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Abstract 

Within the framework of the common value model, we examine the magnitude of the difference in expected 
outcome between first-price and second-price sealed bid auctions. The study is limited to two empirical 
specifications of bidders’ signals: Weibull and normal distribution. The optimal bid functions and the expected 
procurer’s cost under both auction formats are derived. Simulations are undertaken to analyze the impact that 
random draws of signals have on the differences in outcome from the two auction formats. Using estimates 
from structural estimation in previous empirical work on first-price auction data, where Weibull and normal 
distributions of signals have been applied, the hypothetical expected gain from switching from a first-price 
sealed bid auction to a second-price sealed bid auction mechanism is computed.  
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1. Introduction 

Government procurement, which represents an important share of total government expenditure 

(typically 10–15% of GDP), is regulated by internationally agreed trade rules under the World 

Trade Organization. Members of the European Community (EC) must also follow EC 

procurement directives. A cautious interpretation of these agreements and rules is that they 

restrict bidding to a sealed-bid procedure and do not allow the procurer to use open or 

sequential bidding mechanisms, such as the English auction.1 The dominant bidding mechanism 

overall seems to be the first-price sealed bid auction (first-price auction henceforth). From 

auction theory, however, we know that in some environments the second-price sealed bid 

auction (second-price auction henceforth) is at least as good or even better than the first-price 

auction in terms of the procurer’s expected cost. Milgrom and Weber (1982) show that if an 

affiliated auction model, such as the symmetric common value model, is used to describe a 

particular bidding environment, then the second-price auction yields a lower expected 

procurement cost than the first-price auction mechanism.  

In view of this theoretical result, the infrequent use of the second-price auction procedure in 

procurement auctions is somewhat puzzling. It is true that if we remove the assumptions of risk-

neutral bidders (firms), symmetry, and non-cooperative behavior, the first-price auction may be 

preferable to the second-price auction, but it is unlikely that this alone explains why second-

price auctions are rare. Rothkopf et al. (1990) consider various possible reasons for the 

scarcity of the second-price auction, some of which they find to be plausible. One such reason 

is that a bidder may be reluctant to bid his reservation cost if he fears that the procurer in a 

second-price auction will cheat by putting in imaginary bids to force the price below the 

                                                             
1 Article XIII:1–3 of the Agreement on Government Procurement (WTO) states that  ”the opportunities  

that may be given to tenderers to correct unintentional errors of form between the opening of tenders and the   
awarding of the contract shall not be permitted to give rise to any discriminatory practice,” and that  ”all 
tenders  
solicited  . . . shall be received and opened under procedures and conditions guaranteeing the regularity of the  
openings.”  



 3

second-lowest bid. Another is that by bidding its true cost a firm reveals valuable information 

which it might be important to keep secret if the firm anticipates that, in the event of winning the 

auction, it will have to negotiate with subcontractors, labor unions, or financial institutions. The 

authors find the argument that the rarity of the second-price auction could be due to inertia 

unpersuasive. Although institutions are slow to implement innovations, it seems unlikely that 

Vickrey’s result from the sixties could have passed unnoticed, without any measures being 

taken.  

Assuming that institutions have long been familiar with the revenue-ranking of first- and 

second-price auctions, this paper sets out to explain part of the passivity of institutions in 

regard to adopting the second-price auction by examining the cardinal difference between the 

auction formats. It is important to consider the magnitude of the expected gain from switching 

auction procedures and not focus solely on the ordinal ranking of auction procedures. Although 

a switch from a first-price to a second-price auction yields an expected lower procurement 

cost, this gain may be regarded as too small to cover the implementation cost. The benefits have 

to be substantial in order to give up a well-tested and reliable procurement method for an 

untried mechanism.  

A number of theoretical and empirical studies have focused on bidding behavior in the 

symmetric first-price common value auction, given different empirical specifications of the 

distribution of bidders’ signals and the distribution of the true cost [e.g. Rothkopf (1969), 

Smiley (1979), Thiel (1988), Levin and Smith (1991), Paarsch (1992), Wilson (1992)]. Little 

work has, however, been devoted to deriving the explicit bid functions for the second-price 

auction and comparing the predicted outcome with that from the first-price auction, given the 

same underlying structure of cost and signals.  

