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1. Introduction  
 

Modelling financial data comprises several issues, the most important being a proper 
specification of the time-varying variance of financial returns, so called volatility. As the 
variance of returns is used as a measure of risk, the importance of an adequate 
characterization of volatility is obvious in the areas of risk management or portfolio 
optimization. Another application arises in the context of option pricing.  In the original 
Black-Scholes setting, the risk is quantified by a constant volatility parameter. If the true 
variance of the financial asset is time-varying rather then constant, the pricing formula has to 
be modified correspondingly. 
 

There exist two prominent approaches to deal with volatility: GARCH and stochastic 
volatility (SV) approaches. The GARCH model (Engle, 1982, Bollerslev, 1986) focuses on 
capturing the clustering of volatility in returns when the conditional variance at time t is 
modelled as a deterministic function of lagged values of conditional variances and squared 
returns. On the other hand, the stochastic volatility models understand the time-varying 
variance as a stochastic process which can be a continuous-time diffusion (Hull and White, 
1987) or a more general Lé vy process (Barndorff-Nielsen and Shepard, 2001).  Stochastic 
volatility models are typically formulated in the state space form and  they are intimately 
related to the problem of signal extraction. It is well-known (see for instance Hamilton, 1994) 
that for linear system with Gaussian innovations  the Kalman filter offers an optimal way (in 
the sense of minimizing mean squared errors) for sequentially updating a linear projection.  
 

The paper is organized as follows: in the second chapter, we introduce the concept of 
the volatility proxy along the lines of de Vilder and Visser (2007) which represents an useful 
framework for assessing the quality of such proxies. Typical representants of volatility 
proxies are the high-low range and the absolute daily return because they are constructed 
from the easily available quaternion „high-low-open-close“ price. Since it turns out that 
logarithm of daily range (hereafter log range) has substantially lower variance than logarithm 
of absolute return and is nearly Gaussian, we will concentrate on this proxy. Although the 
asymptotic distribution of the log range has been studied in detail in Alizadeh et al. (2002),  
less attention has been paid to its finite sample counterpart. In particular, due to the 
discretization error, the mean and variance of the distribution vary with the number of points 
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in the grid over which minima and maxima are taken. We study the sensitivity of first four 
moments on the number of observations using a Monte Carlo simulation.  

 
In the third chapter we suggest a modification of the standard Kalman filter algorithm 

which uses finite sample mean and variance of the log range as input.  Finally in the fourth 
chapter, we apply our methodology to the data from the Prague Stock Exchange.  
 
 
2. Measuring volatility using proxies 
 

In our setup, we make use of the framework developed in de Vilder and Visser (2007) 
which is particularly useful when dealing with proxies for unobserved volatility. Recall that 
discrete time models typically exhibit a product structure 
 

t t tr s Z=           (1) 
 
where the observed return for day t tr  is described as a product of some positive scale factor 

ts  and i.i.d. innovation tZ . 
 

It is useful to consider a continuous time version of (1) with independent copies 
{ }tΨ of some stochastic process Ψ  in place of i.i.d. noise { }tZ : 
 

( ) ( ) [ ], 0,1t t tR sϑ ϑ ϑ= Ψ ∈         (2) 
 
Thus, the cumulated log return tR  is just a scaled version of some stochastic process tΨ  
which can be a Wiener process (in the simpliest setup) or a more complex process capturing 
intraday seasonality or jumps. Formally, we suppose that Ψ  is a cà dlà g (right continuous 
with left limits) proces on [ ]0,1 , left continuous at 1. For identification purposes we assume 

that Ψ  is standardized, i.e. ( ) ( )( )1 0, var 1 1EΨ = Ψ = . The time ϑ  runs from the opening 
until the closing of the trading day, the overnight return from day t-1 to t is given by 

( )0t ts Ψ . Daily close-to-close return then becomes 
 

( ) ( )1 1t t t tr R s= = Ψ          (3) 
 

In order to compare this approach with the usual stochastic volatility models, suppose 
that Ψ  is a diffusion obeying 
 

( ) ( ) ( )d v dBϑ ϑ ϑΨ =         (4) 
 
with instantaneous stochastic volatility ( )v ϑ . The cumulated log return process then follows 
 

( ) ( ) ( ) ( ) ( )t t t tdR s v dB dBϑ ϑ ϑ σ ϑ ϑ= ≡       (5) 
 



 3 

Thus, the local volatility ( )tσ ϑ  can be decomposed into a daily scale factor ts  and an 

independent component ( )tv ϑ  capturing intraday effects. 
 

