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Abstract 

This paper provides an example in which a slight behavioral het­
erogeneity may fundamentally change the qualitative properties of a 
nonlinear cobweb market with a quadratic cost function and an isoe­
lastic demand function. We consider two types of producers; adaptive 
and naive. In a market of naive agents a single adaptive agent stabi­
lizes the otherwise exploding market. In a market of adaptive agents a 
single naive agent may destabilize the market; without him there exists 
at most one periodic attractor in the market but with him there may 
appear many coexisting periodic attractors of arbitrarily large periods. 
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1 Introduction 

A producer can choose his own way from the many available techniques to 
adjust production capacity and many different types of behavior coexist in 
reality. However, monotypic behavior dominates in economic theories. A 
representative agent typifies preferences and technologies as well as rational 
behavior of the whole society of agents. 

One possible argument in favor of simplifying a model by assuming a 
'representative rational agent' apparatus is that all the different behavior has 
already died out and only the representative agent survives [Lucas (1986)]. 
Evolutionary economics shows, however, that survival probabilities depend 
on the environment of agents and the selection mechanism [Axelrod (1984)]. 
Different types of behavior can survive simultaneously. 

Another possible defense of assuming a representative agent is that a ma­
jority of the agents behaves in the same way and their behavior determines 
the dynamics of the market. In the stock market, however, a small group 
of risky traders could disturb the behavior of stock prices. The type of the 
market may determine whether the behavior of a majority determines the 
market outcome or whether the outcome depends on a minority of agents. 
The 'representative rational agent' is a theoretical apparatus that works 
with certainty only when all agents behave in the same way. 

There are different behavioral techniques available and a dynamical process 
of switching to successful technologies seems to be plausible. However, even a 
unique superior technology does not necessarily extinguish all different types 
of technologies. At least one producer may sometimes behave differently. If 
the market is still in a phase of transition, this producer still uses the 'old' 
technology because he is a late adopter. If we are in a steady state, this pro­
ducer tries a 'new' technology to improve profits. Thus heterogeneity, or di­
versity, of agents' behavior is a natural feature in our daily life, but not intra­
ditional economics. Only recently, dynamical economics has considered het­
erogeneous agents [Gallegati/Kirman (1999), Delli-Gatti/Gallegati/Kirman 
(2000), Den-Haan (2001) and Kirman/Zimmermann (2001)]. The literature 
separates three different kinds of heterogeneity; personal characteristics like 
preferences or income, the way expectations are formed, and behavioral rules 
that agents use due to their bounded rationality. Some important results 
are already available. 

In a growth model, agents with heterogenous preferences for income are 
examined by Cardak (1999); in a dynamic economy with progressive tax 
system heterogeneity in the rate of impatience is studied by Sarte (1997) 
and in an overlapping generation model heterogeneity in income and talent 
is analyzed by Chiu (1998). Heterogeneous general preferences in a perfect­
foresight equilibrium of a finance-constrained economy allows Hopf cycles 
to be entirely consistent with a wide range of elasticities of substitution 
[Barinci (2001)]. 
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Brock/Hommes (1997), Gaunersdorfer (2000) and Goeree/Hommes (2000) 
study dynamical models where agents update their expectations according 
to an observed measure such as net profits. Bomfin (2001) shows that if 
some agents solve their inference problems based on simple forecasting rules 
of thumb, there is a significant effect on the aggregate properties of the 
economy. In a cobweb model, where two different forecasting procedures 
are considered, either one destabilizes the price dynamics if it is uniformly 
adopted by all firms; or the price equilibrium becomes locally stable if firms 
are heterogeneous, and the two rules are suitably mixed within the popula­
tion [Franke/Nesemann (1999)]. 

Day /Huang (1990), Chiarella (1992), Lux (1995) and Lux/Marchesi (2000) 
study how heterogeneous behavior of traders generates complex motion of 
financial markets. Cooper (1998) considers heterogeneity of agents in a stan­
dard stochastic growth model by assuming that agents react with different 
probabilities to current values of relevant state variables. 

In the present paper we would like to investigate whether a slight be­
havioral heterogeneity could be a factor that generates complex dynamics 
of the market. We consider a nonlinear cobweb market with a quadratic 
cost function and an isoelastic demand function. Two types of producers' 
behavior are assumed; one is 'adaptive' and the other is 'naive'. An adap­
tive producer adjusts his output toward the profit-maximizing quantity as 
a target, while a naive producer produces the profit-maximizing quantity 
instantaneously. 

We show that a single adaptive agent may change the complexity of 
the market behavior. If there is no adaptive agent and demand is inelastic 
enough for the market to explode, a single adaptive agent can stabilize the 
market in the sense that it would not explode, but only by causing chaos. On 
the other hand, when there are exclusively adaptive agents, there exists at 
most one periodic attractor for the market. If a single naive agent appears, 
then there may appear many (and even infinitely many) coexisting periodic 
attractors of arbitrarily large period. 

2 Model 

In this section, we derive a two-dimensional nonlinear cobweb model includ­
ing naive and adaptive agents from a general, n-dimensional model including 
n-types of adaptive agents. 

