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Abstract: 
In this paper we compared two distinct volatility forecasting approaches. GARCH 
models were contrasted to the models which modelled proxies of volatility directly. 
More precisely, focus was put on the economic valuation of forecasting accuracy of 
one-day-ahead volatility forecasts. Profits from trading of one-day at-the-money 
straddles on the hypothetical (artificial) market were used for assessing the relative 
volatility forecasting accuracy. Our contribution lies in developing a novel approach 
to the economic valuation of the volatility forecasts - the artificial option market 
with a single market price – and its comparison with the established approaches. 
Further on, we compared the relative intra- and inter-group volatility forecasting 
accuracy of the competing model families. Finally, we measured the economic value 
of richer information provided by high-frequency data. To preview the results, we 
show that the economic valuation of volatility forecasts can bring a meaningful and 
robust ranking. Additionally, we show that this ranking is similar to the ranking 
implied by established statistical methods. Moreover, it was shown that modelling 
of volatility directly is strongly dependent on the volatility proxy in place. It was 



 

also shown, as a corollary, that the use of high frequency data to predict a future 
volatility is of considerable economic value. 
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forecasting 
 
JEL: C58 
 
Acknowledgements: 
The author acknowledges the support of the Grant Agency of Charles University 
(GAUK), under the grant project no. 820213. 
The findings, interpretations and conclusions expressed in this paper are entirely 
those of the author and do not represent the views of any of the above-mentioned 
institutions. 
The author would like to express his gratitude towards Dr. Barunik for his 
invaluable comments during the process of writting this paper. 



1 
 

I. Introduction 
This paper aims to compare two distinct volatility forecasting approaches, namely GARCH 
models and models internalizing volatility proxies directly, using an economic criterion. To do 
so, two economic ranking criteria are used. First, a common type of artificial option market, 
where option portfolios are being traded pair-wise anonymously, is utilized. Second, a 
framework in which a single market price emerges is developed. In both market settings, 
individual traders are equipped with distinct volatility forecasting techniques which are 
subsequently used in pricing their volatility option portfolios. Finally, traders meet at the 
market where pair-wise trades are conducted. Experiment is run for the course of one year, 
after which traders (i.e. volatility models) are ranked according to their cumulative profits. 

Precise volatility forecasts are of crucial importance in many financial areas. For instance, 
volatility serves as an input when pricing options, hedging, in utility maximisation, in 
constructing the optimum portfolio of financial assets, or when computing Value-at-Risk.  

However, contrary to the academic dispute over the predictability of financial returns, the 
issue of the returns’ volatility predictability was settled more than two decades ago. The 
conspicuous persistence in the conditional variance of financial asset returns gave rise to 
voluminous literature on the topic of volatility modelling and forecasting. Many ARCH-type 
specifications became both academic and financial industry workhorse models, due mainly to 
their flexibility and relative parsimony. Similarly, a so-called direct modelling and forecasting 
of volatility became attractive. Once volatility became ‘observable’, it could be directly used 
as a model input in AR(FI)MA-like specifications. Rather naturally, the question of which 
forecasting model from the set of existing models was the best one arose. 

This question was thoroughly explored within the boundaries of the individual strands of 
literature available (e.g. ARCH models, models internalizing volatility proxies, etc.), yet the 
comparison was majorly limited to using statistical ranking methodologies. Hansen and 
Lunde (2005), along with many others, compared the forecasting accuracy of univariate 
GARCH volatility models, using the superior predictive ability (SPA) test. In a similar fashion, 
though this time in a multivariate setting, Laurent, Rombouts and Violante (2011) compared 
125 multivariate GARCH specifications. With regard to the forecasting accuracy of models 
using the volatility proxies, Corsi (2009) compared the forecasting ability of his HAR-RV 
model to the ARFIMA model of Andersen, Bollerslev, Diebold and Labys (2003), using root 
mean squared error loss functions. 

When it comes to the cross-family comparison of volatility forecasting approaches, however, 
the literature is limited. Koopman, Jungbacker and Hol (2005) compared the predictive ability 
of forecasting models internalizing a volatility proxy vis-à-vis GARCH and stochastic volatility 
models, using  statistical ranking methodology (SPA framework). Arguably, the main factor 
which limits this strand of literature from burgeoning is the inherent latency of the true 
volatility process. When comparing volatility forecast accuracy in statistical terms one, 
typically, contrasts the statistical fit of the predicted volatilities to a predefined volatility 
benchmark, hence becoming the major driver of the final ranking. 

Going one step further, i.e. comparing the forecasting accuracy across different volatility 
model families using an economic ranking criterion, one finds a blank spot in the literature. 
Henceforth, the added value of this paper lies in the comparison of two volatility forecasting 
strategies, namely a) a “direct” volatility forecasting, internalizing volatility proxies (e.g. the 
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Realized Volatility) and b) an ARCH-like forecasting, treating the volatility as a latent process. 
Yet, unlike the statistical forecasting accuracy evaluation, we evaluate the accuracy of the 
volatility forecasts using observable quantities (i.e. daily returns) and an economic criterion, 
i.e. profits from trading in the artificial option market. More precisely, the one-day-ahead 
volatility forecasts from various volatility models serves as an input parameter to the Black & 
Scholes option pricing formula, which is subsequently used to price the portfolios of options 
(straddles). We create a market where each trader is assigned one volatility forecasting 
model with which he prices the stock option and, given the prices quoted by the rest of the 
traders, he sets up a buy/sell strategy. Arguably, a trader who can systematically make profit 
at the expense of other traders ceteris paribus, uses superior volatility forecasts.  

There is reason to believe that comparing volatility forecasts in terms of dollar profits/losses 
is of more interest to a real-world investor than comparing them in terms of dimensionless 
quantities, i.e. accumulated point-to-point deviations from the ex-post benchmark. The 
eminent contribution of this paper lies in developing a novel approach to the economic 
valuation of volatility forecasts - the artificial option market with a single market price – as 
opposed to the rest of the literature oriented on economic valuation of the volatility forecasts 
(e.g. Engle, Hong and Kane (1990), Bandi et al. (2008)).  

Finally, many authors have shown that volatility forecasts based on an “information-rich” 
variance proxy are highly accurate in statistical terms (e.g. Andersen et al. (2003), Koopman, 
Jungbacker and Hol (2005), Corsi (2009)). Therefore, the additional aim of this work is to 
verify this finding on our dataset and measure its value in economic terms. 

To preview the results, we show that the economic valuation of volatility forecasts can 
produce a meaningful and robust ranking. In addition, we show that this ranking is similar to 
the ranking implied by established statistical methods. Moreover, it is shown that the 
modelling of volatility directly is strongly dependent on the volatility proxy in place. Hence, as 
a corollary, it is not surprising that the use of high frequency data to predict a future volatility 
is of considerable economic value. 

The rest of the paper is organized as follows: Chapter 2 outlines the methodology, both the 
volatility models used as well as the working mechanism of the artificial market. Chapter 3 is 
devoted to the data description. In Chapter 4 we present the results. The following chapter 
outlines the robustness checks performed and, finally, in Chapter 6 we present our 
conclusion. 
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II. Methodology 
In this chapter, we present the cornerstone building blocks of our experiment: namely the 
conditional volatility models, the option pricing framework and, finally, the artificial market 
settings used.  

However, before outlining the conditional volatility model, we define the very fundamentals of 
our market settings. The daily return for day t is defined as the difference of logs of prices for 
day t and t-1 and is denoted by rt. Similarly, intraday returns for day t computed over an 
intraday interval Δ are defined as: { }( 1)ln( ) ln( ), 0,1,2,..., ,t i t i t ir P P i j− ∆ − ∆ − + ∆= − ∀ ∈ where P 

denotes the price of an asset and j is the number of intraday intervals. Next, the 
unconditional volatility (of returns) is defined as a square root of variance of asset returns. 
The variance of return is the second unconditional moment of the return process, denoted by

2σ . The conditional variance ht is defined as: ( )22
| 1 | 1 1| ,t t t t t t th E r Iσ µ− − −

 = = − 
 

where It-1 is 

the information set, containing all the relevant information about the return process up to time 
t-1. Similar to its unconditional counterpart, through the conditional volatility we understand 
the square root of conditional variance. 

1. Volatility models 
We use two distinct approaches for the modelling of a one-day-ahead conditional volatility. 
As already sketched in the previous chapter, the one-day-ahead conditional volatility 
forecasts will be used as an input for the pricing of options, which are, in turn, traded on the 
artificial market. The more detailed working mechanism of the option market will be provided 
in the subsequent chapters. 

