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Abstract

Empirical evidence on the relationship between technology shocks and
e.g. hours worked hinges crucially on the identification of the unobserv-
able technological progress. In this paper, we study different measures of
technology in order to find out (i) to what extent they capture the same
underlying phenomenon and (ii) whether the implications for macroeco-
nomic theory are robust across the approaches. Several versions of the
productions function approach and structural VAR models are investi-
gated. Our main finding is that the different technology measures are
highly correlated. However, the exact formulation of the identifying re-
strictions seems to matter for the results. While we replicate the standard
finding of a strongly procyclical Solow residual, all other measures of tech-
nology are either acyclical or countercyclical.
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1 Introduction

Empirical evidence on the relationship between technology shocks and other

variables is important in several areas of macroeconomics. For example, Basu,

Fernald and Kimball (1998) and Galí (1999) evaluate the empirical merits of dif-

ferent business cycle models by studying the comovements of technology shocks

on one hand and changes in real output, hours worked, and input on the other.

They find that technological improvements have contractionary short-run ef-

fects on inputs, which is inconsistent with the predictions of real business cycle

(RBC) models. Since technology shocks cannot be observed, such evidence is

necessarily conditioned on the particular method used to capture technological

progress.

A second field where the identification of the unobservable technology shocks

plays a crucial role is structural VAR studies of the sources of fluctuations in

various variables. Conclusions like ”technology shocks cause about 40 percent of

the variability of real output at business cycle frequencies” (King, Plosser, Stock

and Watson (1991)) or ”the bulk of the long-run movements in real exchange

rates are due to real demand shocks, whereas the influence of supply shocks is

negligible at all horizons” (Clarida and Galí (1994)) have had considerable im-

pact on subsequent research. A relevant question is to what extent the different

approaches for identifying technology shocks actually capture the true under-

lying phenomenon. This issue has frequently been debated in the literature on

structural VAR models, but it has not been systematically studied empirically.

Because structural shocks are inherently unobservable, there is no true mea-

sure against which the outcome of a VAR can be evaluated. Furthermore, there

are no alternative measures of monetary shocks or real demand shocks, other

than those identified by structural VARs. What Clarida and Galí (1994) do to

check the validity of their identification scheme is to plot the demand shocks

captured by their VAR model and discuss whether it is possible to detect the

major demand related events of the sample period in the graph. If major policy

changes etc. can be seen in the graph, this is interpreted as evidence in favor of
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the validity of the identification scheme.

However, technology shocks differ from other structural shocks in this re-

spect since there exist well-established alternative methods for identifying them.

Most importantly, measures of technological progress can be constructed as the

residual from a production function. This methodology was pioneered by Solow

(1957) and subsequently refined by Hall (1988), Hall (1990), Basu and Kimball

(1997) and others.

In this paper, we apply the two main techniques for identifying technologi-

cal change to identical U.S. data in order to (i) compare the measures of tech-

nology to each other and (ii) investigate whether they display similar cyclical

patterns. To what extent do structural VAR models capture the same unobserv-

able phenomenon as production function residuals? Does the evidence about

the relationship between technology shocks and e.g. labor input differ between

the method used to capture the unobservable technological progress? If the

implications for macroeconomic theory are similar across the measures of tech-

nology, potential differences between them are less consequential than if the

empirical support in favor of e.g. RBC models varies systematically between

the approaches.

Structural VAR models with restrictions on the long-run effects of shocks

are used to distinguish technology shocks from other sources of fluctuations

in various fields. Examples are Blanchard and Quah (1989) and King et al.

(1991) for real output, Dolado and Jimeno (1997) for unemployment, Quah and

Vahey (1995) for inflation, and Alexius (2001) and Clarida and Galí (1994) for

real exchange rates. King et al. (1991) and Galí (1999) represent two different

strategies for how a structural VAR can be used to identify technology shocks.

King et al. (1991) estimate a six-variable cointegrated VAR including the levels

of real output, consumption, investment, the real money supply, a nominal

interest rate and inflation. Technology shocks are identified by the assumption

that no other structural shock affects real output in the long-run. Galí (1999)

focuses on a small two-variable VAR model with changes in labor productivity

and hours worked. He separates technology shocks from non-technology shocks
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by assuming that only the former have long-run effects on labor productivity.

The production function approach has little in common with structural VAR

models. Solow (1957) measures technological change as the growth of output

that remains unexplained once increases in the production factors have been

taken into account. Equivalently, the technology shock is the residual from a

production function equation. Solow’s original method requires perfect com-

petition, constant returns to scale and full factor utilization. Since deviations

from these assumptions introduce cyclical non-technology related variation, the

classic Solow residual is not likely to be a good measure of technology at busi-

ness cycle frequencies. Instead, we rely on the refinements of the Solow residual

developed by Hall (1988, 1990) and Basu and Kimball (1997) where imperfect

competition, non-constant returns to scale, and variable factor utilization are

allowed.

We use two versions of the production function approach and the structural

VAR methodology to estimate technology growth for the U.S. non-farm private

economy: the classic Solow residual, the Basu and Kimball (1997) approach

using data on hours per employee to control for varying factor utilization, a

large cointegrated VAR model a’la King et al. (1991) and a small two variable

VAR in first differences as in Galí (1999).

Although we are not aware of previous systematic comparisons of the differ-

ent approaches for identifying technology shocks, several authors provide corre-

lations between the technology shocks identified by their VAR models and some

other measure of technology. King et al. (1991) report correlations of 0.48 and

0.19 with the classic Solow residual and Hall’s (1988) refined measure of tech-

nology, respectively. Kiley (1998) calculates 34 correlations between his VAR

technology shocks and two refined Solow residuals. More than half of them are

insignificant and the cross industry average is 0.22. These two studies compare

technology shocks from different approaches for particular sample periods, and

industries in the latter case, but they do not investigate the concordance of the

methods given that they are actually supplied with identical information. While

the data requirements of the production function approach differs considerably
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from those of the large cointegrated VARs, we try to construct data sets that

are as coherent as possible across the approaches.

Our main findings can be summarized as follows. (i) Structural VAR mod-

els produce technology shocks that are highly correlated with the production

function residuals. (ii) While we replicate the standard finding of a strongly

procyclical Solow residual, all other measures of technology are either acyclical

or countercyclical. Thus all alternative measures of technology support the view

that the procyclicality of the Solow residual is a consequence of variations in

factor utilization or other non-technology related variation rather than a char-

acteristic of the true technology shocks. (iii) The exact formulation of the long

run restrictions used to identify technology shocks appear to have important

effects on the results in the direction suggested by economic theory.

The paper is organized as follows. Section 2 presents the data. In Section 3,

the different approaches for identifying technology shocks are described. Section

4 presents the main results and studies various robustness issues. In Section

5, we analyze the differences between the measures of technology in terms of

the theoretical motivations of the approaches. We also present some empirical

evidence of what kind of noise the different methods appear to capture. Section

6 concludes.

