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A Firm Bargaining with Many Workers.¤

Andreas Westermark.y

January 14, 1998

Abstract

The purpose of this paper is to analyze bargaining between a …rm
and a …nite set of workers. In particular employment choice and the
payo¤s in equilibrium are studied. In the model, the …rm …rst selects
the workers it wants to hire. The selected workers then decide whether
they want to proceed in bargaining with the …rm. Finally, bargaining
takes place.

In contrast to Stole & Zweibel (1996), we assume that contracts are
binding. The payo¤ for a worker is given by a share of the contribution
to production, treating all other workers as employed, in addition to
the worker’s outside option.
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1 Introduction

During the last two decades, noncooperative bargaining models have been
studied excessively. One of the earliest articles is that of Ståhl (1972) ; and
an overview can be found in Osborne & Rubinstein (1990). In the …rm-
worker bargaining models there is usually one worker bargaining with the
…rm. Horn & Wolinsky (1988) and Jun (1989) study the situation in which
the …rm is bargaining with two workers. However, with the exception of Stole
& Zweibel (1996), there are few models describing the situation when a …rm
is bargaining with several workers.

Stole & Zweibel assume that labor contracts can be renegotiated at any
time before production starts. This assumption leads to wages and pro…ts
corresponding to the Shapley value. One objection to the Stole & Zweibel
approach is that it is normally not that simple to renegotiate contracts. For
example, a contract usually is legally binding and might stipulate that a
speci…c time must elapse before a contract can be terminated. In addition,
breaking of contracts might lead to a legal con‡ict that could be costly. In
our model, the contracts are binding.

This paper has as a main purpose to study a model of worker-…rm bar-
gaining where the …rm is bargaining with several workers. We assume that
signed contracts cannot be renegotiated.

The theoretical model of the present paper builds primarily on two papers.
One is the paper by Horn & Wolinsky (1988) where a bargaining situation
between a …rm and two workers is analyzed. The other is by Gül (1989) in
which noncooperative foundations for the Shapley value are analyzed.

In the paper by Gül there are a …nite number of agents who each owns
some asset. In each period two agents are matched. One of the agents
is selected to make a proposal, which is either accepted or rejected by the
respondent. In the model presented below, one worker is chosen at random
to bargain with the …rm in each period, a model that is di¤erent from Gül’s,
where two agents are chosen at random in each period. The motivation for
always selecting the …rm is that the owner of the …rm owns some speci…c
asset. Without this asset, two workers joined together cannot produce any
surplus. Hence, it is not meaningful for two workers to bargain with each
other. This change in how bargainers are selected gives us a di¤erent solution
than the Shapley value, which is the solution derived in Gül’s paper.

One di¤erence of this paper compared with Horn & Wolinsky is that we
allow for an arbitrary number of workers. The bargaining structure is also
slightly di¤erent. In Horn & Wolinsky, the …rst and second workers alternate
bargaining with the …rm. Furthermore, we allow for heterogeneous workers.

The analysis starts by developing the model. First, the …rm chooses some
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workers it wants to hire. These workers subsequently decide whether they
want to bargain with the …rm. Lastly, the selected workers who accepted
start the bargaining process with the …rm. The bargaining takes place as
follows. One of the workers without an agreement is chosen at random to
bargain with the …rm. The choice is made with the same probability for each
worker. Subsequently, bargaining between the chosen worker and the …rm
takes place. The proposer is chosen to be either the …rm or the worker with
equal probabilities. The payo¤s in equilibrium are computed. Each employed
worker receives half of the surplus he/she and the …rm can produce, given
that all other workers are treated as employed. The reason is that the …rm
or worker can always threaten the counterpart to wait with an agreement
until the worker and the …rm are the only agents without an agreement. The
unemployed workers get their outside option.

The model is fully developed in the next section. Extensions of the model
are examined in section 3 and concluding comments are provided in Section
4.

2 The model
The agents consist of a set of workers, denoted W , with generic element i,
and a …rm, denoted F . There are two goods, leisure and a consumption
good. Let ¹ui denote the utility for worker i when not working. We assume
that a worker either works some …xed amount of time or does not work at
all.

Let W be the set of subsets ofW , including the empty set. Let f : W ! <
denote the production function.