The volatility models used in this paper are divided into two families – a) GARCH models and 
b) volatility models that internalize volatility proxies. We will further on in this paper refer to 
the latter as “RV models”, since the Realized Volatility (RV) is used as a volatility proxy. Each 
family contains a baseline model and its variations. These variations account for particular 
properties of volatility, such as the leverage effect of the returns on the conditional volatility 
and/or its persistence. We have chosen the models for each group in a homogeneous way, 
such that they are inter- and intra-group comparable.    

1.1 GARCH MODELS 
Several GARCH models are discussed in this subsection. We focused on the most common 
and parsimonious models from the GARCH universe. Since GARCH models model the 
conditional volatility parametrically with respect to a return process, this process must be 
defined beforehand. Various specifications for the mean equation of the GARCH process are 
used throughout the literature, spanning from simple zero conditional mean assumption (e.g. 
Andersen et al. (1988)) to autoregressive processes (Laurent & Giot (2004)). We assumed 
the GARCH-in-mean type of conditional mean equations (similar to, for example, Engle et al. 

(1987)), where returns are specified as, t t tr hµ λ ε= + ⋅ + with t t th zε = ⋅ , where µ  
stands for unconditional mean, ht is the conditional variance process which is to be further 

specified,  (0,1)tz N  and λ corresponds to the risk premium. This specification allows us 

to indirectly capture the risk premium, if any, of the asset returns by an additional parameter 
in the return equation. Nowadays, its variations are widely used in contingent claim pricing 



4 
 

literature (e.g. Duan(1995), Hardle & Hafner (2000), Christoffersen & Jacobs (2004), 
Christoffersen et al. (2008)).  

As for the modelling of the conditional volatility, we hereby opted for a number of distinct 
specifications from the GARCH family. The formalized definition of all volatility models used 
in this paper is provided in Table 5, Table 6 and Table 7 of Appendix A. In the following two 
paragraphs we rationalize our model selection.  

The GARCH(1,1) of Bollerslev (1986) (A.1) is a widely used tool in financial econometrics. 
The conditional variance in this specification is a linear function of past shocks ( 2

1tε −
) and 

past conditional variances ( 2
1tσ −

). Based on something akin to an “adaptive learning 

mechanism” for the variance process, the GARCH(1,1) is able to model a relatively long 
memory without the cumbersome estimation of heavily lagged models1. A modification to the 
simple GARCH(1,1) model was proposed by Taylor (1986) and Schwert (1989). The TS-
GARCH (A.4) models the standard deviation as a function of absolute past innovations and 
past standard deviations. This is to extenuate the effect of large shocks. Thus, unlike 
GARCH, the variance is a non-linear function of the squared innovations. The non-linearity 
also captures, to some extent, the long memory feature of the conditional variance2. Another 
important feature of the variance of stock returns is the so-called leverage effect, i.e. an 
asymmetric effect of positive and negative shocks on the future conditional volatility. Neither 
GARCH nor TS-GARCH is able to capture this effect. Therefore, we also included leverage 
GARCH models, namely: GJR of (Glosten et al. (1993)), Threshold ARCH (TARCH) of 
Zakoian (1994), Asymmetric GARCH (AGARCH) of Engle (1990), Non-linear Asymmetric 
GARCH (NAGARCH) and VGARCH of Engle and Ng (1993)3

After enlarging our set of models able to account for asymmetric effects, we added models 
capable of tackling another stylized volatility feature, i.e. the long memory (Ding et al. 
(1993)). The long memory can be broadly defined as a “non-decaying” persistence in the 
conditional volatility process. There are several possible approaches approximating the long 
memory of the volatility process. One approach would be to focus on extending the 
aforementioned GARCH models for higher orders of lagged conditional volatility. However 
this solution would soon make the estimation technically unfeasible. Another possibility would 
be to consider fractionally integrated models, i.e. FIGARCH of Bailie, Bollerslev and 
Mikkelsen (1996) and/or FIEGARCH of Bollerslev and Mikkelsen (1996). Yet, although, as 
argued by Corsi (2009), the concept of fractional integration is an elegant theoretical 
approach, it remains difficult to interpret economically. Moreover, as also reasoned by 
Christoffersen et al. (2008), option pricing with fractionally integrated models is clumsy, 
mainly due to problematic parameter estimation. Hence, we decided to model long memory 
using a more parsimonious approach of the two-component models (Ding et al. (1996)). This 
is also more relevant in the option pricing context (Christoffersen et. al (2008)). Ding et al. 
(1996) showed that a volatility of financial returns usually has longer memory than the one 

. All of the five above-
mentioned models incorporate the leverage effect by the additional parameter(s) in the 
variance equation, yet the leverage effect is modelled in a rather distinct way, as reported, for 
example, by Engle and Ng (1993). 

                                                
1 Bollerslev (1986), p. 309. 

2 An extended version of this model, which models the variance to the power of δ as a function of the absolute value of the 
innovations and powers of past variances, was proposed by Higgins and Berra (1992). We excluded this specification due to 
lack of convergence when estimating parameters within particular days of our data sample. 
3 We started with a broader set of models, but Alt-GARCH, EGARCH, APARCH and NARCH were excluded due to estimation 
problems. 
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implied by the GARCH model. To correct this deficiency, a model which combines a short-
term conditional volatility component (st) with a long-term component (lt - capable of 
internalizing the long-memory) is set up. For the long-term component, the Integrated 
GARCH of Engle & Bollerslev (1986) (IGARCH) was chosen4

Table 6

. Apart from the GARCH(1,1)-
IGARCH(1,1) specification, we included other two-component models, differing in their short-
term components, in order to account for the aforementioned leverage effect. Hence, we 
were able to construct several long memory models with asymmetric news impact curves, 
yet simple enough to estimate. All of the two-component models are reported in . 

1.2. REALIZED VOLATILITY MODELS 
The second type of models used in this paper internalizes the volatility proxies (measures), 
namely the Realized Volatility (RV) in this paper. To rationalize, if the volatility could be 
measured, we would be able to use it as an input to the ordinary autoregressive models (i.e. 
ARIMA models), typically used for the forecasting of levels of financial time series. Following 
Andersen et al. (2001), daily realized volatility (RV) can be defined as the sum of squared 
intraday returns, more formally: 

1/
2

0
( , ) .t i

i
RV t r

∆

− ∆
=

∆ = ∑  (2.1) 

In the seminal paper of Andersen and Bollerslev (1998), it was shown that RV is an unbiased 
and asymptotically consistent volatility estimator, i.e. the difference between RV and 
integrated volatility – the “true” volatility - converges to zero in probability as the interval 
between intraday observations decreases:  

τσ
∆

+ − ∆
∆→ =

 
− =  

 
∑∫

1 1/
2 2

0 00

plim 0.t t i
i

dt r  (2.2) 

Arising from eq. (2.1), the true volatility becomes “measurable” and hence it can be modelled 
directly using autoregressive models. In the following chapter, we describe and provide 
rationale for the RV models used in this paper.  

The RV is internalized in two ways, i.e. within parametric and non-parametric models. 
Starting with the parametric models, we hereby opted for ARMA on RV. In the context of RV, 
the ARMA(1,1) model can be, to some extent, thought of as a parallel to the GARCH(1,1). 
The difference between equation (A.14) and (A.1) lies in the different “MA” parts of the 
process5

The non-parametric group consists of several specifications to match the characteristics of 
the GARCH models in the previous section. We considered the non-parametric 
Heterogeneous AR Realized Volatility models (HAR-RV) of Corsi (2009) and Corsi and Reno 
(2009). Corsi (2009) reported that his parsimonious model (A.15) performs surprisingly well 
in the forecasting exercise. This AR-type model is capable of mimicking the long memory 
properties of the volatility when using RVs recorded at different time intervals (typically daily, 

. While the news term in the ARMA model is connected directly to the lagged 
variance proxy, the squared news term in the GARCH model refers to the innovations in the 
mean equation (returns). We included this model in the scope owing to its lag structure being 
similar to that of GARCH(1,1). 