2 The Data

To avoid the aggregation bias created by heterogenous parameters across indus-

tries, the production function approach requires disaggregate data. Industry

data on gross output and inputs are only available on annual frequency. On the

other hand, large cointegrated VAR models focus on the endogenous interaction

between macroeconomic aggregates. Furthermore, the King (1991) specification

is preferably estimated using quarterly rather than annual data due to the large

number of parameters to be estimated. Therefore, two U.S. data sets are used

in this paper: annual disaggregate industry data and quarterly aggregate data.

We try to render the comparisons between the VAR technology shocks and pro-
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duction function residuals as exact as possible by constructing coherent data

and estimating the models for both aggregation levels when feasible.

The disaggregate data set is developed by Dale Jorgenson and consists of

a panel of 33 industries (roughly two-digit SIC-level), covering the entire U.S.

non-farm private economy. It contains annual observations on quantities and

prices of output and inputs for the period 1948 to 1991. This data set has

been widely used, e.g. by Basu et al. (1998) and Basu and Fernald (2001).

Further details can be found in Jorgenson, Gollop and Fraumeni (1987). For

comparability with the former two references, we focus on the sample period

1950-1989.

The aggregate data set contains real output, consumption, investment, real

money supply, inflation, nominal interest rates, population, and hours worked

for the period 1950:1 to 1989:4. It is collected from the BEA, the BLS and the

Federal Reserve Board of Governors, see Appendix A for details.

The methods for estimating technology growth can all be viewed as decom-

positions of output, or labor productivity (output/hours) in the Galí (1999)

model, into a technology driven component and a component driven by other

factors. To make the comparison of technology measures across aggregation

levels and methods meaningful, we need to use consistent measures of output

and hours across the data sets. To this end, we use the same population on

both the aggregate and the disaggregate level for output and hours, i.e. the

U.S. non-farm private economy. Moreover, the (small) remaining discrepancies

are corrected by adjusting the quarterly observation in the aggregate data set

so that they sum up to the annual observation in the disaggregate data set in

each year.1

1The value of these factors are within the range 0.92 to 1.09. Thus, the differences before

the correction is made are quite small.
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3 Identification of Technology Shocks

There are considerable methodological differences within each of our main ap-

proaches for identifying technology shocks. Two baseline VAR specifications are

estimated in this paper: the large cointegrated model of King et al. (1991), and

the two-variable model of Galí (1999). In addition to the classic Solow (1957)

residual, we use the specification of Basu and Kimball (1997) to construct robust

technology series on industry data. We also estimate several minor variations

of the specifications to study the robustness of the results.

3.1 The VAR Approach

VAR models can be used to produce a measure of technology by imposing re-

strictions on the long run effects of the unobservable structural shocks. The

models of King et al. (1991) and Galí (1999) represent two different empirical

strategies. Galí (1999) uses a two-variable VAR with the (stationary) first dif-

ferences of labor productivity and hours worked. King et al. (1991) estimate a

large, cointegrated VAR with four real and two nominal variables.

King et al. (1991), Galí (1999) and others present theoretical models to mo-

tivate their identifying restrictions. The formulation of the long run restrictions

is remarkably similar across a large number of VAR studies, however. Monetary

shocks are identified using the long run neutrality of money, i.e. by assuming

that monetary shocks do not affect real variables in the long run. Technology

shocks are assumed to be the sole long run driving force of real output in the

King et al. (1991) specification and of labor productivity in the Galí (1999) spec-

ification. The apparently subtle difference between the identifying assumptions

of the King et al. (1991) and Galí (1999) models turns out to be potentially

important and we will return to this issue in Section 5.1.

3.1.1 A large VAR-model a’la King et al. (1991)

King et al. (1991) estimate a six variable VAR containing the logs of output

per capita, y, consumption per capita, c, investment per capita, i, real money
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balances per capita (m − p), a nominal interest rate, R, and inflation, ∆p,
where lower case letters denote the log of the variable, ∆ is the first difference

operator and the total population is used to derive per capita series. We follow

their approach and estimate the following cointegrated VAR:2

∆zt = µ+Πzt−1 +
pX
i=1

Γi∆zt−i + ξt, (1)

where zt = [y, c, i, (m− p), R,∆p]0, µ is a vector of drift terms, Π is a reduced
rank matrix contain the error correction parameters times the cointegrating

vectors β, Γ is a coefficient matrix and ξt is a vector of white noise disturbances.

The cointegrated VAR in (1) can be rewritten as a common trends model (see

e.g. Hylleberg and Mizon (1989)):

zt = z0 + φ (L) vt +Θτ t, (2)

where

τ t = µ+ τ t−1 + ϕt. (3)

Here, z0 denotes a vector of initial conditions, vt is a vector of white noise

disturbances and φ (L) is a matrix lag polynomial. Hence, the term φ (L) vt con-

stitutes the transitory component of zt. Given the dimension n of the VAR, the

number of cointegrating vectors, r, in (1) determines the number of independent

stochastic trends k in the common trends model (2) as k = n−r. The stochastic
trends are denoted τ t, which is a k-dimensional vector of random walks with

drift µ and innovations ϕt. Thus, the I(1) component of zt is captured by the

term Θτ t, where the loading matrix Θ determines how the endogenous variables

are affected by the permanent shocks ϕt in the long run. The permanent shocks

are also included in vt, which allows them to affect the transitory or cyclical

component of zt. The empirical model is hence consistent with the real business

cycle notion that technology shocks can cause business cycle fluctuations.

For exact identification of the k structural shocks in ϕt, we need to im-

pose k(k − 1)/2 restrictions on the long run impact matrix Θ (see e.g. Warne
2Note that our data set differ somewhat from what King et al. (1991) use.

8



(1993)). Restrictions on Θ, the cointegrating rank of the system and/or the

parameter values in the cointegrating vectors can frequently be derived from

economic theory. For instance, the balanced growth conditions imply that the

ratios of consumption and investment to output should be constant in the long

run. Consumption and investment should then be cointegrated with output and

the parameters in the cointegrating vector should be unity. The cointegrating

vectors β imply restrictions on the long run impact matrix Θ through the con-

dition that β0Θ = 0. Monetary neutrality can also be formulated in terms of

the parameters in the long run impact matrix. If money is neutral in the long

run, as is the case in most standard models, the parameters in Θ that capture

effects of monetary shocks on real variables should be equal to zero.

We estimate the King et al. (1991) specification for quarterly US aggregate

data. As in King et al. (1991), the sample starts in 1954:1 to avoid the effects

of price controls, the Korean War, and the Treasury-Fed accord on the nom-

inal variables. The main features of the King et al. (1991) specification, the

cointegrating rank and hence the number of stochastic trends, are consistent

with their findings. The number of lags p is determined using information cri-

teria (Akaike, Schwarz, Hannan-Quinn) as well as misspecification tests such

as residual autocorrelation. We use the LM test for first and fourth order au-

tocorrelation, and the Portmanteau test for higher order autocorrelation. This

procedure results in two lags in the baseline specification. Because inflation and

the nominal interest rate increase up to 1980 and decrease thereafter, we include

a trend shift dummy for µ.