In this paper we map the general symmetric bid functions of the first-price and second-price 

auctions onto two different assumptions regarding the distribution of the bidders’ signals: a 
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normal distribution and a Weibull distribution. These are the only distributions that to our 

knowledge have been applied to and estimated for first-price auction data with fairly good fit 

(Paarsch, 1992). Given the assumptions of the common value auction model, we can use these 

structural estimates to derive hypothetically the predicted gain of using the second-price auction 

instead.  

The paper is organized in the following manner: Section 2 presents the bidding model for the 

first-price and second-price auction. In Section 3 and 4 the theoretical models are mapped onto 

the empirical specifications, and the optimal bid functions and the expected procurer’s cost are 

derived. In Section 5 we use estimates from the structural estimation in Paarsch (1992) on first-

price auction data to illustrate the procurer’s expected cost reduction by switching from a first-

price auction to a second-price auction procedure. Finally, Section 6 summarizes and concludes 

the paper.  

 

2. The Model  

It is assumed that there are n risk-neutral bidders bidding for a particular contract, where the 

cost of carrying out the contract, c, is identical but unknown to all bidders prior to bidding. The 

bidder who submits the lowest bid is selected as the winner and awarded the contract. Before 

the auction, each bidder receives a private signal, zi, concerning the cost of the contract, which 

he uses to form an unbiased estimate of c, that is E(c|zi). No bidder knows the estimate of any 

other bidder. The bidders’ signals, zI, are positively correlated (affiliated) with a cumulative 

distribution function. ( )F z c| . The bidders have prior beliefs about the true cost, c, which is 

characterized by the cumulative distribution function, ( )G c . The number of bidders and the 

distribution functions of zi and c are assumed to be common knowledge. In deriving the 

equilibrium strategies in both auctions, I focus on bidder i.  
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2.1 First-Price Sealed Bid Auction2 

In the first-price auction, where the winning bidder is paid the amount of his bid to perform the 

task, the bidder, given his signal zi, sets his bid bi to maximize the expected payoff  

                                 ( ) ( ) ( )( )( ) ( )Π b z b c F b c g c z dci i

n

i, | |= − − − −

−∞

∞

∫ 1 1 1
β                             (1) 

where            

                                                  ( ) ( ) ( )
( ) ( )

g c z
f z c g c

f z c g c dc
i

i

i

|
|

|
=

−∞

∞

∫
                                                             (2) 

is the posterior distribution of c; β −1( )bi  is the inverse of the equilibrium strategy function of 

the n–1 other bidders; and ( )( )( )1 1 1
− − −

F b c
n

β | is the probability that bidder i wins the contract. 

Substituting (2) into (1), the maximization problem can be written as 

                                    ( ) ( )( )( ) ( ) ( )max |
b i i

n

i
i

b c F b c f z c g c dc− − −
−

−∞

∞

∫ 1 1
1

β                                      (3) 

which yields the first-order condition   

( )( )( ) ( ) ( )

( )( ) ( )( )( ) ( )( ) ( ) ( ) ( )

1

1 1 0

1
1

1
2

1

1

−

− − − − =

−
−
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Imposing symmetry among bidders, ( )b z i
* = β and rearranging the terms gives the first-order 

differential equation  

                                     ( ) ( ) ( ) ( )β z e e q u du C
p u du p t dtz

z u

= ∫ ∫ +








−

−∞

−∞ −∞∫                                           (5) 

where the constant, C, is determined by the appropriate boundary conditions.  

