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ABSTRACT

The basic idea in this paper is that labor supply can be viewed as a function of the
entire budget set, so that one way to account non-parametrically for a nonlinear budget
set is to estimate a nonparametric regression where the variable in the regression is the
budget set. In the special case of a linear budget constraint, this estimator would be the
same as nonparametric regression on wage and nonlabor income. Nonlinear budget
sets will in general be charac-terized by many variables. An important part of the
estimation method is a procedure to reduce the dimensionality of the regression
problem. It is of interest to see if nonparametrically estimated labor supply functions
support the result of earlier studies using parametric methods. We therefore apply
parametric and nonparametric labor supply functions to calculate the effect of recent
Swedish tax reform. Qualitatively the nonparametric and parametric labor supply
functions give the same results. Recent tax reform in Sweden has increased labor
supply by a small but economically important amount.

Keywords: Nonparametric estimation, Labor supply, Nonlinear budget constraints,
Tax Reform.
JEL Classification: C14, J22, H24.

_______________________
Financial support from the Bank of Sweden Tercentenary Foundation is gratefully
acknowl-edged. We are grateful to Matias Eklöf for competent assistance.
* Department of Economics, Uppsala University, Box 513, SE-751 20 Uppsala,
phone +46-18-471 11 02, fax +46 18 471 14 78, e-mail soren.blomquist@nek.uu.se.
** Massachusetts Institute of Technology.



1

1. Introduction

Choice models with nonlinear budget sets are important in econometrics. They

provide a precise way of accounting for the ubiquitous nonlinear tax structures when

estimating demand. This is important for testing economic theory and formulating

policy conclusions when budget sets are nonlinear. Estimation of such models

presents formidable challenges, because of the inherent nonlinearity. The most

common approach has been maximum likelihood under specific distributional

assumptions, as exposited by Hausman (1985). This approach provides precise

estimates when the assumptions of it are correct, but is subject to specification error

when the distribution or other aspects of the model are wrong. Also, the likelihood is

quite complicated, so that the MLE presents computational challenges as well.

In this paper we propose a nonparametric approach to estimation of choice

models with nonlinear budget sets. This approach should be less sensitive to

specification of disturbance distributions. Also, it is computationally straightforward,

being based on nonparametric modeling of the conditional expectation of the choice

variable. The basic idea is to think of the choice, in our case hours of labor supply, as

being a function of the entire budget set. Then one way to account nonparametrically

for a nonlinear budget set is to estimate a nonparametric regression where the variable

in the regression is the budget set. Assuming that the budget set is piecewise linear,

the budget sets will be characterized by two or more numbers. For instance, a linear

budget constraint is characterized by the intercept and slope. More generally, a

piecewise linear budget constraint will be characterized by the intercept and slope of

each segment. Thus, nonparametric regression on these characterizing variables

should yield an estimate of how choice depends on the budget set.

A well known problem of nonparametric estimation is the ”curse of

dimensionality,” referring to the difficulty of nonparametric estimation of high

dimensional functions. Budget sets with many segments have a high dimensional
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characterization, so for nonparametric estimation to be successful it will be important

to find a more parsimonious approach. One feature that is helpful is that under utility

maximization with convex preferences, the conditional expectation of the choice

variable will be additive, with each additive component depending only on a few

variables. This feature helps reduce the curse of dimensionality, leading to estimators

that have faster convergence rates. We also consider approximating budget constraints

with many segments by budget constraints with only a few segments (like three or

four). Often in applications there will be only a few sources of variation in the data,

which could be captured by budget constraints with few segments. Thus, this more

parsimonious approach should help us capture the features of the choice variable that

are identified from the data.

An advantage of nonparametric estimation is that it should allow utility

consistent functions that are more flexible than some parametric specifications, where

utility maximization can impose severe restrictions. For instance, it is well known that

utility maximization with convex preferences implies that the linear labor supply

function  h = a + bw + cy + e  must satisfy the restrictions  b > 0  and  c < b/H,

where  w  is the wage,  y  nonlabor income and  H  is the maximum number of hours.

Relaxing the parametric form for the labor supply function should substantially

increase its flexibility while allowing for utility consistent functional forms. In the

paper we do not impose utility maximization, but we can test for utility consistency

using our approach.

The rest of the paper is organized as follows.  In section two we present a

particular data generating process and derive an expression for expected hours of

work. The estimation procedure we propose is described in section 3. Asymptotic

properties of the estimator are discussed in the first part of section 4 and small sample

properties, based on Monte Carlo simulations, in the latter part. In section 5 we apply

the method to Swedish data. We use estimated labor supply functions to calculate the

effect of income tax reform in section 6. Section 7 concludes.
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2. Data generating process and expected hours of work

Our estimation method is to nonparametrically estimate the conditional mean of hours

given the budget set. That is, if  hi  is the hours of the ith individual and  Bi  represents

their budget set, our goal is to estimate

E h B h Bi i i= ( ).

This should allow us to predict the average effect on hours of changes in the budget

set that are brought about by some policy, such as a change in the tax structure.  Also

depending on the form of the unobserved heterogeneity in  hi ,  one can use  h Bi( )   to

test utility maximization and make utility consistent predictions, such as for consumer

surplus.

In comparison with the maximum likelihood approach, ours imposes fewer

restrictions but only uses first (conditional) moment information. This comparison

leads to the usual tradeoff between robustness and efficiency. In particular, most

models in the literature have a labor supply function of the form

hi = h(Bi,vi) + εi ,

where  vi  represents individual heterogeneity and  εi  is measurement error.  The

typical maximum likelihood specification relies on an assumption that vi  and  εi  are

normal and homoskedastic, while all that we would require is that  vi  is independent

of  Bi  and  E Bi iε = 0 ,  in which case  h B h B v F dvi i( ) ( , ) ( )= ∫ .  This should allow

us to recover some features of  h(B,v)  under much weaker conditions than normality

of the disturbance.  Of course, these more general assumptions come at the expense of

efficiency of the estimates. In particular maximum likelihood would also use other

moment information, so that we would expect to have to use more data to get the

same precision as maximum likelihood estimation would give.
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Our approach to estimation will be valid for quite general data generating

processes. In particular, it is neither necessary that data are generated by utility

maximization nor that the data generating budget constraints are convex.  However, as

a starting point we will derive expressions for expected hours of work given the

assumption that data are generated by utility maximization subject to piece wise linear

convex budget constraints. This will help in constructing parsimonious specifications

for  h B( )   and in understanding utility implications of the model.

Assume data are generated by utility maximization with globally convex

preferences subject to a piecewise linear budget constraint. To simplify the exposition,

let us consider a budget constraint with three segments defining a convex budget set.

We show such a budget constraint in figure 1. The budget constraint is defined by the

slopes wi  and intercepts yi  of the three segments. These segments also define two kink

points. The kink points are related to the slopes and intercepts as:

( ) ( )l1 2 1 2 1= − −y y w w/ and  ( ) ( )l 2 3 2 3 2= − −y y w w/ .

                                             

Y

Y

Y

1

2

3

Consumption

H H1 20 Hours of workl l
        --

Figure 1.