The cointegrating rank is determined using the Johansen (1991) multivari-

ate maximum likelihood approach. Using critical values from Osterwald-Lenum

(1992), the test statistics indicate three cointegrating vectors (see Table 1). Fol-

lowing King et al. (1991), the cointegrating vectors are normalized as long run

equilibrium relationships between (i) consumption, output, inflation and the

nominal interest rate, (ii) investment, output, inflation and the nominal inter-

est rate, and (iii) demand for real balances, output, inflation and the nominal

interest rate.
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The parameters of the cointegrating vectors have the expected signs and

magnitudes (see Table 2). The results imply that the real interest rate are neg-

atively related to consumption and investments. Moreover, the coefficients on

real output in the long-run equilibrium relationships for consumption, invest-

ment and real balances are [-0.861, -0.747, -1.271]. The restriction that the first

two of these coefficients equals -1 is not rejected, i.e. it is the ratios of con-

sumption and investment to output that enters into the long run equilibrium

relationships. Other restrictions suggested by economic theory are that the real

variables are unaffected by inflation and the nominal interest rate in the long

run, or that they are affected only by the real interest rate. In the baseline

specification we impose the most restrictive restriction that is not rejected by

the data, namely that the coefficients on real output in the equilibrium relations

for consumption and investment equal −1 and the coefficients on inflation and
the nominal interest rate are equal with opposite signs (see Table 2 for details).

Hence, the money demand relationship is left unrestricted. These restrictions on

the cointegrating space imply that consumption and investment are unaffected

by nominal shocks.

Following King et al. (1991), we interpret the three stochastic trends as tech-

nology (supply), real interest rate (demand), and a nominal (monetary) trend.

Technology shocks are identified by the assumption that no other shocks affect

real output in the long run. This implies that Θ12 and Θ13 in the loading matrix

are zero. Long-run monetary neutrality provides the third required restriction

by imposing a zero long-run effect of monetary shocks on the real interest rate.

3.1.2 A Small VAR-model a’la Galí (1999)

Galí (1999) separates the influence of technology shocks from that of non-

technology shock within a two variable VAR-model containing the first differ-

ences of labor productivity, xt, defined as output per hour, and hours worked,

ht. Following Galí (1999),we estimate the following VAR:
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·
∆xt
∆ht

¸
= µ+

pP
i=1

Γi

·
∆xt−i
∆ht−i

¸
+ ut, (4)

where µ is a vector of drift terms, p is the number of lags, Γ are matrices

containing estimated parameters of the lag polynomial, and ut is a vector of re-

duced form residuals. Denoting the technology shock vtt and the non-technology

shocks vntt , and defining C(1) as the long run impact matrix of the unobservable

structural shocks, we arrive at the equation:

·
∆xt
∆ht

¸
= µ+

·
C11(1) C12(1)
C21(1) C22(1)

¸·
vtt
vntt

¸
. (5)

The identifying assumption that only technology affects labor productivity

in the long run implies that C12(1) = 0. To enable as exact comparisons of the

different approaches as possible, we estimate the Galí specification on several

aggregation levels and frequencies: (i) Annual aggregate data (using one lag).

This data set is identical to the one used for the aggregate productions function

residuals. (ii) Quarterly aggregate data (using three lags), which is the real

output series used in the King et al. (1991) approach. (iii) Disaggregate annual

industry data (also with a single lag in the baseline specification). As production

function residuals are constructed for each industry before they are aggregated

to an economy wide measure, we can compare them to industry specific VAR

technology shocks by estimating the Galí (1999) specification for each industry.

3.2 The Production Function Approach

The idea behind the production function approach is that technological change

can be measured as the residual from a production function, taking increases in

production factors and the intensity with which they are used into account. We

start by postulating the following production function for firm i:

Yit = F (ZitKit,EitHit, Vit,Mit, Ait), (6)

where gross output Yit is produced combining the stock of capital Kit, hours

worked Hit, energy Vit and intermediate materials (less energy) Mit. The firm
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may also adjust the level of utilization of capital, Zit, and labor, Eit. Finally,

Ait is the index of technology which we want to capture.

By differentiating the log of (6) with respect to time and invoking cost min-

imization (see e.g. Carlsson (2000) for the details) we arrive at:

∆yit = ηi[∆xit +∆uit] +∆ait, (7)

where ∆ denotes growth rates, η is the overall returns to scale, ∆xit is a cost

share weigthed input index defined as ciK∆kit+ ciH∆hit+ ciV∆vit+ ciM∆mit,

∆uit = ciK∆zit+ ciH∆eit and ciJ is the cost share of factor J in total costs.3

Thus, given data on factor compensation, changes in output, input and uti-

lization, and an estimate of the returns to scale ηi, the resulting residual ∆ait

provides a times series of technology growth for firm i. Notice that ∆ait re-

duces to the Solow residual if η = 1, ∆uit = 0 and if there are no economic

profits.4 Hence, ∆ait is a Solow residual purged of the effects of increasing

returns, imperfect competition and varying factor utilization.

The main empirical problem associated with (7) is that capital and labor

utilization are generally unobservable. A solution to this problem is to include

proxies for utilization in (7). We follow the approach of Basu and Kimball (1997)

and use hours per employee as proxy for both labor and capital utilization.

3.2.1 The Basu and Kimball (1997) Specification

The intuition behind the approach taken by Basu and Kimball (1997) is that

a cost-minimizing firm, facing a well behaved cost function with respect to fac-

tor adjustment, should be indifferent between different margins of adjustment.

In particular, the cost of increasing output by increasing the number of hours

worked, enticing more effort from the labor force given the number of hours

worked or using capital more intensely should all be equal. Hours worked can
3Here it is assumed that the cost shares are constants. We will return to this assumption

below.
4The zero economic profit condition imply that the factor cost shares in total costs equal

the factor cost shares in total revenues which is used when compiling the Solow residual.
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therefore be used as proxy for the intensity with which the firm uses labor as

well as capital. Basu and Kimball formalize this idea and use the first order

conditions of a dynamic cost-minimization problem to derive a relation between

utilization growth, ∆u, and the growth rate of hours per employee, ∆hpe. In-

serting this relationship into (7) yields the empirical specification employed by

e.g. Basu et al. (1998), Basu and Fernald (2001) and Basu, Fernald and Shapiro

(2001) to estimate technology growth:

∆yit = αi + ηi∆xit + γi∆hpeit + εit, (8)

where ∆xit is defined as in (7) and ∆hpeit is the growth rate of hours per

employee.5

When implementing the Basu and Kimball (1997) specification, we follow

the empirical strategy outlined by Basu et al. (2001). First, the specifications

are regarded as log-linear approximations around the steady state growth path.

Thus the products ηiciJ (i.e. the output elasticities) are treated as constants.

Second, the steady state cost shares are estimated as the time average of the

empirical cost shares. Third, when compiling the cost shares we assume that

firms make zero economic profits in the steady state.6 This allows us to estimate

the cost share of capital as a residual. Finally, the growth rate of technology,

∆at, is modeled as a random walk with the drift α and the random shock ²t. This

strategy for modeling the technology process is consistent with the assumptions

underlying the structural VAR approach.

