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First-Best and Second-Best Regulation of Solid Waste under

Imperfect Competition in a Durable Good Industry

Marco Runkel∗ (runkel@wap-server.fb5.uni-siegen.de)
Department of Economics, University of Siegen, D-57068 Siegen, Germany

Abstract. Under the assumption of imperfect competition in a durable good industry,
the present paper investigates the efficient regulation of solid waste which causes environ-
mental damage at the end of the product’s life. It turns out that the second-best waste tax
falls short of the marginal environmental damage if the producers rent their products but
may also exceed the marginal damage if the producers sell their products. If in the sales
case the industry is regulated with waste taxes and stock subsudies then the first-best
tax-subsidy scheme also contains a waste tax which deviates from the marginal damage, in
general. Under monopoly this tax unambiguously exceeds the marginal damage. Further-
more, the analysis provides a further reason why the Swan independence result generally
doesn’t hold in rental markets.

Keywords: durability, first- and second-best taxation, monopoly, oligopoly, solid waste

JEL classification: L12, L13, H21, Q28

1. Introduction

Since the paper of Buchanan (1969) the relationship between environmental
policy and market structure has become an issue of increasing interest (e.g.
Carraro et al. (1996)). A great part of the research effort is devoted to the
emission tax which maximizes social welfare in a polluting Cournot industry
provided it is the only instrument available. Intuitively, the rate of this
second-best emission tax falls short of the Pigouvian level (underinternal-
ization, i.e. the tax rate is smaller than the marginal environmental damage)
since it has to account simultaneously for the environmental externality and
the market imperfection which both tend to divert the industry emission
from its efficient level but in opposite directions. Under several restrictive
assumptions underinternalization has been proven for monopoly (Misolek
(1980), Barnett (1980)) as well as for oligopoly (Ebert (1992)). A second-
best emission tax which exceeds the marginal damage (overinternalization)
can’t be ruled out, however, if the producers have at their disposal a rather
general abatement technolgy (Barnett (1980), Ebert (1992)), if the number
of firms is endogenous (Katsoulacos/Xepapadeas (1995), Requate (1997))
or if the emission in a durable good industry is a rather general function of
durability and output (Goering/Boyce (1999), Runkel (1999b)).1

Unfortunately, a closer look at the overinternalization cases suggests that
despite their theoretical elegance these cases seem to have counterintu-

∗ I would like to thank Rüdiger Pethig and Thomas Eichner for helpful comments.

All remaining errors are my own responsibility. Support from the German Research

Foundation (DFG) is gratefully acknowledged. 23/08/1999



2 Marco Runkel

itive implications. More specifically, in the models of Barnett (1980), Ebert
(1992), Katsoulacos/Xepapadeas (1995) and Requate (1997) the second-best
emission tax exceeds the marginal damage only if the equilibrium output
or the equilibrium emission of the individual firm increases as the emission
tax increases. Economic intuition certainly predicts the opposite effect to
be more relevant. A similar argument applies to the durable good model
of Goering/Boyce (1999) and Runkel (1999b). In their model overinternal-
ization requires that the equilibrium durability or the equilibrium output
increases as the emission tax increases. However, both variables are positive
correlated with the equilibrium emission which unambiguously decreases
as the tax increases. Moreover, they only consider the case in which the
durables are rented. Apart from some exceptions like copiers, however, the
major part of durable goods is not rented but sold by their producers. Of
course, the above arguments are no substitute for hard empirical evidence
and hence the relevance of the overinternalization cases previously derived
in literature remains a debatable issue for the time being.

Anyhow, the main purpose of the present paper is to provide further
theoretical support for overinternalization in the second-best optimum with-
out the need of those conditions used in previous literature that strain
economic intuition. To this end, a two-period model of a durable good
industry under imperfect competition is investigated. The model differs from
previous models on product durability (e.g. Bulow (1986), Goering (1992))
in explicitly recognizing the environmental damage caused by the solid waste
at the end of the product’s life. The distinctive feature with respect to the
second-best taxation models refered to above is that the model allows to
investigate both the rental case and the more realistic case in which the
producers sell their products. In the rental case it turns out that the waste
(emission) tax is negatively correlated with the equilibrium amount of waste
and the equilibrium stock of the durable and that the second-best waste tax
falls always short of the marginal environmental damage. In the sales case,
however, overinternalization may be second-best optimal and that without
the requirement of atypical reactions on tax changes. As will be argued,
the rationale of this result lies in an additional distortion only inherent in
sales market for durable goods, namely a durability which doesn’t miminize
the social cost of providing a given service level even if the environmental
externality is completely internalized. Thus, in sales markets an increase in
the emission tax may have the additional benefit of mitigating this distortion
and hence overinternalization may be second-best optimal.

In addition to the propositions on second-best taxation the present paper
offers two other important results. Firstly, by introducing further policy
instruments it is possible to investigate tax-subsidy schemes which render
the industry equilibrium Pareto efficient (first-best). For the rental case, a
first-best tax-subsidy scheme is shown to consist of a Pigouvian waste tax
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which completely internalizes the environmental damage and a subsidy on
the stock of the durable which corrects the market imperfection. Suppose,
however, the firms sell their products and the regulator uses waste taxes
and stock subsidies. Then, similar as in case of second-best taxation, the
first-best tax-subsidy scheme contains a waste tax which deviates from the
marginal environmental damage, in general. Under monopoly this waste tax
unambiguously exceeds the marginal damage. Secondly, the present analy-
sis challenges the so-called Swan independence result: From the industrial
organization literature it is known that in sales markets durability generally
depends on the number of producers (Bulow (1986)) whereas in rental mar-
kets it doesn’t (Swan (1970), Goering (1992)). However, the present paper
shows durability to depend on market structure in rental markets, too, if it
is regulated by means of a tax or a subsidy.

The paper proceeds as follows. Section 2 presents the model and derives
the first-best social optimum. In section 3, conditions for a rental and a
sales equilibrium of the durable good industry are determined. Section 4
investigates the first-best regulation of the industry, and section 5 establishs
the main results of the paper with respect to second-best emission taxation.
Section 6 concludes.

2. Assumptions and Social Optimum

Consider a two-period model of a durable good industry which consists of a
fixed number of firms, n ≥ 1. yti is the production rate of firm i ε {1, . . . , n}
in period t = 1, 2. φi ε [0, 1] represents i’s average product durability, i.e.
the fraction of i’s first-period production which is still available for use in
the second period. If the firms rent their products to the consumers then
c1i := y1i and c2i := y2i + φiy1i define i’s stock of the durable in period 1
and 2, respectively. If the firms sell their products then cti is interpreted
as i’s ’effective market share’ in t because in this case the stock is held by
the consumers. Firm i’s products cause the amount of solid waste w1i =
(1 − φi)c1i in period 1 and w2i = c2i in period 2. Hence, an increase in
durability c.p. leads to a decrease in the (average) amount of solid waste.
For the industry variables the following notations are introduced: Yt :=∑

j ytj, Ct :=
∑

j ctj and Wt :=
∑

j wtj are the industry production in t,
the industry stock in t and the industry amount of waste in t, respectively.
φ̄Y1 :=

∑
j φjy1j stands for the remaining first-period production of the

industry. C−i
t :=

∑
j 6=i ctj denotes the durable stock of i’s competitors in t.