We will derive an expression for expected hours of work given this data generating

process. Let desired hours of work for a linear budget constraint be given by

h y w vj j j
* ( , )= +π ,  where ν  is a random preference variable. Let g t( )  be the density

of v , G v( )  the c.d.f of v , H v tg t dt
v

( ) ( )=
− ∞z   and J v H v vG v( ) ( ) ( )= − . We assume

that H E v( ) , ( ) .∞ = =0 0i.e.,  We further assume π( ) + v is generated by utility

maximization with globally convex preferences. Then desired hours will equal zero if
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π1 0 .+ ≤v   Desired hours will fall on the first segment if  0 1 1≤ + ≤π v l   and be located

at kinkpoint  l1  if  π( , )y w v1 1 1+ ≥ l , and π( , )y w v2 2 1+ ≤l  i.e. if

l l1 1 1 1 2 2− ≤ ≤ −π π( , ) ( , ).y w v y w   Desired hours will be on the second segment if

l1 2 2< +π( , )y w v  < l2,  etc. This implies that we can write expected hours of work as:

E h G( *) ( )= ⋅ −0 1π
+ − − −G G( ) ( )l

1 24 4 4 34 4 41 1 1π π
probability that h * is on first segment

× π π π1 1 1 1+ − ≤ ≤ −E v v( ) | ll q
+ ⋅ − − − +l l l

1 24 4 4 4 34 4 4 4

l

1 1 2 1 1G G( ) ( )

.

π π
probability tha tdesired hou rs area t
k ink point 1

+ G G( ) ( )l l
1 24 4 4 4 34 4 4 42 2 1 2− − −π π

probability tha th* is onthe
second seg m ent

 ⋅ π π π2 1 2 2 2+ − ≤ ≤ −E v v( ) | l ll q

+ l l l2 2 3 2 2G G( ) ( )− − −π π
+ 1 2 3− −G ( )l

1 24 4 34 4
π

probability tha tdesired hou rs
areonthird seg m ent

× π π3 2 3+ > −E v v( ) | ll q (1’)

Wee see from this expression that E h( *)  is a continuous, differentiable function in l1,

π1 , l2, π 2 , l3 3,π .1 Since π i  is differentiable in yi, wi it follows that  E h( *)  is

continuous and differentiable in l1, w1, y1, l2, w2, l3, w3, y3.

Using the J v( )  notation and setting l0 0=  we can rewrite (1’)  as:

E h J J Jk k k kk
( *) ( ) ( ) ( )= − − + − − − ++=∑π π π π1 1 31

2 l l (1)

This expression generalizes straightforwardly for the case with more segments. The

particular form of (1) follows from the assumption that hours of work are generated by

utility maximization with globally convex preferences. For particular c.d.f:s of v  we

can derive properties of the J v( )  function. For example, if v  is uniformly distributed

                                                
1  Expression  (1’) is derived under the assumption that there is no upper limit H  for hours of work. If
we introduce an upper limit H  for hours of work, we would get one more term, and the last term would
be slightly different. If H  is set at a high value, say, 6000 hours a year, it would not matter for
empirical applications whether we use expression (1) or an expression with an upper limit H  included.
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J v( )  will be quadratic. Independent of  the form of the c.d.f. for v , J v( )  will always

be concave and lie below it’s asymptotes which is 0 if v  goes to minus infinity and a

line through the origin with slope -1 for v  going to plus infinity.

There are two important aspects of expression (1) that we want to emphasize.

One is that the strong functional form restrictions implied by utility maximization and

a convex budget set, as shown in equation (1), can be used to test the assumption of

utility maximization. For example, we can test the utility maximization hypothesis by

testing the separability properties of the function shown in equation (1).

The second aspect is that equation (1) suggests a way to recover the underlying

preferences when utility maximization holds. If the budget constraint is linear we can

regard this as a piecewise linear budget constraint where the slopes and virtual

incomes of the budget constraint are all equal. This implies that all the  πk  are equal

and equation (1) simplifies to  π - J(-π).  Also, if the probability of no work is zero

then the hours equation becomes  π.  This can occur if the support of  v  is bounded.

Furthermore, if the probability of zero hours of work is very small, then setting all of

the virtual incomes and wages to be equal will approximately give  π.

This aspect does not depend on the convexity of the budget sets, since

identical virtual incomes and wages will give the expected hours for a linear budget

set. What it does depend on is that there is at least some data where the budget

constraint is approximately linear. Consistency of a nonparametric estimator at any

particular point, such as a linear budget constraint, depends on there being data in a

neighborhood of that point. In practice, the estimator will smooth over data points

near to the one of interest, which provides information that can be used to estimate

expected hours at a linear budget constraint. Thus, data with approximately linear

budget constraints will be useful for identification. Standard errors could be used to

help to determine whether there is sufficient data to be reliable, because the standard

errors will be large when there is little data.

It can be computationally complicated to do a nonparametric regression

imposing all  the constraints implied by expression (1). A simpler approach is to only
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take into account the separability properties implied by utility maximization. Going

back to (1’) we note that there is additive separability so we can write expected hours

of work as

     E h( *)  = g1(l1,w1,y1) + g2(l1,w2,y2) + g3(l2,w2,y2) + g4(l2,w3,y3) (2)

That is, there are four additive terms, with l1 appearing in two terms and l2 appearing

in two terms.

Alternatively we can write expected hours of work as:

E(h*) = γ1(l1,w1,y1) + γ2(l1,l2,w2,y2) + γ3(l2, w3,  y3) (3)

Noting that  li
i i

i i

y y

w w
= −

−
+

+

1

1

  we can also write E(h*) as

E(h*) = φ1(y1,w1,y2,w2) + φ2(y2,w2, y3,w3) (4)

That is, by giving up some of the separability properties we can reduce the

dimensionality of the problem from 8 to 6. It is worth noting that if we use (2) or (3)

there is an exact (nonlinear) relationship between some of the independent variables.

Equation (1) gives an expression for expected desired hours. However, we

would normally expect that there also are measurement and/or optimization errors. If

these errors are additive it is simple to take these errors into account. Let observed

hours be given by:  $ *h h= + ε ,  where E x( | , )ε η = 0 .  It follows that the expectation

of observed hours will be the same as the expectation of desired hours.

The expressions above were derived under the assumption of a convex budget

set. If the budget set is nonconvex we can do a similar, but somewhat more compli-

cated derivation. The separability properties will weaken, but it is still true that expec-

ted hours of work is a function of the net wage rates, virtual incomes and kink points.
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3. Estimation method

If data were generated by a linear budget constraint defined by the slope w and

intercept y, the expected hours of work would be given  by E h w y g w y( , ) ( , )= . If we

do not know the functional form of g( ), we can estimate it by, for example, kernel

estimation. A crucial question is: how can we do nonparametric estimation when we

have a nonlinear budget constraint. From the previous section we know that if the data

generating process is utility maximization with globally convex preferences, then the

expected value of hours of work can be written as  eq. (1). If we do not know the

functional form of (1) we can in principle estimate (1) by kernel estimation. However,

because of the curse of dimensionality, this will usually be impossible in practice. In

the study by Blomquist and Hansson-Brusewitz (1990)  Swedish data with budget

con-straints consisting of up to 27 segments were used. To describe such a budget

con-straint we need 54 variables! Nonparametric estimation using actual budget con-

straints consisting of 27 segments would require a huge amount of data. To obtain a

practical estimation procedure we therefore have to reduce the dimensionality of the

problem.

Another reason to look for a more parsimonious specification is that when

there are many budget segments relative to the sample size there may not be sufficient

variation in the budget sets to allow us to estimate separate effects for each segment.

That is, there may be little independent movement in the virtual incomes and wages

for different segments. Therefore it is imperative that we distill the budget set

variation, so that we capture the essential features of the data.

The estimation technique we suggest is a two step procedure. In the first step

each actual budget constraint is approximated by a budget constraint that can be

represented by, say, only 5-6 numbers. In the second step nonparametric estimation

via series approximation is applied, using the approximate budget constraints as data.