As a robustness exercise, we also employ an alternative approach to control

for factor utilization. Burnside, Eichenbaum and Rebelo (1995) apply the idea of

Griliches and Jorgenson (1967), to use energy consumption as a proxy for capital

utilization. This procedure can be legitimized by assuming that there is a zero
5Basu and Kimball (1997) also generalize their approach by allowing for variation in the

rate of capital depreciation (due to varying capital utilization). However, given the statement

of Basu et al. (2001), i.e. ”...including these terms barely affects estimates of technical change”,

p. 14, we do not consider this generalization here.
6For evidence in favor of this assumption see the discussion in Rotemberg and Woodford

(1995).
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elasticity of substitution between energy and the flow of capital services, ZitKit,

which implies that energy and capital services are perfectly correlated. Adding

the assumption that labor utilization is constant, we arrive at the empirical

specification of Burnside et al. (1995):7

∆yit = αi + ηi∆exit + εit, (9)

where input growth∆exit is now defined as (ciK+ciV )∆vit+ciH∆hit+ciM∆mit.

Energy is however only likely to be a good proxy for the utilization of heavy

equipment. This specification is therefore less appropriate outside the manu-

facturing sector. Since the Burnside et al. specifications relies on a different

set of assumptions than the Basu and Kimball specification, we estimate both

approaches for the manufacturing industry as a robustness test.

3.2.2 Instrumentation and Estimation

Because the firm is highly likely to consider the current state of technology

when making its input choices, instrumental variable techniques are required

to credibly identify the residuals from the robust production function specifica-

tions above as technology growth. The most commonly used instruments in the

literature are variations of the so-called Hall-Ramey instruments and Federal

Reserve policy shocks. The Hall-Ramey instruments consist of the growth rate

of the real price of oil, the growth rate of real defense spending and a dummy

variable for the political party of the president. We use the following instrument

set: the lagged Federal Reserve policy shock derived from an estimated reaction

function of the Federal Reserve and the lagged growth rates of the real oil price

and real defense spending.

Following Basu et al. (1998) and Basu and Fernald (2001) we combine indus-

tries into groups and restrict the hours per employee parameter, γ, in (8) to be

equal across industries. The industries are divided into four groups, i.e. mining
7Burnside et al. (1995) used electricity consumption as proxy for capital utilization. We

will use the broader measure of energy consumption available in the Jorgenson data set.
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(four industries), non-durables manufacturing (10 industries), durables manu-

facturing (11 industries) and services and others (8 industries). Within each

group we allow for fixed industry effect and heterogenous returns to scale. Each

group is then estimated with standard 3SLS methods using the instruments

discussed above.

The results presented in Table 3 show that the null hypothesis of the Sargan-

tests of valid instruments and a correctly specified model can not be rejected

on the five-percent level in any of the systems estimated. Table 3 also presents

relevance measures of the instrument sets, i.e. R2:s and partial R2:s (defined as

in Shea (1997)) averaged over industries. The relevance of the instrument set is

relatively low and the results are somewhat sensitive to the exact specification

of the instrument set. These problems are often encountered when estimating

production function regressions because it is difficult to find good instruments

(see e.g. Burnside (1996) for a discussion). Given that we are interested in com-

paring different methods for capturing technology growth, it is important that

our approaches yield technology shocks that are similar to the typical findings.

In Table 4, we compare our results for the Basu and Kimball specification to the

corresponding numbers presented by Basu et al. (1998) and Basu and Fernald

(2001).

Since there are differences between our approach and the specifications in

Basu et al. (1998) or Basu and Fernald (2001), we do not expect the results

to coincide.8 However, the results for the comovement with other variables are

numerically similar to the results presented in Basu et al. (1998) and Basu and

Fernald (2001). We find a correlation between the Basu and Kimball technology

measure and output growth of 0.08 as compared to 0.04 reported in Basu et al.

(1998) and Basu and Fernald (2001). Our estimate of the correlation between

the Basu and Kimball technology measure and hours growth (the Solow residual)

is −0.38 (0.55) as compared to −0.44 (0.40) reported by Basu et al. (1998) and
Basu and Fernald (2001). The mean of our technology shock is also very close

8For example, we use a later revision of the Jorgenson data set than Basu et al. (1998) and

Basu and Fernald (2001) and we do not estimate the cost of capital directly as they do.
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to what Basu et al. (1998) and Basu and Fernald (2001) find, 0.011 as compared

to 0.013. We find a somewhat higher standard deviation, 0.013 as compared to

0.019. Overall, our approach appears to yield a typical estimate of technology

growth.

In Table 3, we also present the averages of the estimated returns to scale

for each group. The average returns to scale are close to one in the durables

manufacturing and the mining group and around 0.7 in the non-durables and

the services an others groups. Thus, our results are in line with e.g. Basu et al.

(2001) who find no evidence for widespread increasing returns to scale. The

estimates of the hours per employee parameter, i.e. γ, is positive as expected

but the estimated standard errors are large in case of the mining industry and

the services and others group.

4 Empirical Results

To study whether the different approaches capture the same unobservable phe-

nomenon we calculate the correlations between the different measures of tech-

nology. These results are presented in Section 4.2. A second issue is whether the

differences between the approaches matter in the sense that the implications for

macroeconomic models are sensitive to the choice of method. This is discussed

in Section 4.3, where we report the correlations between our technology shocks

and business cycle variables. The effects of minor variations in the specifica-

tions of the VAR models and other robustness issues are analyzed in Section

4.4. In section 4.5. we repeat the experiment of Kiley (1998), i.e. apply the

approaches for extracting technology shocks to industry-level data. In contrast

to Kiley (1998) we use exactly the same data across methods. First, however,

we have to construct variables that are comparable between the approaches and

aggregation levels.
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4.1 Aggregation issues

To compare the VAR technology shocks to the production function residuals,

the industry-level technology growth series are aggregated into an economy wide

measure. Following Basu et al. (1998) and Basu and Fernald (2001) we define

aggregate technology growth, ∆aAt , as:

∆aAt =
P
i ωi,t

∆ai,t
1− ηi(cV,i + cM,i)

, (10)

where ωi is industry i’s share of aggregate value added, ηi is the returns to

scale, and cV,i and cM,i are the time average of the cost shares of energy and

materials, respectively. The denominator in (10) converts gross output technol-

ogy growth to a value added measure. This conversion allows us to compare

the aggregate technology series from the production function approach to the

technology series from the structural VAR-models, which are estimated using

value added data. To compare technology growth series on different frequencies,

we convert quarterly series to annual series by summation.

Other aggregate variables that we will use in the following sections are ag-

gregate real value added growth, ∆yAt , defined as the log difference of the sum

of real value added across industries, and aggregate total hours growth, ∆hAt ,

equals the log difference of the sum of total hours across industries. Further-

more, the aggregate primary input index is defined as:

∆xAt = s
A
H∆h

A
t + (1− sAH)∆kAt , (11)

where sAH is defined as the time average of the share of labor expenditures in

aggregate nominal value added and ∆kAt is the first log difference of the sum

of capital across industries. Given the definitions above, the aggregate Solow

residual is conveniently defined as:

SRt = ∆y
A
t −∆xAt . (12)

The aggregation procedure outlined above is applied to the non-farm private

economy in Section 4.2 and and the manufacturing sector in Section 4.5.
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4.2 Do the methods capture the same phenomenon?

