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Abstract: Given the production technology of a multiproduct firm, economists
usually try to represent this technology by functions, namely the cost function,
the revenue function and the input and output distance functions. In doing so
the analysis directs the attention to the (dual) matching of quantities and prices.
Here, the duality scheme is based on Mahler’s inequality and stresses dual
aspects of associated functions, whereas the underlying optimization problems
are not dual programs. Nevertheless, the discussion of shadow pricing reveals
the similarities which exist with respect to some appropriately chosen dual
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1 Preliminaries

1.1 Characteristics of the Technology

In order to describe the production technology (of a firm or an economy) we
make use of two families of sets, which describe the technological relationship
between the space of factors of productivr= R and the commodity space

X = R. On the one hand, each memidev) of the family of production
possibility sets(P(v)| Ve V) includes all commodity bundles € X, which

are producible by an input vecter € V. On the other hand, the family
(L(x)| X € X) consists of input requirement sets, iLlgx) includes all input
vectorsv permitting the production of. Both families are equivalent, i.e.

(1.1 Xe PWV) < velX),

and they satisfy certain regularity conditions by assumption. In particular
each member of both families is a nonempty closed convex set. The main
difference regarding analytical aspects becomes apparent as follows: whereas
an (aureoled) input requirement defx) does not contain the originv = 0

for any commodity bundlex € X\ {0}, the possibility of inaction guarantees

the origin x = 0 to be an element of the (star-shaped) production possibility
setP(v). See Fare (1988) or Bobzin (1998) for details.

In the next step economists try to extract activities, which are technologically
efficient, cost minimizing, revenue maximizing and last but not least profit
maximizing. In order to value vectors of outputs or vectors of inputs we need
prices with the spaces of output prices and input prices bBing: R and

Q = RT, respectively.

This papers deals with four aspects of duality theory. The first approach
is concerned with the relationship of outputsand output price® given an

input vectorv. The second aspect concentrates on the opposite case, i.e. the
relationship of inputs and input prices| holding the output vectox fixed. In

the third step the attention is directed to the case where the factor endowment
v and the commodity priceg are given. Finally, the commodity bundie

and the vector of input pricasare assumed to be known. While the first two
cases make use of the duality of polar gauges (see Newman (1987) for details),
the third and the fourth case are known from linear programming as shadow
pricing.

! Formally, the set$?, and Q correspond to the polar cones XfandV, respectively. Take
for exampleQ = {g € R™ q"v = 0 Yv € V}. This concept is to be distinguished from
that of polar sets which will be introduced at a later stage.



In what follows we firstly define functions in order to describe the members of
the family(P(v)| Ve V). In the second step the same is done with respect to
the family (L(x)| x € X). For a given input vectov the revenue functiofis
defined as the (convex) support function of the production possibiliti?6et
holding the price vectap € P, fixed.

(1.2) r(p,v):=sup{p'x| x € P(v)}
On the contrary the (dimensionléssutput distance functiois defined by
(2.3) to(X, v):=inf{A = 0| X € AP(V)}.

This function may be interpreted as the inverse of Farrell's output efficiency
measure. AR (v) is a closed convex set containing the origin it is

(1.4) XePV) < to(x,v) =1

In order to express the preceding two functions as polar gauges it is useful to
describeP(v) by a system of hyperplanes tangen®¢v). In doing so we get

PP(v)={pe Pl p'x=1Vxe PV}

which is called thepolar production possibility set The roles of the two
functionsr (-, v) andto(-, v) regarding this set are interchanged. On the one
hand, the output distance function is the (convex) support furctorR° (v),

i.e. to(x,v) = sup{p'x|pe P°(v)}. On the other hand, the revenue
function corresponds to the distance functionRsf(v), i.e. r(p,v) =
inf{u = 0| p € uP°(v)}. Similar to (1.4) we have

(1.5) peP(v) < r(p,v) =1

In terms of convex analysis-, v) andto(-, V) may be seen as polar gauges
which satisfy the following

Proposition 1.1 Let P(v) be a nonempty closed convex production possibility
set containing the origixk = 0. Then the output distance functiog(t, x)

and the revenue function(+, x) are polar to each other and fulfil Mahler's
inequality*

(1.6) P'X=r(p,V)to(x,v) VpeP, VxeX

2 Presumably, this point shows most obviously that we cannot speak of dual programs holding
a statement of the type syp.(X) = infp v(p).

31n order to preserve the dimensionless character of the distance fungtiomas to be
divided by 1%.

