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Abstract: The classical price competition model (named after Bertrand), prescribes that

in equilibrium prices are equal to marginal costs. Moreover, prices do not depend on the

number of competitors. Since this outcome is not in line with real-life observations, it is

known as the “Bertrand Paradox”. Many theoretical problems with the original model

have been considered as an explanation of the paradox in the literature.

In this paper we experimentally investigate a model which is immune to the

theoretical critique of the original model. We find, nevertheless, that the outcome does

depend on the number of competitors: the Bertrand solution does not predict well when

the number of competitors is two, but after some opportunities for learning are provided

it tends to predict well when the number of competitors is three or four. A bounded

rationality explanation of this is suggested.
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 Price Competition and Market Concentration:

An Experimental Study

1. Introduction

The investigation of oligopolistic markets is central in economics. It is often

assumed that firms in such markets compete in prices (see e.g. Tirole 1994, p.224). In

the classical model of price competition (named after Bertrand 1883), the equilibrium

entails that whenever at least two firms are in the market, price is set equal to marginal

cost. In effect, each firm makes zero profits even in a duopoly situation. Since

observations from real markets are not in line with this result, it is referred to as the

“Bertrand Paradox”.

In this paper we report experimental results of markets in which participants

compete in prices. In particular, we consider the effect of changing the number of

competitors on the outcome of the market. Before we describe the experimental set-up

of the model reported in this paper, we note that with two firms the Bertrand model can

be reduced to the following game. Each firm simultaneously chooses a real non-negative

number (its price). The firm that bids the smallest number wins a dollar amount times

this number and the other firms get a payoff of zero; ties are split. It is easy to verify that

in the unique Nash equilibrium, both firms choose zero. It is also easy to see that if more

than two firms interact, at least two of them will choose zero in any equilibrium. In this

paper we study experimentally the following discretized version of the Bertrand game:
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Each of N players simultaneously chooses an integer between 2 and 100.

The player who chooses the lowest number gets a dollar amount times the

number he bids and the rest of the players get 0. Ties are split among all

players who submit the corresponding bid.

The unique Nash equilibrium is a bid of 2 by all players, and each player gets a

payoff of only 2/N.1

This game retains the key elements of the original Bertrand game, and it has

several attractive features that make it impregnable to some common critiques of the

Bertrand model. In particular, economists have attempted to explain the Bertrand

paradox along two different lines. First, it has been argued that certain assumptions that

underlie the Bertrand model are not realistic. Edgeworth (1925), Hotelling (1929),

Kreps and Scheinkman (1983), and (Friedman 1977) respectively point out that the

Bertrand paradox goes away if the assumption of constant return to scale is relaxed, if

goods are not assumed to be homogeneous, if capacity constraints are introduced, or if

firms are allowed to compete repeatedly. The firms may furthermore have incomplete

information about cost functions or demand (as Bertrand models resemble first-price

auctions, Vickrey 1961 is relevant), and, with reference to Cournot’s (1838) model, one

may also argue that firms compete in quantities rather then prices. The second line of

attack is aimed at the game-theoretic foundations of the Bertrand reasoning. The

assumption of Nash conjectures has been criticized (this type of objection has pre-Nash

                                                
1 This is easily seen using the Bertrand reasoning. In the case of N=2, assume that one player bids 2. Then
the other player choosing 2 yields a payoff of $1, while choosing any other number leads to a payoff of
$0. To see that this equilibrium is unique, assume that one player chooses X, when 2<X≤100. The best
response for the other player is to choose X-1, since bidding less than X-1 results in a payoff smaller than
$(X-1), and bidding X results in a payoff of $X/2 which is smaller than X-1. However, if one player bids X-
1, it is optimal for the other player to bid X-2, unless X-1=2. This proves that a bid of 2 by every player is
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roots; see Bowley 1924), and the use of weakly dominated strategies in equilibrium is

problematic.

As argued above, the game used in this paper retains the key elements of the

original game: it can be derived from an economic model of price competition with

constant returns, homogeneous goods, no capacity constraints, no repeated interaction,

and no incomplete information about demand or costs. The unique Nash equilibrium is

strict, and hence does not involve the use of weakly dominated strategies. A bid of 2 is

furthermore the unique rationalizable strategy of the game, so the solution has a strong

decision-theoretic foundation and Nash conjectures need not be assumed.