                                                
4 Note that since the coefficients of the long-term component sum up to one: a) the long-memory is implied by construction, 
since the conditional variance is fully determined by past squared innovations and past conditional variances, and b) the 
variance process is not weakly stationary (the unconditional variance does not exist). Yet, Ding et al. (1996) showed that the two 
component GARCH(1,1)-IGARCH(1,1) model is covariance stationary. 
5 Of course, also the AR parts are different, but if we assume RV to be a good proxy for the latent variance, then 
this difference is negligible. 
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weekly and monthly). In other words, an infinitely lagged ARCH, which could be used to 
mimic the long memory, is truncated here to three parameters, namely 0 1 2

, ,β β β 6. By 
imposing suitable constraints on the parameters, a GARCH(1,1) can also be transformed into 
an ARCH(∞)7

2. Estimation 

. If we assume zero daily mean return and RV to be equal to the daily squared 
return (i.e. the RV(low)), then a tight linkage between the GARCH(1,1) and HAR-RV(low) 
models becomes apparent. We also included a simplified version of the HAR-RV models – 
an AR(1) model on RV with a leverage effect, (A.17), for the sake of comparison with 
leverage models from the GARCH family. In the class of RV models that are able to 
approximate the long memory, we consider the HAR-RV (A.15) as a non-parametric 
counterpart to the two-component GARCH-IGARCH. We also included a version of the 
model generalized for the presence of asymmetric effects – the Leverage HAR-RV (A.16) of 
Corsi & Reno (2009), representative of a counterpart to the asymmetric two-component 
models. 

All GARCH model parameters were estimated by Gaussian maximum likelihood8

θ

. We 
assumed error terms to be conditionally normal with mean zero and variance ht, thus the 
following log-likelihood function was maximised with respect to : 

( ) ( )2

1 1

ln ( ) ( )ln(2 ) 1ln L( )= ,
2 2 2 ( )

n n
t t

t t t

h r
n

h
θ µ θπθ

θ= =

− 
⋅ − − 
 

∑ ∑  (2.3) 

where ( )th θ  represents the particular GARCH model and ( ) ( )t thµ θ µ λ θ= + ⋅ . For t=1, we 
set ht equal to the sample variance. During the estimation, constraints for covariance 
stationarity were imposed for each model9

Regarding the RV models, a simple OLS method was applied to arrive at model parameter 
estimates. To measure efficiency gains from the additional information when constructing the 
volatility proxy using data sampled at finer frequencies, we estimated all the models using 
RV(low), RV(mid), RV(high), totalling 11 models

. Once we had the estimated parameters at hand, 
we forecasted the one-step-ahead variance by recursive fitting of the model, using the rolling 
estimation window of 1000 days. The recursive estimation allows us to capture the 
parameter shifts, if any. In particular, we are able to indirectly capture the time varying risk 
premium. 

10

                                                
6 ARCH(∞) is defined as: 

. Similar to Laurent and Giot (2004), we 
modelled the logs of the realized volatility (ln(RV)). This was based on the premise of by 
Andersen (1998), who found the logarithmic RV to be approximately Gaussian. This feature 
is important for the forecasting exercise, where it secures that volatility forecasts are not 
systematically biased (as might be the case for RV, the distribution of which is typically 
skewed to the right (Thomakos & Wang (2003)). Finally, once we had estimated the models 
and forecasted the one-step-ahead logarithmic RV, we needed to convert these quantities 
back into the original scale in order to be able to use them in the option pricing. We assumed 

2

1
t i t i

i

h α δ ε
∞

−
=

= + ⋅∑  

7 For details, consult Bollerslev (1986). 
8 Interior-point algorithm was used for finding a maximum of the corresponding likelihood function. 
9 Stationarity conditions enforced within the parameter estimation are available upon request. 
10 We denote RV(high), RV(mid) and RV(low) the realized volatility computed using 5 minute intraday returns, 30 
minute intraday returns and daily returns, respectively. We did not include ARMA(low) due to estimation 
problems. 
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errors from (2.4) to be normally distributed, i.e. 2(0, )t N ηη σ . Then, following Granger and 
Newbold (1986), Laurent and Giot (2004) and Lutkepohl and Xu (2009), we transformed our 
logarithmic forecasts accordingly:  

2
1| 1

1 ˆexp ln ,
2

t t tRV RV ησ
∧ ∧

+ +
 

= + 
 

 (2.4) 

 where 2ˆ
ησ is the estimated variance of the error terms of  (A.14-17). 

3.  Option pricing formula 
The volatility forecast accuracy of the outlined models is tested in the artificial option market 
framework, the working mechanism of which will be outlined in the next chapter. We used the 
well-known Black & Scholes (B/S) option pricing framework to transform volatility forecasts 
into option prices.11

It is noteworthy that inefficiencies in the pricing formula (i.e. pricing errors) can lead to biases 
in the absolute profits of traders, but as long as all traders use the same pricing formula, the 
relative ranking of the volatility forecasts should stay intact. There is, hence, a reason to trust 
the ability of this kind of exercise to assess the variance forecast precision and to deliver a 
reliable economic ranking of volatility forecasts. 

 We note that the B/S pricing formula implicitly assumes a constant 
variance of the returns over the life of the option (σ2), which is in contrast to option pricing in 
the context of the time-varying conditional variance. However in our artificial option market 
exercise, agents  forecast one-day-ahead conditional variances, which are, in turn, used as 
an input to the B/S formula to price options with one day to maturity. Here, we assume that at 
the time of the option price determination, each trader perceives his volatility forecast as the 
correct one and constant over the course of the next day. 

By the same token, we add that there is nothing which could restrict us from assuming that 
all the underlying B/S framework assumptions are fulfilled in our artificial markets, due to 
their relative simplicity. In addition, we rather arbitrarily, albeit in accordance with the related 
academic literature and the model assumptions, set the risk-free interest rate equal to 0 
(Engle et al. (1990), Bandi et al. (2008)). Also in our settings, similar to Engle et al. (1990) 
and Bandi et al. (2008), the agents trade at-the-money options (i.e. K = 1) on a $1 share of 
the underlying asset. 

The original closed-form solution for pricing a call (C) and a put (X) option in the B/S world is 
of the form: 

( )
1 2( , ) ( ) ( ) ,r T tC S t N d S N d Ke− −= ⋅ − ⋅  (2.5) 

( )
2 1( , ) ( ) ( ) ,r T tX S t N d Ke N d S− −= − ⋅ − − ⋅  (2.6) 

where: 

( )
2

1 2 1

ln
2

;

S r T t
K

d d d T t
T t

σ

σ
σ

  
+ + −  

   = = − −
−

 
(2.7) 

                                                
11 For more details consult Black and Scholes (1973) 
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and S, K, r, σ, T, t , N(*) refers to the spot price of the underlying asset, the strike price of the 
option, the risk-free interest rate, the volatility of returns of the underlying asset, the maturity 
date, the current date and the normal cumulative distribution, respectively. 

In our setting, the Black & Scholes option price formula is simplified to: 

1 2( , ) ( ) ( ),C S t N d N d= − 12 (2.8)  

where: 
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1 2 1

ln 1
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t t
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t

h
h h

d d d h
h

 
+   
 = = = − = −  

with ht being the (conditional) volatility at time t implied by one of the competing 
volatility models from the previous chapter. 

(2.9) 

Thus: 

2 1,
2 2 2
t t th h h

C X N N N
     

= = − − = − −          
     

 (2.10) 

which follows from the put-call parity. 

4. Artificial Option Markets 
Volatility forecasts accuracy has been predominantly studied in statistical terms (e.g. 
Andersen and Bollerslev (1998), Hansen and Lunde (2005), Laurent, Rombouts and Violante 
(2009)). In short, let us use n competing volatility models. As we obtain the volatility forecasts 
implied by the models, we are able to contrast them with the ex-post volatility estimates. 
Deviations from the ex-post volatility are in turn evaluated using a pre-specified loss function 
(i.e. by imposing a particular structure on the penalties for deviations from the benchmark). 
Then, the n models are ranked in ascending order according to their average losses13

On the other hand, it is a rather modest area of empirical finance focused on comparison 
which is based on non-statistical loss functions. Being based on the economic valuation 
criterion, economic loss functions do not rely on the knowledge of the “true” variance. 
Usually, portfolio profits/standard deviations or option prices/implied volatilities are used for 
the ranking of the volatility models. In this paper, we use an artificial (hypothetical) option 
market as proposed by Engle et al. (1990).  

. In the 
final stage, the validity of the ranking is tested using a predefined level of confidence. This is 
commonly executed either by using the test for Superior Predictive Ability (SPA) of Hansen 
(2005) or the Model Confidence Set (MCS) of Hansen, Lunde and Nason (2003). 

