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Abstract

This paper studies infinite-horizon bargaining between a seller and multiple buyers when

externalities are present. We extend the analysis in Jehiel & Moldovanu (1995a) by allowing

for both pure and mixed equilibria. A characterization of the stationary subgame perfect

equilibria in generic games is presented. Equilibria with delay exist only for strong positive

externalities. Since each buyer receives a positive payoff when the seller makes an agreement

with some other buyer, positive externalities induce a war of attrition between buyers.

Keywords : Bargaining, externalities, delay.

JEL Classification : C72, C78, D62.

∗Our work has benefitted greatly from discussions with Sven-Olof Fridolfsson, Lars Persson, Johan Stennek
and from comments by a referee and an associate editor. We are also grateful for comments by participants
at seminars/workshops at ESEM 2006 in Vienna and the International Conference on Game Theory 2006 at
Stony Brook. The authors gratefully acknowledge financial support from the Jan Wallander and Tom Hedelius
Foundation and Westermark also from the Swedish Council for Working Life and Social Research.

†Swedish Competition Authority, SE-103 85 Stockholm, Sweden. E-mail: jonas.bjornerstedt@kkv.se.
‡Corresponding author. Department of Economics, Uppsala University, Box 513, SE-751 20 Uppsala, Sweden.

Fax (+46) 18 471 15 94, phone (+46) 18 471 15 94. E-mail: andreas.westermark@nek.uu.se.

1



1 Introduction

Many agreements in society are determined through bargaining. It is not uncommon that these

agreements impose externalities on other potential buyers. For instance, if an exclusive patent

right is sold to one of several manufacturing firms, externalities are imposed on the other firms,

when these firms compete with each other and when the patent right affects the cost structure

of the buying firm.

Another large strand of literature concerns the issue of delay in bargaining. One focus has

been on asymmetric information; see e.g., Admati & Perry (1987), Cramton (1992) and others.

The possibility of delay with perfect information has also been analyzed by e.g. Fernandez &

Glazer (1990) and Cai (2000). In a couple of seminal papers, Jehiel & Moldovanu (1995a and

1995b) analyzed delay in bargaining with externalities with perfect information. Both games

with a finite and an infinite horizon were analyzed, and the results depended on whether a

final deadline existed. With an infinite horizon, only pure strategy equilibria are analyzed. The

focus is on “simple” pure strategy equilibria. Since stationary equilibria in pure strategies do

not always exist, they also analyze strategies with bounded recall, i.e., strategies that are more

complicated than stationary ones, but where players have limited memory capacity.

In this paper, we analyze infinite-horizon bargaining between a seller and many buyers with

perfect information in the presence of externalities. We analyze delay and provide a charac-

terization of generic stationary subgame perfect equilibria in both mixed and pure stationary

strategies.

The bargaining model is a generalization of the infinite horizon model in Jehiel & Moldovanu

(1995a), allowing both for different discount factors and relative probabilities of bidding. In the

model, the seller owns an indivisible object that can be sold to one of many potential buyers.

The purchase of the good by one buyer imposes externalities on the other potential buyers. The

externalities imposed on a buyer that does not acquire the good can vary between buyers and

depend on the identity of the buyer that obtains the good. Bargaining takes place as follows.

In each period, one of the buyers is randomly selected to bargain with the seller. The proposer

is then randomly selected among the chosen buyer and the seller. The selected proposer offers a

price which the respondent accepts or rejects. The game ends in case of acceptance, otherwise

the negotiation proceeds to the next stage where a buyer is once more randomly drawn and so

on. We assume there to be no deadline; thus, there is an infinite horizon.

Generically, there are four types of equilibria. When the externalities are greater than

the surplus in the agreement, there are equilibria exhibiting hold-up characteristics, where the

seller agrees with some set of buyers with a positive probability less than one. As in Jehiel &
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Moldovanu (1995a), there is a hold-up problem. As the externalities are larger than the payoffs,

all buyers would prefer that some other buyer makes an agreement with the seller. The hold-

up is substantial in the sense that the expected time of agreement does not converge to zero

as the time for a round of negotiation decreases to zero. There are also equilibria where the

seller agrees with only one buyer with probability one — a buyer is singled out by the seller.

Moreover, there are equilibria where the seller agrees with one buyer with probability one and

with another with a positive mixed probability, converging to zero as discount factors converge

to one. This equilibrium is in some respects similar to equilibria in two-person noncooperative

bargaining games with outside options. Finally, there are equilibria where the seller agrees with

one buyer with probability one and with several buyers with a positive probability smaller than

one. An important condition determining which equilibrium types exist is whether the surpluses

of agreement exceed or are smaller than the externalities. When the externalities dominate the

surpluses, both single out and hold-up equilibrium types can exist. When surpluses dominate,

hold-up equilibria can be shown not to exist.

Allowing for mixed equilibria thus gives different results than in the infinite horizon model

in Jehiel & Moldovanu (1995a), more in line with their deadline model where delay only occurs

with positive externalities. They also get delay when there are negative externalities, both

when there is a deadline and with an infinite horizon. With an infinite horizon as in Jehiel &

Moldovanu (1995a), there is cyclical delay when externalities are negative. These equilibria are

nonstationary and are hence ruled out in this paper.

In section 2, the model is described and existence is proven. Section 3 defines genericity,

section 4 characterizes the equilibria, section 5 describes conditions for when equilibria are unique

and finally section 6 concludes the paper. All proofs are relegated to the appendix.

2 The Model

One seller bargains with a set N of buyers with n = |N | > 1 on the sale of an indivisible good.

The surplus of selling to buyer i is πi > 0, with all other buyers j receiving their externality

ej,i. For notational convenience, we also define ei,i = 0.We assume that in each round, all buyer

seller pairs meet with equal probability.1 Let rS and rB denote the discount rates for the seller

and the buyers, respectively. We assume that ri ∈ [ri, r̄i] with ri > 0 and r̄i <∞ for i ∈ {S,B}.

1Arbitrary matching probabilities complicate the notation without qualitatively affecting the results. Moreover,
the result on delay in proposition 2 does not depend on the fact that the matching probabilities are identical. The
proposition must be modified so that the equilibrium probabilities for making acceptable offers are adjusted to take
into account the fact that the matching probabilities are asymmetric; specifically, the equilibrium probabilities
for making acceptable offers must be adjusted so that the actual agreement probabilities in proposition 2 remain
unchanged. See also Jehiel & Moldovanu (1995b) for a motivation for assuming symmetric matching probabilities.
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Let ∆ denote the amount of time that passes between two consecutive rounds. The seller has

discount factor δS = e−rB∆ and the buyers discount factor δB = e−rB∆ between rounds. We let

ρ = rB
rS
denote the relative discount factor.2 The seller makes a bid with probability η, and the

buyer with probability 1− η. Let Ω ⊂ Rn+3
+ ×Rn(n−1) denote the set of parameters.

Let vS,i and wS,i denote the value for the seller when bidding and receiving a bid from buyer

i, and vi,S and wi,S denote the value for buyer i when bidding and receiving a bid. Let pS,i be

the probability that the seller gives an acceptable bid to i when bidding and pi,S the probability

that i gives an acceptable bid. Defining pi = ηpS,i + ( 1− η) pi,S , the value equations are

vS,i = (1− pS,i)wS,i + pS,i (πi − wi,S) , (1)

wS,i = δS

⎛⎝η

n

X
j∈N

vS,j +
1− η

n

X
j∈N

wS,j

⎞⎠ ,

vi,S = pi,S (πi − wS,i) + (1− pi,S)wi,S ,

wi,S = δB
1

n
((1− η) vi,S + ηwi,S) + δB

X
j∈N\{i}

pj
n
ei,j + δB

X
j∈N\{i}

1− pj
n

wi,S.

To understand the equations, first consider vS,i. When negotiating with i and giving an accept-

able offer (with probability pS,i), it is sufficient to offer wi,S to i. Since wS,i is the continuation

value in case of disagreement, the value vS,i follows. vi,S is determined by similar reasoning. To

understand wS,i, note that when rejecting a proposal by i, S gets vS,j with probability
η
n and

wS,j with
1−η
n . Finally, consider wi,S. When i rejects a proposal, i is selected to bargain with

S with probability 1
n giving (1− η) vi,S + ηwi,S . If some other player j is selected, i will receive

ei,j if S and j agree in the next period and wi,S otherwise.