4 Mahler’s inequality in general deals with the problem of finding “best” pairs of function
(f, g) fulfilling the inequality f(x) - g(y) = x"y VX, Vy.
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Proof: Starting with
r(p,v) =inf{u Z0penuP’(v)} Vpeh

we can assumg > 0, because. = 0 impliesp = 0 so that (1.6) is satisfied.
Now p/u € P°(v) can be rewritten by the definition & (v):

(P/m)T(AX) =4 VxeP(V), ¥AZ0
If Ax is mapped tx, then
(P/m)TXK=r VXearP(v), VA=0

where the minimuni on the right hand side is equivalenttig(x, v) for all
x € X. The equation

r(p,v) =inf{x 20/ p'x = uto(x,v) ¥xe X}  Vpe P

is usually taken to define the polar of the gaugeéx, v) and implies (1.6).
|

The analogue definition of theost function ¢q, x):==inf {q'v| v € L(x)}

and theinput distance function, tv, X) :=sup{i = 0| v € AL(X)} yield sim-

ilar results when defining the reciprocally polar input requirement set by
L.(x):={q € Qq'v=1Vv e L(x)}. ProvidedL(x) is a nonempty aureoled
closed convex input requirement set not containing the origin then (see Bobzin
(1998, Proposition 111.17)

2.7) vel(X) < ti(v,x)=1

Proposition 1.2° Let L(x) be an input requirement set satisfying the assump-
tions of (1.7). Then the input distance functig tx) and the cost function
c(-, x) are polar to each other and fulfil Mahler’s inequality

(1.8) qu Z c(q, X))t (v, x) Vqe K(L,(x)), Vve K(LX)).

5 Cf. McFadden (1978, Lemma 5) or Bobzin (1998, Corollary 111.18.1).

6 Given the commodity bundlg € X, the conesK(L(x))={Av| v € L(x), » > 0} and
K(L.(x)):={rq| g € L.(X), A+ > 0} ensurec(-,x) andt,(-,x) to be positive. It is
important to note that the two cones do not necessarily include the entire boundary of
V or Q, respectively.



r(p,v) = sup{p'x| x € P()} to(x,v) = s:)Jp{pTx| pe PV}

c(q, X) = ir\)f la'vive L} ti (v, X) = irc}f la'vig e L.}

Figure 1: Basic programs of the paper

While the preceding two propositions reflect the horizontal parts of Figure
1, the vertical arrow between the two distance functions is an immediate
consequence of (1.1), (1.4), and (1.7).

(1.9) Hv,x) 21 << tox,v) =1

To be more concrete each feasible activityx) impliest, (v, X) = to(X, V).
Similarly, the inequalityc(qg, X) = r (p, v) will characterize the relationship of
the cost and the revenue function.

Bear in mind that all of the above mentioned functioasv), to(-, v), c(-, X),

andt, (-, x) are homogeneous of degree +1. Moreover, one can show that
the output correspondendeis homogeneous of degréeif and only if the
inverse input correspondenteis homogeneous of degre¢l. In this case

the output distance functiotp (X, -) and the input distance functidn(v, -)

are homogeneous of degre@ and—1/ h, respectively. Similarly, the revenue
functionr (g, -) and the cost function(q, -) are homogeneous of degreand

1/ h, respectively.

In the case of a homogeneous output correspondencexwith we have
(1.10) t) (v, X) = [to(x, v)]~¥/P
For the proof rewrite the definition af (v, X) wherex # 0 impliesi > O.
Ve LX) < V/Ael(X) < xePV/A) < xei "Pw)
Now takingu = A" yields (1.10) since
sup{2 2 0| x € A " P)} = [inf {1 2 0| x € uPW)}] "

Comparing (1.10) to (1.9) gived | (v, X) =1 <= to(X,v) =1



1.2 Basics of Differential Theory

Before going into further details of the economic analysis, the widely used
concepts of subgradients, supergradients, and gradients are introduced.

A vectory is said to be aubgradienof the functionf at point X € X if
(1.11) fOZ fR+y x—%  VxeX

The set of all subgradients df at pointX is called thesubdifferentialof f at
pointX and is denoted by f (X).
A vectory is asupergradienpf the functiongat X € X if

(1.12) gx) =g +y'(x—%)  VxeX.

The set of all supergradients gfat pointX is called thesuperdifferentiabf g
at pointx and is denoted b g(X).