The artificial option market consists of several hypothetical option traders. Each trader uses a 
different volatility model, from the set described in section 1 of this chapter, to forecast the 
one-day-ahead variance. The forecasted variance is then used as an input for pricing at-the-
money European put and call options on the $1 share of the underlying stock, with the 

                                                
12 This is since St = 1, K = 1 and r = 0. 
13 The model with the lowest accumulated loss is ranked as the first. 
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maturity of one day14

A straddle is a portfolio of options (contingent claim/investment strategy) that allows the 
holder to profit from the volatility of the underlying asset. A long/short straddle is a long/short 
position in both a call and a put option on the underlying asset

. For the pricing of options, the B/S formula was used. After pricing the 
put and call options, each agent creates a straddle, which he then trades on the artificial 
market with the rest of the traders.  

15

To illustrate our trading algorithm, let us assume that two traders (A and B) at time t, priced 
European call options (C) on the same underlying asset with maturity at time t+1, given their 
individual volatility forecasts. Let us further assume, without the loss of generality, that CA> 
CB. The price of the European put option (X) is equal to the price of the call (C), owing to our 
assumptions on the risk-free interest rate (r=0), the strike price (K=$1) from Section 3 and 
the put-call parity. The fact that the straddle can be perceived as a portfolio of put and call 
options in turn implies that PA>PB

.  

16. In other words, A perceives B’s straddle as under-priced, 
or equivalently, B perceives A’s price as overpriced17

Two distinct market settings are used. In the first setting, straddles are traded anonymously, 
which implies a market without a single market price. This has been of common practice in 
the related literature (Engle et al. (1990), Bandi et al. (2008), Chan et. al (2009)). Conversely, 
the second setting is based on the assumption of a single market price. To our best 
knowledge, volatility forecasts have not yet been compared under this type of economic 
valuation. 

. Consequently, a trade takes place 
whenever A and B meet on the market. Note that the only factor making the prices of the 
straddles different (in our setting) is the forecasted volatility. Hence, if trader A systematically 
realizes the profit over trader B, then he is arguably using better volatility forecasts. In the 
subsequent sections, we extend this mechanism to the market of more than two traders. 

Note that both types of volatility forecast comparisons do not rely on the knowledge of the 
“true” volatility. Unlike the volatility forecast ranking based on the statistical criteria, we rank 
the models by using an ex-post observable quantity, namely daily returns of the underlying 
asset.    

4.1 The artificial market with anonymous trading 
Our artificial market comprises 27 traders. The first 24 traders were assigned 24 models 
discussed in Chapter 2 (11 RV models + 13 GARCH models). We also included three 
“indicator” traders to control for the possible pricing biases of the whole market. We 
constructed the Mean trader, whose volatility forecast was an average forecast of the 24 
model based traders, on a particular day. Similarly, the Min and Max traders correspond to 
the minimum and maximum forecast from the set of the 24 models. For instance, high 
profitability of the Max trader would indicate that the 24 competing models were on average 
underestimating the variance, i.e. under-pricing the straddles. 

We run the experiment on the out-of-sample period of 250 days. Let us now describe the 
routine for a particular day in a stepwise fashion: 

In time t: 

                                                
14 For the option to be at-the-money we set the strike price, K = $1. 
15 The two options in the straddle have the same strike price and maturity. 
16 This result would hold also if assumptions on the risk-free rate and strike price are relaxed. As long as A,B are 
pricing options on the same underlying asset with different variances (but, with the same strike price and risk-free 
rate) the result would not change. 
17 Given the individual beliefs of A and B about the future level of variance of the underlying asset. 
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Every trader forecasts the one-day-ahead variance with respect to the model he uses18

The traders meet at the market, where pair-wise trades take place. Trades are settled at the 
mid price of the ask (higher) and bid (lower) straddle price. This implies that every pair-wise 
trade is (possibly) executed at a different market price

. 
Traders price the one-day European put and call options according to eq. (2.10). A straddle 
price (P) for each trader is determined. 

19

{ }, ,       , 1,2,...27 ; ,
2

i jTrade
i j

P P
P i j i j

+
= ∀ ∈ ≠

. More formally, for any trader i and j: 

 (2.11) 

yielding 26 trades per trader and totalling 351 pair-wise trades each day20

After all trades have been executed, each trader delta-hedges himself. When delta-hedging a 
plain vanilla option position, a trader enters into a counter-weighting position (

. 

ω ) in the 
underlying asset. By doing so, he creates a risk-neutral portfolio (of an option and a 
underlying asset) with respect to small changes in the price of the underlying asset. For a 
portfolio consisting of one plain vanilla option, the weight “ω ” equals the “delta of the option” 
(δ ) - a standard finance textbook result.  

In our settings (revolving around eq. 2.10), however, the delta is simplified to: 

1ˆ ,
2 thδ

 
= Φ  

 
 (2.12) 

for the long position in the call option. 

This result can be derived by combining the delta with the plain vanilla call option: 

( )1 ,rte dδ −= Φ  (2.13) 

with eq. (2.9) and recalling the zero interest rate assumption. Hence, the trader should go 
short by this quantity of stocks in order to make the portfolio delta neutral. Similarly, for the 
trader who goes long (buys) in the put option, we have: 

1ˆ 1 ,
2 thδ

 
= − Φ  

 
 (2.14) 

i.e. the trader should go long by this quantity of stocks to attain a delta neutral position. 
Finally, since the straddle is a portfolio of put and call options, its hedge ratio is the difference 
between (2.14) and (2.13), yielding: 

11 2 .
2straddle thδ

 
= − Φ  

 
 (2.15) 

                                                
18 Mean, Max and Min traders form their forecasts once the forecasts of the rest of the traders are known. 
19 If we assume that the volatility forecast of any pair of traders is not identical. This, of course, does not hold in 
every pair-wise trade for indicator traders, by construction. In cases where the bid and ask price are equal, 
indicator traders execute the trade for this price. 
20 i.e. 27x26/2. 
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We note that every agent uses his variance forecast to delta-hedge himself. This means that 
possible profits (or losses) made by this strategy are riskless and purely determined by a 
speculation, i.e. richer (or weaker) information about the future volatility. This would not hold 
in a market consisting of traders equipped with perfect information and foresight due to no-
arbitrage reasons21

In time t+1: 

. In fact, our exercise implicitly assumes imperfect information on the 
market, arising from various beliefs about future volatility implied by the volatility models.  

Profits/losses for each individual trader (i) are computed and stored. The daily pair-wise profit 
of the trader who bought the straddle is: 

, 1 1 , , 1 , 1|

1Profit = 1 2 .
2

trade
i t t i j t t i t tr P r h+ + + +

  
− + ⋅ − Φ     

 (2.16) 

Similarly, the daily profit of the straddle seller i is: 

, 1 , , 1 1 , 1|

1Profit = 1 2 .
2

trade
i t i j t t t i t tP r r h+ + + +

  
− − ⋅ − Φ     

 (2.17) 

The total daily profit/loss of the individual agent is the sum of all pair-wise profits/losses from 
the individual trades, divided by the number of pair-wise trades executed during the day22

Finally, we report two characteristics of this market setting. First, as the price of each trade is 
set as a mid-price of the ask and bid price, it is very likely that an individual trader is selling 
the same straddle at different prices within a particular day, depending on the straddle prices 
of the counterpart traders (i.e. their future volatility beliefs). This would be possible only in the 
case of anonymous trading, otherwise a single market price would emerge. This issue is 
addressed in our second market setting. 

. 
The routine is repeated for every day of our out-of-sample period and the daily profits are 
accumulated. Arising from the market assumptions of section 3, we recall that transaction 
costs are not deducted from the profits. This, however, should not introduce any ranking 
biases, since all traders would be burdened by the same transaction costs, should these be 
introduced.  

Further, as reported by Bandi et al. (2008), traders whose prices are clustered around the 
median price have a higher potential to be profitable, even if their volatility forecasts are not 
accurate enough. This is due to the fact that they are selling and buying roughly equal 
numbers of straddles from both sides of the market, i.e. from straddle sellers and straddle 
buyers. We discuss the issue in more detail in the second market setting. 

4.1 The artificial market with a single market price 
The second market setting of our experiment is built on seemingly more realistic 
assumptions. Trades are not executed anonymously; rather, all traders reveal their straddle 
prices and a single market price is consequently formed. For simplicity, we assume that the 
market price (Pmarket) equals the median price from the set of straddle prices for a particular 
day. This can be, to some extent, related to the market price formed by demand and supply 
forces23

                                                
21 In the case of perfect information and foresight, all of the agents would unify their beliefs about the future 
variance, implying a single market price for a contingent claim. 