The cost side of the economy consists of two components. Firstly, each
firm faces the same production cost function which is linear in output
(constant returns to scale) and strictly convex in durability (decreasing
returns to durability). Firm i’s production costs are denoted by K(φi)y1i
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with K ′ > 0 and K ′′ > 0 in period 1 and K(0)y2i = ky2i with k > 0
in period 2. Secondly, the solid waste Wt of the durable good is assumed
to cause environmental damage. This damage results from waste transport,
disposal, incineration and landfilling. It is evaluated by the damage function
D(Wt) with D′ > 0 and D′′ ≥ 0, i.e. a greater amount of solid waste causes
a greater environmental damage at non-decreasing rates.

The demand function P (Ct) with P ′ < 0 describes the demand side of
the economy. P (Ct) is the rental price of the durable good in period t as a
function of the total industry stock. For i = 1, . . . , n assume

P ′(Ct) + ctiP
′′(Ct) < 0 for all cti, Ct, t = 1, 2, (1)

P ′(Y2 + φ̄Y1) + y2iP
′′(Y2 + φ̄Y1) < 0 for all y2i, Y2. (2)

These are the Hahn (1962) conditions applied to a two-period durable good
oligopoly. (1) states that the marginal rental revenue P (·) + ctiP

′(·) of firm
i in t decreases with the industry stock of the durable.2 (2) constitutes the
analogous property of the marginal sales revenue P (·)+y2iP

′(·) in period 2.
In the (one-period) nondurable good oligopoly there is much motivation for
the Hahn conditions because together with P ′ < 0 they a) ensure uniqueness
and stability of the Cournot equilibrium (Friedman (1982), theorem 1; Furth
(1986), theorem 3.3), b) ensure downward-sloping reaction functions for all
firms (Dixit (1986), pp. 118), and c) exclude some perverse effects in the
comparative statics (McElroy (1992)). As will be shown in the sections 3
and 4, the assumptions (1) and (2) have similarly useful implications in the
present durable good oligopoly although this is a two-period model.

To characterize the socially optimal outcome, assume the social planner
seeks a symmetric solution cti = ct (t = 1, 2) and φi = φ for all i. Thus, she
solves the problem of

max
c1,c2,φ

V (c1, c2, φ) := S(nc1)− K(φ)nc1 − D[(1− φ)nc1]

+ ρ
{
S(nc2) − kn(c2 − φc1) − D(nc2)

}
. (3)

In both periods the social welfare equals the consumer benefit S(Ct) =∫
Ct

0 P (x)dx less production and environmental costs. ρ ε [0, 1] denotes the so-
cial discount factor. The first-order conditions for the welfare maximum are
listed in column 1, row 1 to 3 of table I. These conditions are the ’marginal
benefit equal to marginal cost’ requirements: For a marginal increase in the
stock of the durable good the LHS of the corresponding condition gives the
marginal benefit which equals the marginal consumer benefit and the RHS
gives the marginal costs which consist of the production and the environ-
mental costs (for c1 use k from the condition of c2). For a marginal decrease
in product durability the LHS of the pertinent condition equals the benefit,
i.e. the saved production cost, whereas the RHS equals the marginal costs,
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Table I. Equilibrium Conditions, First-Best and Second-Best Policies

column 1 2

row variable social optimum oligopoly equilibrium (δ = 0: rental equilibrium; δ = 1: sales equilibrium)

Efficiency and Equlibrium Conditions:

1 c1 P1 + ρkφ = K + (1 − φ)D′
1 P1 + c1P

′
1 + ρkφ = K + (1− φ)τw1 + τc1 + τy1 − ρφτy2 − δρφz

2 c2 P2 = k + D′
2 P2 + (c2 − δφc1)P

′
2 = k + τw2 + τc2 + τy2

3 φ K ′ = ρk + D′
1 K ′ = ρk + τw1 + ρτy2 − τφ/c1 + δρz

First-Best Policies:

4 c1 (1 − φ)τw1 + τc1 + τy1 − ρφτy2 = (1 − φ)D′
1 + c1P

′
1 + δρφz

5 c2 τw2 + τc2 + τy2 = D′
2 + (c2 − δφc1)P

′
2

6 φ τw1 + ρτy2 − τφ/c1 = D′
1 − δρz

Second-Best Waste Taxes:

7 τw1 τw1 = D′
1 + c1P

′
1

ε1
c1ε2

c2 − ε2
c1ε1

c2

(1− φ)(ε1
w1ε2

c2 − ε2
w1ε1

c2)
+ δρφz

(ε1
c1 + ε1

φ)ε2
c2 − (ε2

c1 + ε2
φ)ε1

c2

(1 − φ)(ε1
w1ε2

c2 − ε2
w1ε1

c2)

8 τw2 τw2 = D′
2 + (c2 − δφc1)P

′
2 + c1P

′
1

c1(ε
2
c1ε1

w1 − ε1
c1ε2

w1)

ρc2(ε2
c2ε1

w1 − ε1
c2ε2

w1)
+ δρφz

c1[(ε
2
c1 + ε2

φ)ε1
w1 − (ε1

c1 + ε1
φ)ε2

w1 ]

ρc2(ε2
c2ε1

w1 − ε1
c2ε2

w1 )

Definitions/Notation: Pt := P (nct), P ′
t := P ′(nct), D′

t := D′(nwt), εt
x := (∂x/∂τwt ) · τwt/x, t = 1, 2, x ∈ {c1, c2, φ, w1}

z := φc1P
′
2

∂c2

∂φc1
+ c2P

′
2
∂C−

2

∂φc1
with

∂c2

∂φc1
=

nP ′
2 + (n − 1)(c2 − φc1)P

′′
2

(n + 1)P ′
2 + n(c2 − φc1)P ′′

2

> 0,
∂C−

2

∂φc1
= − (n − 1)P ′

2 + (n − 1)(c2 − φc1)P
′′
2

(n + 1)P ′
2 + n(c2 − φc1)P ′′

2

≤ 0
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i.e. the additional production cost to maintain the stock of the durable good
in period 2 and the additional environmental cost of an increasing amount
of solid waste in period 1.

Table II contains some comparative dynamic results that are obtained
by totally differentiating the first-order conditions for the social optimum
after two shift parameters κP , κD with ∂P/∂κP , ∂D′/∂κD > 0 have been
introduced. With respect to κP , κD and ρ the results are the same as for

Table II. Comparative dynamic results for the social optimum

∂c1 ∂c2 ∂φ ∂nc1 ∂nc2 ∂nw1 ∂nw2

∂κP > 0 > 0 > 0 > 0 > 0 > 0 > 0

∂κD < 0 < 0 > 0 < 0 < 0 < 0 < 0

∂ρ > 0 = 0 > 0 > 0 = 0 ? 0 = 0

∂n < 0 < 0 = 0 = 0 = 0 = 0 = 0

the case with an infinite number of firms investigated by Runkel (1999a):
Enlarging the market requires an increase in the efficient durability in order
to partially compensate for the effect the increased stock of the durable
exerts on the amount of waste. An increasing marginal damage brings about
an increase in the efficient durability and a decrease in the efficient stock of
the durable good in order to reduce the amount of waste since every scrapped
unit causes a greater damage. A decreasing discount factor forces future
generations to produce a greater part of their durable stock themselves,
i.e. the second-period production increases since the second-period stock
remains constant whereas the remaining first-period stock declines due to a
decrease in the durability and the first-period stock. A new and particularly
interesting result in table II is that an increase in the number of firms has
neither an effect on the efficient durability nor on the efficient values of the
aggregate variables of the model. The only effect is that the individual quan-
tities decrease since unchanged industry quantities are distributed among a
greater number of firms.