 

2.2 Second-Price Sealed Bid Auction3  

                                                             
2 The derivation in this section is based on Paarsch (1992). Se also Wilson (1977). 
3 The derivation is based on Milgrom and Weber (1982). 
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In the second-price auction, where the winning bidder is paid the amount of the second-lowest 

bid to perform the task, the bidder’s expected payoff when its signal is zi and it bids an amount 

b is 

                                
( ) ( )( ) ( )

( ) ( )( ) ( )

Π( , ) , |

, , |

( )

( )

b z y c z y f y z dy

c y y c z y f y z dy

Yb

Yb

= −

= −

−

−

∞

∞

∫

∫

β
β

β

11

11

                                           (6) 

where ( ) [ ]c z y E C Z z Y yi i, | ,= = =1 , which is the expectation of the cost to bidder i when the 

signal received by him is z and the lowest signal among the other bidders is y. The second-last 

term in equation (6) denotes the conditional probability distribution function of the first-order 

statistics, that is, the smallest order statistics among the signals ( )Z j ij | ≠ . Since c is increasing 

in its first arguments [for all y z c z y c y y< − >, ( , ) ( , ) 0  and for all y z c z y c y y> − <, ( , ) ( , ) 0 ] 

the integral is maximized by choosing b so that β − =1 ( )b z , or equivalently by choosing 

b z= β( ). Thus, symmetric equilibrium in a second-price auction is defined as     

                                                    ( ) ( )β z c z z= , .                                                                      (7) 

Milgrom (1981) shows that this can be written as                 

                   
( ) ( ) ( )[ ] ( )

( ) ( )[ ] ( )
β( )

|

( ) |
z

c n f z c F z g c dc

n f z c F z g c dc

n

n=
− −

− −

∫
∫

−

−

1 1

1 1

2 2

2 2 .                                                     (8) 
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3. Bidding under Weibull Distributed Signals  

The bidder’s signal is drawn from a Weibull distribution, with the probability density function 

                               
( )

( ) [ ]
f z c z e z

g c
U k

c

i
z

i

l

| ,

,
/

= < ≤

=
∞ =

∝




− −γ γ γ γγ γ γ

1 2
1

1 2
2 1

2 0 0

0
1

          and 

       

                                  (9) 

where [ ] ( )
E z c

ci = =
+







 implying that γ

γ
γ

1
21 1 2Γ /

.  

The dispersion of ( )f z ci |  is related to the inverse of γ2, that is, the higher the values of γ2, the 

more concentrated the distribution. Further, it is assumed that  

                                                                ( )g c c∝1 2/ .                                                           (10) 

Smiley (1979) shows that if ( )g c  is proportional to 1/ c l  where l is a real number, then the 

symmetric equilibrium bid function is proportional to the signal; that is, ( )β ρz zi i= , where 

( )ρ > 1 is a constant of proportionality.  

Substituting (9) and (10) into Bayes’s rule, we obtain  

                                         [ ]
( ) ( )
( ) ( )

E c z
cf z c g c dc

f z c g c dc
zi

i

i

i|
|

|
= =

∞

∞

∫
∫
0

0

                                              (11) 

Equation (11) shows that the posterior expected value is just the signal itself, that is, non-

informative. The bidder’s prior expectation about c does not shift the posterior expected value 

of c away from its signal zi . 4   

                                                             
4 Making the assumption that ( )g c c∝1 /  gives [ ] ( ) ( )E c z zi i| / /= + −Γ Γ1 1 1 12 2γ γ  
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3.1 Optimal Bid Functions 

Substituting the distributional specifications into the general bid functions for the first-price and 

second-price sealed bid auctions, (5) and (8), the optimal bid functions are computed as  

 

                  (first-price auction)                      ( ) ( )
( )β

γ
γ

γ

z
n n
n

zi i=
−
− −

2
1

2

1
1 1

2/

                                   

(12)           

                   (second-price auction)                 ( )β
γ

γ

γ

2

1
2

2

2

1nd i iz
n

z=
+

/

.                                       (13) 

 

Figures 1a and 1b plot the optimal bid functions against the number of bidders, given γ 2 5= , 

and against different values of γ 2 , given n = 8 . The figures illustrate two main predictions 

within the symmetric common value auction model: (i) the optimal bid in the first-price auction 

initially decreases with the number of bidders due to competition, but then, as the fear of the 

winner’s curse dominates the competitive effect, the bid increases with the number of bidders; 

(ii) an increased dispersion of signals (lower value of γ 2 ) gives rise to a higher adverse 

selection bias, which causes the bidder to adjust his bid upwards.  