It is immediate from these definitions that a convex functibrattains its
minimum atX if and only if 0 € 3 f (X), i.e.

fx) = f(X) Vxe X

Conversely, a concave functi@reaches its maximum &tif and only if O €
Ag(X).
For a convex functiorf the subdifferentiad f (x) is a closed (possibly empty)

convex set. If 9f(X) # ¢, thenf is said to besubdifferentiableat pointX.
Moreover, for a propérconvex functionf Rockafellar (1972) provés

X ¢ Dom f = Jf(xX) =4,
x erint(Domf) — af(x) #49,
X eint(Domf) <<= 0df(X) #£@ andbounded.

The concept of gradients is taken from Blum, Ottli (1975). It is slightly
different from the usual definition but more appropriate regarding the Kuhn-
Tucker conditions, which will be used at a later stage. Given a convex set

7 A function f: X — [—o0, +00] is said to be proper iff (x) < 400 for at least one and
f(x) > —oo for everyx. The effective domain is defined by Dofm= {x € X| f(x) <
+o00}. Sometimes the set n-Dofm= {x € X| f(x) > —oo} is also needed.

8 The relative interior of a convex s& c R" is denoted by rin€. For example, ifC is a
line connecting two distinct points', x2 in R3, then rintC = C \ {x, x?}. Bear in mind
that there is no need to distinguish the relative interior of &set R" from its interior as
long asC is n-dimensional, rin€ = intC.



C c R"the functionf: C — R is differentiable at a point € C “regarding
C” if there is a vectorV f (X) such that

r(x—xX)
X = Xl

(1.13) fx)=fR+VIRT(x—%) + VxeC

. r(x—x
and Ilm( A):
x—=% |IX = X||

In generalV f (X) is not uniquely determined. Howeverife int C and (1.13)
holds good, therf is differentiableat X in the usual sense, i.e. tlggadient
V f (X) is the vector of partial derivatives evaluate&aMoreover, the gradient
— if it exists — is uniquely determined, provid€dis a convex set with int #
@.

The relationship of subgradients and gradients turns out to be very simple. Let
X be a point at which the convex functidnis finite. If f is differentiable at
pointx, then the gradier¥ f (x) is the unique subgradient dfatx, 9f(x) =
{Vf(x)}. Conversely, if a convex functio has a unique subgradientx)

at pointx, then f is differentiable ak and y(x) = Vf(x).

2 Revenue Maximization

According to the relationships (1.2) to (1.5) the two programs

(P1) r(p,v) =sup{p'xto(x,v) =1}  Vpe P

(D1) to(x,v) = sup{p'x| r(p,v) = 1} Vx e X

are related to each other by Mahler’s inequality (1.6). In order to put the

relationship of a commodity bundbe and its priceg in concrete form the
following proposition is stated:

Proposition 2.1 For a pair of polar points(p, X) to satisfy (1.6) for a given
input vector v > 0 as an equation, it is necessary and sufficient that the
output vectorx solves the problem of revenue maximizat{Ba) given p €

Po \ {0} or dually thatp is an optimal solution t¢D1) given X € X\ {O}.

Provided the functions are differentiable, the Kuhn-Tucker conditions yield two
systems of equations which are dual to each other for an optimal pair of polar
points(p, X) with pTx=1:

(2.1a) Vor (B, v) =X

(2.1b) Vito(X,V) =P



The duality results of this proposi-
X e P(v) p e P°(V) | tion inherit a perfect symmetry for
the cas@™X = 1 which is shown in

Figure 2. In view of dimensional
aspects it may be useful to write

to(X,v) =1 rep,v)y=1 b 1
Vo V) = 5w [m}

Figure 2:Dual relationships of a pair of

polar points(p, X) The proof of Proposition 2.1 con-

sists of two parts regarding (P1) and
(D1). As the first part parallels the second one, we can ignore one of them.
Here, the Lagrange function for (P1) is chosen

L1(X, A1) = PTX 4+ A1(1 — to(x, V),

where the Lagrange multipliér; is measured in $. The Lagrange multiplier

of the second Lagrange function would have no dimension. Presuming an
input vectorv > 0, the output possibility seP(v) has a relatively interior
pointX satisfyingto (X, v) < 1. ThusX fulfils Slater’s condition such that the
Kuhn-Tucker conditions for (P1)

[a] LK A) = L A)  Yxe X

[b] i1z0, 1-tokv)Z0, A(l—to& V) =0
are necessary and sufficient fox, A1) to be a saddle point of the concave
Lagrange functiont; or, equivalently, foik to solve (P1) fop = p.