We consider two approaches to the first step of the estimator, the approxi-

mation of the true budget set by a smaller dimensional one.
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i.  The least squares method

Take a set of points  hj , j = 1,...,K.  Let C(hj) denote consumption on the true budget

constraint and $ ( )C hj  consumption on the approximating budget constraint. The

criterion to choose the approximating budget constraint is  [ ]Min C h C hj j
j

$( ) ( ) .−∑ 2

ii.  Interpolation method

Take three values for hours of work:  h1, h2 and h3.  Let w(h1
j), be the slope of the true

budget constraint at h1
j.  Define linear budget constraints passing through hj and with

slope w(hj).  The approximating budget constraint is given as the intersection of the

three budget sets, defined by the linear budget constraints. The approximation depends

on how the hi are chosen and on how the slopes  w(hj)  are calculated.2

With the budget set approximation in hand we can proceed to the second step,

which is nonparametric estimation of the labor supply function carried out as if the

budget set approximation were true. The nonparametric estimator we consider is a

series estimator, obtained by regressing the hours of work on several functions of the

virtual income and wages. We use a series estimator rather than another type of

nonparametric estimator, because it is relatively easy to impose additivity on that

estimator.

To describe a series estimator let  x = (y1,w1,...,yJ,wJ)’  be the vector of virtual

incomes and wage rates, and let  pK(x) = (p1K(x),...,pKK)’  be a vector of approximating

functions, each of which satisfies the additivity restrictions implied in equations (2),

(3), or (4).  For data  (xi,hi), (i = 1,...,n),  let  P = (pK(x1),...,pK(xn))’  and  H =

(h1,...hn)’.  A series estimator of  g(x) = E(h x)  is given by

                                                
2   One can, of course, use many other methods to approximate the budget constraints. One procedure
would be to take the intercept of the budget constraint and 3 other points on the budget constraint and
connect these points with linear segments.
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$ ( ) ( )' $ , $ ( ' ) ' ,g x p x P P P HK= = −β β            (5)

where  B−   denotes any symmetric generalized inverse. Under conditions given below,

P’P  will be nonsingular with probability approaching one, and hence (P’P) −   will be

the standard inverse.

Two types of approximating functions that can be used in constructing series

estimators are power series and regression splines. In this paper we will focus on

power series in the theory and application. For power series the components of  pK(x)

will consist of products of powers of adjacent pairs of the kinkpoint, virtual income,

and wages. We also follow the common, sensible practice of using lower powers first.

Even with the structure implied by utility maximization there are very many

terms in the approximation even for low orders. To help further with keeping the

equation parsimonius it is useful to take the first few terms from a functional form

implied by a particular distribution.  Suppose for the moment that the budget

approximation contains three segments, as it does in the application. Suppose also that

the disturbance  v  was uniformly distributed on  [-u/2, u/2].  Then, as shown in the

appendix,

[ ]h B u u u( ) [ ( ) ( )] / ( ) / ( ).= − + − + +l l1 1 2 2 2 3 3
2 2π π π π π

Also suppose that  π(y,w) = γ1 + γ2y + γ3w.  Then for  dy = l l1 1 2 2 2 3( ) ( )y y y y− + −

and  dw = l l1 1 2 2 2 3( ) ( )w w w w− + − ,

h B dy dw y w y w y w( ) = + + + + + + +β β β β β β β β1 2 3 4 3 5 3 6 3
2

7 3
2

8 3 3,              (6)

where the coefficients of this equation satisfy, for  c = γ1+ u,

β β γ β γ β γ β γ1
2

2 2 3 3 4 2 5 32= = = =c u u u c u c u/ , / , / , / , / /
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β γ β γ β γγ6 2
2

7 3
2

8 2 32 2= = =( ) / , ( ) / , / .u u u

This function satisfies the additivity properties discussed earlier. We use this function

by specifying the first eight terms in the series estimator to be one of the eight

functions on the right-hand side of equation (6).  Further flexibility is then obtained by

adding other functions of virtual income and wages to the set of approximating

functions. The estimator attains nonparametric flexibility by allowing for higher order

terms to be included, so that for large enough sample size the approximation might be

as flexible as desired.

To make use of the nonparametric flexibility of series estimators it is

important to choose the number of terms based on the data. In that way the

nonparametric feature of the estimator becomes active, because a data based choice of

approximation allows adaptation to conditions in the data. Here we will use cross-

validation to choose both the number of terms and to compare different specifications.

The cross-validation criteria is

CV K SSE K h hii
n$ ( ) ( ) / ( )= − −=∑1 2

1 ,

SSE K h g x p x P P p xi ii
n K

i
K

i( ) $ ( ) / ( )'( ' ) ( )= − −=
−∑ 1

2 2
1 .

The term SSE(K) is the sum of squares of one-step ahead forecast errors, where all the

observations other than the ith are used to form coefficients for predicting the ith.  It

has been divided by the sample sum of squares for  h  to make the criteria invariant to

the scale of  h.  Cross-validation is known to have optimality properties for choosing

the number of terms in a series estimator (e.g. see Andrews, 1991).  We will choose

the order of the series approximation by maximizing  CV(K),  and also compare

different models using this criterion.

4.  Econometric theory

4.1 Asymptotic theory
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As previously noted, utility maximization with convex, piecewise linear budget

constraints leads to expected hours being additive in virtual wages and income. In this

section we present asymptotic theory for a series estimator of one of these additive

specifications, that of equation (4). We are mindful that piecewise linear budget

constraints may only be an approximation. Here we do not take explicit account of

this approximation error, because of the depth of this topic. We leave this task to

future work.

Generalizing equation (4) to allow for  J  budget segments leads to

E h f y w y wjj

J

j j j j( *) ( , , , ).= =

−
+ +∑ 1

1

1 1 (7)

Newey (1995) has developed theory for series estimators of additive models

that can be applied here to obtain convergence rates and asymptotic normality results.

The following assumptions list the regularity conditions that lead to this result:

Assumption 1:  (h1,x1),..., (hn,xn)  are i.i.d.  and  Var(h|x)  is bounded.

The bounded conditional variance assumption is difficult to relax without affecting

the convergence rates.

Assumption 2:  The support of  x  is a Cartesian product of compact connected

intervals on which  x  has a probability density function that is bounded away from

zero.

This assumption can be relaxed by specifying that it only holds for a component of the

distribution of  x  (which would allow points of positive probability in the support of

x), but it appears difficult to be more general. It is somewhat restrictive, requiring that

there be some independent variation in each of the individual virtual incomes and

wages.
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Assumption 3:  g0(x) = E[h|x]  is continuously differentiable of order  s  on the

support of  x.

This condition specifies that the expected hours function is smooth.

These conditions and a limit on the growth rate of the number of terms  K

leads to the following convergence rates. Let  χ  be the support of  x,  and  F0(x)  its

distribution function.

Theorem 1:  If Assumptions 1, 2, and 3 are satisfied and  K3/n →  0  then

[ ] ( )$ ( ) ( ) ( ) / ,/g x g x dF x O K n Kp
s

0

2

0
2− = +∫ −  (8)

        [ ]( )sup $( ) ( ) / ./
x p

sg x g x O K K n K∈
−− = +χ 0

4

This result gives mean square and uniform convergence rates for the estimated

expected labor supply function. The different terms in the convergence rates

correspond to bias and variance, with the variance being increasing in  K  and the bias

decreasing. If the number of terms is set so that the mean square convergence rate is as

fast as possible, with  K  proportional to  n2/(s+2),  the mean square convergence rate

is        n-s/(s+2).  This rate attains Stone’s (1982) bound for the four dimensional case,

that is the rate is as fast as possible for a four dimensional function.  Thus, the

additivity of the expected hours equation leads to a convergence rate which

corresponds to a four dimensional function, rather than the potentially very slow  2J

dimensional rate.