 
Figure 1a: Optimal Bid versus Number of          Figure 1b: Optimal Bid versus Dispersion 

                Bidders (z=1,γ 2 5= )                                               of Signals (z=1, n=5) 
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3.2 Expected and Simulated Procurement Cost 

In order to rank the two auction formats in terms of lowest procurement cost, the expected 

winning bid [ ]E w  in the first-price auction is compared with the expected second-lowest bid 

[ ]E b n( : )2 in the second-price auction. Making use of 

( ) ( ) ( ) ( ) ( ) ( ){ } ( ){ } ( )h b f z
dz

db
f z n

i n
F z F z f zi n i n

i n

i n
i n

i n

( : ) ( : )
( : )

( : )
( : )

!
!

= =
− −

−
− −

 where 
1 1

1
1 1

, the 

 procurer’s expected payment under both auction regimes is derived as  

 

                  (first-price auction)            [ ] ( )
( )

E w
n

n
c=

−
− −

γ
γ

2

2

1
1 1

,                                              (14) 

                  (second-price auction)      [ ] ( )
E b

n n

n

n
n

cn( : )

/

/ /2

1
2

2
1 1

2

2 21 1

1
=

+ −
−

−









γ

γ γ

γ
γ

.                    (15)                      

 

In table 1 the difference between (14) and (15) is computed for various number of bidders 

and  two sizes of the dispersion of signals.  By letting c=1, the procurer’s expected payment 

equals the constant of proportionality. 

 
                              Table 1: The procurer’s expected cost (c=1) 

 
The table shows that the difference between the constant of proportionality of the bid the 

procurer pays diminishes rapidly as the number of bidders increases. Increasing the dispersion 

             γ 2 5=                                                       γ 2 10=  
(1) (2) (3) (4)  (5) (6) (7) 

n ( )E w  ( )E b n( : )2
 Diff.  ( )E w  ( )E b n( : )2

 Diff. 

2 1,25 1,081 0,169  1,111 1,040 0,072 
3 1,111 1,045 0,067  1,053 1,022 0,031 
4 1,071 1,031 0,041  1,034 1,015 0,019 
5 1,053 1,023 0,029  1,026 1,012 0,014 

10 1,023 1,011 0,012  1,011 1,005 0,006 
15 1,014 1,007 0,007  1,007 1,003 0,004 
20 1,011 1,005 0,005  1,005 1,003 0,003 
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of signals, i.e., lowering γ 2 , drives up the difference in the procurer’s expected payment 

between the auction formats, but the magnitude of this difference is reduced to 1–3% when there 

are more than four bidders.  

To complete the picture of the differences in outcome between the two auction formats, a 

number of simulations are carried out. For a given number of n bidders, n signals z are 

randomly drawn from the Weibull distribution and evaluated in the optimal bid functions of the 

two auction formats (equations 12 and 13). For each draw of n signals, we then compute the 

difference between the lowest bid in the first-price auction and the second-lowest bid in the 

second-price auction, that  is   

                                                           ( ) ( )β β1 2 2st ndz zn n(1: ) ( : )− .                                               (16) 

Setting [ ]E c =1 throughout the simulations implies that γ 1 is determined for a given value of 

γ 2 . I focus on two cases of dispersion of signals, 

( ) ( )γ γ γ γ2 25 0 6525 10 0 6073= → = = → = and 1 1. . . The number of bidders ranges from 2 to 

20. Using the specifications above, each auction is simulated 10 000 times and the mean, the 

median and a 90% confidence interval are computed. The results from the simulations are 

presented in figures 2a and 2b. The computed mean values of the 10 000 simulated differences 

for a given number of bidders reflect the results in column four and column seven in table 1. 