Regarding the supergradient inequality (1.12), the Lagrange fungfionis)
attains its maximum aX — see condition [a] — if and only if = O is a
supergradient oft; (-, A1) atX, i.e. 0 € ALy (X, A1).

Since the concave effective domains of the n-proper concave objective function
fo(x) = p'x and the n-proper concave restrictibp(x) = 1 — to(X, v) have
a relatively interior point in common, i.eR" N rintRY # ¢, it follows®
0 Axli(R 1) <= 06 [AxfoR) + i1 Ay F1(R)]
— 0e[{p}+ i1 Ax(~toX, V)]
(2.2) — PeiitoX V)

9 Cf. Rockafellar (1972, Theorem 23.8).
The subdifferentiald f (x) of a convex functionf at pointx and the superdifferential
A(— f(x)) of the concave functior- f at pointx satisfy —af(x) = A(—f(X)).
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The assumptiop = 0 requiresi; > 0 and, therefore,
to,v) =1 and L% i) =p'K=r(p,v)
or r(p, v)to(X,v) =p'x
as stated by Proposition 2.1. Hence, the linear funcfibr achieves
its maximum atX over the convex seP(v), which is equivalent t&X <

dp r(pP, V) (see Bobzin (1998, Proposition 111.8)). Under the assumption of
differentiability this yields (2.1a).

Moreover,p is an optimal solution to
1=to(X V) = sup{p'X| r(p,v) = 1}
=sup{p'X| p e P°(v)}
=sup{p'X| p'™x =1 Vx e P(v)}

because each alternative price veqiowith to(X, v) > 1 impliesX ¢ P(v).
Again this statement is equivalent foe dxto(X, v) and the assumption of
differentiability results in (2.1b). Now, in comparison to (2i2)= pTx = 1
holds good.

Finally, we turn over to a parametric variation of the given input vestor
Assuming differentiability, the the envelope theorem yields

(23) er (f)’ V) = —r(f)» V) thO(),Zv V)

For a homogeneous technology the most recent gradient can be substituted by
the relationship given in (1.10).

A 1 A _1_1 N 1 A
VW (V. %) = — [toX, VTP Wto(X, V) = —¢ Wlo(X, V)
As will be proved in the subsequent section a cost minimum (@gi¥) with

4"V = 1 holdsVyt, (¥, X) = § so that (2.3) becom&$

. Y $
(2.4) W (P, V) =hqr(p, V) [m]

For the sake of clarity in the linear homogeneous casemfihv) = p'x = 1
the factor prices have to agree with their respective marginal revenue.

VVr (ﬁv \7) = q
There is only little surprise that Euler’'s theorem results in

VoI (B, )7 = hg"vrp,¥) = hrp, )

10Writing out in full we have with respect to dimensioWst, (V, X) = §/4'V = §.



3 Cost Minimization

While (P1) and (D1) are concerned with polar gauges, the following programs
reflect the relationship of reciprocally polar gauges. The cost function and the
input distance function are given in the form of (P2) and (D2), respectively.

(P2) c(q,x) =inf{q'viti(v,x) 21}  V¥qge K(L.(x))
(D2) ti(v,x) = inf{q"v| c(q, x) = 1} Vv e K(L(x))

Their relationship is discussed in full in Shephard (1953). In particular equa-
tion (3.1a) of the following proposition is frequently referred to as Shephard’s
theorem or Shephard’'s lemma. Accordingly, (3.1b) is called Hotelling’s
theorem. However, at this point the two equations are not the result of some
kind of Lagrange duality or of the envelope theor&m.

Proposition 3.1 (Shephard’s Theorem)For a pair of polar points(q, V) to
satisfy (1.8) for a given commodity bundlg € X\ {0} as an equation,

it is necessary and sufficient that the input vectosolves the problem of
cost minimization(P2)given § € K(L.(x)) or dually thatg is an optimal
solution to(D2) given vV € K(L(x)).

Provided the functions are differentiable, the Kuhn-Tucker conditions yield two
systems of equations which are dual to each other for an optimal pair of polar
points(g, V) with ™0 =1:

(3.1a) Vqe(@,x) =V
(3.1b) Wt (v, x) =4q.

The proof corresponds to that of Proposition 2.1 and is ignored. Once more
the duality shows a perfect symmetry fptv = 1, which is similar to that of
Figure 2. Provided the Lagrange function of (£2)

LV, A2;X) = 4TV + A2 (L -t (v, X))

is differentiable aiV, iz, X), the effects of a parametric variationtan be
studied. The envelope theorem yields

(32) VXC(CL X) = _C(q’ X) vXt| (\77 X)-

11 1n addition to that the result is independent of any assumption on homogeneity as suggested
by Diewert (1974, p. 112). A correct notion with respect to consumer preferences can be
taken from Blackorby, Primont, Russel (1978, p. 34).