The daily scale factor ts  is not directly observable and therefore has to be 
approximated by some random variable which serves as its proxy. A good proxy should 
exhibit large correlation with ts . The notion of a proxy can be formalized as follows: 
 
Definition (de Vilder and Visser, 2007). Let H be a measurable functional [ )0,D → ∞  

defined on a linear subspace D of [ ]0,1D  (Skorohod space of cà dlà g functions on [ ]0,1  left 
continuous in 1) and DΨ ∈  a.s. Assume 
 
(i) H is positively homogeneous, i.e. 
 

( ) ( ) [ ), 0, ,H H Dα α αΨ = Ψ ∈ ∞ Ψ ∈  
 
(ii) ( ) 0H Ψ >  a.s. 
 
Then  
1. H is called a proxy functional. 
2. the random variable tΠ  is a proxy for the daily scale factor ts  : 
 

( ) ( )t t t t t t tH s s H s VΠ = Ψ = Ψ ≡ ,  
 

tV  is called a nuisance proxy. 
 
 

An additive measurement equation is obtained by taking logs: 
 

( )log log log log log log logt t t t t t ts V s E V V E VΠ = + = + + −    (6) 
 
This equation decomposes the log proxy into a sum of log-volatility, a constant bias and 
measurement errors  
 

log logt t tu V E V≡ −  
 
A quality of a proxy is determined by the variance of the measurement errors ( )2 var tuλ ≡ . 
 

In the sequel, we will focus on approximating log ts  and for simplicity we will use the 
word proxy in the meaning of log tΠ . Typical examples of such proxies include log range  

 

[ ]
( )

[ ]
( )

0,10,1
log sup inft tR R

ϑϑ
ϑ ϑ

∈∈

 
− 

 
       (7) 
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and log absolute return 
 

( ) ( )log 1 0t tR R− .         (8) 
 

The asymptotic distribution of both proxies has been studied in Alizadeh et al. (2002). 
Based on the result of Feller (1951), they find out that if Ψ  is a driftless standardized Wiener 
process, ( ) ( )( )log sup infϑ ϑΨ − Ψ can be well aproximated by the normal distribution with 

mean 0.43 and variance 0.084. On the other hand, the variance of ( ) ( )log 1 0Ψ − Ψ  is much 

higher (equal to 2 / 8 1.23π ! ) and the proxy is left skewed and leptokurtic. For this reason, 
the use of the log range instead of the log absolute return is highly recommended. 
 

In finite samples, the distribution of range estimators depends also on the number of 
observations per unit of time (day in this case). Therefore, we investigated the impact of 
discretization on the distribution of the log range and on the first four moments in particular 
by a Monte Carlo simulation (using one million replications). The results are reproduced in 
Table 1 and Figure 1. The pattern is clear: reducing the number of observations during a 
trading day results in lower mean and higher variance. From practical point of view, if 
number of transactions per day is in the order of hundred or even less (and this is the case for 
less liquid markets as the Prague Stock Exchange), the bias induced by the proxy can be 
substantial. More importantly, if the number of transactions differs from day to day the bias 
becomes time-varying. We abstract from microstructure effects: for instance, bid-ask spread 
will operate in the opposite direction inflating the log range on average.  
 
 

N 5 10 50 100 500 1000 
mean -0.115 0.097 0.300 0.340 0.401 0.415 

variance 0.233 0.152 0.104 0.097 0.086 0.084 
skewness -0.457 -0.124 0.077 0.105 0.139 0.150 
kurtosis 3.509 2.893 2.762 2.757 2.762 2.761 

 
Table 1. Mean, variance, skewness and kurtosis of log range for a Wiener process with zero 

drift and unit variance observed N times during a unit period.  
 
 
 
3. Kalman filter algorithm 
 
 

It should be stressed that computing a proxy for volatility is not the same thing as 
extracting the latent volatility. In order to accomplish this task, we should specify the 
dynamics of the volatility process itself. We suppose that the log scale factor logt th s≡  can 
be expressed as a sum of zero mean independent components 1 2,h h  and the overall volatility 
level h . The dynamics of each factor is governed by a first order autoregression: 
 

1 1 1 1 1t t th hρ η−= +          (9a) 

2 2 2 1 2t t th hρ η−= +           (9b) 
 
with 1 20 , 1ρ ρ< <  and 1 2,t tη η  mutually uncorrelated n.i.d. disturbances.  
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It is worth discussing in more details the benefits of employing two-factor models. 