2.1 Definition of adaptive and naive behavior 

Before presenting the model, we start by defining precisely the notion of 
'naive' and 'adaptive' behavior. Let us consider the following profit-maximizing 
problem: to decide in period t the production Xt+l for period t+ 1 subject to 
a quadratic cost function ax2 /2, a > 0 and naive price expectations, which 
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state that his price expectation for the next period is equal to the current 
price Pt· The resulting quantity is 

~ Pt 
Xt+l = -. 

a 

If a supplier produces this quantity instantaneously, i.e. 

Xt+l = Xt+l, 

we call him a naive supplier. 

(1) 

On the other hand, as considered in Onozaki/Sieg/Yokoo (2000), an 
adaptive supplier adjusts his last period's production Xt in the direction of 
Xt+ 1 · Thus his adjustment behavior is described by the following formula: 

Xt+l = Xt +a (Xt+l - Xt), (2) 

where a E [O, 1] is the speed of adjustment. If a = 1, then Eq. (2) is 
identical to Eq. (1), which means that naive behavior is a special case of 
adaptive behavior where a = 1. 

2.2 General model 

Let us consider a general model where there are N (a positive integer) types 
of adaptive suppliers1 . All groups of suppliers share the same cost function 
considered above. Production Xi,t+l in period t + 1 of the i-th type of 
suppliers is determined by 

O'.iPt 
Xi,t+l = (1 - O'.i)Xi,t + --, i = 1, 2, ... 'N 

a 

where ai E [O, 1] is a speed of adjustment of the i-th type of suppliers. 
Therefore, the aggregate supply per capita Xt at period t is given by 

N N 

Xt = L niXi,t with ni E [O, 1] and L ni = 1 
i=l i=l 

where ni is the relative size of the i-th group of suppliers. 
We assume an inverse demand function which is isoelastic with a price 

elasticity of 1 /er : 

b 
Pt = y:a-, 

t 
b > 0, O' > 0. 

1 Another possible introduction of heterogeneity is to assume that cardinality of types is 
a continuum represented as the unit interval [O, 1]. 
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Equating the aggregate supply and demand, Xt 
dimensional discrete-time dynamical system: 

Yt, gives an N -

i=l,2, .. ·,N. 

Applying a variable transformation, 

(a) 1~0-
Zi,t := b Xi,t, 

we obtain the final form: 

i=l,2, .. ·,N. (3) 

2.3 Reduced models 

Using the general model (3), we can derive a 'standard', homogeneous cob­
web model and an adaptive, homogeneous cobweb model [Onozaki/Sieg/Yokoo 
(2000)]. If we assume N = 1 and a = 1, then (3) reduces to a one­
dimensional, discrete-time dynamical equation 

(4) 

which preserves the properties of the standard cobweb model. The behavior 
of ( 4) depends on price elasticity; if price elasticity is greater than one ( O' < 
1), price trajectories converge to a stable fixed point z* = 1. If price elasticity 
is equal to one (O' = 1), price trajectories exhibit 2-period cycles. However, 
if price elasticity is less than one ( O' > 1), price trajectories oscillate and 
explode to infinity. 

Ifwe assume N = 1 and a E [O, 1), then (3) reduces to a one-dimensional, 
discrete-time dynamical equation 

a 
Zt+l = (1 - a)zt + -, zU 

t 
(5) 

the behavior of which is studied by Onozaki/Sieg/Yokoo (2000) and Onozaki/ 
Sawada (2001) to show that if O' < (2 - a)/a, price trajectories converge 
to a unique stable fixed point z* = 1. The fixed point undergoes a period 
doubling bifurcation at O' = (2 - a)/a. If O' > (2 - a)/a, price trajectories 
exhibit periodical cycles or chaos. Because (2 - a)/a> 1, the last inequal­
ity implies that O' > 1. We can state that adaptive behavior prevents the 
unstable market from going to infinity, only by causing periodical cycles or 
chaotic behaviors. Adaptive behavior stabilizes the market in this sense. 

However, the assumption that all agents behave homogeneously is un­
realistic. To get a better picture of a cobweb market, we concentrate on a 
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rather simple type of heterogeneity. We consider a model that is a little more 
general than (4) and (5) by including two categories of behavior; adaptive 
and naive. Reducing the N-dimensional model to a two-dimensional model 
makes not only analytical treatment but also the graphical depiction much 
easier and makes it possible to show the difference between one-dimensional 
and two-dimensional model. 

It is easy to derive a two-type suppliers model from the general expression 
(3). Let us suppose N = 2, denote an adaptive supplier by i = 1 and a 
naive supplier by i = 2. The relative size of adaptive suppliers' group ni is 
replaced by m, so that the relative size of naive suppliers' group is 1 - m. 
Since a naive supplier produces the profit-maximizing amount immediately, 
his adjustment speed a2 is obviously unity. Letting z1,t = Ut and z2,t = Vt 
gives 

Ut+l 
a 

( 1 - a )ut + [ ( l ) Ju, mut + - m Vt 
(6) 

1 

[mut + (1 - m)vtt' 
Vt+l = (7) 

where a E (0, 1) expresses the adjustment speed of the adaptive supplier. 

3 Analysis of the model 

The main purpose of this section is to show that heterogeneity in agents' 
production adjustment behavior can give rise to qualitatively different and 
more complicated dynamic features than those of the homogeneous produc­
tion case. 