.  

22 i.e. the total daily profits are scaled by the number of trades to prevent having artificially large absolute returns 
caused by the size of the market. 
23 When one realizes that the demand and supply side of the market consist of the same agents. 
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This modification of the market set-up introduces a new feature to the trading mechanism – 
decision-making. To illustrate this feature, let us consider two traders (A and B) in the market 
of n traders (n>2). Without loss of generality, we assume that the market price of the straddle 
was formed as a median price (Pmarket) and PA>PB>Pmarket, i.e. both agents are on the same 
side of the market. Now, if A and B traded according to the set-up of the previous section, i.e. 
A buys the straddle from B (B sells the straddle to A), then B would enter the trade with a 
negative expected profit. This is due to the fact that both A and B would like to buy straddles 
for Pmarket in this case, perceiving them to be under-priced. Hence, we allow traders to choose 
whether or not to trade. Thus by construction, two traders will trade if, and only if, they are 
from two distinct sides of the market, i.e.: 

{ }≥ > ∀ ∈ ≠ , , 1,2,...,27 ,     i market jP P P i j i j  (2.18) 

Again, we provide a stepwise description of the daily trading routine for this market setting: 

In day t: 
The first and second steps are identical to the market setting outlined in the previous section. 

The third step is similar to the previous set-up whereby traders meet at the market to buy/sell 
straddles, but a single market price is formed: 

1 2 27( , ,..., ).     marketP median P P P=  (2.19) 

Thus, every trade is executed for a market price. Moreover, the pair-wise trade is executed if,  
and only if, both traders come from distinct sides of the market. Step 4 is also identical to the 
previous set-up. 

In t+1: 
Step 5: Profits/losses of trader i from pair-wise trades are then computed as: 

                        
, 1 1 1 , 1|

1Profit = 1 2 ,
2i t t market t i t tr P r h+ + + +

  
− + ⋅ − Φ     

 (2.20) 

for the straddle buyer, and 

                        
, 1 1 1 , 1|

1Profit = 1 2 ,
2i t market t t i t tP r r h+ + + +

  
− − ⋅ − Φ     

 (2.21) 

for the straddle seller. 

The rest of the simulation runs along the lines of the previous setting. 

This modification of the trading setup has two advantages. Firstly, the assumption of a single 
price on the market is economically more meaningful. Secondly, it diminishes the potential 
profitability of the traders, whose straddle prices are clustered around the median price24

  

. 
Here, traders that are, for instance, slightly above the median price are not able/willing to sell 
their straddles to the traders with even higher straddle prices and, by not doing so, 
compensate for the possible losses arising from buying the straddles from the other side of 
the market. 

                                                
24 Also in this set-up, the trader, whose straddle price strictly equals the median price, is potentially profitable 
despite possible inaccuracy of his volatility forecasts. 
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III. Data 
The dataset that we consider consists of five-minute tick prices of British Petroleum plc (BP). 
The BP series is a heavily traded stock of the NYSE index. This should minimise the adverse 
effects of the microstructure noise, which can in turn bias the volatility proxy. The data set 
spans from August 2003 to August 2008 (1250 days). Weekends, holidays and early closing 
days are excluded from the data sample. For each day, there are 78 five-minute returns 
implying a total of 97 500 five-minute returns for the given stock. 

We split this period into two sub-samples (as indicated by the red vertical line in Figure 1), 
i.e. the starting estimation period, spanning from August 2003 to August 2007, and the out-
of-sample evaluation period, spanning from August 2007 to August 2008.  

The starting estimation period serves as an initial estimation window (information set) of 
1000 observations for the parameter estimation and consequent out-of-sample volatility 
forecasting. For each following out-of-sample volatility forecast, a rolling window of 1000 
observations is used to estimate the volatility model parameters. We note that also the 
estimation window used for the last out-of-sample volatility forecast comprises mainly return 
observations from the calm (estimation) period. This part of our data corresponds to a period 
of relatively low volatility (the lower panel in Figure 1) and positive average daily returns (Table 
1).  

The artificial market trading is run on the out-of-sample period (i.e. the data point to the right 
of the red vertical line) for one year – from August 2007 until August 2008. Figure also shows 
that the two periods differ not only in the average daily returns but also in the average 
volatility. The volatility and returns measured in our sample throughout the time, i.e. the RV, 
is depicted in the lower and upper panels respectively in Figure 1. The out-of-sample period, 
i.e. are the area to the right of the red line, has a significantly higher volatility and features the 
tumbling market (the average daily return changes from positive to negative as we move 
from the “starting estimation” period to the “out-of-sample” period) as evidenced by both the 
lower panel of Figure 1 and Table 1. These changes in the market environment were caused 
mainly by the impact of 2008 financial crisis. Since the out-of-sample period was more 
volatile, we also implicitly tested the relative flexibility of the volatility models and their speed 
of adjustment to the environment. 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 1: Data overview 
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Table 1: Descriptive statistics of the BP daily returns 

 Mean Minimum Maximum Std. Dev. Skewness Ex. Kurt. 

Entire period (1251 obs.) -0.011 -3.691 5.76 0.922 0.082 1.759 

"In" sample (1001 obs.) 0.013 -2.535 3.4982 0.827 0.013 0.166 

"Out" sample (250 obs.) -0.108 -3.69 5.76 1.2236 0.288 2.063 

 
 

 

 

 

 

IV. Results 
Hereby, we report the results of our artificial market exercise. First, we provide the results of 
several ranking methods based on the statistical metric to provide a benchmark for our 
economic evaluation. Next, we report both the rankings resulting from the anonymous trading 
on the artificial option market as well as the trading on the market with a single price. 

1. Ranking based on statistical loss functions 
We used three consistent statistical loss functions for the volatility forecast comparison. We 
ranked the models in ascending order with respect to their average losses over the out-of-
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sample period. The average loss (L) of the i-th’s model forecast over the sample period is 
defined as: 

{ } { }
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ˆ( , )
( , ) , 1,2,..., , 1,2,..., .
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t t t

i i t
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(4.1) 

Where n denotes the number of days of the period over which the losses are accumulated, 
2ˆ
tσ denotes the benchmark measure (i.e. the volatility proxy) and 2ˆ( , )i

t t tl hσ  is the form of the 
loss function which needs to be specified. We use the following consistent loss functions of 
Patton (2011): 

Mean Squared Error (MSE): 

( )22 2ˆ ˆ( , )t t t tl h hσ σ= −  (4.2) 

Asymmetric loss function with a heavier penalty for the under-prediction (QLIKE): 

2
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σ = +  (4.3) 

Asymmetric loss function with a heavier penalty for the over-prediction: 

( ) ( )2 2 4 2 1 21 1ˆ ˆ ˆ( , , ) ,
(1 )(2 ) 1

b b b
t t t t t t tl h b h h h

b b b
σ σ σ+ + += − − −

+ + +
 (4.4) 

where b is a scalar parameter influencing shape of the loss function ( { }1, 2b∈ − − − ). We 
rather arbitrarily set b=1. 

The RV constructed from five-minute returns is used as an ex-post benchmark volatility 
measure. In keeping with common academic practice, we compute the average loss for an 
individual model using the symmetric loss functions of a Mean Squared Error form (4.2). 
Additionally, we rank the models using asymmetric, albeit consistent, loss functions, which 
impose higher penalties for volatility over- and under-prediction, (4.4) and (4.3) respectively. 
The asymmetric loss functions are used to control for the possible systematic penalization 
scheme of a particular artificial option market setup. In other words, if we found that the 
economic ranking is close enough to that of (4.3), we would conclude, given our data, that 
our economic ranking criterion favours (on average) upward-biased volatility 
forecasts/models, If, on the other hand, we observed the economic ranking to be close to the 
MSE loss function, it would support the argument of the symmetric ranking of our economic 
volatility ranking approach.   