12 Notice thatt, (-, x) is concave for each nonempty convex input requirementéel, i.e.
1—1t(-, x)is convex.
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Now, observe (1.10) for a homogeneous technology.
Vxto (X, V) = —h[t; (0, 0] " Vit (9, X) = —h Vit (U, X)

By Proposition 2.1 each paifp, X), which satisfies (1.6) as an equation
(without normalizingp"x = 1), yields

p
hpTx

pc(§, x)
hpTx

(3.3) Vit (U, X) = — and Vyc(§, X) =

In the linear homogeneous case the last equation becomes the rule of marginal
cost pricing

VXC(Q7 X) = p ’

givenc(q, X) = "V = p"x. This case will be dealt with in the next section.

4 Shadow Pricing

4.1 Given Factor Endowment

In accordance with the theory of international trade (e.g. Dixit, Norman
(1980)) it is now assumed that the factor supplied an economy are given.
Holding the vector of output pricgsfixed we reuse (P1§

(P3) r(p,v) = sup{p'x| to(x, v) < 1}.

In the theory of international trade the constraiptx,v) = 1 is usually
given in the slightly different form of a transformation functitix, v) = 0.
Concerning (1.9) for a feasible activity, x) — as a first attempt — the program
(P3) may now be viewed as being opposite to

ti(v,%) = inf{q"v| c(q, %) = 1}.

Following the recommendation of Fare (1988), the linear homogeneity of the
cost functionc(-, X) gives

toX, V) =1 < t;(v,X) = %inf la'vic@, %) zZa} 21

13 Recall thatto (-, V) is convex. Howevet, (v, -) needs not to be concave. In fagt(v, -) is
quasi-concave ifL is quasi-concave. Hence sLnnTx| (v, x) = 1} is omitted because
it lacks the property of concavity.

11



for eacha > 0. Up until nowy is a pure scalar which has no dimension. At
the same timé, (-, X) has no dimension by construction. In the next step
is supposed to be an optimal solution to (P3) such ti@tv) = p'x > 0.
Takinga - 1$=r(p, v) then

(41 6 Rrp,v) =inf {a"™vic@.%) Zr(p.v} Zrp.v)

is given in $. Besides that the constraint of (P3) yields via (1.9) a weak duality
of the type

(4.2) inf {a™vl c(@, %) = r(p,v)} = sup{px| to(x, v) = 1}

However, the latter problem does not depend on any factor price vegctor
and especially the optimal solution of the former problem has no importance.
This relationship will be picked up in the next section concerning linear
programming.

The solution of (P3) has been discussed in section 2. Thus, the attention is
directed to the left hand side of (4.2).dfsolves

(D3) inf {a"vl c(@, %) = r(p,v)}

thenq is called a cost minimal shadow price vector¥orAssuming a feasible
activity (v, X), i.e.v € L(X), (D3) is a convex program provided the input
requirement set is convex. Notice that the constr&ing) = r (p, v) —c(q, X)

is defined on the convex set Dofn = Q. As Q has at least one relatively
interior pointg satisfying f1(q) <0 or c(q,X) > r(p,Vv), the vector of
shadow pricegj fulfils Slater’'s conditions so that the following Kuhn-Tucker
conditions are necessary and sufficient §ar i3) to be a saddle point of the
Lagrange functiongs or, equivalently, for§ to solve problem (D3) for the
given input vectow.

With regard to the Lagrange function including a dimensionless Lagrange
multiplier A3

L3(0, A3) = q"V + A3(r (p, v) — ¢(q, X))
the Kuhn-Tucker conditiorté

[a] L£3(0, A3) = L3(0,23)  YQqeQ
bl 4320, r(p,v)—c(G,% =0, Ais(r(p,v)—c(G %) =0

14 The inequality O< r(p, v) = c(q, X) requiresy € K(L,(X)) so thatc(g, X) > O.

12



ensue the existence of a saddle pajc“ntig).
In accordance with (1.11) the convex Lagrange functigt, A3) attains its
minimum atq (see [a]) if and only ify = 0 is a subgradient af’3(-, A3) at{,
i.e. 0 e dqL3(G, A3). However each vectoy # 0in (1.11) yields also [a]
provided
y'@-4z0 VvVgeQ
With Q = RT it is not too hard to prove that this is equivalent to
(4.3) yz0, §Gz0, y'g=0.
These conditions will be picked up in (4.8), where the factor suppigay
differ from the inputs demanded, i.e. y=v —v* £0.
Define for the sake of brevityip(q) = q'v. Both functions — the objective
function fy and the constrainf; — are proper and convex. Thus, regarding the
above mentioned Slater’s condition, [a] is equivaleht to
0 dqL3(G, A3) <= 0 € [3qTo(8) + A3dq F1()]
> 0€ [{v}+ Aadqg(—c(@, %)]
& Ve izAqC(d, %)