Eliminating u's from Eqs. (6) and (7), we obtain the following second 
order difference equation: 

1 1 

v~~ = (1 - m)vt+1 - (1 - m)(l - a)vt + (1 - a)v~~ + amvt+l· (8) 

Letting 
_ _!_ 

Xt = Vt a and Xt+l = Yt, 

Eq. (8) can then be transformed into the two-dimensional dynamical system 
(xt+1, Yt+1) = F(xt, Yt), where 

with 

F(x, y) = (y, f (y) + (1 - m) h (x, y)) 

f (y) 
h(x,y) 

(1 - a)y + ay-u and 

(1 - a) [y-u - x-uJ . 

(9) 

In order to indicate the dependence of F and f on the parameter rT and m, 
we sometimes write these as Fu,m and f u· In this section, the parameter 
a E (0, 1) is assumed to be always arbitrarily fixed in (0, 1). 
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3.1 Some implications of homoclinic bifurcation 

It has been widely known in economic literature that complex dynamics 
can arise via homoclinic bifurcations; see, e.g., Palis/Takens (1991) for a 
detailed mathematical treatment of this subject. We will show that the 
economic system given by (9) has a hyperbolic fixed saddle whose stable 
and unstable manifolds have homoclinic tangencies that unfold generically. 
As a result, the system is shown to exhibit complex dynamics such as strange 
attractors, infinitely many periodic attractors, creation of horseshoes, and 
cascades of period-doubling sequences. 

Note first that the map Fu,m in (9) has a unique fixed point p = (1, 1), 
which is independent of parameters. For a suitable choice of parameters, 
p is a dissipative hyperbolic saddle. Let us denote by W~ m(P) the stable 

' 
manifold of the fixed point p for the map Fu,m· Similarly, w;,m(P) denotes 
the unstable manifold of p for Fu,m· 

LEMMA HT (HOMOCLINIC TANGENCY LEMMA): There exists f; E (0, 1) 
such that for any m E (s, 1) and for some 0- = &(m), the map F&,m has the 
following properties: 

(i) the fixed point p is a dissipative hyperbolic saddle, i.e., the Jacobian 

matrix DF&,m(P) has two real eigenvalues >-1 and >-2 such that l>-11 > 1, 
0 < l>-21 < 1 and l>-1>-21 < 1; 

(ii) the stable manifold Wt m (p) and the unstable manifold WJ-' m (p) have 
a quadratic homoclinic' tangency that unfolds generically ;;ith respect 
to rT. 

PROOF: See Appendix 6.1. 
The relation between stable and unstable manifolds as a function of rT is 
depicted in Fig. 1. 

***Fig. l(a)-(c) about here *** 

The dynamical complexities stated in the following proposition are due 
to homoclinic bifurcations. For complex dynamics due to homoclinic bifur­
cations in an overlapping generations model, see e.g. de Vilder (1996). 

PROPOSITION 1 (COMPLEX DYNAMICS): Take m E (s, 1) and /j as in 
Lemma HT. Let 15 > 0 be a sufficiently small number and let I = ( &-15, &+15). 
Then the following holds: 
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(i) There exists an interval H C I such that for each rT E H, Fu,m has 
a horseshoe. That is, there exists an Fu,m -invariant set Au on which 
Fu,m has infinitely many saddle-type periodic orbits of arbitrarily large 
period; 

(ii) There exists a set of rT-values E c I with positive Lebesgue measure 
such that for each rT, Fu,m has a strange attractor; 

(iii) There exists a sequence {rTn} C I with rTn--+ /J as n--+ oo such that 
for each rT n, Fun,m undergoes a period-doubling bifurcation; 

(iv) For each k ~ 1, there exists an interval Jk c I such that for each 
rT E Jk, Fu,m has at least k coexisting periodic attractors. Furthermore, 
there exist infinitely many subintervals In C I and a dense subset 
Nn C In such that for each rT E Nn, Fu,m has infinitely many periodic 
attractors of arbitrarily large period. 

PROOF: See, e.g., Palis/Takens (1993, Chapter 2) for (i), Mora/Viana (1993) 
for (ii), Yorke/Alligood (1983) for (iii), and Robinson (1983) for (iv). 

3.2 A single heterogeneous agent makes a difference 

Once a single agent (to be more precise, a sufficiently small fraction of 
agents) of a different type is put into a homogeneous group, what will happen 
in the market? We will show that such a single heterogeneous agent may 
drastically change the qualitative dynamic feature of a market. 

First, we show that if there is no adaptive agent and demand is inelastic 
enough for the market to explode, a single adaptive agent can stabilize the 
market in the sense that it would not explode. 

PROPOSITION 2 (A SINGLE ADAPTIVE AGENT MAKES A DIFFERENCE): 
For m = 0 and rT > 1, the trajectory of F for any initial condition 
(uo, vo) E IP2.~+ explodes unless vo = 1. On the other hand, form E (0, 1], 
every trajectory starting from IP2.~+ is trapped into a compact region in IP2.~+. 

PROOF: See Appendix 6.2. 

Conversely, if a single naive agent appears in a market where there exist 
exclusively adaptive agents, then there may appear many (and even infi­
nitely many) coexisting periodic attractors in the market. Multiplicity of 
attractors cannot occur in a market solely occupied by adaptive agents. 

