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A Minimal Test for Convex Games

and the Shapley Value

Mark Voorneveld 1 SoÞa Grahn2

Abstract: A set of necessary and sufficient conditions for convexity of a transferable utility

game in terms of its decomposition into unanimity games is shown to be minimal: none of the

conditions is redundant. The result is used to provide an axiomatization of the Shapley value

on the set of convex games.
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1 Introduction

A game with transferable utility, or a (TU) game for ease of notation, is a tuple (N, v) with

N = {1, . . . , n} a Þnite set of n ≥ 2 players and v : 2N → R a function that assigns to each

coalition S ⊆ N of players a value v(S) ∈ R with v(∅) = 0. Let GN denote the set of games with
player set N and C = {S | S ⊆ N,S 6= ∅} the collection of all nonempty coalitions. Shapley
(1953) proves that the unanimity games {(N,uT ) ∈ GN | T ∈ C} form a basis of the vector

space GN , where (N, uT ) is deÞned for each S ⊆ N as follows:

uT (S) =

½
1 if T ⊆ S,
0 otherwise.

Hence, for each game (N, v) ∈ GN there exist unique coefficients (αT )T∈C such that v =P
T∈C αTuT . Many different classes of games, like airport games (Littlechild and Owen, 1973)

and sequencing games (Curiel et al., 1989), can be characterized through restrictions on these

coefficients. A game is convex (Shapley, 1971) if

∀S, T ⊆ N : v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ), (1)

or, equivalently, if

∀S, T ⊆ N,∀i ∈ N : if S ⊆ T ⊆ N \ {i}, then v(T ∪ {i})− v(T ) ≥ v(S ∪ {i})− v(S). (2)

Convex games have nice properties (Shapley, 1971, Ichiishi, 1981): the nonempty core is the

unique stable set and coincides with the Weber set (the convex hull of the marginal vectors).

Hence, the Shapley value is the barycenter of the core. Moreover, several practical classes of

games, like bankruptcy games (O�Neill, 1982, Aumann and Maschler, 1985) and sequencing

games (Curiel et al., 1989), turn out to be convex.

The purpose of this paper is threefold: (i) to provide a number of necessary and sufficient

conditions on the unanimity coefficients αT for the game to be convex, (ii) to show that this

number is minimal : it is really necessary to check all these conditions, in the sense that it is

possible to construct a non-convex game violating an arbitrarily chosen condition, but neverthe-

less satisfying all remaining conditions, (iii) to provide an axiomatization of the Shapley value

on the class of convex games in the spirit of Young (1985).
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2 Testing convexity

A large number of convexity conditions in (1) or (2) is redundant. Our next theorem provides

a smaller number of such conditions, which are shown to be minimal in the sense that none of

them is implied by the others.

Theorem 2.1 The following three conditions are equivalent:

(a) The game (N, v) ∈ GN is convex;

(b) For all i, j ∈ N, i 6= j, and each S ⊆ N \ {i, j}:

v(S ∪ {i, j})− v(S ∪ {j}) ≥ v(S ∪ {i})− v(S). (3)

(c) For all i, j ∈ N, i 6= j, and each S ⊆ N \ {i, j}:X
R⊆S

αR∪{i,j} ≥ 0. (4)

Proof. (a) ⇒ (b): In (2), write T = S ∪ {j} to obtain (3).
(b)⇒ (a): Let S, T ⊆ N and i ∈ N be such that S ⊆ T ⊆ N \{i}. We prove that inequality (2)
holds. If T = S, the inequality is trivial, so assume that T 6= S and write T \ S = {i1, . . . , im}.
Repeated application of (3) yields

v(T ∪ {i})− v(T ) = v(S ∪ {i1, . . . , im} ∪ {i})− v(S ∪ {i1, . . . , im})
≥ v(S ∪ {i1, . . . , im−1} ∪ {i})− v(S ∪ {i1, . . . , im−1})
· · ·
≥ v(S ∪ {i1} ∪ {i})− v(S ∪ {i1})
≥ v(S ∪ {i})− v(S).