In each of the experimental sessions described in this paper, twelve bidders

participated. We had three treatments which differed only in terms of how many bidders

were matched in each round (two, three, or four). Markets operated for ten rounds. At

the beginning of each round all 12 participants placed their bids. We then randomly

matched N bidders together (N = 2, 3, or 4) resulting in 12/N different matchings per

round.2 The actual matching and the entire bid vector were then posted on a blackboard.

In all treatments, behavior differed greatly from the theoretical outcome in the

first round. In the n=2 treatment this was also the case in the last round. However, in the

n=3 or n=4 treatments the winning bids seem to converge towards the competitive

outcome by the 10th round.

The theoretical literature on Bertrand competition does not offer an explanation

of these observations. We suggest an explanation that relies on bounded rationality. The

idea is to illustrate the disruptive effect of “noise” on the viability of the Bertrand

                                                                                                                                              
the unique equilibrium. Using a similar argument it is possible to prove that bidding 2 by all players is the
unique equilibrium for any N>2.
2 Note that this random-matching set-up retains the one-shot character of the game. For results of
experiments with repeated price competition (i.e. repeated interaction within a fixed group of firms), see
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outcome when there are sufficiently many firms. If with some “small” probability any

firm in the market may bid differently from what the Bertrand model prescribes, then

this itself is enough to explain why deviations from the Bertrand outcome depend on the

number of firms.

2. Experimental procedure

The experiment was conducted in March 1996 at Tilburg University. Students

were recruited via an advertisement in the university newspaper as well as posters on

campus. We had two sessions for each of the three treatments, with 13 students per

session (78 participants all together).

In each session, after all 13 students entered the experiment room, they received

a standard-type introduction, and were told that they would be paid 7.5 Dutch guilders

for showing up.3  Then, they took an envelope at random from a box which contained 13

envelopes. 12 of the envelopes contained numbers (A1,..,A12). These numbers were

called “registration numbers”. One envelope was labeled “Monitor”, and determined

who was the person who assisted us and checked that we did not cheat.4 Apart from the

assistant, we asked the students not to show their registration number to the other

students. Participants then received the instructions for the experiment (see Appendix

1), and ten coupons numbered 1, 2,..., 10. They were allowed to ask questions privately.

Each participant was then asked to write on the first coupon her registration

number and her bid for round 1. The bids had to be between 2 to 100 “points”, with 100

points being worth 5 Dutch guilders. Participants were asked  to fold the coupon, and

                                                                                                                                              
Fouraker and Siegel (1963, chapter 10), and the discussion in Plott (1982). Also Alger (1987) contains
some related results.
3 At the time of the experiment, $1=1.7 Dutch guilders.
4 This person was paid the average of all other subjects participating in that session.
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put it in a box carried by the assistant. We now refer to the three treatments as

treatments 2, 3, and 4 (with groups of respectively two, three, and four students being

matched in each round in treatment 2, 3, and 4).  In treatment 2 (sessions 2a and 2b), the

assistant randomly took two coupons out of the box and gave them to the experimenter.

The experimenter announced the registration number and the bid on each of the

coupons. If one bid was larger than the other then the experimenter announced that the

low bid won the same amount of points as she had bid, and the other bidder won 0

points. If the bids were equal than the experimenter announced a tie, and said that each

bidder wins one half of the bid. The assistant wrote this on a blackboard so that all the

subjects could see it for the rest of the experiment. Then the assistant took out another

two coupons randomly, the experimenter announced their content, and the assistant

wrote it on the blackboard. The same procedure was carried out for all 12 coupons. Then

the second round was conducted the same way. After round 10 payoffs were summed

up, and subjects were paid privately.

Treatments 3 (sessions 3a and 3b) and 4 (sessions 4a and 4b) were carried out

the same way, except that the assistant matched 3 or 4 players, respectively, together

every time instead of 2.