In characterizing equilibrium types, we divide the buyers into three sets A, M and R where

agreement occurs with probability one for a ∈ A, with a positive probability of less than one for

m ∈ M and with zero probability for r ∈ R. For it to be profitable for the seller or a to make

an acceptable offer, it is necessary that the following deviation condition is satisfied

πa − wa,S ≥ wS,a. (2)

Similarly, for the seller and m to bid with 0 < pm < 1, the proposer must be indifferent between

bidding and not

πm − wm,S = wS,m. (3)

2The analysis is in principle unaffected by a generalization to arbitrary sequences of discount factors. However,
to keep the model as simple as possible, we proceed with the above definition.
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It is also necessary that it is profitable to make unacceptable offers in negotiations with buyers

where pr = 0, i.e., that

πr −wr,S ≤ wS,r. (4)

Existence is established along the lines in Westermark (2003); see also Gomes (2005).

Proposition 1 There exists a stationary subgame perfect equilibrium for all ω ∈ Ω.

All proofs are relegated to the appendix.

3 Genericity

One of the results of this paper is that many equilibrium types exist only for special parameter

configurations.3 More specifically, the set of πi and ei,j that supports these equilibrium types

has strictly lower dimensionality than the full parameter space as δB → 1 and δS → 1. This

point is illustrated by the following example.

Example 1 Consider the case with two buyers, and conjecture an equilibrium where p1 = p2 =

1. Using this in (1) gives

wa,S = δB
(1− η) (πa − wS,a) + ea,j

2− δBη
,

for j 6= a and

wS,a =
δSη

2 (1− δS (1− η))− ηδB

1

2
((2− δB) (π1 + π2)− δB (e1,2 + e2,1)) .

Using these in the condition for acceptance (2) gives

πa −
δB

2− δB
ea,j ≥

δSη

2 (1− δS (1− η))− ηδB

1

2
((2− δB) (π1 + π2)− δB (e1,2 + e2,1)) ,

for j 6= a. In the limit we have, setting a = 1, j = 2 and a = 2, j = 1 in the expression above

π1 + e2,1 ≥ π2 + e1,2, (5)

π2 + e1,2 ≥ π1 + e2,1.

This implies that π1+e2,1 = π2+e1,2, thus imposing an additional restriction on the parameters

for this equilibrium to exist. Thus, agreement with both sellers with probability one cannot be a

3The concept of equilibrium types is formalized in detail below.
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generic equilibrium. For equilibria with agreement with both buyers with probability 1 to exist for

δB, δS close to one, the seller must essentially be indifferent between with whom the seller agrees.

If not, the seller could simply wait for the best buyer. Moreover, when the discount factors are

close to one, the region where the equilibrium exists is arbitrarily small.

Now, let us define generic equilibrium types. We classify equilibrium types according to how

N is partitioned in the sets A, M and R, respectively. Specifically, let σ denote a stationary

strategy profile. Let Φ (σ) = (|A| , |M | , |R|) denote the equilibrium type of σ, given that σ

induces pa = 1 for a ∈ A, pm ∈ (0, 1) for m ∈ M and pr = 0 for r ∈ R. Let Σ (ω,∆) denote

the correspondence from the set of parameters ω ∈ Ω and ∆ to the (possibly empty) set of

stationary equilibria for these parameters. Define

Ω (u,∆) = {ω ∈ Ω : ∃σ ∈ Σ (ω,∆) such that Φ (σ) = u}

as the set of parameter values generating the equilibrium type u, given ∆. Let λ denote a

Lebesque measure of subsets of Ω. We define genericity in terms of whether equilibria in the

limit exist on a subset of Ω with a positive measure.

Definition 1 The equilibrium type u is said to be generic if lim∆→0 λ (Ω (u,∆)) > 0.

Note that genericity for equilibrium types is not defined in the strong sense that the equilib-

rium exists for almost all parameter values. It is sufficient that it exists on a set with a positive

measure. Genericity is here defined for equilibrium types as ∆→ 0. By continuity, the measure

of non-generic equilibria can be made arbitrarily small for ∆ sufficiently close to zero.

4 Equilibrium Characterization

In this section, we characterize the generic equilibrium types. In general, there is a large number

of equilibrium types. Specifically, any partition of the set of buyers in three sets A, M and R is

a possible equilibrium type. However, as will be shown in Proposition 5, the following four cases

are the generic equilibrium types.

Hold-up Φ = (0, |M | , n− |M |) for |M | > 1

Single out Φ = (1, 0, n− 1)

Outside option Φ = (1, 1, n− 2)

Type IV Φ = (1, |M | , n− |M |− 1) for |M | > 1.
As we will see below, differences between surpluses and externalities are crucial for which

equilibrium types that exist. Let D be the n × n matrix where di,j = πi − ei,j for j 6= i and

di,i = 0. For S ⊂ N and T ⊂ N , let DS,T be the submatrix of D with rows from S and columns
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from T . Similarly, let π be the n dimensional vector with πi as the i’th element and πS as the

subvector with elements from S. Similarly, with J and j denoting an n× n matrix of ones and

an n vector of ones, respectively, we define JS,T and jS as above.

Definition 2 Say that D satisfies surplus dominance (SD) if di,j > 0 for all i, j ∈ N such that

j 6= i. Moreover, D satisfies externality dominance (ED) if di,j < 0 for all i, j ∈ N such that

j 6= i.

It is useful to rewrite the deviation conditions as in the following Lemma.

Lemma 1 In equilibrium, the deviation conditions (2), (3) and (4) can be written as

wS,i ≤ πa −
P

j∈A ea,j +
P

j∈M pjea,j

n1−δBδB
+ |A|− 1 +

P
j∈M pj

(6)

wS,i = πm −
P

j∈A em,j +
P

j∈M pjem,j

n1−δBδB
+ |A|+

P
j∈M\{m} pj

(7)

wS,i ≥ πr −
P

j∈A er,j +
P

j∈M pjer,j

n1−δBδB
+ |A|+

P
j∈M pj

, (8)

where 0 ≤ pm ≤ 1.

Note that, in the limit, as long as the denominators in (6) - (8) are well-defined, these

conditions can be rewritten in terms of differences between surpluses and externalities, di,j .

Before showing genericity, we establish some conditions that guarantee existence of the three

first equilibrium types. First, we focus on equilibria where A is empty. The following proposition

illustrates conditions for hold-up equilibria to exist.

Proposition 2 If DM,M is invertible,

D−1M,M · πM ¿ 0 (9)

and

πR ¿ DR,M ·D−1M,M · πM , (10)

there is a ∆̄ > 0 such that for all ∆ < ∆̄ there exists an equilibrium with 0 < pm < 1 for

m ∈ M ⊆ N with |M | > 1 and pr = 0 for r ∈ R = N\M . If either (9) or (10) is strictly

violated, there is a ∆̄ > 0 such that for all ∆ < ∆̄ no equilibrium exists.

The equilibrium is inefficient as, in the limit (as ∆ → 0), the expected amount of time that

passes until agreement is

− 1
rB

1

jM ·D−1M,M · πM
. (11)
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The equilibrium payoff for the seller is vS,i = wS,i = 0 for all i. This follows by noting that

when the seller is proposing to either m ∈ M or r ∈ R, we have vS,m = wS,m and vS,r = wS,r,

respectively, and using the value equation for wS,i in (1). From the deviation condition (3),

the equilibrium payoff for buyers in M is then vm,S = wm,S = πm. Finally, the expected

payoff for each buyer r ∈ R is a probability-weighted average of externalities imposed when

the seller agrees with m ∈ M ; see (8). Using wS,i = 0 in (7), the equilibrium probabilities are

pM = −n1−δBδB
D−1M,M · πM and expression (10) implies that the reject condition (8) holds.

