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A Pure Binary LP Model to the Facility Layout Problem

Christos Papahristodoulou1

Abstract

In facility layout problems, a major concern is the optimal design or remodeling of the

facilities of an organization.  The decision maker’s objective is to arrange the facility in an

optimal way, so that the interaction among functions (i.e. machines, inventories, persons) and

places (i.e. offices, work locations, depots) is efficient. A simple pure-binary LP model is

developed and solved for a small hospital, where five functions are to be redesigned to five

different locations. The model is rather flexible and can be used, with small modifications, for

larger facility layouts.

JEL classification: C60, C61, C63.
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Introduction

It is well known that, in facility layout problems one investigates where each
function, in a given floor space, will be placed, when all functions interact
with each other. Such locations will influence material handling or distance
costs and consequently the efficiency of facility. Typical facility layout
problems arise in the design or renovation of factories, distribution centers,
hospitals, banks, department stores, military supply depots, universities etc., so
that functions with high (low) rate of interaction will be placed close (away) to
(from) each other. Thus, the distance or time cost of items or persons will be
minimized and the efficiency will increase.

Nahmias [1997], refering to some studies, argues that the US spent more than
$ 500 billion annualy on construction and modification of facilities. Effective
facilities planning could reduce costs by 10 to 30 percent per year. He also
believes that intelligent layout is a key factor to the Japanese production
efficiency.

Finding a facility’s optimal layout has been studied mainly by industrial
engineers and researchers in operations research. Among the first who studied
this problem are Armour and Buffa [1963]. Little seems to have been
published in the 1950s. Francis and White [1974], were the first who collected
and updated the early research on this area. Later research has been updated by
two recent studies, the first by Domschke and Drexl [1985] and the other by
Francis, McGinnis and White [1992].

In general, two approaches have been applied to solve facility layout problems
with many functions and locations. The first approach is based on greedy
pairwise exchange heuristic. It starts with an initial layout and then seeks an
improved one by exchanging the locations of a pair of functions. These
approaches are ”greedy” in a sense that they often exchange the pair of
functions with the largest net reduction in total travel time from the locations.
The pairwise exchanges2 are repeated as long as improvements are possible.
Since these heuristics consider only two-way exchanges, they do not guarantee
that the optimal layout will be found, if for instance all functions need to be
exchanged. The second approach is based on a binary integer quadratic
objective function. Particular software packages such as CRAFT
(Computerized Relative Allocation of Facilities Technique), by Armour and
Buffa [1963], SDPIM (Steepest Descent Pairwise Interchange Method)
developed by STORM Software, or GRASP (Greedy Randomized Adaptive
                                                
2 If there is an exchange in locations between functions k and l, the number of function pairs

whose travel time change is 2(n-2), where n is the number of locations or functions. This is

because there are 2 ways to choose the member of the pair that must be either k or l, and (n-2)

ways to choose the member of the pair that is different from k or l.
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Search Procedure) by Resende, Li and Pardalos [1996], claim that these
algorithms are efficient and solve large problems (with more than 15 functions
and locations). These algorithms are however, rather complex. For instance,
the GRASP algorithm is almost fifteen pages long!

In this paper a simple pure-binary (integer) linear programming (PBLP) model
has been developed to solve a hypothetical layout problem for a small hospital.
The model is rather flexible and could be applied to more functions and
locations with simple modifications. As in binary integer quadratic models, the
number of iterations increases dramatically and it may take a long time to find
the optimal layout of more functions and locations.

A hypothetical example

Limited resources in the public sector necessitate additional measures to
increase efficiency. Hospital services is a typical example where doctors’ and
nurses’ time is insufficient to meet the demand by patients. According to
nurses’ observations and experience, from a small hospital, some, or all five
functions located on the same floor, are placed in wrong positions with regard
to the daily interactions between each pair of functions. That leads to
unnecessary long trips by both the staff and patients. Considerable travel time
savings might be derived if these particular functions are reallocated to rooms.