3. Rental vs. Sales Equilibrium

Now suppose that the durable good is supplied by profit-maximizing firms
which either rent or sell their goods. Incorporated into the models to be stud-
ied in this section are various taxes and subsidies even though the welfare
economic rationale of such policy instruments hasn’t been demonstrated
until now. The analysis in this section should be viewed as a descriptive
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analysis of a regulated durable good industry disregarding efficiency im-
plications. This view will prove to be useful for investigating the validity
of Swan’s independence result in proposition 1. The normative analysis is
postponed to the sections 4 and 5 where certain taxes and subsidies are
shown to be capable of correcting market failure under laissez-faire.

In the rental case a firm remains the owner of the units it produces.
Instead of selling the good the producer sells the services of the good. Firm
i’s rental profits in period 1 and 2 are, respectively,

Πr
1i = c1iP (C1) − c1i[K(φi) + (1 − φi)τw1 + τc1 + τy1 ] − φiτφ, (4)

Πr
2i = c2iP (C2) − (c2i − φic1i)(k + τy2) − c2i(τw2 + τc2). (5)

The present value of firm i’s rental profit is

Πr
i = Πr

1i + ρΠr
2i. (6)

In every period the profit equals the rental revenue less production cost
and tax payments. The rental profit depends on several tax rates which are
taken as given by the firms: The output in period t is taxed at the rate τyt .
τct denotes the tax rate on the firm’s stock of the durable good in t. τwt is
the waste tax rate in t. The durability is taxed at the rate τφ. If a tax rate
is negative then it is a subsidy. The regulator announces all tax rates right
at the beginning of period 1.

The decision problem of a single firm is to choose the stock of the
durable good in both periods and the durability such that its profit is
maximized. In general, the intertemporal dimension of this decision requires
to distinguish between open-loop and closed-loop information structures
(Fudenberg/Tirole (1994), pp. 130). In rental markets, however, both in-
formation structures yield the same market equilibrium: If firm i plays
open-loop strategies then it takes as given the entire time paths chosen by its
competitors, and thus it assumes the rivals’ future actions to be independent
of its own current actions. Formally, this means that i maximizes (6) with
respect to c1i, φi and c2i and takes as given ctj for all j 6= i, t = 1, 2. The first-
order conditions ∂Πr

i /∂x = 0 for every x ∈ {c1i, c2i, φi} determine i’s best
response to the actions of its competitors. The conditions for a symmetric
open-loop rental equilibrium are listed in the column 2, row 1 to 3 of table I
(set the dummy variable δ equal to zero). If firm i uses closed-loop strategies
then it takes into account that its current actions influence the rivals’ future
actions and that it has to solve the profit maximization recursively. Hence,
in period 2 it maximizes (5) with respect to c2i for given c1i and φi. This is
done by every firm and the pertinent first-order conditions

P (C2) + c2iP
′(C2) = k + τw2 + τc2 + τy2, i = 1, . . . , n (7)

define a unique and stable Cournot equilibrium of the rental subgame in
period 2 due to the Hahn conditions in (1).3 In period 1 firm i maximizes
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(6) over c1i and φi again, but now recognizes that firm j’s stock c2j in 2
is generally a function of the remaining first-period stocks: c2j(φc1) with
φc1 := (φ1c11, . . . , φnc1n). In our rental game, however, (7) obviously im-
plies ∂c2j/∂φic1i = 0 for all i, j = 1, . . . , n, i.e. the first-period decisions
don’t influence the second-period decisions. This result coincides with the
assumption under the open-loop information structure. Hence, the open-
and closed-loop rental equilibrium are the same. Both are subgame perfect
and both are characterized by the above-mentioned conditions in table I.

Now, turn to the sales case. The sales price of a first-period unit of
output is represented by the implicit rentals P (Y1) + ρφiP (Y2 + φ̄Y1) from
both periods whereas the sales price of a second-period unit equals the rental
P (Y2 + φ̄Y1) from period 2 only. However, if the firms sell their output then
the property rights of the products pass over to the consumers, and the
consumers typically have to pay for the stock and the waste taxes. Thus,
the consumers adjust the price they are willing to pay by these taxes, and
firm i’s sales profits in 1 and 2 become

Πs
1i = y1i

{
P (Y1) − (1 − φi)τw1 − τc1 + ρφi[P (Y2 + φ̄Y1) − τw2 − τc2 ]

}

− y1i[K(φi) + τy1 ] − φiτφ, (8)

Πs
2i = y2i[P (Y2 + φ̄Y1) − τw2 − τc2] − y2i(k + τy2). (9)

Summing (8) and (9) and using the definition of cti reveals the present
value of the sales profits Πs

i = Πs
1i + ρΠs

2i to be equal to the present value
of the rental profits defined in (6). This doesn’t imply, however, that the
equilibrium conditions are the same as in the rental case since due to the
so-called Coase conjecture (Coase (1972), Gul et al. (1986)) every durable
good seller faces a commitment problem: In the second period the selling
firm has an incentive to supply more durable goods than it in the first period
has announced to do since the capital loss on the second-period stock (the
reduction in the value of the second-period stock due to the additional
supply of the firm) is not born by the seller but by the consumers. Rational
consumers, however, anticipate the second-period behaviour of the selling
firm and adjust the price they are willing to pay in the first period. Thus,
the commitment problem of the selling firm is that it can’t credibly promise
first-period buyers to account for their second-period capital loss.

Game-theoretically, the commitment problem is closely related to the dis-
tinction between open- and closed-loop information structures. If the selling
firm plays open-loop strategies then it precommits right at the beginning of
the game to its actions in both periods. The commitment problem implies,
however, that the selling firm doesn’t possess this commitment ability. Thus,
in sales markets for durable goods the open-loop information structure
isn’t an appropriate assumption. In contrast, closed-loop strategies don’t
require precommitment of the selling firm and hence are suitable to derive
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an equilibrium of the sales market as follows: In period 2 firm i maximizes
Πs

2i from (9) with respect to y2i taking as given the decisions in period 1.
The first-order conditions for the n firms read

P (Y2 + φ̄Y1) + y2iP
′(Y2 + φ̄Y1) = k + τw2 + τc2 + τy2 , i = 1, . . . , n. (10)

When combined with the Hahn conditions (2) this system of equations
implicitly determines a unique and stable Cournot equlibrium of the sales
subgame in 2 where the equilibrium production rates are functions of the
remaining first-period stocks: y2j = y2j(φy1) (j = 1, . . . , n). By applying
the comparative static methods of Dixit (1986), p. 120 to (10) we obtain4

∂y2j

∂φiy1i
= − P ′

2 + y2jP
′′
2

(n + 1)P ′
2 + Y2P

′′
2

ε ]− 1, 0[, i, j = 1, . . . , n (11)

or if the model is transformed by using the definition of cti (t = 1, 2):

∂c2i

∂φic1i
=

nP ′
2 + (Y2 − y2i)P ′′

2

(n + 1)P ′
2 + Y2P

′′
2

ε ]0, 1[, i = 1, . . . , n, (12)