PROPOSITION 3 (A SINGLE NAIVE AGENT MAKES A DIFFERENCE): For 
m = 1, there exists at most one periodic attractor for the map Fu,1· On the 
other hand, for any m < 1 sufficiently close to 1 and for any k ~ 1, there 
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exists an interval Jk of (}'-values such that for each (}' E Jk, Fu,m has at least 
k coexisting periodic attractors. Furthermore, for m < 1 sufficiently close 
to 1, there exist intervals {Ii}~1 of (}'-values and dense subsets {Ni c Ii} 
such that for each (}' E Ni, Fu,m exhibits infinitely many coexisting periodic 
attractors of arbitrarily large period. 

PROOF: See Appendix 6.3. 

4 Numerical simulations 

In this section we present some results of numerical simulations of Eq. (6) 
and (7) and discuss their implications. 

First, we show the graph of a strange attractor for the parameter constel­
lation (a,(}', m) = (0.2, 8.1, 0.8) in Fig. 2, which exhibits a fractal structure. 

*** Fig. 2 about here *** 

A one-parameter bifurcation diagram with respect to m is depicted in 
Fig. 3 and a part of it is enlarged into Fig. 4. From PROPOSITION 2 we can 
state that if there appears one adaptive supplier in an otherwise unstable 
cobweb market (m = 0 and (}' > 1) then the market will not explode but 
will begin to behave chaotically. Furthermore, from Fig. 3 it is observed 
that as the relative size m of adaptive suppliers increases, the amplitude of 
price trajectory gets smaller. In these senses, adaptive behavior stabilizes a 
cobweb market. 

*** Fig. 3-4 about here *** 

The model has three key parameters, a,(}' and m, so that we can draw 
two-parameter bifurcation diagrams with one of them fixed. These diagrams 
are depicted in Fig. 5-7, where each color corresponds to period's number 
of cycles as shown in the table in Fig.5. The red area exhibits pairs of 
parameter values for which every trajectory converges to a unique stable 
fixed point. The orange area consists of pairs of parameter values for which 
every trajectory converges to a period-2 cycle. The mustard-colored area 
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corresponds to a period-3 cycle, the yellow area corresponds to a period-4 
cycle, the emeraldine area corresponds to a period-6 cycle, and the light-blue 
area corresponds to a period-8 cycle, etc. The black area corresponds to a 
cycle of period more than 16. For the set of parameters which belongs to the 
white area, our model exhibits observable chaos in the sense of a positive 
Lyapunov exponent. 

***Fig. 5-7 about here *** 

Among the factors which determine whether the trajectories are chaotic, 
the most important parameters are speed of adjustment and price elasticity 
of demand. The faster the speed of adjustment and the less elastic the 
demand, the more likely the price fluctuates chaotically. The relative size 
m of adaptive agents, compared to these two parameters, influences the 
situation only slightly. The relatively larger the size of adaptive agents, the 
less likely it is that the price fluctuates chaotically. This result confirms 
the importance of adaptive behavior and price elasticity of demand already 
stressed by Onozaki/Sieg/Yokoo (2000). 

The theoretical fact that introducing naive agents may change market 
behavior is also observed in numerical simulations. Fig. 8 depicts a two­
parameter bifurcation diagram for the reduced model (5) where there are 
exclusively adaptive agents, while Fig. 5 depicts the case where the relative 
size of naive agents is 20 percent. Comparing Fig. 5 to 8 shows that there 
is a crucial difference between one-dimensional model and two-dimensional 
model in the process of how bifurcations occur; in Fig. 5 the red area of 
convergence is smaller and partly replaced by the orange area of alternat­
ing prices. More importantly, as a result of introducing naive agents, the 
extreme bottom-left chaotic area (the first window of period-doubling bifur­
cations) in Fig. 5 is larger, and within the chaotic area there appear many 
'fishhooks' 2 . 

*** Fig. 8 about here *** 

One part of Fig. 5 including some fishhooks is enlarged and shown in Fig. 
9. The geometrical shapes in Fig. 9 are also observed in the first windows 
of Fig. 6 and 7. Striking features of the fishhooks are that (1) their shapes 

2The word 'fishhook' was first used in Fraser/Kapral (1982). 
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are similar in the same diagram, (2) they basically consist of a combination 
of regions exhibiting period-doubling bifurcations, and (3) they accumulate 
in increasing order of period as rT increases or m decreases. 

*** Fig. 9 about here *** 

In order to clarify the structure of a fishhook, it is useful to calculate 
bifurcation curves, which are the loci in the parameter space where the 
system has a periodic orbit exhibiting the relevant bifurcation. Bifurcation 
curves related to a period-5 orbit, projected on the (a, rT) -plane, are depicted 
in Fig. 10 where thick curves correspond to saddle-node (or fold or tangent) 
bifurcations and thin curves correspond to period-doubling bifurcations. 