3. Results

The raw data of the respective sessions are presented in Tables 1a-f, in which the

average winning bids and the average bids are also presented. Correspondingly, the

average winning bids and the average bids are plotted in Figures 1a-f. We start with

describing the behavior in round 1, because at this stage no elements of learning or

experience exist. From observation of the data it is clearly seen that the Bertrand

outcome was not achieved in this round. The average bid (winning bid) was 33.5 (29.7)
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and 41.8 (23) in sessions 2a and 2b respectively, 26.4 (21.5) and 30.1 (16.5) in sessions

3a and 3b respectively, and 33.1 (24) and 30.8 (6.3) in sessions 4a and 4b. We also

perform a statistical test of whether the bids in different sessions came from the same

distribution. To this end, we consider each of the (15) possible pairs of sessions, and

investigate whether the two concerned sets of observed bids come from distributions

with the same mean. We use the non-parametric Mann-Whitney U test based on ranks,

and cannot, for any pair, reject (at a 5% significant level) the hypothesis that the

observations came from distribution with the same mean. In this sense, in round 1 the

different rules in the different markets did not influence behavior.

When comparing the convergence of bids in later rounds, however, we observe

great difference between treatments. In session 2a, we see a slow decrease of the average

winning bid from 29.7 in round 1 to 16 in round 6. From round 6 to round 7, a jump in

the average winning bid from 16 to 35.1 is observed. From this point on the averages are

25.8 in round 8, 33.8 in round 9, and finally 37.8 in round 10. It is clear that no

convergence to bids of 2 is observed. In fact, the smallest bid in round 10 was 19. In

session 2b, the average winning bid decreased constantly from 23 in round 1 to 16.2 in

round 4. Then, however, the average winning bid started to rise, and in rounds 8, 9, and

10 the average winning bids were 38.2, 37.2, and 36 respectively. An interesting

observation is that participant number A12 in this session used a constant bid of 2

throughout the experiment. Of course, this bid was “strange” given the fact that the next

lowest bid in round 10 was 38. This bid was not enough to move the other  bids to the

neighborhood of 2. Furthermore, the bids in both sessions of treatment 2 were much
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alike in round 10; the average bids were 49.6 and 49.3 in sessions 2a and 2b

respectively, and the average winning bids were 37.8 and 36 in the respective sessions.5

In session 3a we see a decrease in the average winning bid from 21.5 in round 1

to 5.3 in round 10. The largest decrease is observed moving from round 1 to round 2

(from 21.5 to 11). After round 2, although some fluctuation is observed, bids decrease

steadily. The lowest bid in round 10 is 4, and 7 out of the 12 bids are between 4 and 7.

In session 3b, the average winning bid decreased, monotonically, from 16.5 in round 1

to 3.2 in round 10. Unlike in session 3a, we do not observe a sharp decrease from round

1 to round 2, but rather a steady decrease between rounds. The lowest bid in round 10

was 2, with 10 out of the 12 participants bidding 5 or less. When comparing the two

sessions of treatment 3 we see that, like in the case of treatment 2, the bids in both

sessions were much a like in round 10; the average bids were 17.9 and 12.3 in sessions

3a and 3b respectively, and the average winning bids were 5.3 and 3.2 in the respective

sessions.

In session 4a we see again a monotonic decrease in the average winning bid from

24 in round 1 to 2 in round 10. Like in session 3a, the largest decrease is observed

moving from round 1 to round 2 (from 24 to 11.3). After round 2 bids decrease steadily.

The striking result is that already in round 8 the average winning bid was 2, and it did

not rise till the end of the session. The lowest bid in round 10 was 2, with 7 out of the 12

participants bidding 5 or less. In session 4b we observe a different trend in the first

rounds. The matching in the first round were such that very low bids won (the average

bids in round 1 were 33.1 and 30.8 in session 4a and 4b respectively, but the average

winning bids were 24 and 6.3 in the respective sessions). When observing figure 1f we

                                                
5 Unlike the case of first round behavior, it is not appropriate to use the Mann-Whitney test, because the
assumption that all observations are independent is not justified.
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see a hump in the average bid. In fact, the average bid in round 5 was 71.4 (which is the

highest average bid in a single round in the entire experiment), with 6 out of the 12

participants biding 100! A similar trend was observed in the average winning bid; It rose

from 6.3 in round 1 to 28 in round 6. However, from that round on it seems as if

participants “gave up”, and the average winning bid decreased steadily to 2.4 in round

10, with 8 out of the 12 participants bidding between 2 and 6. Although the outcome in

the intermediate markets was very different between sessions 4a and 4b, the results of

round 10 show almost total convergence of the average winning bid in both sessions to

the equilibrium. The average bids were 13.9 and 20.5 in sessions 4a and 4b respectively,

and the average winning bids were 2 and 2.4 in the respective sessions.