(b) ⇔ (c): Write v =
P
T αTuT . Let i, j ∈ N, i 6= j, and S ⊆ N \ {i, j}. Then

(3) ⇔ [v(S ∪ {i, j})− v(S ∪ {j})]− [v(S ∪ {i})− v(S)] ≥ 0

⇔
 X
T :T⊆S∪{i,j}

αT −
X

T :T⊆S∪{j}
αT

−
 X
T :T⊆S∪{i}

αT −
X
T :T⊆S

αT

 ≥ 0
⇔

X
R:R⊆S∪{j}

αR∪{i} −
X
R:R⊆S

αR∪{i} ≥ 0

⇔
X
R:R⊆S

αR∪{i,j} ≥ 0,
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concluding the proof. 2

There are
¡n

2

¢
ways to choose two players i, j ∈ N, i 6= j, and 2n−2 ways to choose a coalition

S ⊆ N \ {i, j}, yielding 2n−2
¡
n
2

¢
conditions in (4). To show that � as opposed to (1) or (2) �

none of these conditions is redundant, let i, j ∈ N, i 6= j, and S ⊆ N\{i, j}. We construct a game
that violates exactly the convexity condition corresponding with (S, i, j), while still satisfying

all other conditions. Consider the game (N, v) ∈ GN , v =PT∈C αTuT with for each T ∈ C:

αT =


−1 if T = S ∪ {i, j},
1 if T = S ∪ {i} or T = S ∪ {j} or R 6⊆ S ∪ {i, j},
0 otherwise.

Then
P
R⊆S αR∪{i,j} = −1 < 0, so the condition for (S, i, j) is indeed violated. Let k, ` ∈ N,k 6=

`, and T ⊆ N \ {k, `} such that T 6= S or {i, j} 6= {k, `} and consider the condition for the
combination (T, k, `): X

R⊆T
αR∪{k,`} ≥ 0. (5)

If αS∪{i,j} does not appear in (5), then the sum is over nonnegative terms, hence nonnegative.

If αS∪{i,j} does appear in (5), discern two cases:

(a) If T 6= S and {i, j} = {k, `}, the fact that αS∪{i,j} appears in (5) implies that S ∪ {i, j} =
S ∪ {k, `} ⊆ T ∪ {k, `}, so S ⊆ T . Choose m ∈ T \ S, which is possible since T 6= S. Then
α{m}∪{k,l} = 1 appears in (5), compensating for αS∪{i,j} = −1 and consequently yielding
a nonnegative outcome.

(b) If {i, j} 6= {k, `}, assume without loss of generality that i /∈ {k, `}. Since αS∪{i,j} = −1
appears in (5), also αS∪{j} = 1 appears in (5), compensating the negative number and

hence yielding a nonnegative outcome.

Conclude that the condition for (S, i, j) is the unique condition that is violated.

A brief remark on the complexity of our test: 2n−2
¡n

2

¢
= 2nn(n−1)

8 conditions seems quite a

lot, until one realizes that the game itself is deÞned on its 2n coalitions. In other words, the

input size is not the number of players n, but the number of coalitions x = 2n. Thus, testing

2nn(n−1)
8 conditions is only of complexity O(x(log x)2).
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3 The Shapley value of convex games

As mentioned before, the Shapley value ϕ, which assigns to each game (N, v) ∈ GN the average
of its marginal vectors, i.e.,

∀i ∈ N : ϕi(v) =
X

S⊆N\{i}

|S|!(n− |S|− 1)!
n!

[v(S ∪ {i})− v(S)],

is of particular appeal in convex games: in such a game, the core is equal to the convex hull of

the marginal vectors (the Weber set) and, consequently, the Shapley value is the barycenter of

the core.

Young (1985) axiomatizes the Shapley value by replacing the original additivity and dummy

axioms of Shapley (1953) with a monotonicity condition. He provides his axiomatization on

two different classes of games: the class GN of all n-player games and the class of n-player

superadditive games. See Timmer et al. (2000) for a characterization on a third class of games.

The purpose of this section is to axiomatize the Shapley value on the set of convex games in the

same spirit as Young (1985).

Let CN ⊂ GN denote the set of convex games. A solution concept on CN is a function ψ

that assigns to each game (N, v) ∈ CN a vector ψ(v) ∈ Rn, specifying a payoff ψi(v) to each

player i ∈ N .

Theorem 3.1 The Shapley value ϕ is the unique solution concept ψ on CN satisfying:

efficiency: For all (N, v) ∈ CN :Pi∈N ψi(v) = v(N);

symmetry: For all (N, v) ∈ CN and all i, j ∈ N , if v(S∪{i}) = v(S∪{j}) for all S ⊆ N\{i, j},
then ψi(v) = ψj(v);

strong monotonicity: For all (N, v), (N,w) ∈ CN and all i ∈ N , if v(S ∪ {i}) − v(S) ≥
w(S ∪ {i})−w(S) for all S ⊆ N \ {i}, then ψi(v) ≥ ψi(w).