*** Fig. 10 about here *** 

It is noted that the two thick curves in Fig. 10 touch each other at 
their tips and form a cusp-like shape. To understand the formation of the 
cusp, let us employ the concept of periodic point surface coined by Sannami 
(1994). Let n be a positive integer and Gn : IP2.'l- --+ IP2.2 be a map defined 
by Gn(x, y, a, CT, m) = Fn(x, y) - (x, y). As Gn = (0, 0) denotes a periodic 
point of period-n, a point on Kn= G;::; 1 (0, 0) indicates the coordinate of a 
periodic point and the corresponding parameters. Kn is called the periodic 
point surface in IP2.t. The periodic point surface Ks near the cusp point in 
Fig. 10 is conceptually represented in Fig. 11. Thick bifurcation curves in 
Fig. 10 are the projections of the folds of the periodic point surface Ks on 
the (a, rT )-plane. 

*** Fig. 11 about here *** 

Fig. 12 and 13 depict basins of attraction for different constellations of 
parameters, which again exhibit a fractal structure. There coexist initial 
points such that every trajectory starting from these converges to either 
period-12 or -30 cycles in Fig. 12 and either period-10 or -18 cycles in Fig. 
13. Colors in these figures follow the order shown in the table in Fig. 5, but 
colors for period-n (n > 16) cycles are assigned to the same color as those 
for period-(n - 16). 

*** Fig. 12 and 13 about here *** 
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5 Conclusion 

We have investigated the dynamics of a nonlinear, two-dimensional cob­
web model which contains two types of heterogeneous agents-adaptive and 
naive suppliers. Even a single heterogeneous agent may change the qual­
itative behavior of the market. If there are exclusively naive agents and 
demand is inelastic enough for the market to explode, a single adaptive 
agent can stabilize the market in the sense that it would not explode, but 
only by causing chaos. On the other hand, when there are exclusively adap­
tive agents, there exists at most one periodic attractor for the market. If a 
single naive agent appears in such a market, then there may appear many 
(and even infinitely many) coexisting periodic attractors of arbitrarily large 
period. 

Onozaki/Sieg/Yokoo (2000) hypothesis states that in a market with ex­
clusively adaptive agents, low price elasticities and fast adjustment may 
cause the market to behave chaotically. In this paper, we extend this hypoth­
esis so as to hold for a market with heterogenous agents. More importantly, 
however, market behavior is not determined by the behavior of a majority 
of agents but even a single heterogenous agent may have a profound impact 
on the qualitative behavior of the market. Therefore, the assumption that 
the theoretical concept of homogenous agents is an appropriate approxima­
tion of the reality of heterogenous agents, which is common in traditional 
economic theory, seems questionable. Heterogeneity, or diversity, of agents 
may be the mother of rich dynamics and therefore possibly the source of 
stability, oscillation and chaos. 

6 Appendix 

6.1 Proof of Lemma HT 

We first consider the case where m = 1. In this case, the map Fu,m given in 
(9) reduces to the following singular (thus noninvertible) map: 

Fu,1(x,y) = (y,fu(Y)). 

The map Fu,1 is clearly equivalent to the one-dimensional map f u in the 
sense that fu on lP2. is topologically conjugate to Fu,1 on Im(Fu,i) through 
the conjugacy rp( x) = ( x, f u ( x)). The dynamics of f u was studied in 
Onozaki/Sieg/Yokoo (2000) where f u was shown to be strictly convex and 
unimodal with its global minimum at 

B= (~)1~0-
l-a 

That is, f~(B) = 0 and J:;(x) > 0 for every x > 0. 
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We can see that if rT is large enough and m is close enough to unity (de­
pending on rT), then a unique fixed point p = ( 1, 1) of Fu,m is a hyperbolic 
and dissipative saddle. More precisely, we state 

LEMMA 1 (LEMMA HT (i)): Given a E (0, 1), if rT > (2 - a)/a then 
there is a 15 = 15(CY) E (0, 1) such that for m E (15, 1) the two eigenvalues A1 
and A2 of the Jacobian matrix DFu,m evaluated at p = (1, 1) satisfy (i) 
0 < IA1A2I = (1 - m)rT < 1 and (ii) IA1I > 1 and 0 < IA2I < 1. 

PROOF OF LEMMA 1: Since 

DFu,m(P) = ( (1 - m)~l - a)CY 1 - a - aCT - (~ - m)(l - a)CY ) ' 

for m = 1 we have A1 = 1 - a - aCT and A2 = 0. Thus, by the continuity of 
eigenvalues with respect tom, if rT > (2 - a)/a then (i) and (ii) hold form 
sufficiently close to 1. D 

We will denote the globally stable (unstable) manifold of the fixed point 
p = (1, 1) of the map Fu,m by w;,m(P) (W;,m(P), respectively). We will 
abuse this notation for the singular case when m = 1. 

LEMMA 2: For any a E (0, 1) and for any sufficiently large rT, the unstable 

manifold w; 1(p) contains an arc /~ 1 = {(x,y): x E [fu(B),f;(B)], y = 
' ' fu(x)}. 