The reason for delay is the following. Since the externalities are larger than the surpluses, if

buyers could choose between getting the entire surplus of agreement or getting the externality,

they prefer the externality. This generates a hold-up problem, which precludes agreement with

probability one. Moreover, the delay is substantial and hence inefficiencies arise. When D

satisfies SD, there is no hold up equilibrium. The reason is that, from (3) and (7), wm,S is

(almost) a weighted average of externalities.4 If πm > em,j for all j ∈ N\{m} then, for δB close

to one, wm,S < πm, implying that the seller gains by making an acceptable offer with probability

one; see (2). In the case with two buyers, the equilibrium can easily be illustrated.

Example 2 Hold-up equilibrium when n = |M | = 2. From proposition 2 above, the equilibrium

probabilities are

p1 = 2
1− δB
δB

π2
e2,1 − π2

,

p2 = 2
1− δB
δB

π1
e1,2 − π1

.

The probabilities are positive when e2,1 > π2 and e1,2 > π1. Moreover, limit equilibrium delay is

1

rB

1
π1

e1,2−π1 +
π2

e2,1−π2
.

Note that equilibrium delay increases in externalities, since there is an increase in the payoff for

buyer i when the seller agrees with the other buyer.

As pointed out by Jehiel & Moldovanu (1995a), a model with this property is a situation

where a single individual must pay for a public good; see Bliss & Nalebuff (1984) for an analysis

of such a model with imperfect information. This interpretation naturally leads to positive

4By (7), the weights sum to less than one.

8



externalities, since if one agents pays for a public good, all other agents benefit. In such a setup,

it is reasonable that externalities can be larger than own surpluses.5

Now consider equilibria where A is nonempty. The following proposition describes conditions

for single out equilibria to exist.

Proposition 3 If

πr − er,a <
ηπa

η + ρ (1− η)
(12)

for all r 6= a then there is a ∆̄ > 0 such that for all ∆ < ∆̄, there exists an equilibrium with

pa = 1 for some a ∈ N , and pr = 0 for all r 6= a. If (12) is strictly violated, there is a ∆̄ > 0

such that for all ∆ < ∆̄ no equilibrium exists.

Since pa = 1 and pr = 0 for all other buyers r, we can think of the equilibrium as a situation

where the seller only bargains with a and the surplus consists of πa, giving the seller
η

η+ρ(1−η)πa.

Note that if ρ = 1, the seller gets a share of the surplus corresponding to the probability of being

selected as proposer, i.e., η. If the seller were to deviate and instead agree with r, the payoff

would be πr − er,a. Such deviations are unprofitable by (12). Note that if D satisfies ED, then,

for all a ∈ N we have er,a > πr for all r 6= a and hence, single out equilibria exist. The following

proposition establishes conditions on parameters for the outside option equilibria.

Proposition 4 If

∞ >
(πm − em,a)− η

η+ρ(1−η)πa

(πa − ea,m)− (πm − em,a)
> 0, (13)

πm > em,a (14)

and

πr − er,a < πm − em,a, (15)

for all r 6= a,m there is a ∆̄ > 0 such that for all ∆ < ∆̄, there exists an equilibrium with

pa = 1, pm > 0 for some a,m ∈ N and pr = 0 for all r 6= a,m. If any of (13), (14) or (15) is

strictly violated, there is a ∆̄ > 0 such that for all ∆ < ∆̄ no equilibrium exists.

We have pm → 0 as ∆→ 0.

The inequalities in (13) ensure that the probability pm ∈ (0, 1). As ∆ → 0 (and hence

δB, δS → 1), it can be shown that pm converges to zero. The relationship between the equilibria in

5Another motivation for large externalities is given by the discussion (although the example involves negative
externalities) on the Ukrainian nuclear arsenal in Jehiel, Moldovanu & Stacchetti (1996).
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Propositions 3 and 4 can best be understood in relation to bargaining with outside options where

the outside option is to agree with m with probability one. From the proof of the proposition,

the equilibrium payoff of S in proposition 4 is πm − em,a. When making a comparison with the

equilibria in proposition 3, the pure strategy equilibria only exist when the Rubinstein-Ståhl

split η
η+ρ(1−η)πa is greater than the "outside option" of agreeing with m first: πm− em,a. If not,

then, in case (13) holds, the seller gets the outside option payoff. Moreover, (14) states that

the payoff of S is positive and (15) that S does not want to deviate and agree with r. Note

that if D satisfies ED, then (14) is violated and hence, outside option equilibria do not exist.

To understand why pm ∈ (0, 1) in equilibrium, first consider the case when pm = 1. From the

discussion of example 1 above, if πa − ea,m > πm − em,a, S will never want to agree with m.

Thus, S gains by reducing the probability pm. In the case where pm = 0, the payoff to S is
η

η+ρ(1−η)πa. As (12) is violated from (13), S gains by agreeing withm to obtain πm−em,a. Thus,

to ensure that neither of these deviations are profitable, by continuity we have pm ∈ (0, 1). As

shown by the following example, none of the equilibria in propositions (2) - (4) need to exist.

Example 3 Nonexistence of a hold-up, single out or outside option equilibrium. We assume

that 5 > πi > 0, equal discount factors and

D =

⎛⎜⎜⎜⎝
0 2 2

1 0 4

5
2 1 0

⎞⎟⎟⎟⎠ . (16)

Assume that η < 0.2. It is easily verified that (12) is violated for all a ∈ N and all r 6= a.

Moreover, we have πi > ei,j for all i ∈ N and j 6= i implying that (9) is violated. Thus, there are

no single out and hold-up equilibria. To check whether there are outside option equilibria, since

(15) holds and there is agreement with some a with probability 1, buyer m must be the buyer

solving

m = argmax
i

πi − ei,a = argmax
i

di,a.

Thus, if a = 1 then m = 3, if a = 2 then m = 1 and if a = 3 then m = 2. In addition, (13) must

hold. Since η < 0.2, the numerator of the ratio in (13) is positive. However, for all possible

choices of a, the denominator is negative since dm,a > da,m, implying that there is no outside

option equilibrium. As can easily be checked, the following candidate is an equilibrium (when

δB, δS → 1); p1 = 1, p2 = 1
2 and p3 =

1
2 . To check this, use expression (7) with a = 1 and take

limits.

The next proposition shows that the equilibrium types in propositions 2 - 4 and equilibria
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of Type IV are the only generic equilibrium types.

Proposition 5 The generic equilibrium types are the following;

1. Hold-up: uH = (0, i, n− i) for all 1 < i ≤ n.

2. Single out: uS = (1, 0, n− 1) for all i ∈ N .

3. Outside option: uO = (1, 1, n− 2) for all i ∈ N and j 6= i.

4. Type IV: uIV = (1, i, n− i− 1) for some 1 < i ≤ n.

The equilibrium types ruled out in proposition 5 are those where there is agreement with

certainty with more than one buyer, i.e., |A| > 1. The reason that these equilibrium types are

not generic is that, in the limit, the condition for acceptance (2) holds with equality for all

buyers in A, rendering additional restrictions on the parameter space; see also the discussion

in Example 1. This is in contrast to the fact that equilibrium types can exist when there are

multiple buyers who agree with a positive probability of less than one (i.e., |M | > 1). The reason

why these structures are generic is that even though the condition for making acceptable offers,

(3), also holds with equality, the probabilities are not constrained to be one, implying enough

degrees of freedom for adjustment of probabilities when parameters are changed. The reason

why there cannot be an equilibrium type when A is empty and where the seller agrees with a

unique buyer m with pm ∈ (0, 1) is that it takes at least two buyers in M for a war of attrition

to occur.

The equilibrium types in the above proposition only exist generically. From the non-generic

case of example 1, when equality holds in equations (5), it can be shown that none of the generic

equilibrium types exist. For a further discussion, see Björnestedt & Westermark (2006).