The rankings of the volatility models are reported in Table 2. The ranking is reported in 
ascending order, i.e. 1 denotes the best model. 
Table 2: Statistical rankings of the volatility models 

  4.2 4.3 4.4 
GARCH traders  MSE Q-LIKE  
GARCH  14 15 6 
GJR  12 12 14 
TARCH  17 20 18 
TS-GARCH  18 21 17 
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NAGARCH  15 14 7 
VGARCH  19 19 19 
AGARCH  4 11 2 
2C-GARCH-IGARCH  11 13 5 
2C-ALTGARCH-IGARCH  20 18 20 
2C-GJR-IGARCH  13 8 16 
2C-TARCH-IGARCH  8 9 8 
2C-VGARCH-IGARCH  21 17 21 
2C-TSGARCH-IGARCH  16 16 11 
RV traders     
HAR-RV high 1 2 1 
 mid 6 6 9 
 low 25 25 25 
Leverage HAR-RV high 2 1 4 
 mid 5 5 10 
 low 26 26 26 
Short memory HAR-RV high 10 10 15 
 mid 22 22 22 
 low 24 24 24 
ARMA high 3 3 3 
 mid 9 7 13 
Indicator traders     
Mean  7 4 12 
Min  23 23 23 
Max  27 27 27 
 

We denote traders according to the volatility model they used (e.g. GARCH trader). The two 
component models are denoted by an acronym “2C”.  

Inspecting Table 2, the high-frequency RV models rank highest, i.e. are the most accurate, 
throughout the spectrum of the loss functions, while the low-frequency RV models deliver 
rather inaccurate forecasts25. These findings were also proven by the MCS test, at a 95% 
level of confidence26

Akin to Corsi (2009), we observed the high frequency HAR-RV model to be the most precise 
within the class of RV models. Moreover, we confirmed the results of Andersen et al. (2003) 
on our dataset when we found that even a simple AR(1)/ARMA(1,1) model on high-frequency 
data is on average more accurate than GARCH models on daily frequencies. The value 
arising from the additional information provided by high-frequency data can also be 
demonstrated by controlling for the particular RV model from 

. 

Table 2 and varying the RV 
frequency. For instance, when the frequency of the HAR-RV model is changed from “high” to 
“mid”, its ranking drops from 1st to 6th 27

When focusing solely on the GARCH models, we find that the parsimonious GARCH(1,1) 
ranks lower than some of the more flexible models in this class. More concretely, the 
Asymmetric GARCH ranked 4th (under MSE) among all models, and 1st in the GARCH 
group

. The leverage HAR-RV models are also highly 
accurate, yet their leverage feature does not make them superior to the symmetric HAR-RV. 
On the other hand, the long memory-mimicking feature of the HAR-RV models seems to be 
essential. Both HAR-RV specifications outperformed the short memory-like RV specifications 
(on the high and mid frequencies). 

28

                                                
25 The corresponding average losses of the individual models are available upon request. 

. Also, the GJR model ranked higher than GARCH. This may suggest the presence of 

26 MCS test results are not provided due to space limitation, however they are available upon request. 
27 Under the MSE loss function. 
28 Note that AGARCH is overall second when we use a loss function which penalizes for over-prediction. 
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asymmetric effects of  shocks on the conditional volatility, described in Chapter 2. Finally, we 
note that both the Model Confidence Set Test and the Test for Superior Predictive Ability 
justified AGARCH as statistically the most accurate predictor within our class of GARCH 
models, at a 95% level of confidence.  

Our observation that the leverage effects matter for GARCH models but appear not to be 
pivotal for RV models may seem surprising. However, note first that the leverage effect is 
modelled differently within the two model families. In the RV family, the leverage parameters 
( 1 2 3, ,γ γ γ ) are determined directly from the observed values of daily, weekly and monthly 
(negative) returns respectively. On the other hand, in GARCH models, the value of the 
leverage parameter (γ ) is indirectly dependent on the parameters of the return specification (

,µ λ )29

2. Ranking based on economic valuation 

. Furthermore, it seems that the intraday frequency, at which RV is constructed, also 
makes a difference, as argued in the subsequent text. 

Hereby, we present the major contribution of the paper, i.e. the results of our artificial market 
exercise. Table 3 presents the rankings of the volatility models from both market settings. 
Volatility models are ranked with respect to the accumulated profits in descending order. 

2.1 ANONYMOUS TRADING 
In general, Table 3 outlines a similar picture of the ranking as given by the MSE loss 
functions of Table 2, i.e. high and mid frequency RV models clearly outperform GARCH 
models. This also suggests that the ranking given by our artificial option market is, to a large 
extent, consistent with the MSE ranking. Being similar to that of MSE, the ranking based on 
anonymous straddle trading arguably does not systematically penalize traders either for 
under- or over-prediction of future volatility. Due to the relatively high rank of the Max trader 
(7), we infer that the whole market was, on average, under-estimating the variance.  

In line with the statistical ranking, traders who construct their volatility forecasts using high-
frequency data are ranked the highest. In this context, it is implied that traders endowed with 
richer information about future volatility, profit at the expense of traders with less information. 
This is clear when comparing the same RV models on the different intraday sampling 
frequencies. As we move from high to low frequency, performance deteriorates. It must be 
noted, however, that the higher accumulated profits of the RV traders result solely from the 
richer information available and not as a consequence of the higher accuracy of the RV 
models as such. This is demonstrated by comparing the two model families, when the 
intraday sampling frequency is fixed on a daily level. This corresponds to the comparison of 
RV(low) models with GARCH models, as advocated in Chapter 2. Almost all GARCH models 
outperformed the RV models at this level of aggregation of the data. Therefore, we conclude 
that using high-frequency data when forecasting volatility provides considerable economic 
value for the trader30

The “winner” of the artificial market exercise with anonymous trading is the ARMA(high) 
model. Using the information from the high-frequency data and the adaptive learning 
mechanism, this specification excels in the valuation exercise, especially since we consider 
short-term volatility forecasts and a turbulent economic environment. We note that also in 
this type of economic evaluation, as remarked by Fleming et al. (2001), the higher statistical 
accuracy of the volatility forecasts does not necessarily bring higher economic profits. Under 
the MSE loss function HAR-RV(high) ranked highest, but in economic terms it is 

.  

                                                
29 This is given by the fact that: r ht t tε µ λ= − − ⋅  

30 For instance, the best “low-frequency” trader (GJR-IGARCH) earned only 34% of the profits of the best trader 
(ARMA(high)). 
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outperformed by ARMA(high). The reason for this seemingly surprising result lies in the 
different types of loss functions used. While MSE compares the volatility forecast to the ex-
post benchmark volatility proxy in terms of the absolute point-to-point deviations, the 
economic loss function is defined by multiple pair-wise comparisons of competing models 
(i.e. relative accuracy). Nevertheless, we believe that for a real-world investor, profits earned 
from competition-based trading (expressed in familiar units such as dollars) may be more 
appealing than the statistical fit expressed in dimensionless quantities.  

Finally, we note that this result can be, to some extent, driven by the length of the forecasting 
horizon. Had this exercise been adjusted for trading of longer maturity straddles, i.e. the 
volatility models providing dynamic h-step-ahead forecasts, the short-term “adaptability” of 
ARMA might not have been sufficient to outweigh the long memory property of the HAR-RV 
models. However, this issue is left for future research. 

When comparing the models on the basis of characteristics, some rather interesting findings 
are evidenced. The long memory of the variance is approximated both by the HAR-RV and 
the two-component GARCH models31. However, it seems that the HAR-RV(high) and HAR-
RV(mid) models are able to use this information more effectively. While, the long memory 
HAR-RV model outperforms its short memory counterpart (on high and mid frequency), in the 
case of the GARCH family, the result is reversed32. Here, except for the GJR-IGARCH 
model, all of the short memory GARCH models rank higher than the two-component models. 
Moreover, the long memory HAR-RV(low) is also relatively inferior to the short memory HAR-
RV(low) model. One possible reason for this lies in the fact that the long memory of a 
variance becomes more apparent as the return sampling frequency increases. Therefore, 
when we fit the long memory models to the volatility as a function of low-frequency data, the 
long memory seems not to be the prevailing feature. At the same time, GARCH models are, 
by construction, unable to react to the rapid volatility changes, which are present in our 
sample period33

The leverage GARCH models, in general, outperformed symmetric models, which is in line 
with the statistical ranking. This result is much clearer for the single component than for the 
two-component models. However, the leverage effect does not seem to be pivotal in the long 
memory HAR-RV models. A trader using the leverage HAR-RV(high/mid/low) accumulated 
slightly lower profits than its symmetric counterpart. By the same token, we add that these 
rather small profit differences may not be statistically significant. 

. This inability is reflected even more heavily in the two-component GARCH 
models (if the weight on the long-term component is not zero), which may also relatively 
distort the model’s performance in a volatile environment. In conclusion, the short-term 
characteristics (e.g. leverage effects) of the GARCH models outweighed the long memory 
characteristics of the two-component GARCH models in our artificial market setting. 