∂c2j

∂φic1i
= − P ′

2 + y2jP
′′
2

(n + 1)P ′
2 + Y2P

′′
2

ε ] − 1, 0[, i, j = 1, . . . , n; i 6= j (13)

and

∂C−i
2

∂φic1i
= −(n − 1)P ′

2 + (Y2 − y2i)P ′′
2

(n + 1)P ′
2 + Y2P ′′

2

ε ] − 1, 0[, i = 1, . . . , n (14)

where the signs of the partial derivatives result from (2) and P ′
t < 0. In

contrast to rental markets, in sales markets product durability and the first-
period production play a strategic role: If i increases either of these variables
in 1 then in 2 this c.p. reduces all production rates and the effective market
share of i’s competitors (see (11), (13) and (14)) but raises i’s effective
market share (see (12)). This strategic incentive is recognized in the first-
period decision: In period 1 firm i chooses y1i and φi in order to maximize
Πs

i subject to (10), i.e. via (11) it takes into consideration the influence its
first-period production and durability exerts on the future production rates.
The solution to this first-period maximization5 together with (10) and the
assumption of a symmetric equilibrium is listed in column 2 of table I where
δ is now set equal to unity.

Summing up, the industry equilibrium is characterized by the conditions
of column 2, row 1 to 3 of table I. These conditions are a straightforward
generalization of the results of Bulow (1986) and Goering (1992) to the
case in which several taxes regulate the industry: For the symmetric rental
equilibrium (δ = 0) the first two conditions say that the marginal revenue
of the stock in one period equals the marginal production costs plus tax
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payments of that stock. Due to the third equation the saved production costs
of a decreasing durability are offset by the additional cost of maintaining
the stock in period 2 and the additional tax payments. For the symmetric
sales equilibrium (δ = 1) the resulting equations have almost the same
interpretation as in the rental case except for the additional terms con-
taining z. z highlights the two special features of product durability in sales
markets: The first term in z, namely φc1P

′
2·(∂c2/∂φc1) < 0, is called planned

obsolescence since it provides the firms with the incentive to stimulate the
second-period sales by reducing the product durability below its value in the
rental case (see the last of the three equilibrium conditions). Under oligopoly
(n > 1) the second term in z, namely c2P

′
2 · (∂C−

2 /∂φc1) > 0, reflects
the incentive for the individual firm to decrease the rivals’ future market
share and to increase its own share by raising durability beyond its value
in the rental case. Consequently, this expression is termed strategic effect of
product durability. Under oligopoly the sign of z is ambiguous whereas under
monopoly (n = 1) the strategic effect vanishs and z is negative. Since the
obsolescence effect and the strategic effect influence both the durability and
the stock of the durable good they will also affect the amount of solid waste.
Hence, they will have crucial implications for the environmental regulation
of the industry.

Before proceeding with the analysis of these implications a short remark
on Swan’s independence theorem is in order since in contrast to the most
previous works on this issue the present model incorporates several taxes.
Of course, Bulow’s (1986) result that in the sales case product durability
depends on the number of firms also carries over to the more general model
with taxes. However, Swan’s (1970) and Goering’s (1992) results that in
rental markets product durability doesn’t depend on market structure is
challenged by the present model. To see this, consider the equilibrium con-
ditions in column 2 of table I and ignore all their normative implications,
i.e. suppose, temporarily, that the regulator levies the same tax rates for
every number of firms without aiming at the efficient regulation of the
industry. Focusing on the rental case (δ = 0) and totally differentiating
the equilibrium conditions yields

∂φr

∂n
=

1
|Jr|

(
P ′

1 + cr
1P

′′
1

) [
(n + 1)P ′

2 + ncr
2P

′′
2

] −τφ

cr
1

(15)

where the superscript r identifies the rental case. The Jacobian determinant
|Jr| = [(n+1)P ′

2+ncr
2P

′′
2 ]{K ′′[(n+1)P ′

1+ncr
1P

′′
1 ]+τ2

φ/cr3
1 } is positive due to

(1) and the second-order conditions for the profit maximum of a renting firm.
This together with (1) ensures the three first terms in (15) to be positive.
Hence, the sign of ∂φr/∂n equals the sign of −τφ and we have proven

PROPOSITION 1. (Durability and Market Structure) In the rental equilib-
rium, the durability φr is independent of n if and only if τφ = 0.
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The intuition of this result becomes clear by setting δ and all tax rates except
τφ equal to zero in the equilibrium conditions of table I. If τφ is negative,
i.e. a subsidy, then the marginal cost of increasing durability consists of the
additional production cost K ′, and the marginal benefit comprises the saved
future production cost ρk as well as the durability subsidy per unit of the
first-period stock, −τφ/cr

1. Now, an increase in the number of firms reduces
the individual stock cr

1 and thus raises the marginal benefit of durability
by increasing the subsidy per unit. This effect provides the renting firms
with the incentive to extend their product durability when the number of
competitors increases (∂φr/∂n > 0). Thus, if durability is subsidized a mo-
nopolist (n = 1) produces the smallest durability. By the same arguments,
the monopolist provides the greatest durability if durability is taxed. Swan’s
independence result remains valid only for the special case in which the
durability tax rate is zero or, equivalently, in which the tax payments of the
renting firm don’t depend on durability. This result is closely related to the
analysis of Goering/Boyce (1999) who emphasis that durability depends on
market structure if the tax payments of the renting firm aren’t linear in the
production rate. Both results identify the tax payments of producers as a
further reason why Swan’s independence result doesn’t generally hold even
in rental markets.6

4. Market Failure and First-Best Tax-Subsidy Schemes

Now turn to the analysis of efficient environmental regulation. To justify
such regulation it is necessary to establish market failure under laissez-faire.
For the present model this is done in proposition 2 where the values in the
sales equilibrium and the social optimum are marked with s and o.

PROPOSITION 2. (Market Failure under Laissez-Faire)
Set all tax rates equal to zero.
(i) Then product durability under monopoly (n = 1) satisfies φs < φr < φo

whereas durability under oligopoly (n > 1) satisfies φr < φo as well as

φs T φr ⇔ z T 0 and φs T φo ⇔ z T D′
1/ρ.

(ii) Then the stock of the durable good and the amount of solid waste in both
the rental and the sales equilibrium may deviate from their efficient values
in either direction.

The proof is presented in appendix A. For the rental case proposition 2 (i)
generalizes the result under perfect competition derived by Runkel (1999a)
to the case of imperfect competition: Since they ignore the external envi-
ronmental costs of solid waste, the renting monopolist as well as the renting
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oligopolist simply minimize the production costs of durability and thus pro-
duce less durable goods than in the social optimum. Moreover, (i) provides
two further insights. Firstly, as compared to the renting monopoly, in the
selling monopoly product durability is further decreased below its efficient
level since the selling monopolist has an incentive for planned obsolescence.
Secondly, in a selling oligopoly durability may be greater than that chosen
by renting oligopolists and greater than the socially optimal one since in this
case the strategic effect is not zero and can even outweigh the obsolescence
effect as well as the inefficiency due to the external cost. This result is
somewhat surprising because in the political discussion of solid waste man-
agement it is often argued that requiring the firms to rent their products
will always increase product durability (e.g. Soete (1997)). Proposition 2
(i) shows that this is true in monopoly but not in oligopoly. In oligopoly
the commitment to rent the products may even reduce the durability since
among other purposes the selling oligopolist uses durability to raise its own
future market share and to reduce that of its rivals. Nevertheless, since there
are several interacting distortion (externality, market power, obsolescence
and strategic effect) the relationship between the efficient amount of waste
and the industry amount of waste is ambiguous in both the rental and the
sales equilibrium as indicated in proposition 2 (ii).