Positive values show that the procurer’s cost is higher under the first-price auction. The median 

value of the difference in procurement cost is located above the mean value, indicating that the 

probability density of differences is concentrated well above zero. 
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Figures 2a-2b: Simulated Differences in Procurement Costs under Weibull Distributed   
                         Signals  
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Table 2 illustrates the share of positive outcomes in the simulations, that is, the cases when the 

second-lowest bid in the second-price auction is lower than the lowest bid in the first-price 

auction. The decreasing ratio of positive outcomes supports our previous finding that the 

second-price auction is most advantageous with few bidders. 

 
Table 2: The probability of obtaining a lower cost under the second-price auction than 
under the first-price auction for various number of bidders.  
 

 

Removing 5% of the simulated differences in procurement costs in each tail of the distribution 

for every number of bidders, gives a 90% confidence interval with an upper and a lower bound.  

Number of bidders  2 3 4 5 10 15 20 
( ) ( )β β

1 2 2st ndz zn n(1: ) ( : )>  76% 69% 66% 64% 62% 62% 62% 
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4. Bidding under Normally Distributed Signals 

An alternative approach to deriving a computationally tractable solution for β( )z  is to assume 

that the signals are normally distributed with mean c and variance σ 2 , and that the bidders have 

identical and diffuse prior distribution for the unknown cost c.  

Formally, the specifications of the distributions are denoted  

                                           ( )f z c
z c

i
i| =
−





1
σ

φ
σ

                                                      

                                           c ∼ [ ] ( )U g c k c− ∞ ∞ → = ∀, .                                                     

(17) 

Again, using Bayes’s rule, we see that the bidder’s prior expectation about c does not shift the 

posterior expected value of c away from its signal zi. 

  

                               [ ]E c z
c e kdc

e kdc

zi

z c

z c i

i

i

| = =

− −





−∞

∞

−
−





−∞

∞

∫

∫

1
2

1
2

2

2

2

2

σ π

σ π

σ

σ

.                                                    (18)     

 

4.1 Optimal Bid Functions 

Given the assumptions above and, additionally, the assumption that the estimation errors are 

normal and independent of the true cost, then Levin and Smith (1991), in a comment on Thiel 

(1988), show that the optimal bid function in the first-price auction can be derived as                    

                                          ( ) ( )( )b z z zn n= = − + −β α σ γ ξ σexp :1                                              (19) 

where 

                                           ( ) ( )( ) ( )ξ φ1

1
1 0:n

n
un u u du= − <

−

−∞

∞

∫ Φ                                            (20) 
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and 

                       
( )( ) ( )

( )
α

φ

ξn

n

n

nu u u du
=

−
<

−

−∞

∞

∫ 2 1

1

1
0

Φ

:

.                                    (21)        

 

Levin and Smith show that individual rationality implies that γ ≥ 0. Note that equation (20) is 

the expectation of the first order statistic in a sample of size n of the standard normal 

distribution. The γ is a parameter indexing the family of Nash equilibria, where one (γ = 0 ) is 

linear in the estimate. In the case (γ = 0 ), equation (19) turns into the linear form          

                                  ( ) σαβ nzzb −== .                                             (22) 

The corresponding optimal bid function in the second-price auction can be derived as5 

                                                          ( )β α σ σ
ξ2

1
nd z zi i n

n

= − +
(1: )

.                  

(23) 

In figure 3 the optimal bids in both auction formats are plotted against the number of bidders.  

 
                            Figure 3: Optimal Bid versus Number of Bidders (z=0, σ =1)                              
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Again, the optimal bid in the first-price auction initially decreases with the number of bidders 

due to competition, but then, as the fear of the winner’s curse dominates the competitive effect, 

                                                             
5 See appendix for proof. 
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the bid increases with the number of bidders. From (22) and (23), it is also obvious that the 

optimal bid rises as the dispersion of signals increases.6  

 

4.2 Expected and Simulated Procurement Cost 

As in the previous section, the difference in procurement cost between the first-price sealed bid 

and the second-price sealed bid auction is examined by comparing the expected winning bid in 

the first-price auction with the expected second-lowest bid in the second-price auction. The 

expected winning bid in the first-price auction and the second-lowest bid in the second-price 

auction are   

              (first-price auction)                [ ] ( )E w c n n= + −σ ξ α(1: )                                            (24)  