The following figure depicts the actual allocation of these five functions to the
respective location (room). Since there are 5! = 120 different layouts, the
problem is to find out the best one.

A  C
Examination Room Hematology Lab

B
    X-ray Room

D  E
Waiting Room  Medical Records

                                                      Entrance

Figure 1: Hospital’s actual layout

The symmetric figure 2 displays two data sources. The first entry shows the
time (in seconds) it takes for the hospital staff (and the patients as well) to
travel from room to room. For instance, it takes almost half a minute to travel
from A (Examination Room) to C (Hematology Lab), or vice versa. The
second entry shows the daily frequency of interaction between each pair of
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functions (which might be the average of an observed period). For instance, a
nurse will make 180 single trips following all patients who must go from the
Waiting Room (D) to the Hematology Lab (C), and another 150 single trips
from A to B. Contrary to the distance observations which are easy to collect,
the trips are of course not stable and change very often.

In addition, there are some other idiosyncrasies with a hospital’s layout. For
instance, different functions might need different space and must be placed in
certain locations. Even safety or aesthetic reasons should be taken into
consideration when facilities are to be located. All that makes the problem
dynamic or stochastic. Moreover, it would be extremely difficult to formulate,
solve and above all implement all statistically significant layouts. Even a
deterministic facility layout problem is complicated enough. We therefore,
disregard all these problems and consider it as static or deterministic.
Obviously, the importance of idiosyncrasies, of fixed costs and the large
fluctuations in the average number of trips, must be taken into account before
the optimal layout is implemented.

(A)         (B)         (C)   (E)
Examin. Room     X-ray   Hematology       Med. Records

(D) Waiting Room (10, 230)       (15, 0)      (35, 180) (28, 50)

(A) Examin. Room       (18, 150)      (28, 130) (35, 70)

(B) X-ray Room      (18, 200) (15, 60)

(C) Hematology Lab (10, 100)

Figure 2: Time and Patient-trips between each pair of functions

It is meaningless to know the number of patients. Some of them will have to
go through all the functions while others might need only an X-ray or a
Hematology eaxamination. Some of them might go straight to get their
Medical Records from previous examinations, while the majority of them will
have to wait at the Waiting room. Even if all of them must wait at the Waiting
room before they go to the specific investigation rooms, we cannot count the
number of patient-services.3 In addition, since the examination sequence is not
                                                
3 The maximum amount of patients (not patient-services) is all those who start from the

Waiting room, i.e. 460, if they go straight to these different functions and never return there. A

possible solution consistent with 460 patients is given in the following matrix (minus indicates

inflow of patients from the respective room):
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taken into account, the number of patient-trips shown in figure is the
maximum amount from both directions. For instance, 200 patient-trips
between B and C should be regarded as any combination of 200 patients going
between B and C, such as 120 from B to C and 80 from C to B.

If we multiply the travel time with the number of trips made daily, we compute
the total travel time. According to this layout, it takes 24,290 seconds (almost
6 hours and three quarters).

In principle, one has to enumerate 120 different total travel times and choose
the minimum. Obviously, if we had to assign ten functions to ten locations we
would have to choose one out of 10! = 3,628,800 possible layouts, a very
cumbersome, if not erratic work.

A simple PBLP model

Although the enumeration of layouts is not avoided, a PBLP model has been
developed to find the best layout.

Define first 100 binary (0,1) variables Xk = Li*Fj , where k = 1, 2,.....100,  Li =
pair of locations according to the capital letters (rooms), with i = 1,2, ... 10,
and Fj  =  pair of functions according to their locations, with j = 1,2,....10. This
definition of variables allows us to linearize the problem which in fact is non-
linear (multiplicative). Thus, X1 = (AB)*(Waiting Room/Examination Room),
X2 = (AC)*(Waiting Room/Examination Room), ...,X9 = (CE)*(Waiting
Room/Examination Room), X10 = (DE)*(Waiting Room/Examination Room).
In accordance with that, we define all Xk. For instance,

X11 = (AB)*(Waiting Room/X-Ray Room), ...,
X21 = (AB)*(Waiting Room/Hematology Lab), ...,
X100= (DE)*(Hematology Lab/Medical Records).