The reason for the delay in Jehiel & Moldovanu (1995a) with positive externalities and a

finite horizon is that the price that buyers are willing to pay increases, the closer to the deadline

one gets. In the last period, all buyers are willing to pay their valuation (Jehiel & Moldovanu

assumes η = 1). In the period just before the deadline, buyers are not willing to pay as much,

since if some other buyer gets the good in the last period, the buyer ends up with a positive

payoff, due to positive externalities. Thus, prices increase the closer to the deadline one gets,

thus inducing the seller to wait. The argument here is slightly different. Although there is

no deadline, buyers want to wait to agree since if some other buyer ends up with the good,

that buyer receives a positive payoff since externalities are positive. Thus, there is a war of

attrition between buyers. Jehiel & Moldovanu (1995b) also get a delay when there are negative
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externalities. The reason is illustrated by their Example 3.1 with three buyers. In that example,

buyer 3 suffers no externalities at all, while the first two buyers suffer large externalities if the

third buyer obtains the object. The seller would then like to threaten the first two buyers with

selling to buyer 3 to obtain a higher price from the first two buyers. However, this threat is not

credible until the last period. Buyers 1 and 2 are then willing to pay a fairly high amount in the

period before the last. Buyers 1 and 2 then face a war of attrition, each trying to wait for the

other to buy the object. As shown by our result, there is no delay with negative externalities

and thus, the existence of a deadline is crucial for such a war of attrition to occur. With an

infinite horizon as in Jehiel & Moldovanu (1995a), there is cyclical delay. The intuition for this

is very similar to the deadline effect with a finite horizon. These equilibria are nonstationary

and are hence ruled out in this paper.

Jehiel &Moldovanu (1995a) introduce the well-defined buyer property, i.e., there is agreement

with probability one with a single buyer. The single out equilibrium trivially satisfies this

criterion. From example 2, it is easily seen that the hold-up equilibrium does not satisfy the

property. The outside option equilibrium satisfies the well-defined buyer property in the limit,

as pm → 0. For the equilibria of type IV, the property is violated as all probabilities do not

converge to zero. To see this, suppose by contradiction that all probabilities pm converge to zero

in the limit. Condition (7) for m ∈ M can be rewritten as (with wS,m = wS,i for all i), in the

limit

wS,m =
πm − em,a +

P
j∈M\{m} pj (πm − em,j)

1 +
P

j∈M\{m} pj
. (17)

If pm → 0 for all m ∈M , we get πm−em,a = wS,m in the limit and hence, for k,m ∈M we have

πk − ek,a = πm − em,a,

thus establishing non-genericity. Generically, there is thus agreement with positive probability

with at least two buyers in the limit, violating the well-defined buyer property. Note that, for

generic equilibria, we can then write (6) and (8) as, in the limit,

wS,i ≤
P

j∈A (πa − ea,j) +
P

j∈M pj (πa − ea,j)P
j∈M pj

(18)

wS,i ≥
P

j∈A (πr − er,j) +
P

j∈M pj (πr − er,j)

1 +
P

j∈M pj
. (19)

It is possible to establish restrictions on parameters that ensure the existence of equilibria of

type IV. From example 3 above, any pure strategy equilibrium is bilaterally inefficient, since for

12



all a, there is some j such that dj,a > da,j . We then let

i∗ (j,K) = argmax
i∈K

di,j .

Definition 3 We say that D is bilaterally inefficient in K if we have di∗( j,K),j > dj,i∗( j,K) for

all j ∈ K.

Note that this condition implies that the denominator (13) is negative and hence, only

bilaterally inefficient outside option equilibria can exist.

Proposition 6 If η > 0, D satisfies SD, D is bilaterally inefficient in K and

max
k∈K

min
j∈K\{k}

dk,j > max
r∈R

max
j∈K

dr,j (20)

holds then there is an equilibrium where |A| = 1 and |M | > 1. If D satisfies ED, there is no

equilibrium of type IV.

Which equilibrium types that exist depend on whether D satisfies SD or ED. From the

discussion following proposition 2, using SD or ED in conditions (12) and (14), and using

proposition 6 gives the following result.

Corollary 1 When D satisfies ED, only hold-up and single out equilibria can exist. When D

satisfies SD, no hold-up equilibrium exists, implying that there is some buyer i with pi = 1.

Finally, consider the case when all externalities are zero. Then, the equilibrium allocation

entails no delay and is Walrasian in the limit, in the sense that the buyer with the largest

valuation buys the good.6 With an appropriate renumbering of buyers, let 1 denote the buyer

with the largest surplus and let 2 denote the buyer with the second largest surplus. We have

the following corollary to propositions 3-5.7

Corollary 2 When ei,j = 0 for all i, j ∈ N , only the equilibria in propositions 3 and 4 exist.

We always have p1 = 1. If pm > 0 for m 6= 1, then m = 2.

6This observation is also mentioned by Jehiel & Moldovanu (1995b).
7Hendon & Tranæs (1991) analyze a model where there is one seller that sells an indivisible good to one of

two buyers. All players have the same discount factor δ and selection probabilities are symmetric. The first buyer
has valuation 1 and the second buyer has valuation R > 1. There are no externalities. Basically, their model is a
special case of our model and the results in their paper are in line with corollary 2.
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5 Uniqueness and multiplicity

The following condition is useful to show uniqueness of equilibrium. Suppose that externalities

are negative and that there is some player k such that πk−ek,l > πi−ei,j for all l, i, j ∈ N . First,

there is no equilibrium as in proposition 6. To see this, note that expression (18) holds with

equality in the limit and that, from expression (17), probabilities serve as a weighting function

of the payoff differences πi− ei,j ; see also (3). Then, it is easily seen that if there is some player

k such that πk − ek,l > πi − ei,j for all l, i, j ∈ N , there is no equilibrium as in proposition 6.

From (17) - (19) we have k ∈ A ∪M and wS,k > wS,j for all j ∈ A ∪M such that j 6= k. Since,

from the proof of Proposition 5, (18) holds with equality in the limit, we have wS,a = wS,m for

all m ∈M , a contradiction. Second, in equilibrium there must be agreement with player k with

probability one. Suppose that this is not the case. Then condition (12) is violated for k = r,

since

πa < πa − ea,k < πk − ek,a.

Moreover, condition (15) is violated for k = r. If k = m in proposition (4), then condition (13)

is violated, since the numerator is positive, while the denominator is negative. Moreover, since

a = k, there is a unique player

m = arg max
j∈N\{k}

{πj − ej,a},

such that condition (15) holds. Thus, there are only two possible equilibria. Either, we have

pk = 1 and pr = 0 for all r ∈ N\{k} or pk = 1, pm ∈ (0, 1) and pr = 0 for all r ∈ N\{k,m}.

Moreover, if (12) holds then (13) is violated and vice versa. Using propositions (3) and (4),

there is a unique equilibrium for ∆ close to zero, unless πm − em,k =
η

η+ρ(1−η)πk. We have

Proposition 7 Suppose that all externalities are negative, there is some player k such that

πk − ek,l > πi − ei,j for all l, i, j ∈ N and πm − em,k 6= η
η+ρ(1−η)πk, then there is some ∆̄ > 0

such that, for all ∆ < ∆̄, there is a unique equilibrium.

Other conditions also have implications for the number of equilibria. If D satisfies ED, there

are multiple equilibria. Condition (12) is satisfied for all i ∈ N , implying that there are n single

out equilibria. Moreover, if all externalities are negative, there is one single out equilibrium at

most, as can be seen from (12). If this equilibrium exists, we must have a = argmaxi πi, since

any other choice of a violates (12).
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6 Concluding remarks

In the paper, a model where a seller bargains with multiple buyers when externalities are present

is analyzed. Restricting the attention to generic equilibrium types and allowing for mixed

strategies makes the analysis of bargaining with externalities fairly simple. We characterize

the equilibria and show that delay only occurs when externalities are positive, in contrast to

Jehiel & Moldovanu (1995a). The reason for the delay is that buyers prefer the externalities

to agreeing with the seller, thus generating a war of attrition. The paper by Gomes & Jehiel

(2005) also has a model allowing for externalities. Specifically, their model has a finite number

of agents and a finite number of states with an exogenous rule prescribing how states can be

changed. Their setup allows for more transitions than the model presented here. Consider an

example with two buyers. Then, there are three possible states, aS, a1 and a2, where aS is the

state where the seller owns the good and ai the state where buyer i owns the good. The only

allowed transitions where ownership changes8 in our model are aS → a1 and aS → a2. The

transition a1 → a2 where one buyer sells the good to the other buyer is not allowed. Note that

this implicitly violates assumption 3 on page 633. One way of thinking about this is that resale

is not allowed in our model, while it is allowed in Gomes & Jehiel (2005).