We compare four different measures of technology from the two main approaches:

the classic Solow residual, the Basu and Kimball (1997) refined production func-

tion residuals with hours worked as proxy for factor utilization, structural tech-

nology shocks from the large, cointegrated six variable VAR of King et al. (1991),

and from the small two variable VAR in first differences of Galí (1999). Table

5 contains the results for the aggregate US private non-farm economy.

Focusing first on the correlations between the VAR technology shocks and

the production function residuals in the columns labelled Solow (SR) and BK

(Basu and Kimball) in the second half of Table 5, we see that all four measures

of technology are positively related to each other, and generally significantly so.

The correlations between the Galí (1999) VAR technology shocks and the classic

and refined Solow residuals are 0.39 and 0.68, respectively. The correlations are

somewhat lower in case of the King et al. (1991) measure, 0.42 and 0.31 for

the Solow and Basu and Kimball (1997) production function residuals. There

is thus a reasonably high correspondence between the two main approaches for

identifying technology shocks at the economy wide level.

We also document a high degree of coherence within each main approach

for identifying technological progress. The correlation between the technology

shocks identified by the two structural VAR models is 0.43. These two specifica-

tions are very different. They are estimated using different data, hours worked

and labor productivity in the Galí (1999) case, and real output, consumption,

investment, changes in real money, inflation and a nominal interest rate in case

of the King et al. (1991) model. The statistical setup also differs as the King

et al. (1991) specification is a large cointegrated VAR in the levels of the data

while the Galí (1999) model focuses on the stationary first differences of two

variables (cf. equations (1) and (4)). The two VAR models nevertheless pro-

duce technology shocks that are fairly similar. The classic and refined Solow

residuals are even closer related to each other as they have a correlation of 0.59.

Note that the correlation between the Galí (1999) VAR technology shocks and
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the refined production function residuals is higher than the correlations between

the different measures belonging to the same approach.

A third observation from Table 5 is that there is a tendency towards di-

chotomy among our four baseline measures of technology. The technology shocks

emerging from the Galí (1999) model are highly correlated to the Basu and Kim-

ball (1997) refined production function residuals, while the King et al. (1991)

specification produces technology shocks that display a higher correlation with

the classic Solow residual than with the Basu and Kimball (1997) measure. We

will return to possible reasons for this phenomenon in Section 5.

4.3 Do the resulting technology shocks have the same

cyclical pattern?

To study whether the different approaches for identifying technological progress

have similar implications for the empirical validity of different classes of business

cycle models, we calculate the correlations between the measures of technology

and changes in output, input, and hours worked. The results are presented in

the first half of Table 5. First, it is clear that we replicate the standard finding

of a strongly procyclical Solow residual. It is positively correlated to output

growth (0.81) but insignificantly related to hours growth (0.29) and changes in

the input index (0.09).

It has been argued that the procyclicality of the Solow residual is due to

firms endogenous responses to demand changes in the presence of phenomena

such as imperfect competition, increasing returns to scale and variable factor

utilization rather than to truly procyclical technological changes (see e.g. Basu

and Fernald (2001) and the references therein). When imperfect competition,

non-constant returns to scale, and cyclical factor utilization are allowed, the

cyclical behavior of the technology measures changes dramatically. The Basu

and Kimball measure is uncorrelated with output growth (0.16), while signif-

icantly negatively related to both the input index (-0.49) and hours growth

(-0.34).
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An interesting finding is that the cyclical pattern of the technology measure

derived from the Galí (1999) VAR model is very similar to what we observe for

the Basu and Kimball measure. It is uncorrelated with output (−0.03), and
significantly negatively related to changes in input (−0.54) and hours worked
(−0.57). The technology shocks from the King et al. (1991) VAR also display

a qualitatively similar but less distinct cyclical behavior as the correlation with

output is insignificantly positive and the correlations with changes in input and

hours worked are negative but insignificant.

The results in Table 5 hence show that the cyclical behavior of the technology

series derived from the structural VARs resembles the refined Solow residuals

rather than the classic Solow residual. Technological improvements are associ-

ated with periods of contractions in input and hours growth, whereas output

growth does not increase significantly, at least not contemporaneously. These

results are at odds with the RBC-models’ prediction of a positive contempora-

neous response of inputs in response to a technology improvement. Moreover,

the similarities in the cyclical behavior between the measures of the Basu and

Kimball specification, the VAR model of King, and the VAR model of Galí

confirm that these measures reflect the same underlying unobservable phenom-

enon. The classic Solow residual alone leads to a different conclusion about the

relationship between technology shocks and the business cycle.

4.4 Robustness

The choice of various details in the empirical specification of a VAR is rarely

self evident in the sense that there is only one possibility or even one clearly

superior alternative. Different information criteria typically produce different

optimal choices of lag length, different tests or significance levels may indicate

that different number of lags are required to remove residual autocorrelation,

restrictions can be imposed or not imposed on the cointegrating space, and

so on. To investigate whether this is important for the results, we study the

sensitivity of the technology shocks respect to the minor changes in the empirical
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specification.

We have estimated seven structural VAR models for the aggregate US non-

farm economy: Four King models using two and four lags, with and without

restrictions on the cointegrating space, and three Galí models with one and two

lags on annual data and three lags using quarterly data. None of the models

display obvious signs of misspecification and they are all optimal choices using

at least some combination of criteria for model evaluation. The exception here

is the unrestricted King specification with two lags, where the stationary trans-

formations (the cointegrating relations and the transitory components of the

time series) do not appear to be entirely stationary. This may be due to impre-

cisely estimated cointegrating vectors. The model behaves well after theoretical

restrictions have been imposed on the long run equilibrium relationships. We

nevertheless include the unrestricted two-variable model to preserve the sym-

metry of the robustness exercise, but put little weight on these results as this

would not be a suitable choice as baseline specification.

The results from the robustness analysis are presented in table 6. Neither

small variations of the number of lags nor imposing restrictions on the cointe-

grating vector have major effects on the technology series derived from the King

model. Five out of the six relevant correlations are significantly positive on the

five-percent level and the average correlation between the four versions of the

King et al. (1991) technology shocks is 0.67. The small VAR model of Galí is

also robust to small variations in the number of lags. Indeed, the technology

shocks emerging from the one lag and the two lag version of the Galí model

are perfectly correlated. Thus, both VAR models are quite robust to minor al-

terations in the empirical specification. Furthermore, the relationship between

the cyclical variables and the VAR measures are similar to the baseline results

presented above.

We also investigate the robustness of a different type of output from struc-

tural VAR models that is frequently used in various fields, namely forecast er-

ror variance decompositions. Forecast error variance decompositions show how

much of the variance of a variable that stems from a certain structural shock
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at a particular horizon. At business cycle frequencies, variance decompositions

provide information about how much of the business cycle variations in real out-

put that are caused by technology shocks. Following King et al. (1991), we have

chosen the three-year horizon as the business cycle frequency. Table 7 contain

the three-year FEVDs of changes in real output for the four large, cointegrated

VAR models. It is clear that technology shocks is a minor source of business

cycle fluctuations in this data set. Only 6.1 to 22.4 percent of the variations are

caused by technology shocks and none of the shares is significant. While the

results differ slightly between the specifications, the qualitative conclusion re-

mains the same across the variance decompositions of output growth. This can

be interpreted as additional evidence against real business cycle models since it

relies on technology shocks as the primary driving force behind business cycle

movements. Hence, the different King specifications capture similar technol-

ogy shocks and the results in terms of the empirical relevance of business cycle

models are very robust to various permutations of the VAR.