Assumingv > 0 requiresiz > 0 andg € Q. Besides that [b] ensues

(4.4) p'k=r(p,v) =c(@, %) and
(4.5) L£3(8,23) ="V =1,(v,)r(p, V).

At this pointitis important to know that the superdifferenﬁglﬁqc(q, X) does

not include any input vector with < v* < v.% In this casey = v — v* > 0
could be used to produce more of a ggogthich has a positive pricg;. But

this contradicts the assumption of a revenue maximizing vector of outputs
Therefore, in line with the outcomes in Ruys, Weddepohl (1979) regarding
linear programming and duality, we have

(4.6) v, X) =1,
4.7) PR =r(p,v)=c(@,%) =4"v

151f g lies in the boundary o® thenA4c(q, X) may be empty or even unbounded. In the case
of a Cobb-Douglas production function we haixgc(q, x) = ¢ for every price vecton
including a zero price. The reason is that the corresponding factor demand goes to infinity.

16 For the comparison of two vectorksy € R" we use the following notatiorx > y <=
Xj>Yyj j=1.., NXZYy < X2y, j=1...mx>y < [XZYyAX#Y]
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In comparence to (4.2) this outcome represents the strong duality regarding the
shadow price vectoq.

Condition (4.5) states that the linear functighv attains its minimum over the
convex sel_, (X) at the pointg/r(p, v). Hence, in contrast to (2.4) the vector
of shadow prices yiels

a/r(p,v) € Avti (v, X)

even forh #£ 1.

AIthough):gch(q, X) does not include any input vectat with 0 < v* < v,
this is perfectly possible for an input vector satisfylbigc v* < v. Taking
againy = v — v* > Oresults iny € dq3(q, 13). Regarding the price vector
g this relation is fulfilled if and only if (4.3) holds true:

(4.8) V-Vv*Z=0, 20, (v-v)T'§=0

On the one hand, a positive shadow prigempliesv; = vj and, on the other
hand,v; > vj requires explicitelyg; = 0.
Remark (Homogeneity): An output correspondencB which is homoge-
neous of degree-h yields

% solves (P3) < p'X=r(p,v) < tok,v)=1

= v =1 < c@%=4q"v

Althoughh can differ from 1, (4.7) states that revenue equals cost. This result
is now discussed in more detail under the assumption of differentiability.
Remark (Differentiability): If L3(-, A3) is differentiable afj € Q “regarding
Q", then [a] can be substituted by the linearised Kuhn-Tucker condition
[c] VoLa@. 49) (- =0  Vge Q.

As Q = R the linearised Kuhn-Tucker condition [c] is equivalent to both of
the following systems

[c] Voda(@,43) =20, §=0, Vqds(g,43)7=0
[C]  V—23V4c@ %) 20, 420, (V—AisVac(@ %) a=0

Regarding Euler’s theorem, [c"] yields

t (v, ) r(p,v) = §'v=7i3§"Vqc(@, %) = Azc(d, X)—
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Therefore, by (4.7)i3 = t; (v, X) = 1. The effects of a parametric variation
of the commodity bundl& can be studied by applying the envelope theorem:

Vi (V, ) TR+t (v, P = t; (v, X)(p — Vxc(@, X))
pTX

(v, R)

pTX

h Vgt (v, )A()T)A(

— Vic(q, X) = Vit (v, X) cf. (3.2)

— Vic(q, X) = Vit (v, X)

According to (1.10) it appears
~ 1 ~ _1 9 o
Vxti (v, X) = = [to(X, )] 7" Vxto(%, V)

where the revenue maximizingresults into (X, v) = 1. Using (2.1b) without
normalizingp'™k = 1 implies

p

pTX

b
hpTx
This result confirms (3.3) and leads to marginal cost pricinghfee 1. In

the special case of two commodities (even lfioet 1) the marginal rate of
transformation takes the form

SIT

Vto(X, V) = — Wt (v, X) = — Wx(q,X) =+

c . . ot N oo .

