , ) ( | , ) ( ) ( , )
2

(
( ; exp
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2

exp
2
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i i

y
L

T

p

T y y
T

p y
µ

µ σ µ σ µ ϕ µ σ
σπσ

µ µ σϕ µ
σ

=

  ∝ = ∝  
 

   
∝ − ∝        

−
−  
 

−
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y y

 (20) 

using the uninformative prior )( 1p µ ∝ . Moreover,  
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2 2 2
2

1
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i

T
i i

L p yp

y
I

yTG
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σ

µ µ
σ σ
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=
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−

∝ =

 
 

∝ ∝    
 

∑ ∑

∏y y

 (21) 
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using the prior 2 2( ) 1/p σ σ∝ equivalent to the uninformative log-variance prior 
2(log ) 1p σ ∝ . Hence the Bayesian distributions for µ and σ can be obtained by the Gibbs 

sampler iterating (20) and (21). The prior distributions are often specified in order to improve 

convergence but not to influence (significantly) the final results, typically a wide normal 

distribution conjugate prior distribution for µ and a flat inverse gamma distribution for 2σ are 

used. 

If the integration on the right hand side of (19) is not analytically possible (which is also our 

case) then the Metropolis-Hastings algorithm can be used. It is based on the rejection 

sampling algorithm. For example in step 2 the idea is firstly to sample a new proposal value 

of 1
jθ and then accept it or reject it (ie reset 1

1 1:j jθ θ −= ) with appropriate probability so that, 

intuitively speaking, we rather move to the parameter estimates with higher corresponding 

likelihood values. 

Specifically, step 1 is replaced with a two step procedure: 

1. A. Draw 1
jθ from a proposal density 1

1 1 1
1 2 ,...( ,| , )d t, a aj j

k
jq θ θ θ θ− − − , 

B. Accept 1
jθ with the probability ( )min ,1Rα = , where 

 
( ) ( )
( ) ( )

1 1 1 1 1
1 2 1 2

1 1 1 1 1 1
1 2 1

1

1 2

,..., data ,.| , | , ,

| , | , ,

.., data

,..., data ,..., data

j j j j j j j

j j j j j j

k k

k k
j

p q
R

p q

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

− − − − −

− − − − − −
= . (22) 

 

In practice the step 1B is implemented by sampling a (0,1)u U from the uniform distribution 

and accepting 1
jθ if and only if u R< . 

It is again shown (see Johannes, Polson, 2009) that under certain mild conditions the limiting 

distribution is the joint distribution ( )| datap Θ of the parameter vector. Note that the limiting 

distribution does not depend on the proposal density, or on the starting parameter values. The 

proposal density and the initial estimates only make the algorithm more-or-less numerically 

efficient. 

A popular proposal density is the random walk, ie sampling by 

 1
1 1 (0, )j j N cθ θ − + . (23) 
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The algorithm is then called Random Walk Metropolis-Hastings. The proposal density is in 

this case symmetric, ie the probability of going from 1
1
jθ − to 1

jθ is the same as the probability 

of going from 1
jθ to 1

1
jθ − (fixing the other parameters), and so the second part of the fraction in 

the formula (22) for α in step 1B cancels out. Consequently, assuming non-informative prior, 

the acceptance or rejection is driven just by the likelihood ratio 

( )
( )

1 1
1 2

1 1 1
1 2

data | ,...,

data | .., ,

,

.,
k

j j j

j j j
k

L
R

L

θ θ θ

θ θ θ

− −

− − −
= . 

Another popular approach is the Independence Sampling Metropolis-Hastings algorithm 

where the proposal density ( )1q jθ does not depend on 1
1
jθ − (given the other parameters). The 

acceptance probability ratio (22) is slightly simplified but the proposal densities do not cancel 

out. In order to achieve efficiency the shape of the proposal density q  should be close to the 

shape of the target density p , which is known only up to a normalizing constant. 

Typically, estimating complex stochastic models, we need to estimate the parameter vector 

with a few model parameters Θ , and a vector with a large number of state variables X  

(proportional to the number of observations). We know that 

, | data) (data | , )( · ( , )X p Xp p XΘ ∝ Θ Θ  and so we may estimate iteratively the parameters 

and the state variables: 

| ,data) (data | , )· ( | )· ( ),
| ,data) (data | , )· ( | )·

(
( ( ).

p
p

X p X p X p
X p X p X p X
Θ ∝ Θ Θ Θ

Θ ∝ Θ Θ
 

The parameters and state variables are sampled step by step, or in blocks, often combining 

Gibbs and Metropolis-Hastings sampling. 

In case of our aggregate model (15) we use the random walk Metropolis-Hastings with the 

step standard deviation c corresponding to the expected estimate variation. This is obtained by 

running the algorithm with an expertly set parameter c (eg 0.1 in case of the correlation 

parameters) and then adjusting the constant in order to achieve a reasonable acceptance rate 

around 40-80% (see Lynch, 2007). For the cross-sectional model we sample, in addition, the 

independent latent factors tf  and ty from the bivariate normal distribution with the 

correlation ρ .  
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