If the regulator aims at fully correcting for the market failure identified
in proposition 2 then she has to compare the market equilibrium condi-
tions with the efficiency conditions in the rows 1 to 3 of table I in order
to determine those tax rates that make the market solution coincide with
the socially optimal outcome. The resulting first-best tax-subsidy schemes
are characterized in the rows 4 to 6 of table I. Since the number of tax
rates exceeds the number of equations to be satisfied there are infinitely
many first-best tax-subsidy scheme which is a somewhat unsatisfactory
result. To reduce this diversity in a meaningful way, we exclude those first-
best schemes which employ more than a minimum number of (non-zero)
tax instruments. To be more specific, define an instrument as an element
τ ε {(τw1, τw2), (τc1, τc2), (τy1, τy2), τφ}. Then it is easy to see that first-best
schemes involve at least two instruments since any attempt to set all but
one instrument equal to zero and solve 4 to 6 of table I for the remain-
ing instrument implies a contradiction. All first-best tax-subsidy schemes
consisting of two instruments are listed in table III which is obtained from
the rows 4 to 6 of table I. Inspection of table III shows that the first-best
optimum can be obtained by combining the waste taxes with any of the
other instruments. If waste taxation is not available then each pair of the
other instruments may be used to implement the social optimum.

These observations hold for the rental as well as for the sales equilibrium.
Owing to the terms containing z, however, the tax rates differ in both cases.
This arises the task of describing the properties of the first-best tax-subsidy
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Table III. First-Best Tax-Subsidy Schemes Consisting of Two Instruments

with waste
regulation

n
(τw1 , τw2), (τc1 , τc2 )

o n
(τw1 , τw2), (τy1 , τy2)

o n
(τw1 , τw2), τφ

o

without waste
regulation

n
(τy1 , τy2), (τc1 , τc2)

o n
(τy1 , τy2), τφ

o n
(τc1 , τc2), τφ

o

schemes for the rental and the sales case. Since it will be quite formalistic
to investigate all schemes listed in table III let us concentrate on the most
important one.

PROPOSITION 3. (First-Best Tax-Subsidy Scheme)
Let τφ = τy1 = τy2 = 0. Then the first-best tax-subsidy scheme for the
renting durable good industry is

τw1 = D′
1, τc1 = cr

1P
′
1, τw2 + τc2 = D′

2 + cr
2P

′
2 (16)

whereas that for the selling durable good industry becomes

τw1 = D′
1 − ρz, τc1 = cs

1P
′
1 + ρz, τw2 + τc2 = D′

2 + (cs
2 − φscs

1)P
′
2. (17)

Proposition 3 is straightforward in view of the rows 4 to 6 of table I. The
characterization of the first-best tax-subsidy scheme for the rental case in
(16) confirms one’s intuition: The environmental externality is completely
internalized by a Pigouvian waste tax and the market imperfection is cor-
rected by a subsidy on the stock of the durable. In contrast, the first-best
tax-subsidy scheme for sales markets in (17) generally differs from the
expected one owing to the obsolescence and the strategic role of product
durability. As a consequence, with respect to waste taxation in sales markets
overinternalization is just likely as underinternalization depending on the
sign of z, i.e. τw1 R D′

1 if and only if z Q 0. The rationale of this result is
as follows. If z < 0 (> 0) and if the solid waste in the selling industry is
taxed according to the marginal damage, τw1 = D′

1, then row 3 of table I
shows that product durability is inefficiently small (great), hence the waste
taxation is too lax (severe). To fully induce the efficient durability the waste
tax needs to be raised beyond (lowered below) the marginal environmental
damage. Note, that in case of monopoly z is negative and we obtain

COROLLARY 1. (First-Best Waste Tax under Monopoly)
If τφ = τy1 = τy2 = 0 then in a selling monopoly the first-best tax-subsidy
scheme contains a waste tax τw1 > D′

1.

Hence, to achieve a socially optimal outcome in a selling durable good
monopoly the appropriate policy unambiguously requires to overinternalize
the environmental damage in the first period.
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To obtain further insights in the first-best regulation of the durable good
industry, it is useful to compare it with that for a nondurable good industry
investigated by Ebert (1992) or Kim/Chang (1993). After their approach is
transformed to a two-period model the first-best tax-subsidy scheme for a
nondurable good Cournot industry without an abatement technology reads7

τ̃wt + τ̃ct = D′
t + c̃tP

′
t , t = 1, 2 (18)

where the tilde marks the case of nondurable goods. The first-best tax-
subsidy scheme for a nondurable good Cournot industry with an abatement
technology is characterized by

τ̃wt = D′
t, τ̃ct = c̃tP

′
t , t = 1, 2. (19)

If the firms rent their products then the first-best tax-subsidy scheme for
the durable good industry in period 1 and in period 2 (equation (16)) equal
the first best tax-subsidy scheme for a nondurable good industry with an
abatement technology (equation (19) for t = 1) and without an abatement
technology (equation (18) for t = 2), respectively. Of course, this result
doesn’t come as a surprise since in period 2 the durable good game is a
degenerated nondurable good game without abatement whereas in period 1
the product durability has the same properties as an abatement technology:
Increasing durability raises the production costs but also reduces the amount
of solid waste and the associated environmental damage. Thus, if the firms
rent their products then the first-best regulation of the durable good in-
dustry is analogous to that of the nondurable good industry. However, the
first-best tax-subsidy scheme for the selling durable good industry differs
from that of a nondurable good industry owing to the obsolescence and the
strategic role of durability represented by z.

5. Second-Best Waste Taxation

The previous section showed that the regulator needs at least two instru-
ments to obtain a first-best solution in the market equilibrium. In the real
world, however, the regulator may have at her disposal environmental taxes
only whereas stock, output and durability subsidies are not available due to
political constraints. Then the market equilibrium necessarily deviates from
the first-best optimum and second-best considerations are obvious: In such
a scenario one might want to know how to set the rate of the waste tax in
order to maximize social welfare in the durable good industry given that
other instruments are not available.