PROOF OF LEMMA 2: Note that from Lemma 3 in Onozaki/Sieg/Yokoo 
(2000), we know that fu(B) < 1 < e < f;(e) for sufficiently large CT. The 
assertion of Lemma 2 follows from the fact that fu([fu(B), BJ) ::J [B, f;(B)] 
and from Lemma 2 in Onozaki/Sieg/Yokoo (2000). D 

LEMMA 3: For a E (0, 1) and m = 1, the stable manifold w; 1 (p) contains 
' a horizontal line segment (depending on rT) 

r~ 1 = {(x, y): x E [fu(B), f;(B)], y = q(rT) with r(q) = 1 for some n > l} 
' 

with the property that 

(Pl) /~1 , 1 and /~1 , 1 have no intersection; 

(P2) /~2 , 1 and /~2 , 1 have two transverse intersections for some rT1 and rT2 
with CTl < CT2. 

PROOF OF LEMMA 3: From the proof of Proposition 2 in Onozaki/Sieg/Yokoo 
(2000), we know that there are rT1 and rT2 such that f;

1 
(B(rT1)) < q(rT1) and 
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f;
2
(B(0"2)) > CJ(0"2) , where CJ is an eventual fixed point with CJ > e. This 

implies that !en (B(0"1)) > q(0"1) = f;;/(CJ(0"1)) n (0, B(0"1)) and fu 2 (B(0"2)) < 
q(0"2) = f;;

2
1(CJ(0"2)) n (0, B(0"2)). Since f(B) ::::; f(x) for x > 0, (Pl) follows. 

Since f ( x) --+ +oo as x --+ 0 and x --+ +oo and since f is strictly decreasing 
on (0, B) and strictly increasing on ( e, oo), /~2 , 1 and /~2 , 1 have two (and only 
two) intersections by continuity. They are transverse because J'(x) # 0 for 
x # e, which proves (P2). D 

The above situation is called inevitable tangency coined by Takens ( 1992). 
See Fig. 14. 

***Fig. 14(a)-(b) a bout here*** 

Now we will perturb the singular map Fu,1 into non-singular maps by 
making m slightly smaller. 

LEMMA 4 (LEMMA HT (ii)): Let 0"1 and 0"2 be as in Lemma 3. Then 
there exists s E ( 8, 1) such that for every m E ( s, 1), the map Fu,m has arcs 
,-Ys um C w; m(P) and ,-Yu um C w; m(P) satisfying the following: 

' ' ' ' 

(ii) ,_ys u2,m and ,-Yu u2,m have two transverse intersections, and 

(iii) For some O"* E ( 0"1, 0"2), ,-Ys u* m and ,-Yu u* m have a quadratic homo-
' ' 

clinic tangency that unfolds generically with respect to O". 

PROOF OF LEMMA 4: Since the fixed point p of the singular map Fu,1 is 
hyperbolic (eigenvalue of zero is allowed), the non-singular map Fu,m form 
sufficiently close to 1 has an arc ,-Yu um c w; m(P) which is er -close (r ~ 0) 

' ' 
to /~ 1 (obtained in Lemma 2) by continuous dependence of the unstable 

' manifold on Fu,m in the er topology. Furthermore, it is easily seen that the 
arc /~, 1 consists of regular points, i.e., Im(DF;:,1(x)) + TF~,i(x)b~, 1 ) = IP2.2 

for every x E /~ 1 and for n such that F;: 1 (x) = p. Thus by Proposition 1 in 
' ' 

Appendix 4 in Palis and Takens (1993, p.182), the non-singular map Fu,m 
for m sufficiently close to 1 has an arc ,-Ys um c w; m(P) which is er -close 

' ' 
(r ~ 0) to /~ 1. By stability of transversality and by Lemma 3, the in-

' evitable tangency conditions, (i) and (ii), follow. Evidently, the existence of 
(J'* for which ,_ys u* m and ,-Yu u* m have a homoclinic tangency follows from the 

' ' 
inevitable tangency. By Takens' weakened generic conditions [see Takens 
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(1992)] for analytic diffeomorphisms, we immediately have the quadratic­
ity and the generic unfolding of the homoclinic tangency because the ratio 
- log(>.2( er)) /log(>.1 (er)) of eigenvalues of D Fu,m(P) is clearly non-constant 
with respect to er. D 

6.2 Proof of Proposition 2 

(i): Since Vt = v6-u)t' we have limsupt---++ooVt = +oo for Vo> 0 and Vo# 1. 
Furthermore, if vo = 1, then ut+1 = (1 - a)ut +a and thus Ut --+ 1 as 
t --+ +oo for any uo. 

(ii): Suppose first that the (positive) sequence { Vt} is eventually bounded in 
the sense that there exist an integer K (depending on vo and uo) and v < +oo 
such that 0 < Vt ::::; v for any t > K. Noting that ut+1 = (1 - a)ut + avt+1 ::::; 
(1 - a)ut + av for t > K, we obtain 

Ut 

< 

(J - a)'-K UK I a ['-~' (l - a)'v,_,l 

(J - a)l-K UK I aV ['~' (l - a)'] 
(1 - a)t-KUK + iJ [ 1 - (1 - a)t-K] 

------+ iJ as t --+ +oo. 