The asymptotic theory also leads to approximate inference methods. Suppose

that a quantity of interest can be represented as  θ0 = a(g0)  where  a(g)  depends on the

function  g  and is linear in  g.  For example,  a(g)  might be the derivative of the

function at a particular point, or an average derivative.  The corresponding estimator is
$ ( $).θ = a g (9)
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This estimator can be combined with a consistent standard error for inference.  Let

( )A a p a p
K KK

= ( ),..., ( ) '
1

 and

$ ' $ $ $ , $ ' / ,V A Q Q A Q P P n= ∑ =− −   [ ]$ ( ) ( )' $( ) / .∑ = −=∑ p x p x h g x nK
ii I

n K
i i i

2
         (10)

This estimator is just the usual one for a function of least squares coefficients, with
$ $ $Q Q− −∑   being the White (1980) estimator of the least squares asymptotic variance

for a possibly misspecified model. This estimator will lead to correct asymptotic

inferences because it accounts properly for variance, and because bias will be small

relative to variance under the regularity conditions discussed below.

Some additional conditions are important for the asymptotic normality result.

Assumption 4:  E[{h-g0(x)}4|x]  is bounded, and  Var(h|x)  is bounded away from

zero.

This assumption requires that the fourth conditional moment of the error is bounded,

strengthening Assumption 1.

Assumption 5:  a(g)  is a scalar, there exists  C  such that  |a(g)| < Csupχ|g(x)|,  and
there exists  g x p x

K K

K( ) ( )'
~= β   such that  E[gK(x)2] →  0  and  a(gK)  is bounded

away from zero.

This assumption says that a(g)  is continuous in the supremum sense, but not in the

mean-square norm  (E[g(x)2])1/2.  The lack of mean-square continuity will imply that

the estimator  $θ   is not n-consistent, and is also a useful regularity condition.

Another restriction imposed is that  a(g)  is a scalar, which is general enough to cover

many cases of interest.

To state the asymptotic normality result it is useful to work with an asymptotic

variance formula.  Let  σ2(x) = Var(h|x).  The asymptotic variance formula is
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VK = A'Q-1∑ Q-1A,  Q = E[pK(x)pK(x)'],  ∑  = E[pK(x)pK(x)'σ(x)2]. (11)

Theorem 2:  If Assumptions 1-5 are satisfied,  K3 /n →  0,  and  nK s− →/4 0   then
$ ( / )/θ θ= +0

3 2O K np   and

nV NK
d− −  →1 2

0 0 1/ ( $ ) ( , ),θ θ   nV Nd$ ( $ ) ( , ),/− −  →1 2
0 0 1θ θ

There are also cases where  $θ is n -consistent, that are useful to consider

separately.  Under the following condition this will occur.

Assumption 6:  There is  ν(x)  with  E[ν(x)ν(x)']  finite and nonsingular such that

a(g0) = E[ν(x)g0(x)], [ ]a p E x p x
kK kK

( ) ( ) ( )= ν  for all  k  and  K,  and there is

]~
( )

~
( ) .β ν β

K
E x p x

K

Kwith −
 →2 0

This condition allows for  a(g)  to be a vector. It requires a representation of  a(g)  as

an expected outer product, when  g  is equal to the truth or any of the approximating

functions, and for the functional  ν(x)  in the outer product representation to be

approximated in mean-square by some linear combination of the functions. This

condition and Assumption 5 are mutually exclusive, and together cover most cases of

interest (i.e. they seem to be exhaustive).

A sufficient condition for Assumption 6 is that the functional  a(g)  be mean-

square continuous in  g  over some linear domain that includes the truth and the

approximating functions, and that the approximation functions form a basis for this

domain. The outer product representation in Assumption 6 will then follow from the

Riesz representation theorem. The asymptotic variance of the estimator will be

determined by the function  ν(x)  from Assumption 6.  It will be equal to

V = E[ν(x)ν(x)'Var(h|x)].            (12)
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Theorem 3:  If Assumptions 1-4 and 6 are satisfied,  K3/n →  0, and  nK s− →/4 0

then

n N V V Vd p( $ ) ( , ), $θ θ−  →  →0 0 .            (13)

4.2 Small sample properties

There are three questions we want to study. First, suppose we do not have to approxi-

mate budget constraints, how well would then an estimation method that regresses

hours of work on the slopes and intercepts of the budget constraint work? Second,

how much "noise" is introduced in the estimation procedure if we instead of actual

budget constraints use approximated budget constraints. The answer to the second

question depends on how the approximation is done. Hence, we would like to study

the performance of the estimation procedure for various methods to approximate

budget constraints. Third, we would like to know how well a nonparametric labor

supply function can predict the effect of tax reform. We have studied these three

questions using both actual and simulated data. To judge the performance of our

suggested estimation procedure we use R2 and the cross-validation measure previously

presented.

Evaluation of budget approximation methods using actual data

We have performed extensive estimations on actual data from 1973, 1980 and 1990 to

compare the relative performance of the OLS and the interpolation methods where

performance is measured by the cross-validation criteria. For the OLS method we

must specify the set of points hi, i=1,..,K. We have subdivided this into the choice of

the number of points to use, the type of distribution from which the hi are chosen and

the length of the interval defined by the highest and lowest values for the hi. We tried

three types of distributions: a uniform distribution, a triangular distribution and the

square root of the observed distribution. For the interpolation method we must specify
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three points h1, h2, h3 and how to calculate the slope of the actual budget constraint at

the chosen points. We have used a function linear in virtual incomes and net wage

rates to evaluate the various approximation methods.

Using data from 1981 one particular specification of the interpolation method

works best of all methods attempted. Unfortunately, this specification works quite

badly for data from 1990. Hence, the interpolation method is not robust in perfor-

mance across data generated by different types of tax systems. Since we want to use

our estimated function to predict the effect of tax reform this is a clear disadvantage of

the interpolation method. The OLS method is more robust across data from different

years. We have not found a specification of the OLS method that is uniformly best

across data from different years. However, the OLS method using a uniform distri-

bution over the interval 0-5000 hours and represented by 21 points has a relatively

good cross-validation performance for data from all years. This is the approximation

method we use in the rest of the study.

Monte Carlo Simulations

We perform two sets of Monte Carlo simulations. In  the first set of simulations we

use data from only one point in time, namely data from LNU 1981. For 864 males in

ages 20 to 60 we use the information on their gross wage rates and nonlabor income to

construct budget constraints and generate hours of work using the preferences

estimated and reported in Blomquist and Hansson-Brusewitz (1990).  It should be

noted that for a majority of individuals the  budget sets are nonconvex.

The basic supply function is given by:

h w y* . . .= + + − ∗ −1857 0 0179 3981 10 4ν

+ ∗ + ∗− −4 297 10 2 477 103 3. .AGE NC , where ν ∼  N(0, 0.0673), hours of work is

measured in thousands of hours, the wage rate is given in 1980 SEK and the virtual

income in thousands of 1980 SEK. AGE is an age dummy , NC a dummy for number

of children living at home and SEK is a shorthand for Swedish kronor. Observed

hours of work is given by h h= +* ε  where ε  ∼  N(0, 0.0132).
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We use the following four types of DGP: i. Fixed preferences;  no

measurement error.  (That is we assume all individuals have identical preferences.)

ii. Fixed preferences and measurement errors  iii. Random preferences;  no

measurement error.  iv. Random preferences and  measurement errors.