                                                                                                                               
To

X-ray Hematol. Examin. Med. Rec. Out

Waiting 0 180 230 50 0

X-ray 0 -200 150 -60 -110

From Hematol. 200 0 -130 100 170

Examin. -150 130 0 70 50

Med. Rec. 60 -100 -70 0 -110

Out 110 10 180 160 460
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All variables are shown in the function-location pair matrix (Table 1). The
actual layout is also marked in italics. For instance, X3 implies that the
Examination Room is placed in A and the Waiting Room in D, X75 implies
that the X-ray room is placed in B and Hematology in C and so on.

Different objective functions can be chosen. One for instance might care of the
largest number of patients and want to minimize the total travel time for them.
However, since the aim is to increase the hospital efficiency, the hospital’s
objective function is:

min 4,140X1 + 6,440X2 + ..... + 1,080 X91 + ..... + 2,800 X100

Regarding the structural constraints, we proceed as follows.

Let us consider the (Examination Room/Waiting Room) pair. That pair can be
placed in one of 10 possible pair of locations [ (AB), (AC), (AD), (AE), (BC),
(BD), (BE), (CD), (CE) and (DE)]. Therefore we require that:

X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10 = 1 (1)

AB
18

AC
28

AD
10

AE
35

BC
18

BD
15

BE
15

CD
35

CE
10

DE
28

ER-WR
230

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

XR-WR
0

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

He-WR
180

X21 X22 X23 X24 X25 X26 X27 X28 X29 X30

WR-MR
50

X31 X32 X33 X34 X35 X36 X37 X38 X39 X40

ER-XR
150

X41 X42 X43 X44 X45 X46 X47 X48 X49 X50

ER-He
130

X51 X52 X53 X54 X55 X56 X57 X58 X59 X60

ER-MR
70

X61 X62 X63 X64 X65 X66 X67 X68 X69 X70

XR-He
200

X71 X72 X73 X74 X75 X76 X77 X78 X79 X80

XR-MR
60

X81 X82 X83 X84 X85 X86 X87 X88 X89 X90

He-MR
100

X91 X92 X93 X94 X95 X96 X97 X98 X99 X100

Table 1: The function-location pair matrix with 5 functions and 5 locations

In a similar way we proceed with all other pairs.
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X11 +.... + X20 = 1 (2)

.......
X91 + ....+ X100 = 1           (10)

In addition, to avoid the possibility of placing more than one function to the
same location, we require that each pair of location should receive only one
pair of functions, i.e. for the location pair (AB) the appropriate constraint is:

X1 + X11 + X21 + X31 + X41 + X51 + X61 + X71 + X81 + X91 = 1              (11)

We continue with the remaining location pairs (i e. all the columns).

X2 +....+ X92 = 1           (12)

......
X10 +....+ X100 = 1           (20)

To avoid illogical pair allocations, i.e. the possibility of multiplying correct
(incorrect) trips with incorrect (correct) time, we introduce 25 = (5*5) binary
variables Yt = (0,1), where t = 1, 2, .....,25, in order to catch up every ”1” of
location pairs and combine it with every ”1” of function pairs, in such a way so
that wrong multiplication of trips by time will be excluded.