8Naturally, in their paper, the transition where the owner keeps the good, i.e., ai → ai is also allowed.
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A Appendix

Proof of Proposition 1:

We now show existence of equilibrium. To do this, we demonstrate that the following strategy

profile is an equilibrium. First, respondents always accept proposals equal to their continuation

payoff. Second, the firm and workers optimally choose whether to make acceptable offers or not,

allowing for mixed strategies. Thus, the firm and worker, respectively, choose pS,i ∈ [0, η] and

pi,S ∈ [ 0, 1− η] . A probability pS,i ∈ ( 0, η) or pi,S ∈ (0, 1 − η) is interpreted to imply that

the firm or worker makes an acceptable offer with some positive probability less than one.

Here, let pS = (pS,i)i∈N , pB = (pi,S)i∈N and p = (pS , pB). Let PS = {pS ∈ Rn
+ | pS,i ≤ η}

and PB = {pi,S ∈ [0, 1− η]} denote the set of possible probabilities for the seller and buyer i,

respectively.

Now we define a mapping that enables us to find an equilibrium. Let Q = [0, k2]× [k1, k2]n

where

k1 = −nmax{ei,k, 0}−
X
i∈N

πi

k2 =
X
i∈N

πi + nmax{ei,k, 0}.

and X = ×i∈N ([0, η]× [0, 1− η]) . Furthermore, let E = Q×X. Note that E is compact and

convex. For some q ∈ Q and x ∈ X we define

μS(q, x) = max
pS∈PS

X
i∈N

pS,i [δSπi − δSqi] +

Ã
1−

X
i∈N

pS,i

!
δSqS (21)

and

μi(q, x) = max
pi,S∈PB

pi,S [δBπi − δBqS ] + xS,iδBqi +

⎛⎝1−X
j 6=i
[xS,j + xj,S]

⎞⎠ δBqi (22)

− [xS,i + pi,S ] δBqi +
X
j 6=i
[xS,j + xj,S ] δBei,j .

Note that these are continuation payoffs before the proposer has been selected. Also, let

αS(q, x) = arg max
pS≤PS

X
i∈N

pS,i [δSπi − δSqi] +

Ã
1−

X
i∈N

pS,i

!
δSqS , (23)
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let αS,i(q, x) be the i’th element of αS(q, x) and let

αi,S(q, x) = arg max
pi,S∈PB

pi,S [δBπi − δBqS ] + xS,iδBqi +

⎛⎝1−X
j 6=i
[xS,j + xj,S ]

⎞⎠ δBqi (24)

− [xS,i + pi,S ] δBqi +
X
j 6=i
[xS,j + xj,S] δBei,j .

Finally, we let

Φ (q, x) =
¡
(μi (q, x))i∈N , (αS,i (q, x) , αi,S (q, x))i∈N

¢
.

Thus, Φ is a mapping consisting of continuation payoffs and optimal choices of the players, given

q and x.

We claim that a fixed point of Φ gives equilibrium continuation payoffs and strategies. To

see that a fixed point of Φ gives equilibrium continuation payoffs and strategies, first note that,

if wS,i = μS (q, x) = qS , wi,S = μi (q, x) = qi, pS,i = αS,i (q, x) = xS,i, and pi,S = αi,S (q, x) = xi,S

for all i ∈ N , then (21) and (22) are the same as the value equations (for respondent payoffs).

Second, (21), (22), (23) and (24), respectively, imply that the seller and the buyers optimally

choose whether to make an acceptable offer or not. Moreover, by construction, respondents

choose optimally.

By the maximum theorem under convexity, αS (q, x)and αi,S (q, x)are upper-hemicontinuous,

convex-valued and compact-valued correspondences on E and μi (q, x)is a continuous function

on E for all i ∈ N . Thus, Φ is an upper-hemicontinuous, convex-valued and compact-valued

correspondence. Then the Kakutani fixed-point theorem implies that a fixed point exists.¥

Now, let us turn to equilibrium characterization in section 4.

Note that since the right-hand side of the value equation for wS,i is the same for all i, we

have wS,i = wS,j for all i and j. Hence, we can write

wS,i =
δSη

1− δS (1− η)

1

n

X
j∈N

vS,j . (25)

In negotiations with r ∈ R, m ∈ M and a ∈ A we have, from value equations (1) and the

indifference condition (3),

vS,a = πa − wa,S (26)

va,S = πa − wS,a,
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vS,m = wS,m (27)

vm,S = πm − wS,m

and

vS,r = wS,r (28)

vr,S = wr,S.

Using (27), (28) in (3) and (26) gives

wr,S =

P
j∈A er,j +

P
j∈M pjer,j

n1−δBδB
+ |A|+

P
j∈M pj

wm,S =
(1− η) (πm − wS,m) +

P
j∈A em,j+

P
j∈M pjem,j

n1−δBδB
+ 1− η + |A|+

P
j∈M\{m} pj

(29)

wa,S =
(1− η) (πa − wS,a) +

P
j∈A ea,j+

P
j∈M pjea,j

n1−δBδB
− η + |A|+

P
j∈M pj

.

We also have the following result.

Lemma 2 Any equilibrium satisfies

wS,i =
n1−δBδB

P
a∈A πa +

P
a∈A

³¡
|A|− 1 +

P
m∈M pm

¢
πa −

P
j∈A ea,j −

P
m∈M pmea,m

´
³
1−δS
δS

n
ηL+ |A|n

1−δB
δB

´
+
¡
|A|+

P
m∈M pm − 1

¢
|A|

(30)

if |A| > 0 and wS,i = 0 if |A| = 0.

Proof: From (25) we have, using (26), (27), (28) and wS,i = wS,j ,

wS,i =
δSη

1− δS (1− η)

1

n

ÃX
a∈A

(πa −wa,S) + (n− |A|)wS,i

!
. (31)

If |A| = 0 then

wS,i = 0 (32)

and if |A| > 0

wS,i =
1

1−δS
δS

n
η + |A|

X
a∈A

(πa − wa,S) . (33)

We can rewrite wa,S in (29) as

wa,S =
H

L
− (1− η)

L
wS,i
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where

H = (1− η)πa +
X
j∈A

ea,j+
X
j∈M

pjea,j ,

L = n
1− δB
δB

− η + |A|+
X
j∈M

pj .

Using this in (33) gives

wS,i =

P
a∈A (Lπa −H)³

1−δS
δS

n
η + |A|

´
L− (1− η) |A|

. (34)

Using the definition of H and L in (34) gives (30).¥

Proof of Lemma 1. Using (29) in the deviation conditions (2), (3) and (4) and solving for

wS,i establishes (6) - (8). ¥

Proof of Proposition 2:

Step 1: Using wS,i = 0 from Lemma 2 when |A| = 0 in (7) gives

n
1− δB
δB

πm =
X

j∈M\{m}
em,jpj − πm

X
j∈M\{m}

pj . (35)

Note that the condition |M | > 1 in the proposition follows, since when |M | = 1 we have

(1− δB)πm = 0, contradicting πm > 0. In matrix form, the above expression is

n
1− δB
δB

πM = −DM,M · pM . (36)

Since the matrix on the right-hand side is invertible by assumption, we get

pM = −n1− δB
δB

D−1M,M · πM . (37)

Thus, from assumption (9), pM À 0 for all δB,δS < 1. Since δB = e−rB∆, ∆ → 0 implies

pM → 0. Thus, there exists a ∆̄ > 0 such that pm < 1 for all m ∈M and ∆ < ∆̄.

For the reject condition (8) to hold, using wS,r = 0, we get

n
1− δB
δB

πr ≤
X
k∈M

pker,k − πr
X
k∈M

pk. (38)

In matrix form, using the solution for probabilities (37), this condition becomes

πR ≤ DR,M ·D−1M,M · πM
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which holds by condition (10) in the proposition. If either (9) or (10) is strictly violated, then

there is a ∆̄ such that no equilibrium exists for all ∆ < ∆̄, since either pM ¿ 0 or (38) is strictly

violated for ∆ small.

Step 2: Pareto Inefficiency

Consider a strategy profile σ0 where the seller accepts 0 and offers πm when meeting m ∈M .