The simulations presented in table 1 show how well the procedure works if we

use actual budget constraints in the estimation. Hence, when generating the data we

use budget constraints consisting of three linear segments. These budget constraints

were obtained as approximations of individuals’ 1981 budget constraints. The

constructed data are then used to estimate labor supply functions. The same budget

constraints that were used to generate the data are used to estimate the nonparametric

regression. The following 5 functional forms were estimated:3

1. linear in w yi i, , i = 1,2,3.

2. linear in w yi i, , i = 1,2,3  and l l1 and 2 .

3. quadratic form in w yi i, , i = 1,2,3.

4. quadratic form in w yi i, , i = 1,2,3  and linear in l l1 and 2 .

5. linear form in const dy dw., , , w y w y3 3 3
2

3
2, , , .

In the first row we present results from simulations with a DGP with no

random terms. The variation in hours of work across individuals only depend on the

variation in budget constraints. The reason why the coefficient of determination is less

than one is that we use an incorrect specification of the function relating hours of

work as a function of the net wage rates, virtual incomes and kink points. As we add

more random terms to the DGP the values for the coefficient of determination and the

cross validation measure decrease. Looking across columns, we see that in terms of

the coefficient of determination the functions containing many quadratic and

interaction terms do well. However, looking at the cross validation measure the

simpler functional forms containing only linear terms perform best. For the DGP with

                                                
3 We also tried some other functions. Adding more terms, like squares of the kink points and more
interaction terms increase the coefficient of determination but yields a lower cross validation measure.
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both random preferences and measurement error function 2 performs slightly better

than function 1.

Table 1. Evaluation of Estimation Method using constructed "actual" budget
constraints. Coefficient of determination and Cross validation used as
performance measure. Averages over 500 replications.

DGP function 1 function 2 function 3 function 4 function 5

No random
terms

Average R2

Average CV
0.601
0.581

0.604
0.576

0.644
0.556

0.658
0.536

0.450
0.392

Measurement
error

Average R2

Average CV
0.215
0.194

0.218
0.190

0.245
0.136

0.252
0.123

0.163
0.128

Random
preferences

Average R2

Average CV
0.125
0.103

0.137
0.106

0.167
0.010

0.184
0.013

0.083
0.052

Random pref
+meas. error

Average R2

Average CV
0.098
0.075

0.107
0.078

0.135
-0.016

0.149
-0.015

0.066
0.037

Suppose data are generated by budget constraints consisting of z number of

segments. How well does our method do if we use approximated budget constraints in

the estimation procedure? The simulations presented in table 2 show how well the

pro-cedure works if we generate data with budget constraints consisting of up to 27

linear segments, but in the estimation use approximated budget constraints consisting

of only three segments. We use the OLS procedure described above to approximate

the actual data generating budget constraints. The weight system is a uniform

distribution over the interval 0-5000 hours. We use 21 points to represent the

distribution. We use the same functional forms as in table 1.

Comparing the results presented in table 2 with those in table 1 we find,

somewhat surprisingly, that the R2:s and CV:s in table 2 in general are higher than

those in table 1. This is especially so for the case when there is random preferences
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but no measurement error. The fact that we in the estimation use approximated budget

constraints does not impede the applicability of the estimation procedure.

Table 2. Evaluation of Estimation Method using approximated budget constraints in
the estimation. Coefficient of determination and Cross validation used as
performance measure. Averages over 500 replications.

DGP function 1 function 2 function 3 function 4 function 5

No random
terms

Average R2

Average CV
0.746
0.738

0.757
0.748

0.781
0.715

0.785
0.671

0.668
0.633

Measurement
error

Average R2

Average CV
0.183
0.165

0.187
0.165

0.209
0.100

0.212
0.084

0.165
0.139

Random
preferences

Average R2

Average CV
0.420
0.398

0.428
0.400

0.480
0.325

0.481
0.314

0.372
0.320

Random pref
+meas. error

Average R2

Average CV
0.157
0.136

0.161
0.135

0.195
0.059

0.196
0.049

0.141
0.107

Why are the R2:s and CV:s higher in table 2 than in table 1, especially when there is

random preferences? We provide the following explanation. If the budget constraint is

linear the effect of random preferences is the same as the measurement error. If there

is one sharp kink in the budget constraint, desired hours will be located at this kink for

a large interval of  ν . That is the kink will reduce the dispersion in hours of work as

compared with a linear budget constraint. In the DGP used for the simulations

presented in table 2 we use budget constraints with up to 27 linear segments. The

presence of so many kinks greatly reduces the effect of the random preferences on the

dispersion of hours of work. It is true that for the three segment budget constraints

used for the simulations presented in table 1 the kinks are more pronounced. On

balance it turns out that the DGP used in table 2 is affected less by the random

preferences than what is the DGP used for the simulations presented in table 1.
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Looking across rows in table 2 we see that adding more of random terms to the

DGP decreases both the R2 :s and CV:s. However, while in table 1 the inclusion of

random preferences reduced the R2 :s and CV:s most, in table 2 it is the inclusion of

measurement error that decreases the R2 :s and CV:s most. Looking across columns

and approximating functions we find that the coefficient of determination increase as

we include more squares and interactions while the cross validation decrease. In terms

of the cross validation measure a linear form in virtual incomes, net wage rates and the

kink points shows the best performance. This is the same result as in table 1.

Much of the interest in labor supply functions stems from a wish to be able to

predict the effect of changes in the tax system on labor supply. We have therefore

performed a second set of simulations to study how well a function estimated with the

estimation procedure suggested can predict the effect of tax reform on hours of work.

For these simulations we use data from three points in time:

i. We use individuals’ actual budget constraints from 1973, 1980 and 1990 in

combination with the labor supply model estimated and presented in Blomquist and

Hansson-Brusewitz (1990). (See the labor supply function shown on p. 18 above.)

This model contains both random preferences and measurement errors. Thus, the

datagenerating process is utility maximization subject to nonconvex budget

constraints.

ii. The generated data are used to estimate both parametric and nonparametric  labor

supply functions. We estimate eight different functional forms for the nonparametric

function.

iii.  We perform a tax reform. We take the 1990 tax system as described in section 6

and appendix B to construct post tax budget constraints for the 1980 sample. Using

the labor supply model from Blomquist and Hansson-Brusewitz (1990) we calculate

“actual” post tax hours for all individuals in the 1980 sample.
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iv.  Approximating the post tax reform budget constraints we then apply our estimated

function to predict after tax reform hours.

Let

HBTR =  actual average hours of work before the tax reform.

HATR =  actual average hours of work after the tax reform.

$HBTR =  predicted before tax reform average hours of work.

$HATR =  predicted after tax reform average hours of work.

The actual percentage change in average hours of work is given by

M H H HATR BTR BTR= −( ) / .

We can calculate the predicted percentage change in hours of work in two ways

M H H HATR BTR BTR1 = −( $ $ ) / $ .

M H H HATR BTR BTR2 = −( $ ) / .

The average value of M  is 0.0664. In table 3 we show the average values of M1, M2

and the CV over 100 iterations.