To sum up, in our dataset we found that when volatility is estimated on the low frequencies, 
leverage effects seem to play a crucial role in volatility forecasting (GARCH and RV(low) 
models), while at mid and high frequencies these become less important. As the return 
sampling frequency used to compute RV increases: a) RV traders become more profitable 
(i.e. the volatility forecasts are more accurate with respect to the traders using low-frequency 
data), and b) capturing the long memory feature has a higher economic value than leverage 
effects.   
Table 3: Economic rankings of the volatility models 

    Anonymous trading  Single market price 
    Rank Acc. Profit  Rank Acc. Profit 

                                                
31 For instance, the weights of the long-term component in the GARCH-IGARCH, TARCH-IGARCH and GJR-
IGARCH models are 0.46, 0.33 and 0.30 respectively. 
32 Note that a similar pattern can be found in the statistical rankings in Table 2. 
33 This inability to follow rather “jumpy” volatility paths is given by GARCH parameter restrictions. 
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GARCH traders        GARCH   15 -5.9  22 -45 
GJR   10 10.1  11 15.43 
TARCH   9 12.6  12 9.32 
TS-GARCH   21 -9.3  17 -34 
NAGARCH   14 -5.4  24 -52.9 
VGARCH   23 -12.5  20 -41 
AGARCH   11 9.68  13 -0.4 
2C-GARCH-IGARCH 17 -8.3  19 -36.4 
2C-ALTGARCH-IGARCH 19 -8.7  23 -46.6 
2C-GJR-IGARCH 8 12.8  10 18.13 
2C-TARCH-IGARCH 18 -8.65  15 -12.45 
2C-VGARCH-IGARCH 16 -7.2  16 -29.8 
2C-TSGARCH-IGARCH 22 -12  21 -45.5 
RV traders        HAR-RV high 2 32.4  2 52.22 
  mid 3 31.3  3 48.45 
  low 24 -27.4  - - 
Leverage high 5 29.1  6 35 
 HAR-RV mid 4 29.3  4 40.6 
  low 25 -28.8  - - 
Short memory HAR-RV high 12 8.65  9 20.7 
 HAR-RV mid 13 -4.9  14 -9.46 
  low 20 -9  - - 
ARMA high 1 37.4  1 62.3 
  mid 6 28.3  7 33.4 
Indicator traders       Mean  26 -32.5  8 31.9 
Min  27 -43.28  18 -34.66 
Max  7 25.9  5 36.9 
 

2.2 THE MARKET WITH A SINGLE PRICE 
The previous market setting compared volatility forecasts on the basis of pair-wise trades 
conducted at mid prices. In this setting, trades are conducted at a single market price. 
Introducing this modification makes trading more realistic: when trades are executed only 
between the pairs of traders from different sides of the market. This measure prevents us 
from obtaining artificially good rankings for traders whose straddle prices, though possibly 
inaccurate, are on average in the centre of the price distribution. In fact, we can perceive this 
artificial market variation as another economic “loss” function, but with a different system of 
penalisation. The second column of Table 3 reports the results of the ranking based on 
trading with a single market price. Note that we do not remark upon any change on the 
highest ranks, compared to the anonymous trading setting. Also, the general results of the 
previous section hold, i.e. traders with better information are more profitable, leverage 
GARCH models on average outperform long memory models (except GJR-IGARCH) and the 
long memory feature prevails when using intraday information.  

 

 

To this extent, the ranking is consistent with that of anonymous trading and thus comparable 
to the statistical ranking of MSE of Table 2. Moreover, the Max trader is even more profitable 
in this setting, justifying the general under-estimation of the volatility.  

We now focus on the differences regarding the previous set-up. The biggest fall in the 
ranking with respect to the anonymous trading setting was experienced by the GARCH 
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trader (from 15 to 22). When inspecting the usual position of the GARCH trader in the 
market, we observed that his straddle prices are on average underpriced, yet close to the 
median price. On 50% of the days, the straddle price of the GARCH trader is below, but not 
more than 5 positions away from the median price. While in the anonymous trading set-up 
the GARCH trader partly compensated for the losses from under-pricing the straddles by 
buying even more under-priced ones (e.g. from the Min trader), in the current set-up this is 
no longer possible. Thus, in this case, the penalising scheme does seem to do a good job. 

On the other hand, the biggest improvement in the ranking was experienced by the Mean 
trader (from 26 to 8). This result may have been effected by the interaction of the following 
two factors: first, after we dropped the seriously upward biased RV(low) traders, the mean 
price on the market decreased to an arguably more realistic level, implying that the Mean 
trader is   more accurate34; second, we are reminded that this type of evaluation favours 
traders able to choose the “correct” side of the market35

It must be noted that the aforementioned feature of the evaluation based on the option 
market with a single market price can, to some extent, distort the volatility ranking (especially 
on the lower ranks). This is mainly true if we are interested in the volatility forecast evaluation 
based on the symmetric economic “loss” function, i.e. the parallel to MSE. In this case, it is 
advisable to use the anonymous trading approach. If we want to penalise traders for the 
volatility over- and/or under-prediction, the artificial market with a single price may be of  
interest to us. Unlike the case of asymmetric statistical loss functions, here the penalising 
rule for over- or under-prediction is more flexible. More precisely, it repeatedly switches 
during the sample period, from penalising under-prediction to penalising over-prediction 
depending on the variability of the underlying asset returns, i.e. the under-prediction / over-
prediction is penalised more heavily in times of high (low) variability. 

. Hence, it might be the case that the 
improvement was mainly caused by the ability of the Mean trader to choose, on average, the 
“correct” side of the market. To disentangle the two effects, we compared the ranking with 
and without the RV(low) traders. We found that the rank of the Mean trader remains 
practically unchanged whether the RV(low) traders are present or not. Therefore, we 
conclude that the prevailing effect on this result is the relatively correct position of the Mean 
trader. More precisely, the Mean trader was, on average, on the upside of the market, i.e. 
buying the under-priced straddles on which he made a profit.  

To sum up, in our dataset we observed that both economic loss functions provided rankings 
of volatility forecasts which appear coherent with the outcome obtained when using statistical 
loss functions. As in Fleming et al. (2001), we found that a better statistical fit does not, on a 
one-to-one basis, imply higher economic value (e.g. HAR-RV(high) vs. ARMA(high)). On the 
other hand, we showed that the additional information gained when using high-frequency 
data is of considerable economic value (RV(high) vs. GARCH). Finally, we remarked that on 
our dataset the prevailing properties of the daily variance differ with respect to the return 
frequency which it is constructed on. Leverage effects were found to prevail when the daily 
variance was recorded on the lowest (daily) return frequency, whereas long memory seemed 
to prevail when estimating daily variance by the sum of squared five-minute returns (i.e. on 
high sampling frequency of the returns). When using the new economic valuation approach 
(the option market with a single market price) we found it able to deliver a reasonable 
volatility ranking under reasonable market restrictions.  

  

                                                
34 The reason for this will be addressed in the following paragraph. 
35 We say that the trader was situated on the correct side of the market, if his belief about higher/lower future 
volatility (straddle price) with respect to the median volatility forecast (median price) earned him a profit.   
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V. Robustness checks 
In this section we address the issue of transitivity of rankings. By the transitivity of rankings, 
we mean a degree of ranking robustness with respect to the changing number of competing 
models. To test for this type of robustness in our economic valuation, we start with the set of 
all 27 competing traders from the previous chapter. After obtaining the ranking for all 
traders/volatility models, we exclude the four worst performing traders/models and repeat the 
ranking exercise. Along this line, we continue until we obtain the ranking of the smallest set 
consisting of the last seven models. 

Obviously when the ranking of volatility models is based on the statistical loss function, there 
will be no change in the models ranking as some inferior models are excluded if the 
benchmark volatility measure stays intact. However, our economic valuation is built on the 
pair-wise interaction between traders, rather than point-wise comparing each model to the 
fixed benchmark. As noted by Engle et al. (1990), “there is no reason to expect that the 
relative profit relation across forecasts is transitive’’. In other words, it might well be the case 
that some of the traders earn considerably less (or more) if the counter trader on whom they 
profited (or lost) the most is excluded. We report the results of this exercise in Table 4.  