Probably the most important reason is the ability thereof to capture several empirically 
observed patterns of the autocorrelation function, and the long memory-like behaviour in 
particular. The fact that the superposition of independent short memory processes (for 
instance, Ornstein-Uhlenbeck process in continuous time formulation or autoregressive 
process in discrete time) can mimic slow decay of the autocorrelation function or power laws 
empirically observed has been explored by several authors (LeBaron, 2001 or Barndorff-
Nielsen, 2001, among others). The idea had appeared even in the context of GARCH models: 
Ding and Granger (1996) suggested a two-component GARCH model, one component 
describing the short-run effect whereas the persistent component specified as IGARCH 
process.  

 
For the sake of illustration, suppose a composite process 1 2t t tx y y= +  where both 

component processes are modeled as AR(1), i.e. 
 

1it i it ity y uγ −= +    i = 1,2      (10) 
 
with 1 2γ γ>  and { } { }1 2,t tu u white noise sequences which are uncorrelated at all leads and 
lags. 
 

As the autocovariance function of a sum of independent components is equal to the 
sum of the autocovariances,  it follows easily that ( ) 1 1 2 2, k k

t t kcorr x x w wγ γ− = + , k = 1,2,..., and 

the weights are given by ( ) ( ) ( )( )1 2var / var vari it t tw y y y= + . Figure 2 shows that a choice of 
the autoregression coefficients in (10) has a profound impact on the rate of decay of the 
autocorrelation function of the composite process.  
 

Transition equations (9a) and (9b) together with measurement equation (6) represent 
linear state space system whose general form reads  

 
1 1t t t+ += +z Fz v          (11a) 

( )t t t t= + +y b x Hz w          (11b) 
 
where ty  is a (n x 1) vector of observed variables whose behaviour depends on a (r x 1) 
vector of unobserved (state) variables tz , ( )tb x  is a (n x 1) vector-valued function of 
exogenous variables collected in the vector tx ,  F and H are (r x r) and (n x r) matrices. In 
other words, (11a) represents the transition equation whereas (11b) is the measurement 
equation. 
 

If the conditional normality can be (at least approximatively) asssumed, the extraction 
of the unobserved process is quite straightforward and relies on the well-known Kalman 
filter. The following exposition of the filter goes along the lines in Hamilton (1994, pp. 399). 
We assume that conditional on  tx  and ( )1 1 2 1 1 2 1, ,... , , ,...,

TT T T T T T
t t t t t− − − − −≡ y y y x x xF  (i.e. data 

observed through date t – 1) the vector ( )1,
TT T

t t+v w is normally distributed with zero mean and 
covariance matrix given by 
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( )t

 
 
 

Q 0
0 R x

          (12) 

 
The exogenous vector tx  has been introduced in order to deal with small sample effects 
which have influence on the bias and the variance of the proxy. 
 

Further, suppose that ( )1 | 1 | 1| , ,t t t t t t tN− − −z x z P!F . Then the distribution of the vector 

( ),
TT T

t tz y conditional on tx and 1t−F  is normal with mean vector  
 

( )( )| 1 | 1,
TT T T T

t t t t t− −+z b x z H          (13) 
 
and covariance matrix 
 

| 1 | 1

| 1

T
t t t t

t t t

− −

−

 
 
 

P P H
HP V

         (14) 

 
with ( )| 1

T
t t t t−≡ +V HP H R x . 

 
For updating the inference about the current value of the state variables tz  as a new 

observation of ty  becomes available we use the fact that 
 

( )1 | || , , | ,t t t t t t t t t tN− ≡z y x z z P!F F        (15) 
 
where 
 

( )( )1
| | 1 | 1 | 1

T
t t t t t t t t t t t

−
− − −= + − −z z P H V y b x Hz       (16) 

1
| | 1 | 1 | 1

T
t t t t t t t t t

−
− − −= −P P P H V HP         (17) 

 
 

The matrix 1
| 1

T
t t t t

−
−≡K P H V  is often called the (Kalman) gain matrix or weight matrix 

and expresses the weights of innovations ( ) | 1t t t t−− −y b x Hz  in producing the filtered 
estimate of the state variable |t tz . Roughly speaking, if the variance of the measurement noise 
is high, the weights attributed to the recent observation are relatively low and vice versa. In 
the standard Kalman filter case (with constant coefficients) under suitable conditions the 
sequence of matrices{ }tK  converges to a fixed, steady-state matrix (Proposition 13.1, 
Hamilton, 1994). If the covariance matrix of the measurement noise R  is time-dependent 
rather than constant then { }tK  will fluctuate as well. 