An interesting observation is that while the average winning bids in treatments 3

and 4 were at its lowest point in round 10, the average bid actually went up a bit in

round 10 in three out of four sessions. It is not clear how this end game effect can be

explained. One speculation is that participants were frustrated as they realized that due

to the low level of bidding they were not making much money in the experiment, and so

decided to gamble a bit in the last round.

To summarize, the market outcomes in round 1 are similar across sessions. It is

also the case that in all sessions the outcomes converge, and relatively little fluctuation

is observed at the end of the experiment. However, while the round 10 outcomes in the

two sessions of treatment 2 are far from equilibrium, the round 10 winning bids are

relatively close to the equilibrium.

4. Discussion

In this paper we study how the number of competing firms influences the

fierceness of competition in a Bertrand oligopoly game. The theoretical prediction is
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clear; all firms should submit the lowest possible bid irrespective of how many firms are

matched. However, when we tested this model experimentally, we found that at the

initial stage, competitors set prices higher than in the Nash equilibrium. In subsequent

rounds the winning bids typically converged rather rapidly towards the theoretical

prediction in two out of three treatments. This happened when groups of three or four

competitors were matched. However, when only two competitors were matched prices

remained much higher than the theoretical prediction.

These experimental findings suggest that learning plays a role, since behavior

was not constant across time in all treatments. However, it is puzzling that the

participants seem to come close to learning to play the equilibrium only when the

number of competitors is sufficiently large. Our primary goal with this paper is not to

solve this puzzle, but to document relevant experimental evidence. We conclude,

however, by suggesting a reason why one might expect that the number of firms will

have important bearing on the viability of the Bertrand equilibrium. We do not aim to

provide a quantitatively exact model that fits the experimental data, but rather to hint at

a phenomenon which is qualitatively informative.

The profile where all firms bid 2 is the unique equilibrium of the Bertrand game

we consider. A firm which unilaterally deviates from the equilibrium reduces its profit.

However, in reality it seems highly unlikely that each firm is fully convinced that every

other firm will behave in accordance with the equilibrium. Examples abound of

irrational activity in economically important situations. Moreover, the consequences of

irrationality may be large, even if the probability that individual decision makers are

irrational is very small. Two relevant examples are Kreps, Milgrom, Roberts and

Wilson’s (1982) model of strategic interaction in the finitely-repeated prisoners’

dilemma when rationality is not common knowledge, and "noise trading" in financial
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markets (see De Long, Shleifer, Summers, and Waldmann, 1990). We now propose to

illustrate how a little bit of irrationality can upset the viability of the Bertrand if a high

enough number of firms interact.

Suppose that in the context of our experimental game the firms believe that with

a small probability ε > 0 any given other firm is an irrational "noise bidder" who always

simply submits a bid of 100. It is easy to verify that for a range of rather small values of

ε there cannot be an equilibrium where all firms that are not noise bidders bid 2, as long

as not too many firms are being matched. Let n denote the number of firms being

matched. Consider the decision problem faced by a non-noise bidding firm that believes

with probability one that all other non-noise bidding firms will bid 2. It is clear that the

firm should not submit a bid from the set {3,..., 98, 100}, since each bid in this set does

strictly worse than a bid of 99. Let px be the probability that x firms out of the n-1 bid 2.

(Note that p0=εn-1 and that εn-1 is decreasing in n). One now sees that the firm should bid

99 if  ∑ x∈{0,..., n-1} 2px / (x+1) < 99p0 , and that the firm should bid 2 if the inequality is

reversed. For a range of rather small values of ε a bid of 99 is optimal if n is not too

large. If n is large enough 2 is the optimal bid irrespective of the value of epsilon. As an

example, note that with ε=.05 and n=2 a bid of 99 is optimal, but, with ε=.05 and n≥3 a

bid of 2 is optimal.