As a robustness check of the production function approach, we estimate

the Burnside et al. (1995) specification, where energy consumption rather than

hours per employee is used as proxy for capital utilization. Since energy is only

likely to be a good proxy for the service flow of heavy equipment, we focus on

manufacturing data. The correlation between the measures from the Basu and

Kimball and the Burnside specifications is as high as 0.76. Both the Basu and

Kimball residual and the Burnside residual are significantly negatively corre-

lated to the input index (-0.72 and -0.43) and hours growth (-0.68 and -0.34)

and insignificantly related to output growth (-0.25 and 0.20). The point es-

timates of the correlations for the Basu and Kimball measure imply a more

countercyclical behavior than what is found for the Burnside residual. A possi-

ble explanation for this is that the Burnside et al. specification only controls for

capital utilization, whereas it may be argued that the Basu and Kimball speci-

fication controls for both capital and labor utilization. The Basu and Kimball

and the Burnside residuals are both positively correlated to the Solow residual

(0.20, 0.59), although only the Burnside residual is significantly so. The qual-
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itative conclusions about the relationship between the technology growth and

cyclical variables are however similar between the Basu and Kimball and the

Burnside et al. specifications.

4.5 Evidence from industry data

Kiley (1998) estimates the Galí specification for 17 American manufacturing

industries and compares the resulting technology shocks to the measures of

Basu and Kimball (1997) and Burnside et al. (1995). Here, we replicate the

experiment of Kiley (1998) but supply the methods with exactly the same data.

Table 9 summarizes the results from this comparison.

Kiley (1998) finds that 7 (9) of the 17 correlations between the VAR tech-

nology shocks and the Basu and Kimball (Burnside) measure are significantly

positive. The average correlations across the industries are only 0.23 (0.22). We

find an average correlations between the Galí technology measure and the Basu

and Kimball measure across all industries of 0.56, with 27 out of 33 correlations

significantly positive. These results are confirmed when turning to the Burn-

side measure, using energy consumption to correct for variable factor utilization.

The average correlations between the Burnside residual and Galí measure across

the manufacturing industries is 0.47, with 17 out of 21 correlations significantly

positive. In the second half of Table 9, we show that this results holds also

when only the industries that are identically defined are used. Moreover, the

coherence between the two refined production function residuals is extremely

high. The average correlation between the Basu and Kimball and Burnside

et al. series amounts to 0.83, with all 21 underlying correlations significantly

positive. Thus, we find much more coherence between the VAR approach and

the refined production function residuals when they are supplied with identical

data than reported by Kiley (1998), who compare his VAR shocks to production

function residuals for the same industries and time period but constructed using

a different data set.
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5 Interpreting the results

A pattern that is observed in the main results in Section 4.2 and perhaps even

more clearly in the VAR robustness exercise in Section 4.4 is that the King

technology shocks are more similar to the classic Solow residuals than to the

refined production function residual of Basu and Kimball. The Galí technology

shocks are characterized by the opposite behavior and display higher correlations

with the Basu and Kimball measure than with the Solow residual. Possible

reasons for this systematic difference between the technology shocks captured by

the two VARs can be extracted by considering the restrictions used to separate

technology shocks from other structural shocks. We also present some empirical

evidence of what kind of noise the different measures of technology may capture.

In the King et al. (1991) specification, technology shocks are identified by

assuming that no other shocks have permanent effects on real output per capita.

Galí (1999), on the other hand, uses the assumption that only technological

changes have long-run effects on labor productivity (output per hour). The

implications of the identifying assumptions of the two baseline VAR models can

be analyzed in the context of a dynamic general equilibrium (DGE) model. For

instance, Shapiro and Watson (1988) consider a (reduced form) DGE model

where long-run movements in output are due both to changes in technology and

to permanent shocks to labor supply. The King et al. (1991) specification will fail

to isolate technology shocks in this situation because changes in per capita labor

supply are included in the measure of technology. However, permanent shifts in

labor supply have no long-run effect on output per hour, i.e. labor productivity,

in a standard DGE model (see e.g. Shapiro and Watson (1988) or Francis and

Ramey (2002)).9 Thus, the identifying assumption of Galí (1999), i.e. that

only technology shocks have a permanent effect on labor productivity, is robust

to the presence of permanent labor supply shocks. Put differently, technology

(supply) shocks as defined by King et al. (1991) will include exogenous shocks
9This is due to that when labor supply increases capital will be accumulated until factor

prices and labor productivity return to their previous value.
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to labor supply per capita.

Shapiro and Watson (1988) show empirically that a permanent labor supply

shock has a positive effect on output both initially and in the long-run. To

see the consequences for our different measures of technology, suppose that the

economy is subject to a permanent labor supply shock in period t. The King

et al. (1991) approach would mislabel the permanent labor supply shock as

a positive technology shock in period t since it hits the economy in period t

and has a positive long run effect on real per capita output. As output rises

in period t, we also expect the Solow residual to rise, due to e.g. procyclical

factor utilization. Thus, the Solow residual misinterprets the permanent labor

supply shock in period t as a positive technology shock. Permanent labor supply

shocks is thus likely to have a positive effect on the correlation between the

classic Solow residual and the technology measure of King et al. (1991) as well

as on the correlation between these two measures and output. The Basu and

Kimball (1997) approach should be neutral to labor supply shocks since the

approach controls for factor utilization as well as factor accumulation. Hence,

labor supply shocks are likely to drive a wedge between the technology measures

of King et al. (1991) and the Solow residual on one hand and the Galí (1999)

and the Basu and Kimball measure on the other, which is what we find.

Empirical evidence about what kind of noise the technology shocks from the

two VAR models capture can be obtained from the two production function

residuals. The difference between the Solow residual and the Basu and Kimball

measure is that the latter is purged from non-technology induced variation.

Hence, the component of the Solow residual that is orthogonal to the Basu

and Kimball measure consists of non-technology related variation. It can be

extracted from the Solow residual by regressing the series on a constant and

the Basu and Kimball measure. This non-technology component of the Solow

residual (NTC) is included in the final row of Table 6. As expected, it is highly

procyclical. The technology shocks from the two structural VARs pick up this

non-technology variation to varying extent. All but one of the King measures are

significantly positively related to the non-technology component, whereas the
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Galí measures are uncorrelated with the non-technology component. The results

support the view that the technology measure derived from the King model mix

technology shocks with other non-technology phenomena. The Galí model, on

the other hand, appears to be not only theoretically but also empirically more

robust to such non-technology related events.