To understand the function of this binary variable, let us look at the tableau
above. Consider the first four rows and the first four columns marked (i.e. all
Waiting Room and A pairs). It is obvious that either one or four of these 16
variables will take the value 1. For instance, X3 = 1 is possible, as in the actual
layout. The first and the thirteenth constraints are then satisfied, implying that
either the Waiting Room or the Examination Room will be placed either in A
or in D. We are not certain yet which one will be placed where. That will
depend upon which of the remaining Xk will take the value 1. The other
possibility is having  X3 = X14 = X21 = X32 = 1, satisfying constraints (1) to
(4) and (11) to (14), if all other Xk:s below these four columns and to the right
of these four rows are zero. But, it is not possible to have only two or three of
Xk:s equal to 1! If for instance X3 = X14 = 1, we are certain that the Waiting
Room will be placed in A, the Examination Room in D and the X-ray Room in
E. Given the remaining Waiting Room pairs with the Hematology Lab and
Medical Records, and the remaining A pairs with B and C, two more variables
must be equal to 1, either (X21, X32), or (X22, X31). Now, it is easy to
formulate that constraint.
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X1 + X2 + X3 + X4 + X11 + X12 + X13 + X14 + X21 + X22 + X23 + X24 + X31
+ X32 + X33 + X34 - 3 Y1 = 1            (21)

Let us check how this binary constraint works. If Y1 = 0, then only one of
these four function pairs (Waiting Room with all others) is placed correctly
and all others are placed wrong, i.e., only one of these 16 variables will take
the value 1. If Y1 = 1, then all four function pairs are placed correctly, like the
above mentioned (X3 = X14 = X21 = X32 = 1), implying that the Waiting
Room will be placed in A, the Examination Room be placed in D, the X-ray
Room in E, the Hematology Lab in B and the Medical Records in C.

We continue with the same four columns and the Examination Room pairs
(i.e. rows 1, 5, 6 and 7). The same argument applies. Either one or four of
these 16 variables will take the value 1. That constraint is formulated as:

X1 + X2 + X3 + X4 + X41 + X42 + X43 + X44 + X51 + X52 + X53 + X54 + X61
+ X62 + X63 + X64 - 3 Y2  = 1            (22)

Obviously, it is possible for both Y1 and Y2 to be zero, but not both to be
equal to 1. If for instance, Y1 = 1, then four variables of the first block (such as
those mentioned above) will be equal to 1, implying that the functions will be
placed as above. The 22st constraint must be consistent with that too, that is,
Y2 = 0. That is easily proved. From the first four column constraints, (11 to
14), all variables below that block (i.e. X41,  X42...., X64), will take the value
zero. Since, from the first constraint, only one out of the first four Xk:s equals
to 1 (in our case X3), constraint (22) implies that Y2 = 0. Therefore, this new
binary has not changed the layout. On the other hand, the possibility of Y1
being equal to zero, does not necessarily imply that Y2 = 1. If only X3 = 1,
does not necessarily imply that three more variables in constraint (22) will be
equal to 1 too. There are three more functions (i.e. three more Yt:s) left which
can be paired with A. Thus, only one of these first five Yt:s is equal to 1.
Moreover, such a constraint is superfluous and is taken care of by the row and
column constraints above.

With proceed similarly with the X-ray Room, the Hematology Lab and the
Medical Records constraints:

X11 + X12 + X13 + X14 + X41 + X42 + X43 + X44 + X71 + X72 + X73 + X74 +
X81 + X82 + X83 + X84 - 3 Y3  = 1            (23)

X21 + X22 + X23 + X24 + X51 + X52 + X53 + X54 + X71 + X72 + X73 + X74 +
X91 + X92 + X93 + X94 - 3 Y4  = 1                        (24)
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X31 + X32 + X33 + X34 + X61 + X62 + X63 + X64 + X81 + X82 + X83 + X84 +
X91 + X92 + X93 + X94 - 3 Y5  = 1            (25)

We have now finished with the location A and repeat it with the remaining
locations (B, C, D and E). There are 20 constraints left (5 for each location).