Table 4: Transitivity of the economic rankings 

    Anonymous trading  Single Market Price 

 
 Number of Models  Number of Models 

 
 27 23 19 15 11 7  27 23 19 15 11 7 

GARCH traders              
GARCH  15 15 17     22 23     
GJR  10 9 10 9 9   11 12 12 12   
TARCH  9 8 9 10 10   12 11 10 9 8  
TS-GARCH  21 21      17 18 18    
NAGARCH  14 14 16     24      
VGARCH  23 22      20 20     
AGARCH  11 10 11 11 11   13 13 14 15   
2C-GARCH-IGARCH 17 20      19 21     
2C-ALTGARCH-IGARCH 19 19 19     23 22     
2C-GJR-IGARCH 8 7 7 7 8   10 9 11 11 10  
2C-TARCH-IGARCH 18 12 12 15    15 15 19    
2C-VGARCH-IGARCH 16 16 18     16 16 17    
2C-TSGARCH-IGARCH 22 23      21 19 16    
RV traders  

             
HAR-RV High 2 2 2 2 3 5  2 2 2 2 5 6 

 Mid 3 3 4 5 6 6  3 3 7 7 7 5 

 Low 24             
Leverage High 5 4 3 3 2 2  6 5 4 5 6 3 
HAR-RV Mid 4 5 5 4 4 4  4 4 3 4 4 7 

 Low 25             
Short memory High 12 11 8 8 7 7  9 10 8 8 9  
HAR-RV Mid 13 13 13 12    14 14 13 10 11  
 Low 20 18 15 14          
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ARMA High 1 1 1 1 1 1  1 1 1 1 1 2 

 Mid 6 6 6 6 5 3  7 7 6 6 3 4 
Indicator traders              
Mean  26       8 8 9 13   
Min  27       18 17 15 14   
Max  7 17 14 13    5 6 5 3 2 1 
 

Rather surprisingly, both market settings appear to be, in general, robust to changes in the 
size of the market. However, the results of the anonymous market set-up are more 
convincing. Here, the transitivity of the ordering is most apparent in the case of ARMA(high), 
which is the best model independent of the market size. We note that the remaining models 
are also ranked quite robustly as their ranking changes, in the majority of cases, by not more 
than two places as the number of competing models decreases.  

The biggest shifts in the ranking positions are naturally experienced by the indicator traders, 
whose forecasts become more and more precise as the set of traders becomes smaller. 

It is also noteworthy that, in our dataset, the robustness of ordering is the strongest in the 
large sets (27-15 models) and weakens as we move to the smaller sets of traders. More 
precisely, we observed the most dramatic change in the ranking as we moved from a set of 
eleven traders to a set of seven for both market set-ups. For instance, in the case of the 
single market price ranking, when considering the smallest market (with only the last seven 
traders), the ranking of leverage HAR-RV(high) and leverage HAR-RV(mid) is reversed in 
comparison to the larger sets. 

The illustrated robustness of both ranking approaches makes us more confident about the 
results of our exercise and the validity of the economic ranking approaches used. Yet, there 
are more robustness issues which might be interesting to investigate. For example, an 
identical exercise can be run on the numerous datasets, to control for data mining issues. 
Additionally, trading of straddles with a longer maturity can be examined in a dynamic multi-
step volatility forecasts framework. One can relax the assumption of trading only at-the-
money options. Also, one might be interested in the robustness of this ranking procedure 
with respect to the various option pricing formulas (i.e. the economic loss functions). Finally, 
another type of market setting might stimulate interest for future research. The next chapter 
presents our final conclusions. 

VI. Conclusions 
In this work, we compared several volatility forecasting approaches using economic valuation 
criteria. Latent volatility modelling, represented by (G)ARCH models, was contrasted to the 
direct modelling of proxies of volatility, represented by RV models. In addition to comparing 
two modelling approaches, we also examined models with respect to their ability to mimic 
some of the well-known volatility features, i.e. long memory and/or leverage effects. When 
constructing the daily volatility proxy, we used the five-minute intraday stock returns of British 
Petroleum. The relative accuracy of the volatility forecasts was assessed by pair-wise trading 
of straddles in the artificial option market, where every trader was assigned a particular 
volatility model. We used two distinct market settings – the artificial market with anonymous 
trading and the artificial market with a single market price.  

In our dataset, we observed that in this type of forecasting exercise, additional information 
used while constructing the volatility proxy is of considerable economic value (e.g. RV 
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traders). We have also shown that direct volatility modelling is only as good as the volatility 
proxy used. In particular, direct modelling of volatility delivers highly accurate volatility 
forecasts if the volatility proxy is informative enough. On the other hand, when using lower 
frequency returns to construct the volatility proxy, the accuracy of the RV models 
deteriorated rather quickly. More precisely, when the daily squared returns (i.e. our lowest 
sampling frequency) were used to construct the variance proxy, RV models were by far the 
most inaccurate in our model universe, being systematically outperformed by GARCH 
models. 

We introduced and tested a distinct economic valuation technique – the artificial option 
market with a single market price, which delivered a reasonable and rather robust ranking. 
Additionally, we observed that the economic ranking from both market settings was similar to 
the statistical ranking using the consistent loss functions.  

We are aware, however, that the profitability of the particular volatility forecasting algorithm 
advocated on trading of one-day options may be of little practical interest. Therefore, future 
research in this area may focus on the economic valuation of the variance forecasts in the 
dynamic multi-step framework. Additionally, it may be interesting to run similar exercises in a 
different option pricing framework.  
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VIII. Appendix A 
Table 5: Simple component GARCH model specifications 

GARCH models 

GARCH 2
0 1 1 1t t th hα β ε β− −= + +  (A.1) 

GJR 
1

2 2
0 1 1 0 1 11

tt t t th hεα β ε γε β
−− − < −= + + +  (A.2) 

TARCH 0 1 1 1 1t t t th hα β ε γε β− +
− − −= + − +  

min( ,0); max(0, )ε ε ε ε− += =  
(A.3) 

TS-GARCH 1/ 2 1/ 2
0 1 1 1| |t t th hα β ε β− −= + +  (A.4) 

AGARCH 2
0 1 1 1( )t t th hα β ε γ β− −= + + +  (A.5) 

NAGARCH 1/ 2 2
0 1 1 1 1( )t t t th h hα β ε γ β− − −= + − +  (A.6) 

VGARCH 

2

1
0 1 1

1

t
t t

t

h h
h
ε

α β γ β−
−

−

 
 = + − +
 
 

 (A.7) 

 

Table 6: Two component GARCH model specifications 

Two component GARCH models: 

GARCH-IGARCH 

2
0 1 1 1
2

1 1 1(1 )
( ) (1 )( )

t t t

t t t

t t t

s s
l l
h p s p l

α β ε β

τ ε τ
− −

− −

= + +

= ⋅ + −

= ⋅ + −

 (A.8) 

ALTGARCH_IGARCH 

2
0 1 1 1 1
2

1 1 1

/
(1 )

( ) (1 )( )

t t t t

t t t

t t t

s s s
l l
h p s p l

α β ε β

τ ε τ
− − −

− −

= + +

= ⋅ + −

= ⋅ + −

 (A.9) 

GJR-IGARCH 
1

2 2
0 1 1 0 1 1

2
1 1 1

1

(1 )
( ) (1 )( )

tt t t t

t t t

t t t

s s

l l
h p s p l
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τ ε τ
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− −

= + + +

= ⋅ + −
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 (A.10) 

TARCH-IGARCH 
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( ) (1 )( )
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t t t

t t t

s s
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h p s p l
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 (A.11) 

TS-GARCH-IGARCH 
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2
1 1 1

| |
(1 )
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t t t

t t t

t t t
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τ ε τ
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− −
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 (A.12) 
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VGARCH-IGARC H 
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Table 7: RV models 

RV models 

ARMA 1 1ln( ) ln( )t t t tRV RVα φ ϕ η η− −= + + ⋅ +
 

(A.14) 

HAR-RV ( ) ( ) ( ) ( )
0 1 1 1 2 1ln( ) ln( ) ln( ) ln( )d d w m

t t t t tRV RV RV RVα β β β η− − −= + + + +  (A.15) 

LHAR-RV 
( ) ( ) ( ) ( )

0 1 1 1 2 1
,( ) ,( ) ,( )

1 2 3

ln( ) ln( ) ln( ) ln( )
               

d d w m
t t t t

d w m
t

RV RV RV RV
r r r

α β β β

γ γ γ η
− − −
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 (A.16) 

Short-memory 
LHAR-RV 

( ) ( ) ,( )
0 1 1ln( ) ln( )d d d

t t tRV RV rα β γ η−
−= + + ⋅ +  (A.17) 
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