Thus far, we have used the information in the production function residuals

to discuss the properties of the VAR technology shocks. Because the true tech-

nology shocks are unobservable, we can also turn matter around and use the

VAR results to analyze the production function residuals. In accordance with

previous findings, the results in Section 4 demonstrate that cyclical properties of

the production function residuals change drastically as non-constant returns to

scale and variable factor utilization are introduced. The classic Solow residual

is strongly procyclical, while the refined measures are either acyclical or coun-

tercyclical. It is however not self evident that only irrelevant demand related

noise is removed in the process of refining the Solow residual. If technology

shocks are really procyclical, it could be argued that the instrumental variable

estimation may remove also this true procyclicality. This risk is evident be-

cause of the difficulties involved in finding good instruments. Nelson and Startz

(1990) show that the instrumental variables estimator is biased in the direction

of the OLS estimator when the relevance of the instruments is low. Such a bias

would imply that the returns to scale are overestimated if technology growth is

procyclical and hence, that the true procyclicality of technology shocks will be

underestimated.

The VAR approach identified technology shocks by imposing restrictions on

their long run effects. Since no instruments are used in the estimation, the

technology shocks produced by structural VARs are not affected by potential

problems with weak instruments. The VAR technology shocks presented in

Section 4 display a cyclical behavior that is much more similar to the pattern

found in the refined production function residuals of Basu and Kimball (1997)

and Burnside et al. (1995) than to the strongly procyclical classic Solow resid-

ual. The King measures have higher correlations with the Solow residual, but
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their cyclical properties resemble what we find for the Basu and Kimball (1997)

measure. Hence, evidence from the structural VARs clearly support the view

that it is appropriate to refine the Solow residual as measure of technology at

business cycle frequencies also if good instruments are hard to find.

6 Conclusions

The identification of unobservable structural shocks is important in many areas

of applied macroeconomics. For example, VAR models produce conclusions

about what factors that have caused business cycle fluctuations in real output

or movements in real exchange rates. It is generally difficult to evaluate these

findings because alternative measures of monetary shocks or real demand shocks

do not exist. Technology shocks constitute a rewarding object for evaluating

the structural VAR approach to the identification of structural shocks because

other established methods of measuring technology are available. Production

function residuals rely on entirely different theoretical foundations and are also

constructed using an empirical strategy that has little in common with the VAR

methodology.

We have applied two versions of the production function approach and two

structural VAR models to identical data in order to investigate whether they

capture the same unobservable phenomenon and whether the implications for

macroeconomic theory are robust with respect to the choice of method. Our

main finding is that structural VAR models identify technology shocks that

are highly correlated with the classic as well as refined Solow residuals, thus

confirming that the VAR methodology for disentangling structural shocks makes

sense. In particular, the small VAR a’la Galí (1999) produces technology shocks

that have a correlation of 0.68 with the refined Solow residuals of Basu and

Kimball (1997).

We also repeat the experiment of Kiley (1998) by applying the small VAR

a’la Galí as well as the refined Solow residuals to industry-level data. We find

twice as many significant correlations and they are (on average) more than
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twice as high as reported in the previous study by Kiley (1998). Kiley compares

technology shocks that are constructed using the same methods but applied to

differing data sets. Thus, the coherence between the two approaches increases

dramatically when they are supplied with identical data.

Also, technology shocks identified by structural VARs are remarkably robust

with respect to minor changes in the empirical specification; changing the num-

ber of lags included in the VAR or imposing restrictions on the cointegrating

vectors has only minor effects on the results.

The relationship between technological progress and business cycle variables

is similar across three of the four measures of technology: the refined versions

of the Solow residual and the technology shocks derived from the two structural

VARs. Technological improvements are associated with contractions in input

and hours, whereas there is no significant increase in output. In contrast, the

classic Solow residual is found to be strongly procyclical (as in other studies).

The fact that technological progress as identified by the VAR models displays

a cyclical behavior that is similar to the refined Solow residuals confirms the

impression that the two approaches capture the same unobservable phenomenon.

Another interpretation of this result is that the structural VARs confirm that

refined production function residuals constitute a more appropriate measure of

technology at business cycle frequencies than the classic Solow residual.

A final observations is that the exact formulation of the long-run restric-

tions used to identify technology shocks in the structural VAR models appears

to have important effects on the results in the direction expected from economic

theory. The Galí (1999) specification captures technology shocks that are highly

correlated with the refined Solow residual of Basu and Kimball (1997), while the

technology shocks from the large, cointegrated King et al. (1991) model are more

related to the classic Solow residual. Furthermore, the King et al. (1991) tech-

nology shocks display significant correlations with a measure of non-technology

related variation, while the Galí (1999) technology shocks are unrelated to this

measure. This systematic difference between the results from the two structural

VAR models could be due to differences in the identifying restrictions. The King
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et al. (1991) measure includes changes in per capita labor supply and therefore

captures supply shocks in general rather than pure technological progress. The

technology shocks produced by the Galí (1999) specification are however robust

to the presence of shocks to per capita labor supply.
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7 Data Appendix

The disaggregate US data set is fully described in Jorgenson et al. (1987) and

was downloaded from Dale Jorgenson’s web site. Total hours worked and em-

ployment was kindly provided by Jon Samuels.

The Output (value added) volume index and current price series for the

non-farm business sector are collected from the NIPA’s, downloaded from the

BEA web site. These series are then used to construct a chained 1987 dollar

series (matching the Jorgenson data using 1987 as base year) and the implicit

GDP deflator.

The Total Hours Worked index for the non-farm business sector is col-

lected from the BLS web site.

The Investment series is defined as gross private fixed investment. The

Investment volume index and current price series are collected from the NIPA’s,

downloaded from the BEA web site. These series are then used to construct a

chained 1987 dollar series.

The Total Population series is collected from the NIPA’s, downloaded

from the BEA web site.

The Consumption series is defined as personal consumption expenditures.

Consumption volume index and current price series are collected from the NIPA’s,

downloaded from the BEA web site. These series are then used to construct a

chained 1987 dollar series.

The Price level is measured as the GDP deflator.

The Nominal interest rate series is measured as the three-month U.S.

Treasury bill rate, and is collected from the Federal Reserve Board of Governors

web site. Monthly observations are averaged to quarterly observations.

The Nominal Money Supply is measured as M2 and is collected from the

Federal Reserve Board of Governors web site. Before 1959:1 we use the same

M2 series as King et al. (1991), available at Mark W. Watson’s home page.

Monthly observations are then averaged to quarterly observations.

The Real Oil Price is measured as the PPI for crude petroleum, taken
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from the BLS web site, deflated with the GDP deflator.

The Real Defense Spendings series is measured as national defense out-

lays, collected from the NIPA series downloaded from the BEA web site, deflated

with the GDP deflator.

The Federal Reserve Policy Shocks are measured as the residuals from

an estimated reaction function of the Federal Reserve. Following Burnside

(1996) we assume that the three month T-bill rate is the policy variable, deter-

mined by lagged values of real GDP, the GDP deflator, the PPI for industrial

commodities, M2 and the three month T-bill rate, as well as current values of

real GDP, the GDP deflator and PPI for industrial commodities. All included

variables, except the three month T-bill rate, are in logs. We use quarterly data

and estimate the reaction function with four lags over the sample 1949:1-1989:4.

The sum of the four residuals in t-1 is then used as an instrument. The PPI for

industrial commodities is collected from the BLS web site. We use the average

of monthly data to convert the series to quarterly data.
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Table 1: The Johansen (1991) Trace Test for Cointegrating Rank

H0 King (2) King (4)

n− r = 0 135.32 148.03

n− r = 1 83.01 93.02

n− r = 2 47.43 58.25

n− r = 3 24.35 27.21

n− r = 4 9.63 6.51

n− r = 5 0.51 2.53

Bold type denote significance on the 5-percent level using critical values from Osterwald-Lenum
(1992).