For instance, the last constraint (location E) is:

X34 + X37 + X39 + X40 + X64 + X67 + X69 + X70 + X84 + X87 + X89 + X90 +
X94 + X97 + X99 + X100 - 3 Y25  = 1            (45)

The formulation is now complete. We used alltogheter 125 binary variables
and 45 constraints. Mathematica provided the following optimal solution (in
almost twenty minutes of computing time4:

X3  = X14 = X21 = X32 = X50 = X56 = X68 = X77 = X89 = X95 = 1

Y1 = Y9 = Y15 = Y17 = Y23 = 1

Minimum objective function = 20,940 seconds (i.e. almost 5 hours and 49
minutes), that is an efficiency gain of 55 minutes per day (almost 14 %),
compared with the actual layout (see table below). All five functions were
placed wrong! Observe that although X3 = 1, as in the initial layout, the
Waiting and Examination Rooms have now changed place, so that the number
of trips and the time remains unchanged for that pair. In addition, the X-ray
shifted from B to E, the Medical Records from E to C and the Hematology Lab
from C to B. The solution is shown in Table 2. The initial layout variables are
marked in italics.

As was mentioned earlier, if the rooms are not equal in size, this layout might
not be optimal. For instance, if the X-ray is moved from, say, the large room B
into smaller room E, the hospital’s X-ray capacity will decline, unless the
space of room B is expanded. That of course will increase the capital costs and
disturb the hospital’s services during the works.

                                                
4 QSB+ provided the same solution in 6 minutes (after 59 iterations).
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AB AC AD AE BC BD BE CD CE DE time
WR-ER X3,X3 2,300
WR-XR X14 X16 0
WR-He X21 X28 3,240
WR-MR X32 X40 1,400
ER-XR X41 X50 4,200
He-ER X52 X56 1,950
MR-ER X64 X68 2,450
He-XR X75 X77 3,000
MR-XR X87 X89 600
He-MR X95 X99 1,800

Table 2: The optimal and the initial solution

Modifications

Various modifications to the formulation above are possible. For instance, the
rows and columns constraints [(1) to (20)] are not necessary, if instead, the
following five constraints are introduced:

Y1 + Y2 + Y3 + Y4 + Y5 = 1, Y6 + Y7 + Y8 + Y9 + Y10 = 1,

Y11 + Y12+ Y13 + Y14 + Y15 = 1, Y16 + Y17 + Y18 + Y19 + Y20 = 1,

Y21 + Y22 + Y23 + Y24 + Y25 = 1

These constraints exclude the possibility of having more than one Xk at the
same row or the same column (see proof in Appendix 1).

The PBLP formulation is rather flexible and can be applied to larger layouts of
rectangular and no-rectangular structure. Other structural constraints, such as a
particular function must be placed at that specific place, are of course easy to
formulate and save considerable computing time. Table 3 summarizes some
key points of larger rectangular layouts.

For instance, when the number of Rooms and Functions increases to 6 and 6,
the function-location matrix dimension is 15x15 and includes 225 pair
variables. There are 36 sub-matrices of 5x5 dimension and therefore 36 binary
variables and 36 constraints where each binary will operate. In addition, there
are 30 structural constraints, one for every row and every column.5 Therefore,

                                                
5 The number of columns or rows is equal to the number of ways to choose 2 of the n-

functions, for an exchange in location, i.e. n!/(n-2)!2!
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Rooms &

Functions

Number of

Layouts

N!

Number of X

Variables

[n!/2!(n-2)!]2

Binary Y

Variables

n*n

Number of

Constraints

Computing

Time (min)

4,4 24 36 16 2*6 + 16 <1

5,5 120 100 25 2*10 + 25 20

6,6 720 225 36 2*15 + 36 436

7,7 5040 441 49 2*21 + 49 ?

8,8 40320 784 64 2*28 + 64 ?

9,9 362880 1296 81 2*36 + 81 ?

10,10 3628800 2025 100 2*45 + 100 ?