Proof. The Shapley value ϕ satisÞes the axioms. Conversely, assume that the solution

concept ψ on CN also satisÞes the axioms. For each (N, v) ∈ CN there are unique num-

bers (αT (v))T∈C such that v =
P
T∈C αT (v)uT . For each t ∈ {1, . . . , n}, deÞne βt(v) =

maxT∈C,|T |=t αT (v). For each T ∈ C, deÞne γT (v) = β|T |(v) − αT (v) ≥ 0. The proof pro-

ceeds by induction on k(v) = |{T ∈ C | γT (v) > 0}|.
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If k(v) = 0, then αT (v) = β|T |(v) for all T , so v =
P
T∈C β|T |(v) is a symmetric game.

Symmetry and efficiency imply that ϕi(v) = ψi(v) = v(N)/n for all i ∈ N .
Let k ∈ N. Assume that ϕ and ψ coincide on all games (N, v) ∈ CN with k(v) ≤ k − 1 and

consider a game (N, v) ∈ CN with k(v) = k. Take D = ∩T∈C,γT (v)>0 T . Then γN(v) = 0 implies

D 6= N . Let i ∈ N \D and deÞne the auxiliary game

wi = v +
X

T∈C,i/∈T
γT (v)uT

=
X

T∈C,i∈T
αT (v)uT +

X
T∈C,i/∈T

β|T |(v)uT . (6)

So for the unanimity coefficients αT (w
i) of (N,wi) we have

αT (w
i) =

½
αT (v) if i ∈ T,
β|T |(v) if i /∈ T. (7)

(N,wi) is convex: (N, v) is convex and the unanimity coefficients for coalitions T with i /∈ T are
increased from αT (v) to β|T |(v), so if the conditions (4) hold for v, they deÞnitely hold for wi.

Moreover, (7) implies that for each t ∈ {1, . . . , n} : βt(wi) = maxT∈C,|T |=t αT (wi) = βt(v) and
for each coalition T ,

γT (w
i) = β|T |(wi)− αT (wi) = β|T |(v)− αT (wi) =

½
γT (v) if i ∈ T,
0 if i /∈ T.

Conclude that

k(wi) = |{T ∈ C | γT (wi) > 0}|
= |{T ∈ C | γT (v) > 0, i ∈ T}|
< |{T ∈ C | γT (v) > 0}|
= k(v),

where the inequality follows from the fact that i ∈ N \ D, so γT (v) > 0 and i /∈ T for some
coalition T ∈ C. Since k(wi) < k(v) = k, induction implies that

ψ(wi) = ϕ(wi). (8)

For every coalition S ∈ C with i /∈ S, (6) implies

wi(S ∪ {i})−w(S) =
X

T∈C,i∈T
αT [uT (S ∪ {i})− uT (S)] +

X
T∈C,i/∈T

β|T | [uT (S ∪ {i})− uT (S)]

=
X

T∈C,i∈T
αT [uT (S ∪ {i})− uT (S)] +

X
T∈C,i/∈T

αT [uT (S ∪ {i})− uT (S)]

= v(S ∪ {i})− v(S),
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where the second equality follows from the fact that uT (S ∪ {i})− uT (S) = 0 whenever i /∈ T .
Strong monotonicity implies that ϕi(w

i) = ϕi(v) and ψi(w
i) = ψi(v). Together with (8), this

implies

∀i ∈ N \D : ϕi(v) = ψi(v). (9)

Next, let i, j ∈ D and S ⊆ N \ {i, j}. Then

v(S ∪ {i}) =
X
T∈C

β|T |(v)uT (S ∪ {i})−
X
T∈C

γT (v)uT (S ∪ {i})

=
X
T∈C

β|T |(v)uT (S ∪ {j})−
X
T∈C

γT (v)uT (S ∪ {j})

= v(S ∪ {j}),

where the Þrst and third equality follow from v =
P
T∈C αT (v)uT and the deÞnitions of β|T | and

γT and the second equality follows from symmetry of the game
P
T∈C β|T |uT and the fact that

γT (v) > 0 together with i, j ∈ D imply that uT (S ∪ {i}) = uT (S ∪ {j}) = 0. Hence any two

players i, j ∈ D are symmetric: ϕi(v) = ϕj(v) and ψi(v) = ψj(v). Together with efficiency and

(9), this implies that ϕi(v) = ψi(v) also if i ∈ D, Þnishing our proof. 2
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