             (second-price auction)           ( )[ ]
( )

( )E b cn
n

n n2
1

2

1
:

:
:= + + −









σ

ξ
ξ α                            (25)             

where  

                                           ( ) ( )( ) ( ) ( )ξ( : )2

2
1 1n

n
n n x F x F x f x dx= − −

−

−∞

∞

∫                              (26) 

and 
( )

( )ξ α
ξ

ξ α(1: )
:

:,n n
n

n n n− ≥ + − ≥ ≥0
1

0 2
1

2 for . 

Thus, the difference between the two expected values can be expressed as a positive linear 

function in the dispersion of signals where the coefficient is determined by the number of 

bidders. In table 3 we have computed the difference between (24) and (25) for various number 

of bidders, where c = =0 1 and σ .  

                                                             
6 Note that |α|>|1/ξ(1:n)| for n > 2  
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 For small numbers of bidders the difference is significant, but the difference decreases rapidly 

as the number of bidders increases. 

 

                   Table 3: The procurer’s expected cost   (c=0 and σ =1 ) 

 

Again, we complete the picture of the difference in outcome by randomizing the signals and 

evaluating the same set of signals in the optimal bid functions (22) and (23). For each given 

number of bidders, the corresponding number of signals are randomly drawn from the 

standardized normal distribution. In each simulated auction with the same number of bidders, 

the lowest bid in the first-price auction is compared with the second-lowest bid in the second-

price auction. Every auction for a given number of bidders is simulated 10 000 times.  

 

Figure 4: Simulated Differences in Procurement Costs under Normally Distributed   
                 Signals  
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n ( )E w  ( )E b n( : )2
 Diff. 

2 1,208 0,564 0,644 
3 0,661 0,326 0,335 
4 0,478 0,239 0,239 
5 0,385 0,193 0,192 

10 0,224 0,111 0,113 
15 0,173 0,085 0,088 
20 0,149 0,071 0,078 
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Figure 4 illustrates the mean, the median and a 90% confidence interval from the simulations. 

The procurer’s expected difference in cost between the auction formats converges to zero as the 

number of bidders increases.7 For each number of bidders, we also examine the procurer’s 

probability of getting a lower cost with the second-price auction by counting the number of 

positive outcomes from the 10 000 simulations.  

 
Table 4: The probability of obtaining a lower cost under the second-price auction than 
under the first-price auction for various number of bidders 
 

 

Again, where there are very few bidder the second-price auction is very likely to generate a 

lower procurement cost than the first-price auction does, but with increased competition the 

superiority of the second-price auction decreases somewhat.  

 

5. A Numerical Example  

Paarsch (1992) examines whether bidding behavior in tree-planting contract auctions held in 

the province of British Columbia, Canada, can be explained by either the private values or the 

common value model. Using various empirical specifications, Paarsch rejects the private 

values model and finds evidence consistent with rational behavior within the common value 

model, where both the Weibull distribution and the normal distribution specification of signals 

seem to fit the data fairly well.  

Given that bidders’ actions are consistent with theory when facing a second-price sealed bid 

auction, we may use the estimated structural parameters of the distribution of the signals in 

                                                             
7 Given the large number of simulations, one may regard ( )( )β

1 1st z n: and ( )( )β
2 2nd z n: as independent random 

variables. The difference in expected value then breaks down to ( ) ( ) ( )( )σ ξ ξ ξ1 1 21: : :/n n n− − , which converges 

to zero as n →∞. 

Number of bidders  2 3 4 5 10 15 20 
( ) ( )β β

1 2 2st ndz zn n(1: ) ( : )>  79% 74% 71% 69% 68% 67% 67% 
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Paarsch (1992) to illustrate hypothetically what could be predicted to have been gained by the 

procurer by using the second-price sealed bid auction instead of the first-price sealed bid 

auction. The maximum likelihood estimates of the structural parameters for the Weibull 

distribution and the normal distribution c,γ σ2  and  in Paarsch are reproduced in table 5. The 

estimates are based on the winning bids from 144 auctions. 