Similarly, any buyer m offers zero and accepts πm. Moreover, the acceptance probabilities are

p0j = kpj for all j ∈ N where k > 1 and k is chosen such that p0j < 1 for all j ∈ N . Then,

v0S,i = w0S,i = 0. Furthermore, using the value equations (1), we can write

vr,S = w0r,S =
1

n1−δBδB
+
P

j∈M p0j

X
j∈M

p0jer,j =
k

n1−δBδB
+ k

P
j∈M pj

X
j∈M

pjer,j .

By (38) we have
P

j∈M pjei,j > 0 and hence, w0r,S > wr,S . Moreover, using the value equations

(1),

w0m,S =
k

n1−δBδB
+ (1− η) kpm,S +

P
j∈N\{m} kpj

⎛⎝(1− η) pm,Sπm +
X

j∈N\{m}
pjem,j

⎞⎠ .

Setting k = 1 gives w0m,S = πm > 0, implying (1− η) pm,Sπm +
P

j∈N\{m} pjem,j > 0. Hence

w0m,S > πm = wm,S for k > 1. Moreover,

v0m,S = kpm,Sπm + (1− kpm,S)w
0
m,S > vm,S .

A small increase in probabilities above the equilibrium probabilities thus increases the payoff for

all buyers, while leaving the payoff for the seller constant. By continuity of (1), there is some

strategy profile improving the payoff for all players.

Step 3: Delay

The expected amount of time that passes until an agreement is reached is

∆

P
m∈M pm

n

1³
1− m∈M pm

n

´ Ã ∞X
k=1

k

µ
1−

P
m∈M pm

n

¶k
!
.

As
∞X
k=1

k

µ
1−

P
m∈M pm

n

¶k

=
1− m∈M pm

n³
m∈M pm
n

´2
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and using (37) and δB = e−rB∆, delay is,

1

rB
log δB

1
1−δB
δB

jM ·D−1M,M · πM
.

Using L’Hôspitals rule, limit delay is given by (11).¥

Proof of Proposition 3: Combining (6) with (30) and setting |A| = 1 and |M | = 0 gives

wS,i =
n1−δBδB

1−δS
δS

n
η

³
n1−δBδB

+ 1− η
´
+ n1−δBδB

πa ≤ πa, (39)

which is true as the denominator is larger than the numerator. Using (30) in (8) gives the reject

condition as
ηπa

1−δS
1−δB

δB
δS

³
n1−δBδB

+ 1− η
´
+ η
≥ πr −

er,a

n1−δBδB
+ 1

. (40)

Note that, by L’Hôpitals rule, lim∆→0
1−δS
1−δB =

rS
rB
= ρ. From condition (12) in the statement of

the proposition, there exists a ∆̄ > 0 such that, for all ∆ < ∆̄, (40) holds. As wS,a > 0, the

seller also makes a non-negative profit. Thus, there is some ∆̄ > 0 such that, for all ∆ < ∆̄,

the conditions for the equilibrium to exist are satisfied. If (12) is strictly violated, then (40) is

violated for ∆ small, implying that there is a ∆̄ such that no equilibrium exists for ∆ < ∆̄. ¥

Proof of Proposition 4: From indifference (7) and using (30) with |A| = 1 and |M | = 1,

we have

πm −
em,a

n1−δBδB
+ 1

=
n1−δBδB

πa + πapm−pmea,m³
1−δS
δS

n
η

³
n1−δBδB

+ 1− η + pm

´
+ n1−δBδB

´
+ pm

.

Solving for pm gives

pm = n
1− δB
δB

V (δS , δB) , (41)

V (δS, δB) =
1

η

(πm − em,a)
³
1−δS
δS

n+ 1−δS
1−δB

δB
δS
(1− η) + η

´
− ηπa

πa − ea,m −
µ
πm − em,a

n
1−δB
δB

+1

¶³
1−δS
δS

n
η + 1

´ .

Note that V (δS, δB) is continuous. Let

V = lim
δB ,δS→1

V (δS, δB) =
1

η

(πm − em,a) (ρ (1− η) + η)− ηπa
πa − ea,m − (πm − em,a)

. (42)

By condition (13), 0 < V < ∞. Since pm = n1−δBδB
V (δS , δB), since limt→∞ pm = 0 and by the

definition of δB, there exists a ∆1 > 0 such that for all ∆ < ∆1 we have 0 < pm < 1.
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The reject condition (8) is, using the indifference condition (7), in the limit,

πm − em,a ≥ πr − er,a.

By (15), this expression strictly holds. Using δS = e−rS∆ and δB = e−rB∆, there exists a ∆2 > 0

such that (4) holds for all ∆ < ∆2.

Using the indifference condition (7), the acceptance condition (6) is

πm −
em,a

n1−δBδB
+ 1
≤ πa −

pmea,m

n1−δBδB
+ pm

.

This expression can be rewritten as

((U + UV (δS , δB))πa − UV (δS, δB) ea,m) (U + 1)− ((U + 1)πm − em,a) (U + UV (δS, δB)) ≥ 0

where

U = n
1− δB
δB

.

In the limit, using the definition of V ,

ρ (1− η) (πm − em,a) ≥ 0.

By condition (14), the condition for acceptance holds strictly. Since δi = e−ri∆, from (14), there

exists a ∆3 > 0 such that (2) holds for all ∆ < ∆3.

To ensure that all conditions hold, we choose ∆̄ = min{∆1,∆2,∆3}.

If any of (13), (14) or (15) is strictly violated then either pm < 0, wS,i < 0 or (8) is violated

for ∆ small, implying that there is a ∆̄ such that no equilibrium exists for ∆ < ∆̄. ¥

Proof of Proposition 5: To prove the proposition, we need to show both that the equilib-

rium types stated in the proposition are generic and that any other equilibrium type only exists

non-generically. We begin by showing that the equilibrium types stated in the proposition are

generic. Then, we continue to show that any other equilibrium type only exists non-generically.

Lemma 3 The hold-up equilibria in proposition 2 are generic.

Proof: To show that the hold-up equilibrium type is generic, consider the case where ej,i = ej

for all i 6= j and assume that ei > πi for all i ∈ N . In addition, let all m have identical pies and

externalities πm = α and em = β for all m ∈ M and similarly πr = θ and er = τ for all r ∈ R.
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Let ω̄ denote this parameter vector. We also assume β > α and

θ

τ − θ
<

|M |
|M |− 1

α

β − α
. (43)

Then, the invertibility condition in proposition 2 is satisfied, usingDM,M = (α− β) (JM,M − IM)

−D−1M,M · πM =
1

|M |− 1
α

β − α
jM .

This is positive as, by assumption, β > α and hence, condition (9) is satisfied. Furthermore,

using DR,M =(θ − τ)JR,M

πR = θjR ¿ (τ − θ)
|M |

|M |− 1
α

β − α
jR.

Then, since (43) holds, condition (10) is satisfied. Since the invertibility condition is satisfied

for the parameter vector ω̄ and the determinant is a continuous function of ω ∈ Ω, there exists a

ball B (ω̄) with radius ε around the parameter vector ω̄ such that the matrix DM,M is invertible

and conditions (9) and (10) still hold. Fix ω and let ∆ (ω) denote the value of ∆ such that the

probabilities are smaller than one for all ∆ < ∆ (ω). Let ∆̄ = infω∈B(ω̄)∆ (ω). By continuity,

we can choose ε such that ∆̄ > 0. Then, a hold-up equilibrium exists for all ω ∈ B (ω̄) for all

∆̄ > ∆ > 0, establishing that uH is generic. ¥

Lemma 4 The single out equilibria in proposition 3 are generic.

Proof: Consider the single out equilibrium type uS . Suppose k > η
η+ρ̄(1−η) and that

πr − er,a < kπa. (44)

for all r 6= a for some a. Then there is some ρ ∈ (ρ, ρ̄) such that (12) holds. Since ρ < ρ̄ then

(12) holds for all rS and rB where ρ0 =
rS
rB
≤ ρ. Given ρ, condition (12) in Proposition 3 holds

for some parameter value ω̄ ∈ Ω. Then there exists a closed ball B (ω̄) with radius ε around the

parameter vector ω̄ such that the condition holds for all ω ∈ B (ω̄).