Formally, for the purpose of deriving the second-best optimum the regu-
lator makes use of the information that the stocks of the durable good and
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the product durability are functions c1(τw1, τw2), c2(τw1, τw2) and φ(τw1 , τw2)
of the waste taxes owing to the equilibrium conditions in column 2, row 1
to 3 of table I. With this in mind the social welfare in (3) is maximized with
respect to τw1 and τw2 . By using the equilibrium conditions the first-order
conditions for the second-best optimum simplify to

ρ
∂c2

∂τwt

{
τw2 − D′

2 − (c2 − δφc1)P ′
2

}
− c1

∂φ

∂τwt

{
τw1 − D′

1 + δρz
}

+
∂c1

∂τwt

{
(1 − φ)τw1 − (1 − φ)D′

1 − c1P
′
1 − δρφz

}
= 0, t = 1, 2 (20)

where the partial derivatives stand for the changes of the variables either in
the rental or in the sales equilibrium. Solving (20) with respect to τw1 and
τw2 and using the elasticity εt

x of the variable x ε {c1, c2, φ, w1} with respect
to τwt yields the second-best waste taxes listed in the row 7 and 8 of table
I. From this information and the comparative dynamics of the equilibrium
conditions in column 2, row 1 to 3 of table I we obtain

PROPOSITION 4. (Second-Best Waste Taxation)
(i) The second-best waste taxes for the renting durable good industry are

τw1 = D′
1 + cr

1P
′
1

ε1
c1

(1 − φr)ε1
w1

< D′
1 and τw2 = D′

2 + cr
2P

′
2 < D′

2. (21)

(ii) For the selling durable good industry there are parameter constellations
for which the second-best waste taxes fall short of the marginal damage as
well as parameter constellations for which the second-best waste taxes exceed
the marginal damage and that even for ε1

c1, ε
1
w1

< 0.

Before interpreting this proposition, a technical remark is in order: As the
proof of proposition 4 in appendix B shows, the underinternalization result
for the rental case relies on ε1

c1, ε1
w1

< 0 which in turn is implied by the
assumption of decreasing returns to durability (K ′′ > 0). Furthermore,
K ′′ > 0 is shown to be necessary to satisfy the second-order conditions
for the profit maximum of a renting firm and thus it can’t be disposed
of. In contrast, K ′′ < 0 violates the second-order conditions and hence it
is incorrect to conclude from (22) that for increasing returns to durability
overinternalization may be second-best optimal in rental markets.

What’s the intuition behind proposition 4? Underinternalization is opti-
mal in rental markets since there are only the same two distortion at work
as in a nondurable good industry, namely the environmental externality and
the market imperfection. Thus, it may be argued as follows: If the regulator
has at her disposal waste taxes only and if in both periods these taxes are set
equal to the marginal environmental damage then in the rental equilibrium
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of the industry the environmental externality is completely internalized and
product durability is efficient (see row 3 in table I) whereas the stock of
the durable good and hence also the amount of solid waste in both periods
are inefficiently small owing to the market imperfection ctP

′
t (see row 1

and 2). If now the waste taxes in both periods are increased beyond the
marginal damages then the social welfare will be decreased since durability
increases beyond its efficient level (see ∂φr/∂τw1 > 0 in appendix B) and the
stock of the durable good further decreases below its efficient level in both
periods (see ∂cr

t/∂τwt < 0 in appendix B). Hence, waste taxes greater than
marginal damages can’t be second-best optimal in rental markets. Following
the usual second-best argument, however, society can gain from reducing the
waste taxes below marginal damages since then product durability becomes
inefficiently small, indeed, but at the same time the stock of the durable
good becomes greater and hence more efficient.

Nevertheless, this reasoning doesn’t apply to sales markets of durable
goods since in such markets there is an additional distortion, namely the
obsolescence and the strategic role of durability due to which durability
generally deviates from its efficient level even if the environmental external-
ity is completely internalized. Hence, overinternalization to be second-best
optimal in sales markets may intuitively be explained by considering the
special case of linear demand and damage functions (P ′

t , D
′
t = constant) in

which the obsolescence effect dominates the strategic effect (z < 0). From
row 3 in table I it then follows that even for waste taxes equal to the
marginal damages not only the stock in both periods is inefficiently small
but also is the product durability.8 Now, an increase in the waste taxes
beyond the marginal damages won’t necessarily reduce the social welfare:
the negative effect of further decreasing the stock of the durable good in both
periods (see ∂cs

t/∂τwt < 0 in appendix B) is accompanied by the positive
effect of increasing durability towards its efficient level (see ∂φs/∂τw1 > 0 in
appendix B). Depending on the relative size of these two effects the second-
best waste taxes can even be greater than the marginal damages, which is
in stark contrast to the rental case.

As mentioned in the introduction, the optimal taxation literature already
provides some explanation why the second-best emission tax may exceed the
marginal environmental damage. There are interesting links between this
literature and the results of proposition 4: In showing overinternalization
to be favourable for a nondurable good industry with a general abatement
technolgy or an endogenous number of firms, Barnett (1980) eq. (12), Ebert
(1992) eq. (8d) and Requate (1997) eq. (14) derive an expression for the
second-best emission tax which for φr = 0 exactly equals τw1 in (21).
Hence, these authors need ε1

c1 > 0 or ε1
w1

> 0 to show the second-best
emission tax to be greater than the marginal damage and they really find
the theoretical possibility for that. As already argued, however, a positive
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correlation between the emission tax and the equilibrium production or
the equilibrium amount of solid waste seems to be implausible.9 The same
criticism is true for the renting durable good model of Goering/Boyce (1999)
and Runkel (1999b) in which overinternalization requires atypical reaction of
the equilibrium durability or the equilibrium output. In the present model,
however, proposition 4 (ii) provides an overinternalization result without
imposing such debatable conditions.

6. Conclusion

Under the assumption of imperfect competition, this paper investigates a
durable good industry in which the waste at the end of the product’s life
causes environmental damage. Several well known results from the industrial
organization and the optimal taxation literature are challenged or extended:
Firstly, the Swan independence result is shown to hold only if product
durability is not directly regulated since otherwise the number of firms influ-
ences the marginal benefit of durability and therefore also durability itself.
Secondly, if the regulator aims to reach the first-best social optimum in the
selling industry through waste taxes and stock subsidies then this requires a
waste tax which generally deviates from the marginal environmental damage
and which is even greater than the marginal damage in case of a monopoly.
Thirdly, if the regulator has at her disposal waste taxes only then the first-
best optimum can’t be reached and the second-best waste taxes fall short
of the marginal damage if the firms rents their products; they may exceed
the marginal damage, however, if the firms sell their products.

In contrast to the previous literature, the latter overinternalization re-
sult doesn’t have counterintuitive implications. It should be emphasized,
however, that it remains yet to be checked whether in reality the second-
best waste taxes really exceed marginal damage. The present analysis merely
shows that this is a possible outcome of theoretical analysis without standing
in contrast to intuition. It doesn’t exclude the case in which the second-best
tax falls short of the marginal damage even if the firms sell their goods.

Notes

1 Actually, Goering/Boyce (1999) state overinternalization to be second-best optimal if
the demand and the decay functions are linear, the emissions depend only on output and
the production technology exhibits increasing returns to durability. In Runkel (1999b) it
is shown, however, that in this special case no industry equilibrium and consequently no
second-best emission tax exist.

2 Strictly speaking, this property of the marginal rental revenue is only required for
t = 2. However, (1) for t = 2 implies (1) for t = 1.
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3 To see this, note that the rental profit in (5) can be transformed to Πr
2i = c2iP (C2)−

K̃(c2i) with the linear cost function K̃(c2i) = (k+τw2 +τc2 +τy2)c2i +(k+τy2)φic1i. Then
the maximization of (5) is a special case of profit maximization in the nondurable good
oligopoly (see e.g. Dixit (1986)) and according to a) and b) on p. 4 the Hahn conditions
(1) imply uniqueness and stability for our second-period rental subgame, too.

4 To apply Dixit’s result, it is important to note that in period 2 the first-period
decisions φjy1j (j = 1, . . . , n) are given parameters. The maximization of Πs

2i in 2 then
represents a special case of profit maximization in Dixit’s nondurable good oligopoly.