 
Subsequently, the conditional distribution of the state vector at time t+1 given the 

observations known through date t, i.e. ( )1 1| 1|| ,t t t t t tN+ + +z z P!F  where 
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1| |t t t t+ =z Fz           (18) 

1| |
T

t t t t+ = +P FP F Q          (19) 
 
The sample log likelihood function reads (after omitting constant terms) 
 

( )( ) ( )( )1
| 1 | 1

1 1

1 1log
2 2

T T T
t t t t t t t t t t

t t

−
− −

= =

− − − − − −∑ ∑V y b x Hz V y b x Hz   (20) 

 
Similarly to the standard case with constant coeficients, estimates of the parameters contained 
in the matrices , ,F H Q can be obtained by maximizing (20) numerically. 
 
 
4. Empirical application 
 
 We apply Kalman filter algorithm fed both with asymptotic and finite sample values 
to the data from Prague Stock Exchange. We use daily high and low prices of ČEZ and 
Telefó nica O2 C.R. stocks traded in the SPAD system. The log range proxy has been 
constructed from the daily highs tH  and lows tL  according to the formula 

( )log log logt tH L− . The time span covers the period running from January 2, 2006 until 
December 28, 2007 giving rise to 501 observations. The average number of transactions per 
day for ČEZ and Telefó nica O2 C.R. in the sample period was 231 and 101, respectively. All 
the calculations were carried out using MATLAB 7.1. 

 
Sample autocorrelation functions of the data and QQ plots are depicted in Figure 3. 

The autocorrelation functions show a higher degree of persistency than it would correspond 
to a simple autoregressive process. Empirical moments of the log range are reported in Table 
2. In comparison with their theoretical values, excess kurtosis is present in both series and 
moreover, Telefó nica O2 C.R. exhibits a more pronounced skewness. Concerning the 
dependence between both series, the sample correlation coefficient amounts to 0.4017 and the 
positive correlation is clearly visible from the scatterplot (Figure 4). 
 
 
 

 mean std deviation skewness kurtosis 
ČEZ -3.7498 0.5691 0.0918 3.1730 

Telefó nica O2 C.R. -4.1652 0.5870 0.3775 3.4424 
 

Table 2. Unconditional moments of the observed log range 
 

Now we proceed to estimating the two factor model in the state space form given by 
equations (6), (9a) and (9b). Considering the fact that the distribution of the log range is very 
similar to the normal distribution, we approximate the true density of the measurement errors 

tu  (see Equation (6))  by the Gaussian density. Therefore, the quasi maximum likelihood 

estimates of the unknown parameter vector ( )1 2 1 2, , , var( ), var( )
T

hρ ρ η η  has been obtained by 
numerically maximizing the likelihood function whose general form is given in Equation (20) 
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with respect to these parameters. As stated above, we employ two versions of the Kalman 
filter:  

 
(i) Kalman filter with constant coeficients in the measurement equation corresponding to the 
asymptotic values, that is ( )tb x = 0.43 and ( )tR x = 0.084 in the notation of the Chapter 3, 
 
(ii) Kalman filter with time-varying coefficients; the finite sample mean and variance have 
been computed by means of Monte Carlo simulation (cf. Table 1). 
 

Estimation results are shown in Table 3 and observed log range together with filtered 
extractions of the daily log volatility (i.e. sum of both factors plus the constant term h ) are 
depicted in Figure 5.  In accordance with findings of Alizadeh et al. (2002), there exists a 
strong evidence that the volatility process can be meaningfully decomposed into one highly 
persistent factor and another quickly mean-reverting factor. 

 
In summary, providing the algorithm with finite sample mean and variance of the 

measurement errors has two effects: the most important one is the reduction of the extraction 
bias (note that using asymptotic values in the Kalman algorithm would result in an 
underestimation of the overall volatility level). Second, the weights contained in the Kalman 
gain vector are no longer constant: they are smaller when the number of transactions is low 
(due to higher variance of the measurement error). However, this effect is quite weak and the 
weights stabilize around 0.21 and 0.34 for the first and second factor, respectively (see 
Figures 6a, 6b).  