Thus it suffices to show that { Vt} is eventually bounded. Suppose not. Then, 
for any s' > 0, there exists an integer K such that VK+3 > s' or 

0 < muK+2 + (1 - m)vK+2 < (s')-l/u = s, 

which implies 

Thus we get 

f; 

UK+2 < -
m 

and 
f; 

VK+2 < -
1
--. 
-m 

a 
(1 - a)uK+l + u 

[muK+l + (1 - m)vK+1l 
< 

1 
< 

From (10) we obtain 

UK+l < m(l _ o:) · 
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and 
m 

f; 

1-m 

(10) 

(11) 

(12) 



Rearranging (11) gives 

[
1 - m] ~ 
-s- < muK+l + (1 - m)vK+l· 

Combining (12) and (13) we obtain 

1 [1-m]~ VK+l >-- --
1 - m s 

f; ---- = 6(s). 
(1 - a)(l - m) 

From (12) and (14), it follows that 

m(l - a) 

Hence we obtain 

a 
> UK+l = (1 - a)uK + [ (l ) Ju 

muK+ -m VK 

> (1 - a)uK + avK+l 

> (1 - a)uK + a6(s) 

> a6(s). 

s > ma(l - a)6(s). 

(13) 

(14) 

Since 6(s) --+ +oo ass--+ 0, we get a contradiction. This completes the 
proof. D 

6.3 Proof of Proposition 3 

(i): Note first that the Schwarzian derivative of fu is given by3 

mr(l +er) [acr(cr - 1) + 2(1 - a)(2 + cr)xl+u] 
Sfu(x) = - 2 

2 [(a - l)x2+u + acrx] 

We see that 

Sf u(x) < 0 for er ~ 1 and x > 0. 

Therefore, by Singer's theorem [Singer (1978)], f has at most one periodic 
attractor for er~ 1, and so does Fu,1· 

Now consider the case of er E (0, 1). Since we have a unique fixed point at 
x = 1, it is sufficient to show that f has no periodic attractor of period 
greater than or equal to 2. Since Sarkovskii's ordering says that for any 
continuous map on an interval, the existence of a periodic point of period 
greater than 2 implies that of period-2, all we need to do is to show that f 

3See Onozaki/Sieg/Yokoo (2000), p.108. 

16 



cannot have a periodic point of period-2 for rT E (0, 1). For this we define a 
strictly decreasing function l by 

Since 

we have 

1 
l(x) = -

xu for rTE(0,1). 

[
xl+u 1] 

f (x) - l(x) = (1 - a) xu , 

f(l) = l(l) = 1, f(x) < l(x) for x E (0, 1), and f(x) > l(x) for x > 1. 

Since rT E (0, 1), we can easily see that 

x < l2(x) for x E (0, 1) and l2(x) < x for x > 1. 

Suppose that the map f has a (least) periodic point p of period-2, that 
is, j2(p) = p and f(p) # p. Suppose p > 1. (For p E (0, 1), the same 
argument applies.) Since f (p) > l (p) and l is strictly decreasing, we have 

t2 (p) > Z(f(p)). (15) 

In order for p to be a periodic point of period-2, it is necessary that f (p) < 1 
holds. To see this, note that it would otherwise imply that either f (p) > 
p > 1 or p > f(p) > 1. Let g(x) = f(x) - x. For the case of f(p) > p > 1, 
we obtain g(p) = f(p) - p > 0 and g(f(p)) = j2(p) - f(p) = p - f(p) < 0, 
which implies that there is a fixed point q E [p, f(p)] off. This contradicts 
the uniqueness of a fixed point off. Similarly, for p > f(p) > 1, we get 
another contradiction. Since f(p) < 1 and f(x) < l(x) for x E (0, 1), we 
have 

l(f(p)) > f(f(p)) = p. (16) 

Thus, combining (15) and (16) together with the inequality x > l2(x) for 
x > 1, we finally obtain 

P > z2(p) > l(f(p)) > f2(p) = p, 

a contradiction. This completes the proof of part (i). 

(ii): See (iv) in Proposition 1. D 

17 



7 References 

Axelrod, R., 1984, The Evolution of Cooperation (Basic Books, New York). 

Barinci, J.P., 2001, Factors substitutability, heterogeneity and endogenous 
fluctuations in a finance constrained economy, Economic Theory 17, 181-
195. 

Bomfin, A., 2001, Heterogeneous forecasts and aggregate dynamics, Journal 
of Monetary Economics 4 7, 145-161. 

Brock, W.A., Hommes, C.H., 1997, A rational route to randomness, Econo­
metrica 65, 1059-1095. 

Cardak, B.A., 1999, Heterogeneous preferences, education expenditures and 
income distribution, Economic Record 75, 63-76. 

Chiarella, C., 1992, The dynamics of speculative behavior, Annals of Oper­
ations Research 37, 101-123. 

Chiu, W.H., 1998, Income inequality, human capital accumulation and eco­
nomic performance, Economic Journal 108, 44-59. 

Cooper, R., 1998, Business cycles: Theory, evidence and policy implications, 
Scandinavian Journal of Economics 100, 213-237. 

Day, R.H., Huang, W., 1990, Bulls, bears and market sheep, Journal of 
Economic Behavior and Organization 14, 299-329. 

Delli-Gatti, D., Gallegati, M., Kirman, A., eds., 1999, Interaction and mar­
ket structure: Essays on heterogeneity in economics, Lecture Notes in 
Economics and Mathematical Systems 484, (Springer, Berlin). 

Den-Haan, W.J., 2001, The Importance of the number of different agents 
in a heterogeneous asset-pricing model, Journal of Economic Dynamics 
and Control 25, 721-746. 