To assume that all noise bidders bid 100 is clearly not realistic, but the main

point of the argument goes through for a variety of other assumptions about the nature

of noise bidding (e.g. that it is uniformly distributed between 2 and 100). The important

insight from the example, which is supported by the experimental findings, is that the

viability of the Bertrand outcome depends crucially on the number of firms being

matched.
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The bids in the different sessions

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Round 10

A1 49 34 24* 22* 16* 15* 100* 100 60 20*
A2 15* 20* 25* 20 19 19 14* 9* 19* 19*
A3 39 39 30 35 40 19 100* 99 99 99
A4 40* 29* 28* 26 18* 16* 13* 80* 40 28*
A5 10* 20* 29 24* 19* 15* 14 100 79 79
A6 40* 30* 26 20* 21 15* 14* 19* 50* 60*
A7 23* 29 31* 24* 28 20* 14* 17* 40* 50
A8 46 32 24* 26 18* 100 20 35 88 66
A9 40 38 25* 25 20* 20 15 40 100 40*
A10 40* 40 35 19* 19* 18 40 39 35* 60*
A11 20 25* 20* 19* 17* 15* 12* 12* 20* 39
A12 40* 35* 30 23* 25 16 14* 18* 39* 35

Average bid 33.5 30.9 27.3 23.6 21.7 24.0 30.8 47.3 55.8 49.6
Average
winning bid 29.7 26.5 25.3 22.0 18.1 16.0 35.1 25.8 33.8 37.8

Table 1a: Bids in session 2a. * indicates a winning bid.

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Round 10

A1 66 50* 33* 66 44 85 98 96 50* 99
A2 30 24* 33* 22 30* 20 79 50* 54 40
A3 80 70 39 39 19 26 59* 69 67 46
A4 40* 50 40 20* 20* 80 79* 76 66 42
A5 85 85 85 20* 20 15* 20* 70 70 50
A6 22* 28* 18* 18* 28 20* 30* 49 48 39*
A7 98 40 84 85 99 99 99 99 99 99
A8 20* 30 28 20* 18* 80* 20 40* 40* 30*
A9 5 17* 20* 17* 17* 16* 13* 19* 35* 39*
A10 33* 29* 27* 26 17* 16 79* 49* 48* 38*
A11 21* 21 21 21 18* 16* 39 69* 48* 68*
A12 2* 2* 2* 2* 2* 2* 2* 2* 2* 2*

Average bid 41.8 37.2 35.8 29.7 27.7 39.6 51.4 57.3 52.3 49.3
Average
winning bid 23.0 25.0 22.0 16.2 17.4 24.8 40.3 38.2 37.2 36.0

Table 1b: Bids in session 2b. * indicates a winning bid.
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Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Round 10

A1 41 18 9* 13 8* 7* 6* 5* 4* 4*
A2 25 10* 10* 10 9* 8 5* 5* 5* 5*
A3 24* 17 17 12 10* 9* 10 8* 6* 50
A4 5* 19 15 87 9* 40 38 56 7 6
A5 29 18 15 14* 12 12 9 6* 6 24
A6 19* 24 27 14* 69 100 6* 12 78 36
A7 38 17 13 18 18 39 7 5 5 5
A8 38 18 12 11 11 7* 13 7 8 38
A9 25 2* 2* 5* 8* 7* 5* 5* 5* 5*
A10 25 34 20 15 13 15 10 53 53 6
A11 19* 17* 9* 8* 13 11 11 11 7 7*
A12 29 15* 13 9* 41 13* 100 100 38 29

Average bid 26.4 17.4 13.5 18.0 18.4 22.3 18.3 22.8 18.5 17.9
Average
winning bid 21.5 11.0 7.5 10.0 8.8 8.6 5.5 5.8 5.0 5.3

Table 1c: Bids in session 3a. * indicates a winning bid.