 
 

ČEZ Telefó nica O2 C.R.  

asymptotic finite sample asymptotic finite sample 
1ρ  0.9358 0.9361 0.8968 0.9094 

2ρ  0.425 0.4545 0.4266 0.514 

h  -4.171 -4.1139 -4.5917 -4.4924 

1var( )η  0.0168 0.0159 0.0254 0.0191 

2var( )η  0.0848 0.073 0.1045 0.085 
 

Table 3. Quasi-maximum likelihood estimates of the two-factor model 
 
 

In order to obtain a better interpretation of the estimated coefficients, we computed 
estimated variances for both volatility factors and the total variance of the log-volatility 
process as their sum (due to zero cross-correlation) (see Table 4). Each factor explains about 
one half of the variance of the log volatility process. 
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ČEZ Telefó nica O2 C.R.  

asymptotic finite sample asymptotic finite sample 
first factor 0.1352 0.1285 0.1298 0.1104 

second factor 0.1035 0.092 0.1277 0.1155 
total variance 0.2387 0.2205 0.2575 0.2259 

 
Table 4.Decomposition of the total variance  of the estimated log-volatility into variances of 

individual factors 
 
 
 

Finally, we performed a Monte Carlo experiment to investigate the bias reduction 
obtained when finite sample values are used. We generated series of the length of 501 
observations with the log scale process with parameters equal to the rightmost column of 
Table 3 (corresponding to Telefó nica O2 C.R.). These volatility factors were used to scale the 
daily Wiener process. Further, the number of observations in a trading day was set to the true 
number of transactions for the given day. Then, the log range was computed and used as an 
input for both asymptotic and finite sample versions of the Kalman filter (with true 
parameters fed into the filter). Finally, the true log scale factor values and filtered estimates 
are compared by computing the mean extraction error and the root mean squared (RMS) 
extraction error. The simulation was performed with 10000 replications and average values of 
mean and RMS extraction errors are reported in Table 5. The result is that using the finite 
sample version of the filter practically eliminates the bias leading to a lower average value of 
the RMS extraction error. 
 
 

mean extraction error root mean squared 
extraction error 

asymptotic finite sample asymptotic finite sample 
-0.083 0.0003 0.2544 0.2389 

 
Table 5. Mean extraction error and root mean squared extraction error (average for 10000 

replications) 
 
 
 
 
5. Conclusion 
 

We have shown that the use of standard Kalman filter fed with asymptotic values in 
the measurement equation advocated for instance in Alizadeh et al. (2002) can be 
inappropriate for less liquid shares like those one traded on the Prague Stock Exchange. 
Therefore, we suggest a modified procedure which takes into account the small sample 
distribution of the volatility proxy. This modification leads to more precise extractions of the 
log scale factor due to eliminitation of the finite sample bias. However, we have relied on the 
(possibly unrealistic) assumption of the driftless Wiener process during a trading day. It 
would be interesting to study the behaviour of the log range if this assumption were relaxed. 
Nevertheless, these issues are left for further research. 
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Figure 1. Density of the log range with 5, 50 and 500 observations during a unit interval.   
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Figure 2. Two examples of the  autocorrelation function for the two-component model for equally 
weighted components (i.e. 1 2 0.5w w= = ) with  1 20.99, 0.1γ γ= =  (left) and 1 20.9, 0.4γ γ= =  (right). 
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Figure 3. Sample autocorrelation function and QQ plots  for ČEZ (top) and  Telefonica O2 
C.R. (bottom). 
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Figure 4. Scatterplot for observed log range (x-axis: ČEZ, y-axis: Telefó nica O2 C.R.). 

100 200 300 400 500
-6

-5

-4

-3

-2

-1

100 200 300 400 500
-6

-5

-4

-3

-2

 



 14 

100 200 300 400 500
-6

-5

-4

-3

-2

100 200 300 400 500
-6

-5

-4

-3

-2

 
 
 
Figure 5. Observed log range and corresponding filtered extractions of the log volatility for 
ČEZ (top)  and Telefonica O2 C.R. (bottom). 
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Figure 6a. Kalman gain coefficients for both factors (top) and number of transactions 
(bottom) for ČEZ. 
 
 
 



 15 

50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

 

 

50 100 150 200 250 300 350 400 450 500
0

200

400

600

 
Figure 6b. Kalman gain coefficients for both factors (top) and number of transactions 
(bottom) for Telefó nica O2 C.R. 
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