5 For the purpose of comparison, the solution is derived by transforming the decision
variables of firm i to c1i, c2i and φi. With this transformation Πs

i equals (6) and in 1
firm i maximizes (6) with respect to c1i and φi subject to the restrictions c2j = c2j(�c1)
(j = 1, . . . , n) which are determined by (12) and (13) or, alternatively, (14).

6 See Schmalensee (1979), Muller/Peles (1990) and Goering (1993a,b) for further rea-
sons why durablity of rented products may depend on the number of firms.

7 (18) may be derived in the present model by ignoring the endogeneity of durability
and therefore ignoring row 6 in table I and by setting φ = 0 in the rows 4 and 5.

8 φo and co
1 are determined by P1(nco

1) = G(φo) + D′
1 and K ′(φo) = ρk + D′

1 with
G(x) := K(x)−xK ′(x) and G′(x) = −xK ′′(x) < 0 whereas for τw1 = D′

1 the equilibrium
φs and cs

1 satisfy P1(ncs
1) = G(φs) + D′

1 − cs
1P

′
1 and K ′(φs) = ρk + D′

1 + ρz. For z < 0
this implies φo > φs, G(φo) < G(φs) and co

1 > cs
1 owing to P ′

1 < 0.
9 It should be noted that in the case of an endogenous number of firms there might

be an intuition for ε1
c1 > 0 since an increase in the waste tax has the additional effect

of reducing the number of firms and hence the firm’s production may be increased (see
Requate (1997), pp. 266). However, one of the conditions which ensure this outcome
requires a non-convex demand function, and Requate (1997), p. 262 himself argues that
’. . . both theoretically and empirically demand is more likely to be convex . . . .’

Appendix

A. Proof of Proposition 2

For notational convenience define

F (x) := K(x)− ρkx with F ′(x) = K ′(x) − ρk and F ′′(x) = K ′′(x) > 0.

If all tax rates are zero then row 3 in table I shows that the efficient durability
is determined by F ′(φo) = D′

1, the durability in the rental equilibrium
satisfies F ′(φr) = 0 and the durability in the sales equilibrium is determined
by F ′(φs) = ρz. Under monopoly we obtain ρz < 0 < D′

1 and thus φo >
φr > φs owing to F ′′ > 0. Under oligopoly ρz is ambiguous in sign. z R 0
is equivalent to φs R φr whereas z R D′

1/ρ is equivalent to φs R φo again
owing to F ′′ > 0. This completes the proof of proposition 2 (i). To show (ii)
note that due to the rows 1 and 2 of table I the efficiency conditions contains
D′

t while the equilibrium conditions comprise ctP
′
t and the terms containing

z. D′
t, ctP

′
t and z may exert opposite effects on the stock of the durable.

Thus, the relationships between co
t , cr

t and cs
t as well as that between wo

t ,
wr

t and ws
t are ambiguous (t = 1, 2). (Q.E.D.)
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B. Proof of the Propositions 4

In the proof of this proposition τφ, τct and τyt are set equal to zero (t = 1, 2).
As a preliminary we first show that presupposing K ′′ > 0 is necessary to
satisfy the second-order conditions for the profit maximum of the renting
firm. If firm i plays open-loop strategies it maximizes (6) with respect to c1i,
c2i and φi taking as given the actions of its competitors (under closed-loop
strategies firm i solves two problems but the second-order conditions will
be the same). The Hessian determinant reads

H =

∣∣∣∣∣∣
2P ′

1 + c1iP
′′
1 0 0

0 ρ(2P ′
2 + c2iP

′′
2 ) 0

0 0 −c1iK
′′

∣∣∣∣∣∣
.

The second-order conditions require H to be negative definite. Hence, all
diagonal elements of H have to be negative. For the first two rows this is
satisfied by (1). However, the third row requires K ′′ > 0 as claimed.

With this preliminary, proposition 4 will now be proven. Firstly, consider
the rental case. Totally differentiating the conditions for the rental equilib-
rium in column 2, row 1 to 3 of table I (δ = 0) yields the comparative
dynamic results

∂cr
1

∂τw1

=
1 − φr

(n + 1)P ′
1 + ncr

1P
′′
1

< 0,
∂cr

2

∂τw1

= 0,
∂φr

∂τw1

=
1

K ′′ > 0,

∂cr
1

∂τw2

= 0,
∂cr

2

∂τw2

=
1

(n + 1)P ′
2 + ncr

2P
′′
2

< 0,
∂φr

∂τw2

= 0,

where the signs of the derivatives are due to (1) and K ′′ > 0. These deriva-
tives imply ε1

φ > 0, ε1
c1

, ε2
c2

< 0 and ε1
c2

= ε2
c1

= ε2
φ = ε2

w1
= 0. Inserting the

elasticities together with δ = 0 into the equations for the second-best taxes
in the rows 7 and 8 of table I yields (21). τw2 in (21) is smaller than D′

2
owing to c2P

′
2 < 0. By using the comparative dynamics, τw1 in (21) becomes

τw1 = D′
1 + cr

1P
′
1

(1 − φr)K ′′

(1 − φr)2K ′′ − cr
1[(n + 1)P ′

1 + ncr
1P

′′
1 ]

. (22)

The second term in (22) is negative due to (1), P ′
t < 0 and K ′′ > 0. Thus,

in rental markets we obtain τwt < D′
t (t = 1, 2) which completes the proof

of proposition 4 (i).
To show proposition 4 (ii) for the sales case (δ = 1), it is sufficient to

provide an example in which the second-best waste taxes fall short of the
marginal damage and an example in which at least one of the second-best
waste taxes exceed the marginal damage. For this purpose, assume linear
demand and damage functions: P (Ct) = α − βCt and D(Wt) = γWt with
α, β, γ > 0. Furthermore, consider quadratic unit costs K(φ) = θφ2 with
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K ′′ = 2θ > 0. The conditions for the sales equilibrium in column 2, row 1
to 3 of table I then yield the comparative dynamic results

∂cs
1

∂τw1

= − 1
|Js|

{
2θβ(1 − φs)(n + 1) + ρcs

1β
2[(n + 1)∆ + Γ]

}
< 0, (23)

∂cs
2

∂τw1

=
1

|Js|
{

cs
1(n + 1)β2 − 2θβ(1 − φs)φs

}
T 0, (24)

∂φs

∂τw1

=
1

|Js|
{

(n + 1)2β2 + ρφsβ2[(n + 1)∆ + Γ]
}

> 0, (25)

∂cs
1

∂τw2

=
2

|Js| ρφsθβΓ < 0,
∂φs

∂τw2

=
1

|Js| ρ(n + 1)β2Γ < 0, (26)

∂cs
2

∂τw2

= − 1
|Js|

{
2θβ(n + 1) + ρcs

1(n + 1)β2∆ + 2θβρφs2∆
}

< 0, (27)

with ∆ := n/(n + 1) > 0, Γ := (1 − n)/(n + 1) < 0 and the Jacobian
determinant |Js| := 2θ(n+1)2β2+ρcs

1(n+1)β3[(n+1)∆+Γ]+2θβ2ρφs2[(n+
1)∆ + Γ] > 0. ε1

c1 , ε
1
w1

< 0 follows from (23) and (25). For the special case
n = 1 (monopoly) we obtain Γ = 0 and thus ∂cs