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Round 10

A1 12 12* 13* 12 11* 9* 8 7* 6 5
A2 40 17* 18 9* 11 7* 8* 9 5 2*
A3 40 8* 16 11 7* 14 9 7 5* 5
A4 40 15* 17 14* 13 10 10 7 5* 6
A5 12* 26 8* 2* 3* 2* 4* 2* 2* 2*
A6 29* 24 19 14 8 12 5* 11 2* 12
A7 48 37 11* 10* 9 9* 9 6* 5 5
A8 23* 19 11* 11 9 7* 7* 6* 5 3*
A9 20 20 25 90 90 50 10 10 5 5*
A10 50 18 15* 17 13* 13 13 7 6 4*
A11 45 39 35 100 43 100 99 2* 5 96
A12 2* 32 15 15 15 13 40 3 3* 3

Average bid 30.1 22.3 16.9 25.4 19.3 20.5 18.5 6.4 4.5 12.3
Average
winning bid 16.5 13.0 11.6 8.8 8.5 6.8 6.0 4.6 3.4 3.2

Table 1d: Bids in session 3b. * indicates a winning bid.
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Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Round 10

A1 55 25 15 16 10 10 5 5 5 2*
A2 10 20 10 10 5 2* 2* 2* 2* 2*
A3 48 29 15 14 9 5 4* 4 10 10
A4 47* 14 47 37 12 6 3* 6 4 4
A5 20* 26 16 9 8 5* 4* 4 2* 2*
A6 20 19 15 10 8 6 5 5 5 5
A7 48 8* 13 7* 4* 4* 2* 2* 2* 2*
A8 50 50 50 5* 5* 5 50 46 2* 100
A9 20 15 11* 10 7* 5 5 2* 2* 2*
A10 50 37 13 7* 20 15 13 10 8 8
A11 9* 10* 14* 15 10 7 3 3 2* 10
A12 20* 16* 8* 6* 6 3 3* 2* 16 19

Average bid 33.1 22.4 18.9 12.2 8.7 6.1 8.3 7.6 5.0 13.9
Average
winning bid 24 11.3 11.0 6.3 5.3 3.7 3.0 2.0 2.0 2.0

Table 1e: Bids in session 4a. * indicates a winning bid.

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Round 10

A1 34 34 34 34* 34 33 23 21 5* 2*
A2 15* 13 10 10 10* 28 12* 12 10 5
A3 10 10* 15 100 30* 99 25 8* 2* 2*
A4 2* 50 19 100 100 100 9* 9* 3* 2*
A5 2* 14 19* 100 100 100 100 34 10 100
A6 19 21 8* 13 98 74 42 9* 7 4*
A7 40 35 25 100 100 100 100 100 100 100
A8 49 10* 9 100 100 100 28* 24 3* 8
A9 35 10* 20 9 100 30* 97 15 5 2*
A10 100 100 100 10* 100 100 100 25 20 6
A11 48 20 9* 11 75 44* 35 20 16 10
A12 15 8* 10 8* 10* 10* 20 5* 5 5

Average bid 30.8 27.1 23.2 49.6 71.4 68.2 49.3 23.5 15.5 20.5
Average
winning bid 6.3 9.5 12.0 17.3 16.7 28.0 16.3 7.8 3.3 2.4

Table 1f: Bids in session 4b. * indicates a winning bid.
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Appendix 1: Instructions for treatment 2

In the following game, which will be played for 10 rounds, we use "points" to

reward you. At the end of the experiment we will pay you 5 cents for each point you

won (e.g. 100 points equals 5 Dutch guilders). In each round your reward will depend on

your choice, as well as the choice made by one other person in this room. However, in

each round you will not know the identity of this person and you will not learn this

subsequently.

At the beginning of round 1, you are asked to choose a number between 2 and

100, and then to write your choice on card number 1 (please note that the 10 cards you

have are numbered 1,2,...,10). Write also your registration number on this card. Then we

will collect all the cards of round 1 from the students in the room and put them in a box.

 The monitor will then randomly take two cards out of the box. The numbers on

the two cards will be compared. If one students chose a lower number than the other

student, then the student that chose the lowest number will win points equal to the

number he/she chose. The other student will get no points for this round. If the two

cards have the same number, then each student gets points equal to half the number

chosen. The monitor will then announce (on a blackboard) the registration number of

each student in the pair that was matched, and indicate which of these students chose the

lowest number and what his number was.

Then the monitor will take out of the box, without looking, another two cards,

compare them, reward the students, and make an announcement, all as described above.

This procedure will be repeated for all the cards in the box. That will end round 1, and

then round 2 will begin. The same procedure will be used for all 10 rounds.
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