 

 Table 5: Maximum Likelihood Estimates of Structural Parametersa 

 
  

Making use of equations (14), (15), (22), and (23) the difference in expected costs between the 

first-price and the second-price auction for various numbers of bidders is presented in figure 5. 

Given the Weibull distribution, the estimated gain from a switch is relatively low, about 2–4% 

for auctions with few bidders and diminishing rapidly as the number of bidders increases. 

Parameter Distribution 
Weibull            Normal  

c             0,224               0,20 

γ 2              3,162                  – 

σ                –                   0,150 

 
n 

Mean          Min.              Max. 
15.57             3                  28 

a The parameters are for costs measured in dollars per tree planted 
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Figure 5: Expected Cost under the First-Price and Second-Price Auctions 
                (dollars per tree planted) 
 
                              Weibull distribution                                                      Normal distribution 
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The difference in expected costs under the normal distribution exhibits a similar pattern, 

although the expected gains from a switch of auction format are somewhat higher.  

 

6. Summary  

This analysis of the magnitude of the expected difference between a first-price sealed bid 

auction and a second-price sealed bid auction is based on only two distributions of signals and 

costs, which of course limits the general value of this study. We have shown that the superiority 

of the second-price auction over the first-price auction in terms of expected procurer’s cost is 

related to changes in the number of bidders and the dispersion of signals. Given our 

distributions of signals and cost, the second-price auction is most beneficial when there are 

very few bidders or when there is high dispersion of bidders’ signals. The simulations also 

indicate that the probability of getting a better outcome when using the second-price auction, 

given a moderate number of bidders (>5), is about two-thirds. Making use of the results from 

Paarsch (1992), who finds the common value model consistent with observed behavior, we 

estimate that the predicted hypothetical gain of switching to the second-price auction may be 

significant for a small number of bidders (<5)  but is relatively low for a larger number of 

bidders.  
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The first-price sealed bid auction is a well-established mechanism in governmental 

procurement bidding. This mechanism was surely considered when the national acts and the 

international agreements on public procurement were formulated. Changing a procedure that is 

regarded as more or less formal requires resources. If the estimates of the costs and benefits of 

altering the procedure indicate that there is very little gain from switching methods, an 

institution may very well refrain from implementing the second-price auction. This argument 

seems especially to hold when the procurer expects that the number of potential bidders will be 

relatively large and that the dispersion of their signals will be small.  
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Appendix  
 
Optimal bid function with normally distributed signals8 
 
(In what follows, the bidder’s signal is denoted x) 
 

( )
( ) ( ) ( )[ ] ( )
( ) ( ) ( )[ ] ( )

β x
n cf x c F x c g c dc

n f x c F x c g c dc

n

n=
− −

− −

∫
∫

−

−

1 1

1 1

2 2

2 2

| |

| |
 

 
Restrictions that guarantee the existence of linear strategies: 

1) Each bidder’s prior distribution of value is diffuse: g(c) is constant for all c. 

2) Estimation errors are statistically independent of the contract’s true cost: 

( ) ( ) ( )F X c c f X c c f X ci i i' | |− = − = − . 

3)  Each bidder’s estimate of the cost is unbiased: ( )E X ci = .  

 

Note that 

( ) ( )F x c f c d f t c dt f t dt F x c
x cx cx

| ( | ) ( | ) ( )= = = = −
−∞

−

− ∞

−

− ∞ ∫∫∫ τ τ  

where t c= −τ . The third equality is due to restriction 2.   
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σ σ
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σ σ σ
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σ
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Let z x c and dx
dz

Then f z f x c and dc dz
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x z f z F z dz

f z F z dz
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8 The derivation is based on the derivation of the corresponding bid function under the first-price auction (see 
Levin and Smith, 1991). 
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( ) ( ) ( )[ ]
( ) ( ) ( )[ ]

= −
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Assume that xi is distributed normally, with mean c and variance σ2.  
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                                                                                         Q.E.D. 