When researchers predict the effect of tax reform the before tax reform hours

are usually known. In actual practice a measure like M2  is often calculated. There are

proponents for a measure where the before tax reform hours also are predicted. In this

simulation, as is common in actual practice, the predicted before tax reform hours is a
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within sample prediction, whereas the after tax reform prediction is an out of sample

prediction. It is not shown in the table, but the predicted before tax reform hours are

predicted quite well. The error in the after tax reform hours is larger.

Table 3.  Average values of  M1,  M2  and CV over 100 iterations

Model M1 M 2 CV
function 1       const. , dy, dw - 0.0171 0.0044 0.0121
function 2       above and w3 , y3 0.0554 0.0538 0.1147
function 3       above and y3

2 0.0546 0.0532 0.1147
function 4       above and w3

2 0.0506 0.0521 0.1189
function 5       above and w y3 3 0.0506 0.0521 0.1183
function 6       above and l l1 2, 0.0517 0.0530 0.1157
function 7       above and y w w2 1 2, , 0.0511 0.0517 0.1328
function 8       above and l l1

2
2
2, 0.0625 0.0621 0.1416

Maximum likelihood
estimate

0.0784 0.0704

According to table 3 function 8 performs on average best. In fact in 99 of the

iterations function 8 achieved the highest CV.  In one iteration function 7 had a

slightly higher CV than function 8. We see that the nonparametric estimation method

can predict the effect of the tax reform quite well. The actual change in hours of work

is 6.64% while the predicted change on average is 6.25%. The maximum likelihood

based prediction slightly over predicts the effect.

In table 4 we use the same DGP as in table 3, except for the measurement

error. The measurement error used to generate data for table 4 is a simple

transformation of the random terms in the previous DGP. The measurement error χ  is

given by χ ε= 2 5/ . The likelihood function used is the same as for table 3. This

means that the likelihood function is misspecified. We see that the nonparametric

estimates in tables 3 and 4 are very close. However, the maximum likelihood estimate

over predicts the effect of tax reform when the likelihood function is incorrectly

specified. In table 4 the ML estimate predicts an increase in hours of work of 11.40%
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as measured by M1 and 9.72% as measured by M2 although the true increase is

6.64%.
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Table 4.

Model M1 M 2 Average
CV

const. , dy, dw -0.0172 0.0433 0.0204
above and w3 , y3 0.0554 0.0538 0.1852
above and y3

2 0.0547 0.0532 0.1853
above and w3

2 0.0507 0.0521 0.1924
above and w y3 3 0.0507 0.0521 0.1916
above and l l1 2, 0.0515 0.0527 0.1879
above and y w w2 1 2, , 0.0511 0.0517 0.2171
above and l l1

2
2
2, 0.0627 0.0622 0.2324

Maximum likelihood
estimate

0.1140 0.0972

5. Estimation on Swedish data

5.1 Data source

We use data from three waves of the Swedish “Level of living” survey. The data

pertain to the years 1973, 1980 and 1990. The surveys were performed in 1974, 1981

and 1991.  The 1974 and 1981 data sources are briefly described in Blomquist (1983)

and Blomquist and Hansson-Brusewitz (1990) respectively. The 1990 data is based on

a survey performed in the spring of 1991. The sample consists of 6,710 randomly

chosen individuals aged 18-75. The response rate was 79.1%. Certain information,

like taxation and social security data, were acquired from fiscal authorities and the

National Social Insurance Board.4

In the estimation we only use data for married or cohabiting men in ages 20-

60. Farmers, pensioners, students, those with more than 5 weeks of sickleave, those

who were liable for military service and self employed are excluded. This leaves us

with 777 observations for 1973, 864 for 1980 and 680 for 1990.

                                                

4  Detailed information on the 1990 data source can be found in Fritzell and Lundberg (1994).
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The tax systems for 1973 and 1980 are described in Blomquist (1983) and

Blomquist and Hansson-Brusewitz (1990). The tax system for 1990 is described in

appendix A. Housing allowances have over time become increasingly important. For

1980 and 1990 we have therefore included the effect of housing allowances on the

budget constraints. The housing allowances increase the marginal tax rates in certain

intervals and also create nonconvexities.

The fact that we pool data from three points in time has the obvious advantage

that the number of observations increase. Another important advantage is that we

obain a variation in budget sets that is not possible with data from just one point in

time. The tax systems were quite different in the three time periods which generates a

large variation in the shapes of budget sets.

5.2  Parametric estimates

We pool the data for the three years and estimate our parametric random preference

model described in, for example, Blomquist and Hansson-Brusewitz (1990).  The data

from 1973 and 1990 were converted into the 1980 price level.  We have also

convexified the budget constraints for data from 1980 and 1990. We show the results

in eq. (14). The elasticities Ew and Ey are calculated at the mean values of hours of

work, net wages and virtual incomes. The means are taken over all years. t-values are

given in parenthesis beneath each coefficient. 5 6

h w y AGE NC= + − − −
− − −

− − −1914 0 0157 8 65 10 9 96 10 346 10 14
62 09 96 595 053 0 44

4 3 3. . . * . * . * ( )
( . ) (8. ) ( . ) ( . ) ( . )

                                                
5  The variance-covariance matrix for the estimated parameter vector is calculated as the inverse of the
Hessian of the log-likelihood function evaluated at the estimated parameter vector.  We have had to
resort to numerically calculated derivatives. It is our experience that the variance-covariance matrix
obtained by numerical derivatives give less reliable results than when analytic derivatives are used.
6  Net wage rates and virtual income are expressed in the 1980 price level for all years. The wage and
income elasticities are evaluated at the average net wage rate and virtual income. The net wage rate and
virtual income being calculated for the segment where observed hours are located.
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ln . . . . .

( . ) ( . ) (8. ) ( . )

L E Ew y= − = = = = −
−

225 43 0 270 0105 0123 0 022

4212 1181 96 595

σ ση ε

5.3 Nonparametric estimates

Below we report results when we have pooled data for the three years.7 We use a

series estimator. As our criterion to choose the estimating function we use the cross

validation measure presented on p. 11. We have used two different procedures to

approximate individuals’ budget constraints. In the first procedure we apply the least

squares approximation to individuals’ original budget constraints. In the second

procedure we first convexify the budget constraints by taking the convex hull and then

apply the least squares approximation. The budget constraints from 1973 are

nonconvex, so the two procedures differ. To approximate the budget constraints we

have used the least squares method with the span from 0 to 5000 hours and with 21

equally spaced points. It turns out that the results are very similar whether we

approximate the original or the convexified constraints. As shown in table 5 the cross

validation measure is a little bit higher for the best performing approximating

functions when we approximate the original budget constraints without first

convexifying. In the following we therefore only report the results for the functions

estimated on approximated budget constraints from original budget constraints. We

only report results for functions estimated on approximated budget constraints

consisting of three piece wise linear segments. We have also tried approximations

with four segments but these approximations yielded lower cross validation measures.

In table 5 we present a partial listing of how the cross validation measure

varies w.r.t. the specification of the estimating function. In table 6 we report the

estimated coefficients for the two specifications with the highest cross-validation

measure.8 We have also used the data to test the utility maximization hypothesis. This

                                                
7 We have also estimated nonparametric functions for individual years. However, the standard errors
are considerably larger for the individual years as compared to when we pool the data.
8   We note that the functional form with the highest CV differs between table 5 and, say, tables 3 and 4.
This is not surprising since the DGP for the actual data presumably is different from the one used in the
simulations presented in tables 3 and 4. We also see that the functional form with the highest CV differ
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test was performed by estimating a function allowing for interactions between the

regressors that violates the separability properties implied by utility maximization.