—(q, X —(V, X — (X, Vv

axl(q’ )_&_ 8x1( ; )_ 8x1( V)

3C ~ A - p2 - 3t| ~ 3to A

—(§, x —(V, X — X,V

7 (%) e g &Y
Moreover, Euler’'s theorem reveals (4.7), i.e. zero profit for every0.

1 +. N e Te L.

(4.9) R PR =Vie@, %)k = +¢(G.%)

This result is important to know, because a profit maximizing pricing rule
Vxe(Q, X) = p is consistent with the shadow pric§sn (4.7) if and only if
h = 1. The relationship of (4.9) states that

Vxe(@. %) =p if h=1

A similar pricing rule regarding inputs results from applying the envelope
theorem with respect to the factor endowment

Vit (V, ) r(p, V) 4+t (v, X) Vur (p, V) = G+t (v, X) Vur (p, V)
— Vit (v,X) =§q/r(p,Vv) cf. (3.1b)

15



Again, Euler’s theorem yields (4.5) or similarly (4.4).

According to (2.4), in the special case of two inputs the marginal rate of
substitution becomes

or oo . ot n
—(p, Vv R — (X, V —(V, X
I T I O
or 4, oto . ~ ot R
Zpv 2 v DR
dvo vy vy

Summarizing the main results far= 1 we note

Vqc(@, X) =V,
Vuti (v, X) = —VWyto(X, v) = q§/r(p, v),
Vit (V, X) = =Vyto(X, V) = —p = VxC(Q,X) =p

In a more condensed form we have

G'v =§"Vqe(0, %) = (@, %) = Vxc(@, 0%k = p'%
A point of further research is the question as to how far this result can be
transferred to an economy which consists of many sectors. Although the
answer will be given in another paper, the idea may be pointed out by a
few steps. Following the theory of international trade, suppose that each
commodityx; is produced by a different sector with all production functions
being homogeneous of degree +1.

n n n
oCi
(@, X) = Y _¢j(g. X)) = ) :—ax‘_ (@. %) Xj = »_bj(@) X
j=1 1M j=1

=
wherebj(q) denotes the marginal and average cost of sgctbtoreover,

VqCi(d, Xj) = Vgbj(qQ) Xj = V]

is the cost minimal factor demand of secfjor Noting the restriction of (D3)
it is natural to imposebj(q) = p; on all sectors so that their behavior is
characterized by

47 = (bj@@ —ppX;=0 j=1,...,n
(48 = (V-3 vT)Tq =0
No sector is allowed to achieve a positive profit and their common factor

demand must not exceed the given factor supply. Similar results can be found
in Proposition 5.2.
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4.2 Given Amounts of Outputs

In the opposite case of section 4.1 the vector of factor prigend the
commodity bundle are given instead qf andv. Observing (1.9)

igf la™vti(x,v) = 1}
the constraint yields together with (1.4)

tix,v) 21 < to(X,v) = %sw{pTXI rp.v) Sa} =1
p

Again for an optimal solutiorv with g™V > 0 we have two associated
programs

(P4) c(q. x) = inf la™vi ti(x,v) = 1}

(D4) to(X, V) (g, X) = sup{p'x| r(p,v) = c(q, x)}
p

Analogue to (4.2) the weak duality appears to be
inf {qv| ti(x, v) = 1} = "0 = p'x = sup{p'x| r (p, V) = c(@. %)}

Because a more detailed analysis of this inequality reveals no further insights
of major importance we now turn over to the case of a linear production
technology.

5 Shadow Pricing with a Linear Technology

In order to discuss (4.2) in terms of linear programming it will be useful to go
one step further ahead in duality theory. Starting with the restricgox v) =
1 on the right hand side of (4.2), we know that this relation is equivalent to
v € L(x), see (1.1), (1.7), and (1.9). Under the conditions of (1.7) one can
show that the polar set af, (x) satisfies

L) = Lee()={veVIqvz1Vqge L(x)]

={veViq'vzc@.x) ¥Yqe Q]

Now the revenue maximization problem becomes a problem with infinitely
many constraints whose structure is discussed in Blum, Ottli (1975).

(5.1) r(p.v) =sup{p'x|q'v = c(q,x) ¥Yq e Q}
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With that (4.2) can be discussed in terms of linear programming.