Table 2: Estimates of the Cointegrating Vectors in the King Specifications

y c i m− p R π

King (2) -0.861 1.0 0.0 0.0 0.051 -0.063

-0.747 0.0 1.0 0.0 0.116 -0.167

-1.271 0.0 0.0 1.0 -0.025 0.022

King (4) -1.275 1.0 0.0 0.0 0.022 0.025

-1.470 0.0 1.0 0.0 0.058 -0.041

-1.496 0.0 0.0 1.0 0.020 -0.031

King (2) R -1.0 1.0 0.0 0.0 0.049 -0.049

-1.0 0.0 1.0 0.0 0.117 -0.117

-1.626 0.0 0.0 1.0 -0.024 0.011

King (4) R -1.0 1.0 0.0 0.0 0.051 -0.051

-1.0 0.0 1.0 0.0 0.143 -0.143

-1.742 0.0 0.0 1.0 -0.051 0.035

Bold type denotes significance at the 5-percent level.
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Table 3: U.S. Industry Production Function Regressions

Hours correction Electricity correction

Groups ARTS γ Sargan ARTS Sargan

Mining 0.94 0.59 (0.61) 0.42 − −
Non Durables 0.69 1.69 (0.48) 0.50 0.76 0.08

Durables 1.05 0.76 (0.36) 0.93 1.02 0.90

Services and Others 0.70 0.70 (0.73) 0.07 − −
Relevance Measures

∆x ∆hpe ∆ex
Average R2 0.16 0.14 0.17

Average Partial R2 0.09 0.08 0.17

Sample 1950-1989. The ARTS column presents the average returns to scale by group. The gamma
column gives point estimates of the hours per employee coefficient (heteroscedasticity robust s.e. in
parenthesis). The Sargan column presents the p-value of the Sargan-test of overidentfying restric-
tions. Average R2 and Average Partial R2 corresponds to averages of R2 and Partial R2:s (defined
as in Shea (1997)) across all industries.

Table 4: Comparison of the Basu and Kimball Measure With Previous Studies

Descriptive Statistics Correlations

Mean Std. Dev. ∆yA ∆hA SR

BFK (1998) / BF (2001) 0.013 0.013 0.04 -0.44 0.40

BK 0.011 0.019 0.08 -0.38 0.55

Sample 1950-1989. Bold type denotes correlation significant from zero on the five-percent level. BFK
(1998) / BF (2001) row corresponds to the results for the Basu and Kimball specification presented
in Basu et al. (1998) and Basu and Fernald (2001). The BK row corresponds to the results from the
Basu and Kimball specification applied in this paper
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Table 5: Measures of Technology and the Business Cycle - U.S. Private Economy

∆yA ∆xA ∆hA SR BK K2R G1

Output Growth 1

Input Growth 0.66 1

(0.00)

Hours Growth 0.77 0.94 1

(0.00) (0.00)

Solow Residual 0.81 0.09 0.29 1

(0.00) (0.60) (0.09)

BK 0.16 -0.49 -0.34 0.59 1

(0.37) (0.00) (0.05) (0.00)

King (2) R 0.17 -0.25 -0.21 0.42 0.31 1

(0.34) (0.15) (0.22) (0.01) (0.07)

Galí (1) -0.03 -0.54 -0.57 0.39 0.68 0.43 1

(0.88) (0.00) (0.00) (0.02) (0.00) (0.01)

Sample 1955-1989. Bold type denotes correlation significantly different from zero on the
five-percent level. P-values in parenthesis
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Table 6: Robustness

∆yA ∆hA SR BK K2R K4R K2 K4 G1 G2 G3Q

K(2)R 0.25 -0.18 0.52 0.31 1

(0.15) (0.31) (0.00) (0.07)

K(4)R 0.27 -0.08 0.46 0.19 0.88 1

(0.12) (0.67) (0.01) (0.28) (0.00)

K(2) -0.11 -0.29 0.07 0.18 0.57 0.21 1

(0.52) (0.09) (0.69) (0.30) (0.00) (0.24)

K(4) 0.17 -0.12 0.34 0.12 0.92 0.84 0.57 1

(0.34) (0.49) (0.05) (0.50) (0.00) (0.00) (0.00)

G(1) -0.01 -0.57 0.43 0.68 0.43 0.34 0.35 0.30 1

(0.95) (0.00) (0.01) (0.00) (0.01) (0.05) (0.04) (0.09)

G(2) 0.02 -0.56 0.47 0.70 0.45 0.35 0.34 0.30 1.00 1

(0.92) (0.00) (0.01) (0.00) (0.01) (0.04) (0.05) (0.09) (0.00)

G(3)Q 0.31 -0.21 0.57 0.57 0.44 0.33 0.24 0.31 0.70 0.71 1

(0.07) (0.23) (0.00) (0.00) (0.01) (0.06) (0.16) (0.07) (0.00) (0.00)

NTC 0.88 0.60 0.77 0.00 0.42 0.44 -0.06 0.34 -0.00 0.03 0.27

(0.00) (0.00) (0.00) (1.00) (0.01) (0.01) (0.75) (0.05) (0.99) (0.88) (0.12)

Sample 1956-1989. Bold type denotes correlation signifcantly diffrent from zero on the five-percent level.
P-values in parenthesis. K denotes the King model and G is the Galí model (G3Q is estimated on quarterly
data). Number of lags in paranthesis. The R marker denotes models with restrictions imposed on the
cointegrating vectors. NTC is the non-technology component of the Solow residual derived by regressing the
Solow residual on a constant and the BK measure.

Table 7: The Share of the Three-year FEVD of Aggregate Output growth Due to Technology

Shocks.

King (2) R King (4) R King (2) King (4)

∆yA 22.4 17.7 6.1 21.7

(0.17) (0.23) (0.65) (0.15)

P-values within parenthesis.
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Table 8: Robustness of Correlations Basu and Kimball / Burnside et al. Measures - Manufacturing

Industry Only

∆yM ∆xM ∆hM SR BK BER

BK -0.25 -0.72 -0.68 0.20 1

(0.15) (0.00) (0.00) (0.25)

BER 0.20 -0.43 -0.34 0.59 0.76 1

(0.26) (0.01) (0.05) (0.00) (0.00)

Sample 1955-1989. Bold type denotes correlation significantly different from zero on the five-percent
level. P-values in parenthesis

Table 9: Average Correlations Across Industries and Comparison with Kiley (1998)

BK BER

BK 1

BER 0.83 1

(21/21)

Galí 0.56 0.47

(27/33) (17/21)

Comparison With Kiley (1998)

Galí 0.50 0.42

(12/16) (12/16)

Galí (Kiley) 0.21 0.19

(6/16) (8/16)

Sample 1953-1989. Number of significantly positive correlations on the five-percent level / Number of
industries in parenthesis. The comparison with Kiley (1998) in the bottom panel is across identically
defined industries. The statistics in the two bottom rows are compiled from the results presented in
Kiley (1998).
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