1/∂τw2 = ∂φs/∂τw2 = 0 as
well as ε2

c1 = ε2
φ = ε2

w1
= 0. Inserting this together with z = −φscs

1β/2 and
δ = 1 into the rows 7 and 8 of table I and rearranging terms yields

τw1 = γ − βcs
1

2θβ(1 − φs)(2 + ρφs2) − ρc1β
2(2φs − 1)

4θβ(1 − φs)2 + 4cs
1β

2 + ρcs
1β

2
, (28)

τw2 = γ − β(cs
2 − φscs

1). (29)

The second-best waste tax in period 2 falls short of the marginal damage
γ. However, the relationship between the second-best waste tax and the
marginal damage in period 1 is ambiguous owing to φs R 1/2. To illustrate
this statement, solve the model for two parameter constellations:1 For n = 1,
ρ = 0.99, α = 10, β = θ = k = 1 and γ = 1.5 we obtain cs

1 ≈ 4.621, cs
2 ≈

7.499, φs ≈ 0.456 and τw1 ≈ 0.967 < 1.5, τw2 ≈ −3.891 < 1.5. Hence for this
constellation underinternalization is second-best optimal. However, if the
marginal damage is c.p. increased to γ = 2 then cs

1 ≈ 4.171, cs
2 ≈ 7.000, φs ≈

0.815 and τw1 ≈ 2.321 > 2, τw2 ≈ −1.602 < 2. Thus, overinternalization is
now second-best optimal in period 1. (Q.E.D.)
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Supplementary Material (not to be published)

1. Comparative Dynamics for the Social Optimum (Table II)

Define Pt,κ := ∂Pt/∂κP and D′
t,κ := ∂D′

t/∂κD. Totally differentiating the
conditions in column 1, row 1 to 3 of table I yields the matrix equation



nP ′
1 − (1 − φ)2nD′′

1 0 (1 − φ)nc1D
′′
1

0 nP ′
2 − nD′′

2 0

−(1 − φ)nD′′
1 0 K ′′ + nc1D

′′
1







dc1

dc2

dφ




=




−P1,κ (1− φ)D′
1,κ −φk −[c1P

′
1 − (1− φ)2c1D

′′
1 ]

−P2,κ D′
2,κ 0 −[c2P

′
2 − c2D

′′
2 ]

0 D′
1,κ k (1− φ)c1D

′′
1







dκP

dκD

dρ

dφ




with the Jacobian determinant |Jo| = n2K ′′[P ′
2 − D′′

2 ][P ′
1 − (1 − φ)2D′′

1 ] +
n3c1D

′′
1P ′

1[P
′
2 − D′′

2 ] > 0 owing to K ′′ > 0. The results in table II are easily
obtained by applying Cramer’s rule to the above matrix equation.

2. Proving the Equations (11) to (14)

In the notation of Dixit (1986), for all i = 1, . . . , n define

ai := 2P ′
( n∑

j=1

(y2j + φjy1j)
)

+ y2iP
′′
( n∑

j=1

(y2j + φjy1j)
)
,

bi := P ′
( n∑

j=1

(y2j + φjy1j)
)

+ y2iP
′′
( n∑

j=1

(y2j + φjy1j)
)
,

Γ := 1 +
n∑

j=1

bj

aj − bj
,

and

µi(y21, . . . , y2n; θi) := P
( n∑

j=1

(y2j + φjy1j)
)
− (k + τw2 + τc2 + τy2)

+ y2iP
′
( n∑

j=1

(y2j + φjy1j)
)

(30)
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with the exogenous parameters θi ε {φ1y11, . . . , φny1n}. Thus, (10) becomes
µi(y21, . . . , y2n; θi) = 0 for i = 1, . . . , n. With this notations Dixit (1986),
eq. (41) shows that

dy2i = − µi
θdθi

ai − bi
+

bi

Γ(ai − bi)

n∑
j=1

µj
θdθj

aj − bj
, i = 1, . . . , n (31)

where µi
θ := ∂µi/∂θi all i = 1, . . . , n. For a particular ` ε {1, . . . , n} the

partial derivative ∂y2i/∂φ`y1` is obtained by setting θi = φ`y1` all i =
1, . . . , n. From (30) we then obtain

µi
θ =

∂µi

∂φ`y1`
= P ′

2 + y2iP
′′
2 , i = 1, . . . , n.

Inserting this together with the above definitions in (31) after some rear-
rangements yields

∂y2i

∂φ`y1`
= − P ′

2 + y2iP
′′
2

(n + 1)P ′
2 + Y2P

′′
2

, i = 1, . . . , n

which is true for all ` ε {1, . . . , n}. Finally, changing the indices proves (11)
in the text. (12) to (14) are easily obtained by using the definitions of cti

and C−i
2 .

3. Profit Maximization of the Selling Firm

If firm i sells its output then in period 1 it faces the problem of

max
y1i,φi

Πs
i = y1i


P

( n∑
j=1

y1j

)
− K(φi)− (1− φi)τw1 − τc1 − τy1


 − φiτφ

+ ρ




(
y2i(φy1) + φiy1i

)

P

( n∑
j=1

(y2j(φy1) + φjy1j)
)
− τw2

− τc2


 − (k + τy2)y2i(φy1)


 (32)

where y2j(φy1) (j = 1, . . . , n) is determined by (10) with the partial deriva-
tives captured by (11). For comparsion purpose it is useful to transform
the decision variables of firm i from y1i, φi to c1i := y1i, φi and to define
c2i(φc1) := y2i(φc1) + φic1i = y2i(φy1) + φiy1i (i = 1, . . . , n). The problem
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(32) then becomes

max
c1i,φi

Πs
i = c1i


P

( n∑
j=1

c1j

)
− K(φi) − (1 − φi)τw1 − τc1 − τy1


 − φiτφ

+ ρ


c2i(φc1)


P

( n∑
j=1

c2j(φc1)
)
− τw2 − τc2




− (k + τy2)
(
c2i(φc1) − φic1i

)

 (33)

where c2j(φc1) (j = 1, . . . , n) is determined by (10) with the partial deriva-
tives captured by (12) to (14). Differentiating Πs

i in (33) with respect to
c1i and φi, using the equilibrium conditions (10) to cancel common terms
and setting the resulting expressions equal to zero yields the first-order
conditions

P (C1) + c1iP
′(C1) + ρkφi =

K(φi) + (1 − φi)τw1 + τc1 + τy1 − ρφiτy2 − ρφiz (34)

and

K ′(φi) = ρk + τw1 + ρτy2 − τφ/c1i + ρz (35)

with

z := φic1iP
′(C2)

∂c2i

∂φic1i
+ c2iP

′(C2)
∂C−i

2

∂φic1i

where ∂c2i/∂φic1i and ∂C−i
2 /∂φic1i are determined by (12) and (14), respec-

tively. Now, the condition for a symmetric sales equilibrium are obtained
by using φi = φ, cti = ct and Ct = nct (t = 1, 2) in the equation (10), (34)
and (35). The resulting expressions coincides with the column 2, row 1 to
3 in table I. Note, that the index i in ∂c2i/∂φic1i and ∂C−i

2 /∂φic1i can be
suppressed owing to the symmetry of the equilibrium.