Also, from the proof of Proposition 3, the condition for acceptance (??) for a holds for all

δB and δS . Rewriting (40) we get

πr −
δBer,a

n (1− δB) + δB
≤ δSη

ηδS +
1−δS
1−δB ((1− η) δB + n (1− δB))

πa. (45)
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Rearranging and letting

L1 (δB, δS) =

µ
(δS − δB) ρ

0 + δB

µ
ρ0 − 1− δS

1− δB

¶¶
(1− η) δB

+

µ¡
δSη + δSρ

0 (1− η)
¢
− δB

1− δS
1− δB

¶
(n (1− δB))

we get

n
1− δB
δB

πr + L1 (δB, δS)
1

δB

η

η + ρ0 (1− η)
πa ≤

η

η + ρ0 (1− η)
πa − (πr − er,a) (46)

Note that (46) converges to (12) with ρ = ρ0.

For a given ω, let ∆ (ω) denote the smallest ∆ such that (46) holds for all ∆ < ∆ (ω)and all

r 6= a. Let ∆̄ = infω∈B(ω̄)∆ (ω). By continuity of (??) and (12) and since lim
1−δtS
1−δtB

= ρ0, ε can

be chosen such that ∆̄ > 0. Then B (ω̄) ⊆ Ω (uS ,∆)for all ∆ < ∆̄. Then limt→∞ λ (Ω (uS ,∆)) ≥

λ (B (ω̄)) > 0 establishing that uS is generic.¥

Lemma 5 The outside option equilibria in proposition 4 are generic.

Proof: Suppose, without loss of generality, that the denominator of (13) is positive, that

k < η
η+ρ(1−η) and that

(πm − em,a)− kπa
(πa − ea,m)− (πm − em,a)

> 0

and that conditions (14)-(15) hold. Since ρ ≥ ρ = r̄S
rB
, (13) holds for all rS and rB such that

ρ = rS
rB
. Given that condition (13) holds for some parameter value ω̄ ∈ Ω, there exists a closed

ball Bm (ω̄)with radius εm around the parameter vector ω̄ such that the condition holds for all

ω ∈ Bm (ω̄).

Since condition (13) holds, from the proof of Proposition 4 we have pm = n1−δBδB
V (δS , δB) >

0. Moreover, pm converges to zero. By continuity of V (δS, δB) in δB, δS and using δi =

e−ri∆, there is some ∆ (ω) such that pm is smaller than one for all ∆ < ∆ (ω). Let ∆m =

infω∈Bm(ω̄)∆ (ω). A similar argument using (14) and (15) establishes the existence of ∆a (∆r)

and Ba (ω̄) (Br (ω̄)), where ∆a (∆r) is the smallest ∆ (ω) such that, for all a (r), the condition

for acceptance (rejection) (2) ((4)) holds for all ∆ < ∆ (ω) for all ω ∈ Ba (ω̄) (ω ∈ Br (ω̄)).

Letting ∆̄ = min{∆a,∆m,∆r} and B (ω̄) = Ba (ω̄)∩Bm (ω̄)∩Br (ω̄). By continuity of (41)

and the solutions for the values in Proposition 4 and since lim 1−δtS
1−δtB

= ρ, ε can be chosen such

that ∆̄ > 0. Then, for ∆ < ∆̄ and ω ∈ B (ω̄), conditions (2) and (4) hold with 0 < pm < 1.

Moreover, wS,i > 0. Then B (ω̄) ⊆ Ω (uO,∆) for all ∆ < ∆̄ and hence, limt→∞ λ (Ω (uO,∆)) ≥

λ (B (ω̄)) > 0 establishing that uO is generic. ¥

24



Lemma 6 The equilibria of type IV are generic.

Proof: Consider some sequence {∆t} such that ∆t → 0. Note first that, using (1) together

with vS,m = wS,m and vS,r = wS,r it is easily seen that the condition for acceptance is

vS,a − wS,i =
1− δS

1− δS
n−1
n − δS

1−η
n

vS,a = (1− δS) δS
η

n
wS,i ≥ 0. (47)

Hence, (18) holds with equality in the limit;

wS,i =

P
j∈A (πa − ea,j) +

P
j∈M pj (πa − ea,j)P

j∈M pj
. (48)

Let K = A ∪M be any subset of N consisting of at least three elements. Define ω̄ as follows.

Renumber the members from 1 to |M | + 1 and let di,i−1 = 1 for i = 2, . . . , |M | and di,i+1 = 4

for i = 2, . . . , |M | and d|M |+1,1 =
5
2 and d|M |+1,2 = 1. All other off-diagonal elements are 2.

Suppose that, for buyers r = |M |+ 2, ..., n, we have

πr − er,j <
1

2
.

From the first row in DK,K we have, using (29), that wS,i = 2. From (29), we then have

p1 = 2p2 (49)

pi = 2pi+2 for i = 1, . . . , |M |− 1.

Define

F (pK , ws,i) = DK,K · pK − ws,i (JK,K − IK) · pK .

Let Φ be the matrix consisting of Fpi ( pK , ws,i) and Fws,i (pK , ws,i). We have Φi,i−1 = −1 and

Φi,i+1 = 2 for i = 2, . . . , |M |, Φ|M |+1,1 =
1
2 and Φ|M |+1,2 = −1. Moreover, Φi,|M |+2 = P − pi,

where P =
P|M |+1

j=1 pj . All other elements are zero. Since P − p1 > 0, rank(Φ) = |M |+ 1.

Using theorem H.2.2 in Mas Colell (1985), it follows that there is a locally parametrizable

solution set with one degree of freedom. Hence, we can set p1 = 1. Thus, there exists a ball

B (ω̄) with radius ε around the parameter vector ω̄, such that there is a solution to

F (pK , ws,i) = 0, (50)

with p1 = 1 for all ω ∈ B (ω̄).

Suppose K = N . Since η is small, condition (12) is violated for all a and some r in B (ω̄).
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Further, since DK,K satisfies SD, there is no hold-up equilibrium for any ω ∈ B (ω̄). Moreover,

since η is small and DK,K is bilaterally inefficient, from Φ it is easily seen that there is a ball BIV

centered at ωIV ∈ intB (ω̄), such that condition (13) is violated. Hence, we can choose the radius

εIV > 0 such that BIV
¡
ωIV

¢
⊂ B (ω̄). Thus, for ω ∈ B

¡
ωIV

¢
the only equilibrium candidate is

the one that solves (50). Since an equilibrium exists from proposition 1, this candidate must be

an equilibrium. Since wS,i > 0, the condition for acceptance (47) holds for any η > 0. Moreover,

the solution to (17) and (48) is also independent of η, and hence an equilibrium exists for any

η > 0.

Suppose K ⊂ N . The solution to (50) only depends on DK,K , and hence, from above, there

is a solution and the condition for acceptance (47) holds. Consider r ∈ R. Combining (7) and

(8) gives

πm −
P

j∈A em,j +
P

j∈M pjem,j

n1−δBδB
+ |A|+

P
j∈M\{m} pj

≥ πr −
P

j∈A er,j +
P

j∈M pjer,j

n1−δBδB
+ |A|+

P
j∈M pj

. (51)

For a given ω, let ∆ (ω) denote the smallest ∆ such that (51) holds for all ∆ < ∆ (ω) and all

r > |M |+1. Let ∆̄ = infω∈B(ωIV )∆ (ω). By continuity, ε can be chosen such that ∆̄ > 0. Then,

B
¡
ωIV

¢
⊆ Ω (uIV ,∆) for all ∆ < ∆̄ and hence, limt→∞ λ (Ω (uIV ,∆)) ≥ λ

¡
B
¡
ωIV

¢¢
> 0,

establishing that uIV is generic. ¥

Lemma 7 Equilibria with |A| > 1 and |M | = 0 are non-generic.