Franke, R., Nesemann, T., 1999, Two destabilizing strategies may be jointly 
stabilizing, Journal of Economics 69, 1-18. 

Gallegati, M., Kirman, A., eds., 2000, Beyond the Representative Agent 
(Elgar, Cheltenham). 

Gaunersdorfer, A., 2000, Endogenous fluctuations in a simple asset pricing 
model with heterogeneous agents, Journal of Economic Dynamics and 
Control 24, 799-831. 

Goeree, J.K., Hommes, C.H., 2000, Heterogeneous beliefs and the non-linear 
cobweb model, Journal of Economic Dynamics and Control 24, 761-798. 

Kirman, A., Zimmermann, J.-B., eds., 2001, Economics with Heterogeneous 
Interacting Agents, Lecture Notes in Economics and Mathematical Sys­
tems 503 (Springer, Berlin). 

Lucas, R.E., 1986, Adaptive behavior and economic theory, The Journal of 
Business 59, 401-426. 

18 



Lux, T., 1995, Herd behavior, bubbles and crashes, The Economic Journal 
105, 881-896. 

Lux, T., Marchesi, M., 2000, Volatility clustering in financial markets: A 
micro-simulation of interacting agents, International Journal of Theoret­
ical and Applied Finance 3, 675-702. 

Mora, L., Viana, M., 1993, Abundance of strange attractors, Acta Mathe­
matica 171, 1-71. 

Onozaki, T., Sieg, G., Yokoo, M., 2000, Complex dynamics in a cobweb 
model with adaptive production adjustment, Journal of Economic Be­
havior and Organization 41, 101-115. 

Onozaki, T., Sawada, K., 2001, Complementary analysis of a nonlinear cob­
web model with adaptive production adjustment, Journal of Asahikawa 
University 51, 58-64. 

Palis, J., Takens, F., 1993, Hyperbolicity and Sensitive Chaotic Dynamics 
at Homoclinic Bifurcations (Cambridge University Press, Cambridge). 

Robinson, C., 1983, Bifurcation to infinitely many sinks, Communications 
in Mathematical Physics 90, 433-459. 

Sannami, A., 1994, On the structure of the parameter space of the Herron 
map, in: Yamaguti, M., ed., Towards the Harnessing of Chaos (Elsevier 
Science, Amsterdam), 289-303. 

Sarte, P.D., 1997, Progressive taxation and income inequality in dynamic 
competitive equilibrium, Journal of Public Economics 66, 145-171. 

Singer, D., 1978, Stable orbits and bifurcations of maps of the interval, SIAM 
Journal of Applied Mathematics 35, 260-267. 

Takens, F., 1992, Abundance of generic homoclinic tangencies in real-analytic 
families of diffeomorphisms, Boletim da Sociedade Brasileira de Matematica 
22, 191-214. 

de Vilder, R., 1996, Complicated endogenous business cycles under gross 
substitutability, Journal of Economic Theory 71, 416-442. 

Yorke, J.A., Alligood, K.T., 1983, Cascades of period-doubling bifurcations: 
A prerequisite for horseshoes, Bulletin of A.M.S. 9, 319-322. 

19 



(a)  Case of no intersection:

= 0.5 and m = 0.97; =6.22 .
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(b)  Case of homoclinic tangency:

= 0.5 and m = 0.97; =6.26 .
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(c)  Case of transverse intersections:

= 0.5 and m = 0.97; =6.30 .

Fig. 1.  Relations between stable and unstable manifolds as a function of .
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Fig. 2.  Strange attractor for Eq. (6) and (7): = 0.2, = 8.1 and m = 0.8 .



Fig. 3.  Bifurcation diagram for Eq. (6) and (7) with respect to m:

= 0.2, and = 8.0.



Fig. 4.  Expanded bifurcation diagram shown in Fig. 3 with respect to m:

= 0.2, and = 8.0.



Fig. 5.  Bifurcation diagram for Eq. (6) and (7) with respect to ( , ): m = 0.8



Fig. 6.  Bifurcation diagram for Eq. (6) and (7) with respect to (m, ): = 0.6.



Fig. 7.  Bifurcation diagram for Eq. (6) and (7) with respect to ( , m ): = 0.7.



Fig. 8. Bifurcation diagram of the reduced model (5).



Fig. 9. Partial enlargement of Fig. 8.



Fig. 10. Bifurcation curves related to a period-5 orbit on the ( , )-plane for m = 0.8.

Thick curves represent fold bifurcations and thin curves represent period-doubling

bifurcations.



Fig. 11.  Periodic point surface K5  near a cusp point
and its projection on the ( , )-plane.

K5



Fig. 12.  Basin of attraction for = 0.8, = 3.0 and m = 0.0915 .

There coexist initial points such that every trajectory starting from them converges to

either period-12 or -30 cycles.



Fig. 13.  Basin of attraction for = 0.5, = 6.0 and m = 0.961.

There coexist initial points such that every trajectory starting from them converges to

either period-10 or -18 cycles.



(a)  The unstable arc u  and the stable arc s have no intersection.



(b)  The unstable arc u  and the stable arc s have two transverse intersections.

Fig. 14.  One-dimensional inevitable homoclinic tangency with respect to 