(See the discussion on p. 6.) These interaction terms were not significant. Hence, the

data are consistent with utility maximization.

Table 5.  Nonparametric estimation on all years. Cross-validation values

Variables included Original budget con-
straints nonconvex

Original budget con-
straints convexified

const dy dw., , 0.0073 0.0057

above and  w y3 3, 0.0323 0.0291

above + y3
2 0.0373 0.0350

above + w3
2 0.0366 0.0341

above+ w y3 3 0.0360 0.0340

above and l l1 2, 0.0358 0.0336

above  and

 y w w2 1 2, ,

0.0278 0.0310

above and l l1
2

2
2, 0.0268 0.0288

It would be of interest to have a summary measure of how these functions

predict hours of work to change as budget constraints change. For data generated by

linear budget constraints one often reports wage and income elasticities. These are

summary measures of how hours of work react to a change in the slope and intercept

of a linear budget constraint. Can we calculate similar summary measures for the

functions reported in table 6? The functions reported in table 6 are estimated on

nonlinear budget constraints, and are useful for predicting changes in hours of work as

                                                                                                                                           
between tables 1and 2 vs. tables 3 and 4. However, the DGP:s used for tables 1 and 2 vs. tables 3 and 4
are different.
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such constraints change. However, we could regard a linear budget constraint as a

limiting case of a nonlinear one. If the wage rates and virtual incomes for the three

segments approach a common value the budget constraint approaches a linear one. It

turns out that if the wage rates and virtual incomes are the same for all three segments

the terms dy  and dw  drop out of the functions. We are left with the w3   and y3

terms. The coefficients for these terms can be used to calculate wage and income

elasticiteis. The elasticities reported are calculated at the mean of hours of work, the

wage rate and  virtual income. The means are taken for the segments where indiviuals

are observed and calculated over all three years. Hence, all elasticities are evaluated at

the same values for the wage rate, virtual income and hours of work. The fact that the

first three functions include a term with the wage rate squared implies that the wage

elasticity measure is very sensitive to the point at which the elasticity is evaluated.

In comparison with the parametric estimates, the nonparametric ones show less

sensitivity of the hours supplied to the wage rate, and more sensitivity to nonlabor

income. Both the elasticity and coefficient estimates show this pattern. The

nonparametric elasticity estimate is smaller than the parametric one for the wage rate

and larger for nonlabor income. Also, for the nonparametric estimates in the first

column of Table 6, the coefficient of w3 is smaller than is the wage coefficient for the

parametric estimate in equation (14). As previously noted, the coefficient of w3 gives

the wage effect for a linear budget set, because dw is identically zero in that case.

The wage and income elasticities are evaluated at the mean of the net wage

rates and virtual incomes from the segments where individuals observed hours of

work are located.9 Of course, the wage and income elasticities are summary measures

of how the estimated functions predict how changes in a linear budget constraint

affect hours of work. None of the budget constraints used for the estimation are linear

and we actually never observe linear budget constraints. It is therefore of larger

interest to see how the predictions differ between the parametric and nonparametric

                                                
9 Ackum Agell and Meghir (1995), using another data source and an instrumental variables estimation
technique, present wage elasticities that are quite similar to those presented here.
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labor supply functions for discrete changes in nonlinear budget constraints. In section

6 we use the estimated functions to predict the effect on hours of work of Swedish tax

reform.

Table 6.    Nonparametric estimates using pooled data.

Variables Best function Next best function

Const. 2.064
(49.85)

2.097
(39.69)

dy -0.00210
(-4.37)

-0.00204
(-4.28)

dw -0.00145
(-1.16)

-0.00131
(-1.06)

y3 -0.0036
(-3.95)

-0.0037
(-4.01)

w3 0.00964
(6.61)

0.00560
(1.40)

y3
2 1.98x10 5−

(3.40)
2.00x10 5−

(3.42)

w3
2 1.16x10 4−

(1.01)

wage elasticity 0.075
(6.61)

0.074
(6.60)

income elasticity -0.038
(-4.31)

-0.040
(-4.37)

Cross validation 0.0373 0.0366

R2 0.0435 0.0440

 t-values in parentheses. The delta method was used to calculate the t-values for the elasticities.

In table 7 we report estimates of the basic supply function π( , )y w  when we

impose the functional form for the conditional mean implied by utility maximization.
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The estimates are obtained by estimating equation (1) given an assumption on the

distribution of v . We recover π( )⋅  from the relation E h J( *) ( )= −π π , which shows

expected hours of work if data are generated by a linear budget constraint.

Table 7. All years. Estimates obtained when constraints implied by utility maxi-

mization are imposed.

Variables ν  uniformly
 distributed
π      linear

ν  uniformly
distributed
π     linear

ν   normally
 distributed
π    linear

Constant 0.999

(36.28)

0.986

(49.29)

0.942

y -0.000529

(3.34)

-0.000517

(3.30)

-0.00053

w 0.0030

(2.87)

0.0028

(2.71)

0.0009

U/2 0.5660

(2.56)

0.5219

(2.50)

# of children 0.0021

(0.69)

Age 0.00036

(1.13)

CV 0.0286 0.0273 0.0009

Surprisingly, the coefficient estimates for both the wage and nonlabor income

are substantially lower for the parametric regression specification in Table 7 than for

either the maximum likelihood or the nonparametric estimation procedure. This

provides some evidence against the distributional assumptions that are imposed on the

estimates in Table 7.  The standard errors for the Gaussian conditional mean estimates

are not reported because they were implausibly large. For the uniform estimates,
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assuming homoskedasticity leads to a simple Hausman test of the distributional

assumption. Comparing the coefficient of w3 in the first column of Table 6 with the

coefficient of w in the first column of Table 7 gives a Hausman statistic 6.53, that

should be a realization of a standard normal distribution. This is an implausibly large

value, providing evidence against the uniform distributional model.

6. Tax reform

In this section we use the estimated functions to predict the effect of recent changes in

the Swedish income tax. The purpose is not to give a detailed evaluation of Swedish

tax reform but rather to see the difference in predictions across estimated functions.10

Around 1980 the Swedish tax system reached a peak in terms of high marginal tax

rates. Then, gradually during the 80’s the marginal tax rates were lowered with a quite

large change in the tax system between 1990 and 1991. We will use the actual

distribution of gross wage rates and nonlabor income from the 1980 data set to

calculate the effect of the changes in the tax system between 1980 and 1991. The 1980

income tax system is described in Blomquist and Hansson-Brusewitz (1990). We

present the most important aspects of the 1991 income tax system in appendix B.

The income tax consists of two parts. There is a proportional local income tax

which has been largely unchanged since 1980. The average local income tax rate has

increased from 29.1% to 31%. The federal income tax is progressive and has

undergone substantial change.  The change in the federal income tax consists of two

important parts. First, the marginal tax rates have fallen significantly. Secondly, in

1980 interest payments were fully deductible against labor income while in 1991 30%

                                                
10   Agell et.al. (1995) contain a broad evaluation of the Swedish tax reform. Aronsson and Palme
(1995) also contain a description of tax reform in Sweden. They present labor supply functions derived
from a household model and estimated by a maximum likelihood technique.
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of interest payments were deductible from other taxes. We will study the effect of the

change in the income tax schedule but we will not take account of the change in

deduction rules. There has also been changes in the VAT and the pay roll tax.  These

changes are of course also important for the shape of individuals’ budget constraints.