Table 3: Key characteristics of rectangular layouts

the new 31st constraint where the first binary (Y1) operates will be formulated
as:

X1 + X2 + X3 + X4 + X5 + X16 + X17 + X18 + X19 + X20 + X31 + X32 + X33
+ X34 + X35 + X46 + X47 + X48 + X49 + X50  + X61 + X62 + X63 + X64 + X65
- 4 Y1  = 1

The same argument applies. If Y1 = 0, then only one of these five function
pairs is placed correctly. If Y1 = 1, then all five pairs are placed correctly. We
do not need to examine the possibility of having two, three or four pairs placed
correctly, because in these cases all five pairs are placed correctly too. If more
than one variables take the value one, such as X1 = X17 = X33 = 1, we are
certain that the first function will be placed in A, the second in B, the third in
C and the fourth in D. Given the remaining function pairs (first with fifth and
sixth), and the remaining room pairs (A with E and F), two more variables
must be equal to 1, either (X49, X65), or (X50, X64) to satisfy the equality
constraint.

In general, the coefficient of  Yt is equal to (n-2), where n is the number of
functions or locations.

It took almost seven and a half hours to solve that problem in Mathematica,
i.e.  the computing time increased by a factor of 21.8 times. Considerable time
can be saved though, if the following simple steps are considered.

Consider the binary Yt Table 4. Start first with location A (the first binary row)
and select which function will be placed there (based on the lowest value in
objective function). Take then all columns (one at a time), to check if the same
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function will be placed in A or somewhere else. There are 1 + 6 subproblems
to solve. The minimum objective function (31,850) is obtained when Y1 = 1.

1 2 3 4 5 6

A Y1 Y2 Y3 Y4 Y5 Y6

B Y7 Y8 Y9 Y10 Y11 Y12

C Y13 Y14 Y15 Y16 Y17 Y18

D Y19 Y20 Y21 Y22 Y23 Y24

E Y25 Y26 Y27 Y28 Y29 Y30

F Y31 Y32 Y33 Y34 Y35 Y36

Table 4: The binary Yt table for a rectangular 6x6 layout

Second, set all other binaries at the same row and column equal to zero, and
continue with location B and all remaining (five) columns (one at a time) as
before. Apply the same criterion, when the binaries are selected. There are 1 +
5 subproblems to solve. The minimum objective function (32,325) is obtained
when Y8 = 1.

Third, set all other binaries at the same row and column equal to zero, and
continue with location C and all remaining (four) columns (one at a time) as
before. Apply the same criterion, when the binaries are selected. There are 1 +
4 subproblems to solve. The minimum objective function (32,845) is obtained
when Y15 = 1.

Repeat with all remaining functions and locations. The minimum objective
function (36,195) is obtained when Y22 = 1, Y30 = 1 and Y35 = 1.

To check if that solution is optimal, there are at least two options. The first one
is to use that value as an upper bound and solve the entire problem (with all its
36 binaries). Mathematica found the optimal solution (35,650) in almost five
hours (shown in Appendix 2). The second option is to check, after each step, if
an optimal  solution (i. e. if all functions are placed correctly) has been found
already. In the third step for instance, the minimum objective function selected
(32,845), increased to 36,195 when the remaining three functions were placed
correctly. That sub-solution did not care about what it was going to happen
later on. On the other hand, the third step (trying to pair functions with
location C), provided a higher value (third higher) in objective function
(35,650), and placed all other functions correctly too! Therefore, since that
value is lower than 36,195, it might be an optimal one. To check it,  we set that
value as an upper bound and solve the entire problem. Mathematica solved
(and found) it, in almost four hours.
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The model has not been formulated yet for layouts with more than 6 Rooms
and 6 Functions. I expect that there will be an optimal solution though, at least
in two to three days of calculations, if Mathematica does not run out of
memory!  My first priority though is to collect real patient data, take into
account the size of rooms, for the 5x5 layout, to check the hospital’s
efficiency.
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 Appendix 1

To prove that these new binary constraints exclude the possibility of having
more than one Xk at the same row or the same column, let us assume that the
first four variables of the second row ( X11 = X12 = X13 = X14 ) equal to one.
Since these variables are part of constraints (21) and (23) too, it would imply
that Y1 = Y3 = 1, which contradicts the first, new constraint. The same
argument applies to any four Xk:s at the same row, because they always appear
together with two Yt:s of the same constraint, like the above.