A linear production technology is characterized bymarx n-matrix A where
the constant elements; determine the input coefficients of the input=
1,..., min the production of good = 1,..., m. Now the constraint of (P3)
takes the formAx = v. From the theory of linear programming it is well
known that the following programs

(P4) S)l(Jp{pTX| Ax S v, x € X}

(D4) inf{a"viATazp, g€ Q}

are dual to each other where (4.2) corresponds to
qvzq'Ax=p'™x  VXQq) eXxQ.

However, in view of (5.1) the constraints of (P4) may be seen in the form
q" (Ax) = q"vforallq € Q. Actually, this system of inequalities can be found

in the Kuhn-Tucker conditions of (P4). To show this the Lagrangean form,
which is introduced in Walk (1989), is taken as a substitute for the Lagrange
functions of (P4) and (D4):

(0, x)=p'x+q'v —q'Ax
A point (g, X) is said to be a saddle point gfwith respect toQ x X if
(5.2) P, %) Z 9(@,%) Ze(d,X) V(4 x) € Qx X
or, equivalently,
(5.3a) q"(v—AR =q"(v—AX) vgeQ
(5.3b) P-ATH) X (p-ATHTK Vx e X

As Q x X = RT*" the equivalent Kuhn-Tucker conditions describe here the
property of complementary slackness (e.g. Vanderbei (1998)).

(5.4a) AXsv, %z0, §'(v-Ax)=0,
(5.4b) Algzp, §zo0, (Aq—p/'x=0

They implicitly include the conditions & q"(v — AX) for all q € Q and
(p—ATq)™x = 0forallx € X. Transferred to convex programming (5.3)
corresponds to

q'v-c@%=q'v-c@% VgeQ
p’X—c@x) =Sp'R—c(@,%  VxeX

18



where, by (4.7), §'v = c(§, %) = p'X. In the next step two generalized
conjugate functiond are defined, where, corresponds to the restriction of
(5.1) andc* is similar to the constraint of (4.1).

c.(v, x)=inf{q"v —c(q,x)| q € Q} with c.(v,X) =0

c*(p, q):=sup{p'x — c(q, )| x € X} with ¢*(p,§) =0
The latter problem determines a profit maximum commodity burd{@n the
other hand, the former problem seeks for a price vector such that the difference

between the value of the given factor endowmeand the minimum cost in
the production ok is minimal.

The subsequent analysis is based on the Lagrangean form
(g, X)=p'x+q'Vv - c(q,X).
By the following definitions
M(@) = suple(d. )} = q'V +¢*(p. @) Q°={d € Q| M(q) < +0o0}

m(x) = inf {p(d, X)) = PTX + C.(V, X) X°:={x € X| m(X) > —oc}
qe

the functions M: Q° —- R and m: X° — R constitute a pair of dual
programs.

(PS) inf{M(q)| g € Q°}
(D5) sup{m(x)| x € X°}

Here, (D5) is a problem of revenue maximization, where the revenués
corrected by the cost term, (v, X). The opposite problem (P5) seeks to
minimize costy'v plus a term, which has been interpreted as maximum profit.

Regarding these two problems, we have the following

Proposition 5.1 The subsequent three statements are equivalent:

1. The functionp has a saddle point(X, ) € X x Q such that (5.2)
holds good.

17 Analogue to Mabhler’s inequality the duality scheme of (convex) conjugate functions deals
with the problem of finding “best” pairs of functioaf, g) fulfilling the Young-Fenchel
inequality f(x)+g(y) Z xTy Vx, Vy.
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2. X’ £ @and Q # @. The problemgP5) and(D5) are realizable and

min{M(a)| g € Q°} = ¢(q, X) = max{m(x)| x € X°}

3. Thereis apair (X, §) € X° x Q° such that

The proof is straight forward and in line with Walk (1989) it is recommended
to go through the following sequence: += 3. — 2. — 1.

Proposition 5.2 (Kuhn-Tucker conditions) Let ¢(qg, X) be concave-convex.
Suppose c to be differentiable @, X) “regarding Q x X”, where Q=R

and X = R. Then the statements of Proposition 5.1 are satisfied if and
only if

Vic(§,%) —p =0, e X, KT (%@, %) —p) =0,

Here, the assumption thatq, -) is convex, rules out increasing returns to
scale. The Kuhn-Tucker conditions correspond to the system (5.4). As itis
common practice, the two preceding equalities can be interpreted as follows:
if the marginal cost of good exceeds the pricg;j, nothing will be produced

(Xj = 0). On the other han&; > 0 implies marginal cost pricing. Moreover,

a positive factor pricg; induces that the factor supply corresponds to the factor
demand of input. Finally, an excess supply of inputequires a zero pricé.
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