We could model the effect of the change in VAT and the pay roll tax as a change in

the real wage rate. However, we have chosen to represent it as a change in a

proportional income tax rate. In appendix B we describe how this is done. Taking

account of the change in VAT and payroll taxes the income tax reform implies a

decrease in the highest federal tax rate from 58% to 25%.

Predictions based on parametric and nonparametric labor supply functions

We use the labor supply function estimated on pooled data from 1973, 1980 and 1990

by the maximum likelihood method and shown as eq. (14). The estimation method

used assumes the budget sets are convex, so the function is estimated on convexified

budget sets. However, since we estimate a well defined direct utility function we can

when we calculate the effect of tax reform either use the original nonconvex budget

sets or convexified ones. It turns out that the difference in predictions is negligible.

Using the original nonconvex budget sets the prediction is that average hours of work

increase by 6.1%, from 2073 to 2200.11

Table 8 gives the predictions for various nonparametric specifications along

with standard errors. We find that the prediction is not very sensitive to functional

form specification. The prediction obtained from the nonparametric labor supply

function is considerably lower than that obtained from the parametric labor supply

function.
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The nonparametric estimates of the policy shift are less than half the size of the

parametric estimates. This seems too large to be explained away by the downward

bias of the nonparametric estimates and upward bias of the parametric estimates that

was found in the Monte Carlo results. The size of the bias found in Table 3 is much

smaller than that. On the other hand, the differences between parametric and

nonparametric estimates are comparable with the biases found in Table 4, where the

maximum likelihood specification is incorrect. In Table 4, the maximum likelihood

estimator of the shift is slightly over twice the size of the nonparametric estimator, as

in the Swedish data. A feature of Table 4 that is not shared by the Swedish data results

is the size of the nonparametric estimates. The empirical estimates of the policy shift

are much smaller than those of the Monte Carlo. Of course, that is consistent with

misspecification of the likelihood in the empirical application.

Table 8.

M1 STD T CV

const dy dw., , -0.0214 0.0062 -3.45 0.0073

above and  w y3 3, 0.0247 0.0091 2.73 0.0323

above + y3
2 0.0298 0.0091 3.27 0.0373

above + w3
2 0.0278 0.0090 3.10 0.0366

above+ w y3 3 0.0278 0.0093 3.00 0.0360

above and l l1 2, 0.0251 0.0099 2.52 0.0358

above  and

 y w w2 1 2, ,

0.0247 0.0105 2.36 0.0278

above and l l1
2

2
2, 0.0262 0.0145 1.80 0.0268

7. Conclusion

                                                                                                                                           
11  The averages are taken over ten simulations with different drawings of the random preference terms
in each simulation.
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In this paper we have proposed a nonparametric model and estimator for labor supply

with a nonlinear budget set. The estimator is formed in two steps: 1) approximating

each budget set by a piecewise linear set with a few segments; 2) running a

nonparametric regression of hours on the parameters of the piecewise linear set. We

exploit the additive structure implied by utility maximization by imposing the

additivity on the nonparametric regression. This estimator is not based on a likelihood

specifi-cation, and so is relatively simple to compute and robust to distributional

misspecifi-cation.

We apply our nonparametric method on Swedish data and use the estimated

nonparametric function to predict the effect of recent Swedish tax reform. We

compare our method with a parametric maximum likelihood method. The differences

between the maximum likelihood and nonparametric estimates provide an example

where the flexibility of nonparametric estimation has a substantial impact on the

conclusions of empirical work. Here we find that the nonparametric policy prediction

is less than half the parametric one. The designed flexibility of our nonparametric

approach to allowing for nonlinear budget sets lends credence to the idea that the

maximum likelihood estimates overstate the size of the effect of Swedish tax reform.

More generally, the simplicity of our approach, together with its flexibility, should

make it quite useful for sensitivity analysis for maximum likelihood estimation with

nonlinear budget sets. A simple, powerful adjunct to, or even replacement of,

maximum likelihood estimation would be nonparametric estimation using the

approximation to the budget sets that is described here.
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Appendix A. Sample statistics.

Hours of work are measured in thousands of hours, virtual income in thousands of
SEK and the wage rate in SEK. The marginal wage rates and virtual incomes are
calculated at observed hours of work for each individual. The economic variables are
expressed in the 1980 price level.

Variable Mean Variance

1973
# of observations: 777
Hours of work 2.133 0.0656
Marginal wage rate 16.27 19.67
Virtual income 36.34 331.06

1980
# of observation:  864
Hours of work 2.098 0.0605
Marginal wage rate 14.90 31.02
Virtual income 69.19 840.48

1990
# of observations:  680
Hours of work 2.120 0.1067
Marginal wage rate 19.77 30.27
Virtual income 55.51 399.43

All years combined
# of observations:  2321
Hours of work 2.116 0.0760
Marginal wage rate 16.55 27.93
Virtual income 54.18 731.79
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Appendix B  1991 Income Tax system

The local income tax was roughly as in 1980. In the federal income tax schedule there
was a basic standard deduction of  SEK 10000.  For taxable income up to SEK
180000 the federal tax was zero. For taxable income above 180000 the federal tax rate
was 20%.   Denoting labor income by x, taking account of the standard deduction and
deflating to the 1980 price level this gives the tax schedule.

x Marginal tax
- 77661 0
77661- 0.20

Between 1980 and 1991 there was also a base broadening for the VAT and an increase
of the VAT rate from 21.34% to 25%.12  In crude terms, assuming the increase in the
VAT tax is completely rolled over onto consumers, the combined effect of the base
broadening and increase in the VAT tax rate is equivalent to an increase in a
proportional income tax with four percentage points. There was also a change in pay
roll taxes from a rate of 35.25% in 1980 to 37.47% in 1991. The rates are in terms of
income net of the pay roll tax. Expressed as a percentage of  gross labor income the
percentages are 26.06% and 27.26% respectively. In Sweden there is a discussion of
whether the pay roll taxes should be fully regarded as taxes or if some part should be
treated as a fee for insurance. Here we treat the pay roll taxes as taxes. In crude terms
the change in pay roll taxes between 1980 and 1991 is equivalent to an increase in a
proportional income tax with 1.2 percentage points. The combined effects of the
change in VAT and payroll taxes is hence equivalent to an increase of a proportional
income tax with 5 percentage points. We treat the changes in the VAT and the pay roll
tax in a simplified way and represent the changes as an increase by five percentage
points in a proportional income tax. We then obtain the following tax schedule.

Tax schedule including the effect of increased VAT and payroll taxes.
x Marginal tax
- 77661 0.05
77661- 0.25

                                                

12  There was a change of the VAT rate in 1980. 21.34% is a weighted average for the year.
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Appendix C. Expected hours of work for a special case.

Suppose data are generated by utility maximization subject to a convex budget
constraint consisting of three piece wise linear segments. Suppose further that the
basic supply function is linear and that there is an additive random preference term
that is uniformly distributed, i.e. the pdf for the random preference term is given by:

g t
u

u
t

u
( ) ( )= − ≤ ≤1

1
2 2

.   The expression for expected hours of work will then take the

form:

E h
u u u

u( *)
( ) ( )

( )= − + − + +l l1 1 2 2 2 3
3

21
2

π π π π π . If we know expected hours of work

has this form but we do not know the parameters of the basic supply function, the
estimating function would take the form:

h const b dy b dw b y b w b y b w b w y= + + + + + + +. 1 2 3 3 4 3 5 3
2

6 3
2

7 3 3  , where

dy y y y y= − + −l l1 1 2 2 2 3( ) ( )  and dw w w w w= − + −l l1 1 2 2 2 3( ) ( ) .