Assume instead that the first four variables of the first column ( X1 = X11 =
X21 = X31 ) equal to one. Since these variables are part of constraints (21) and
(26)6 too, it would imply that Y1 = 1, Y6 = 1 and Y2 = Y3 = Y4 = Y5 = 0, and
Y7 = Y8 = Y9 = Y10 = 0. Therefore, the function-location matrix would be
transformed to the following.

AB AC AD AE BC BD BE CD CE DE
1,2 1 0 0 0 0 0 0 X8 X9 X10
1,3 1 0 0 0 0 0 0 X18 X19 X20
1,4 1 0 0 0 0 0 0 X28 X29 X30
1,5 1 0 0 0 0 0 0 X38 X39 X40
2,3 0 0 0 0 0 0 0 X48 X49 X50
2,4 0 0 0 0 0 0 0 X58 X59 X60
2,5 0 0 0 0 0 0 0 X68 X69 X70
3,4 0 0 0 0 0 0 0 X78 X79 X80
3,5 0 0 0 0 0 0 0 X88 X89 X90
4,5 0 0 0 0 0 0 0 X98 X99 X100

Table 1a: The transformed function-location matrix when X1 = X11 = X21 = X31 = 1

Constraints (31) to (35), (not shown in the text) together with Y11 + Y12 +
Y13 + Y14 + Y15 = 1, imply that four variables from columns 8 and 9 will
take the value 1 and all others the value 0. Let X39 = X69 = X89 = X99 = 1.
Constraints (36) to (40), (not shown in the text) together with Y16 + Y17 +
Y18 + Y19 + Y20 = 1, imply that four variables from the last column will take
the value 1 and all others the value 0. Let X30 = X60 = X80 = X100 = 1.  That
is not possible because constraint (45) is violated since X39 , X69 , X89 , X99
and X100 are part of that constraint too.  By the same token, any other
combination of four variables in the last column will contradict some
constraint from (41) to (44). A similar argument applies for all other
combinations of variables from columns 8 and 9. Thus, if the first twenty

                                                
6 Not shown in the text; it is formulated as constraint (21), with the B columns instead of A.
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constraints are substituted by these new five constraints, it is guaranteed that
no more than one variable can lie on the same row or the same column.

It took more than four hours to solve this modified formulation. A slightly
better formulation included five more binary constraints, to explicitly take care
of the columns, i.e.:

Y1 + Y6 + Y11 + Y16 + Y21 = 1, Y2 + Y7 + Y12 + Y17 + Y22 = 1,

Y3 + Y8 + Y13 + Y18 + Y23 = 1, Y4 + Y9 + Y14 + Y19 + Y24 = 1,

Y5 + Y10 + Y15 + Y20 + Y25 = 1

That formulation speeded up the execution time and solve it within two hours.
Thus, it might be concluded that, sometimes, the best formulation of an integer
LP might contain more constraints, if the execution time is to be limited.

Appendix 3

The optimal and the initial solution for a rectangular 6x6 layout

AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF
1,2 X1
1,3 X19 X21
1,4 X35 X37
1,5 X48 X54
1,6 X62 X68
2,3 X77 X83
2,4 X93 X99
2,5 X110 X112
2,6 X124 X126
3,4 X145 X150
3,5 X162 X163
3,6 X176
4,5 X194
4,6 X207 X208
5,6 X220 X225

Initial layout min: 39840;  A:2, B:1, C:3, D:4, E:6, F:5,

i e. Y2 = Y7 = Y15 = Y22 = Y30 = Y35 = 1

Optimal layout min: 35650; A:1, B:2, C:6, D:5, E:3, F:4,

i e. Y1 = Y8 = Y18 = Y23 = Y27 = Y34 = 1