Proof: To show that equilibria with |A| > 1 are non-generic, note that wS,i in (30) is well

defined for δB = δS = 1. For ω ∈ Ω and ∆ ≥ 0 let ψ : Ω× [0,∞)³ R+ be the correspondence

satisfying (30) and (6) with |M | = 0. The correspondence ψ is upper-hemicontinuous (uhc), see

Border 1985: If for t = 1, 2,. . . we have pt ∈ ψ
¡
ωt,∆t

¢
and

¡
ωt,∆t

¢
→ (ω,∆) as t →∞, and

p = limt→∞ pt then, since (30) and (6) with |M | = 0 define closed sets, we have p ∈ ψ (ω,∆),

establishing that ψ is uhc.

For ∆ ≥ 0, let the correspondence ϕ (∆) be the set of ω, such that ψ (ω,∆) is non-empty.

ϕ (∆) is uhc: Let ∆t → ∆ and ωt → ω such that ωt ∈ ϕ
¡
∆t
¢
. Then there exists a pt such that

pt ∈ ψ
¡
ωt,∆t

¢
and since ψ is uhc pt → p ∈ ψ (ω,∆) . Thus ω ∈ ϕ (∆).

Consider a sequence {∆t} such that ∆t → 0. Using the solution for wS,i from (30) with

|M | = 0 in (6) when |A| > 1, gives

πa −
1

|A|− 1
X
k∈A

ea,k ≥
1

|A|
X
h∈A

Ã
πh −

1

|A|− 1
X
k∈A

eh,k

!
. (52)

Since (52) holds for all a, it holds for the a that minimizes the left-hand side. As the minimal

element is weakly greater than the average over all a, then πa − 1
|A|−1

P
j∈A ea,j is the same for
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all a. Then ϕ (0) is defined as, for all a ∈ A and r ∈ R,

πa −
1

|A|− 1
X
k∈A

ea,k = K

πr − wS,r ≤
P

k∈A er,k

|A| .

Thus, λ (ϕ (0)) = 0. Suppose that limt→∞ λ
¡
ϕ
¡
∆t
¢¢

> 0. Then there exists a sequence¡
ωt,∆t

¢
→ (ω, 0) such that ωt ∈ ϕ

¡
∆t
¢
for all ∆t but ω /∈ ϕ (0). This contradicts the upper-

hemicontinuity of ϕ, establishing non-genericity.¥

Lemma 8 Equilibria with |A| > 1 and |M | ≥ 1 are non-generic.

Proof:

First note that when |A| > 1, then wS,i in (30) is well defined for δB = δS = 1. Then for

ω ∈ Ω and ∆ ≥ 0 let ψ : Ω× [0,∞)³ [0, 1]M×R+ be the correspondence satisfying (30) and (6)

- (7). For ∆ ≥ 0, let the correspondence ϕ (∆) be the set of ω, such that ψ (ω,∆) is non-empty.

Both ψ and ϕ are uhc from an argument similar to the previous Lemma.

Consider a sequence {∆t} such that∆t → 0. Using (30) in (6) when |A| > 1 and δB = δS = 1,

gives

πa −
P

j∈A\{a} ea,j+
P

m∈M pmea,m

|A|− 1 +
P

m∈M pm
≥ 1

|A|
X
a∈A

Ã
πa −

P
j∈A\{a} ea,j +

P
m∈M pmea,m

|A|− 1 +
P

m∈M pm

!
. (53)

Using the same argument following (52), the left-hand side of (53) is the same for all a. Thus,

for all a, b ∈ A, letting P1 = |A|− 1 +
P

m∈M pm,

πaP1 −

⎛⎝ X
j∈A\{a}

ea,j +
X
m∈M

pmea,m

⎞⎠ = πbP1 −

⎛⎝ X
j∈A\{b}

eb,j +
X
m∈M

pmeb,m

⎞⎠ . (54)

Combining (54) for some a ∈ A with the system of |M | equations obtained from substituting (30)

in (7), setting δB = 1 and rearranging, we can define the following system 0 = F (pM , ω) , where
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F : [0, 1]|M | ×Ω→ R|M |+1 is given by the 1 + |M | equations, letting Pm = |A|+
P

j∈M\{m} pj ,

πaP1 −

⎛⎝ X
j∈A\{a}

ea,j +
X
m∈M

pmea,m

⎞⎠−
⎛⎝πbP1 −

⎛⎝ X
j∈A\{b}

eb,j +
X
m∈M

pmeb,m

⎞⎠⎞⎠ ,

⎛⎝πmP1 −
1

|A|
X
k∈A

⎛⎝πkP1 −

⎛⎝ X
j∈A\{k}

ek,j +
X
m∈M

pmek,m

⎞⎠⎞⎠⎞⎠Pm

−

⎛⎝X
j∈A

em,j +
X
j∈M

pjem,j

⎞⎠P1.

The derivative of the above system with respect to πa and πm is

Z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

zaa 0 · · · · · · 0

zma zmm 0 · · · 0
... 0

. . . . . .
...

...
...

. . . . . . 0

zma 0 · · · 0 zmm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where zmm = P1Pm, zma =
zmm
|A| and zaa = P1

³
1− 1

|A|

´
. Since |A| > 1 and pm ≥ 0, we

have P1 > 0 and Pm > 0. Then since det (Z) = zaa (zmm)
|M | 6= 0, Z is invertible. Using the

Transversality Theorem 8.3.1 in Mas Colell (1985), the equation system is regular on the set

Ω̂ with λ(Ω̂) = 1. Using Proposition H.2.2 in Mas Colell (1985), there is no solution when the

system is regular since the number of equations is larger than |M |. Since the probabilities must

also satisfy (54) for all a, b ∈ A, the set of parameter values for which an equilibrium exists is

Ω∗ ⊆ Ω\Ω̂, establishing λ (ϕ (0)) = 0. Suppose that limt→∞ λ
¡
ϕ
¡
∆t
¢¢

> 0. Then, there exists

a sequence
¡
ωt,∆t

¢
→ (ω, 0) such that ωt ∈ ϕ

¡
∆t
¢
for all ∆t but ω /∈ ϕ (0). This contradicts

the upper-hemicontinuity of ϕ, establishing non-genericity. ¥

The proof of Proposition 5 then follows by Lemmas 3-8.

¥

Proof of proposition 6. To prove existence, set N = K and note that for η close to

zero, condition (12) is violated for all a and some r. Moreover, since DK,K satisfies SD there

is no hold-up equilibrium. Condition (13) is also violated. By genericity |A| = 1 and |M | ≥ 2.

Since an equilibrium exists from proposition 1, there is such an equilibrium. In the limit, the

equilibrium probabilities pM and value wS,i solves (17) and (48). Since DK,K has all off diagonal

elements positive wS,i > 0 by (17), establishing that it is strictly profitable to make acceptable

offers when a and S meet for any η > 0, see (47). Moreover, the solution to (17) and (48) is
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independent of η, establishing that there is an equilibrium for any η > 0.

To prove existence for an arbitrary N ⊃ K, first note that the deviation conditions only

depend on elements in D corresponding to the K columns. The remaining columns can then be

arbitrarily chosen. Finally, if the rows corresponding to R = N\K satisfy (20), the condition

for rejection (51) holds strictly. To see this, first note that the payoff of S in (17) is a weighted

average of payoff differences. This average is at least equal to the left-hand side of (20). Similarly,

the payoff when deviating and agreeing with some r ∈ R is at most equal to the right-hand side

of (20). Hence, from (20), the condition for rejection (51) holds and an equilibrium exists. If D

satisfies ED then, (17), wS,i < 0, implying that S gains by never selling the object.¥

Proof of Corollary 2: To see this, note that there cannot be m,n such that (17) holds,

since we generically have πn 6= πm.

Moreover, the conditions for existence in proposition 2 are violated since ei,j = 0. Further-

more, if a single-out equilibrium exists, then there must be agreement with the buyer with the

largest surplus. Otherwise, condition (12) is violated since η
η+ρ(1−η) ≤ 1. Finally, suppose that

(12) is violated for the buyer with the highest valuation. Then, we see that (13) in proposition

4 is satisfied for a = 1 and m = 2 and (15) is satisfied for m = 2 and r 6= 1, establishing the

existence of an outside option equilibrium. Further, it is the only outside option equilibrium

that exists. First, if r = 1 in proposition 4, condition (15) is violated. Thus, the only other

possible outside option equilibrium is when m = 1 and a = 2. Since π1 > π2, (13) is violated. ¥
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