We restrict attention to a class of economies that satisfy the following
condition. Consider two arbitrary disjoint sets C and D of workers. Suppose
the …rm employs the workers in C. Then, adding the set D to the …rm leads
to an increase in output larger than the sum of the losses of utility for the
workers in D.

De…nition 1 The production function f and (¹ui)i2W satisfy restricted strict
superadditivity 1 if

for all C;D µW such that C \D = ?, f(C [D)¡ f(C) >
X

i2D
¹ui:

1Superadditivity is a commonly used concept in coalition form games. See for examle
Osborne & Rubinstein (1995).
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2.1 Step 1. Employment game

In the …rst step, the …rm chooses the workers it wants to employ. Thereafter,
the selected workers simultaneously decide whether to bargain with the …rm
or not. Thus, the strategy space of the …rm is SF = fC µ Wg; with generic
element sF . The strategy space for worker i is

Si =

8
<
:

fY ES;NOg if i 2 sF ;

? otherwise;

with generic element si. Let S = £i2W[FSi. Let vi : S ! < be the payo¤
function for agent i. A worker that chooses not to bargain with the …rm
gets ¹ui. The payo¤s for the set of selected workers that chose to bargain
with the …rm are determined in the bargaining game described below. Let
W 0(sF ) = fi 2 sF j si = fY ESgg be the set of workers that accepts to
bargain with the …rm.

2.2 Step 2. The Bargaining game

The bargaining game is denoted ¡. ConsiderW
0
(sF ) µ W . In the remainder

of this section we write W
0
= W

0
(sF ). In the bargaining game, the players

consist of the workers in W
0
and the …rm.

When the …rm reaches an agreement at some time t with worker i, the
worker leaves the bargaining game. The …rm can use the labor for worker
i for the remainder of the bargaining game. Moreover, let ± 2 [0; 1) be
the common discount factor for all the players. As long as no agreement is
reached, worker i gets (1 ¡ ±)¹ui per period. We also assume that at each
round of bargaining, each of the players selected to bargain has to pay a cost
c
2
. The total bargaining cost in each period is then c.

Consider an outcome of the bargaining game, assuming c = 0. Suppose an
agreement between worker i and the …rm is reached at time T . Let wiT 2 <
denote the wage payment to worker i at time T . The payo¤ of worker i is
given by

(1¡ ±)
T¡1X

t=1

±t¡1¹ui + ±
T¡1wiT :

Let wt 2 < be the wage payment by the …rm at time t. Let Gt denote
the set of workers the …rm has reached an agreement with at time t. The
payo¤ of the …rm is given by

1X

t=1

±t¡1 ((1¡ ±)f(Gt)¡wt) :
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The …rm bargains with one worker at a time. The worker is randomly
chosen from among those workers without an agreement. The choice is made
with equal probabilities for all workers. Next, bargaining begins between the
chosen worker and the …rm. The proposer is chosen to be either the …rm or
the worker with equal probabilities.

The bargaining game is depicted in Figure 1. Let ¡(W
0
) denote the sub-

game when no worker has reached an agreement with the …rm and ¡(W
0ni)

denote the subgame when worker i has reached an agreement with the …rm.

Figure 1: A description of the bargaining game

w1

Γ ( ' )W

Γ( ' )WΓ( '\1)W

{YES} {NO}

worker 1selected

with prob.
1
n

worker n selected

with prob.
1
n

Worker proposer
Firm proposer

prob.
1

2 prob.
1

2

Let Ht be the set of all possible histories up to period t, with generic
element ht. A strategy for a player i in time period t is a function

¾it : Ht¡1 ! < if i is selected to bargain and to be the proposer.

¾it : Ht¡1 ! fY es;Nog if i is selected to bargain but not to be the proposer.

The strategy for the …rm is similarly de…ned but with the di¤erence that the
…rm is always selected to bargain. A strategy in the bargaining game for
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player i is denoted ¾i. Let ¾ = (¾i)i2W 0[F and let the set of possible strategy
pro…les in the bargaining game be denoted §.

Let ~Ui(ht; ¾) denote the expected payo¤ for player i, given the strategy
pro…le ¾ after the history ht.

De…nition 2 A strategy pro…le ¾ 2 § is e¢cient if
X

i2W[F

~Ui(h0; ¾) ¸
X

i2W[F

~Ui(h0; ¾
0) for all ¾0 2 §:

Thus, a strategy pro…le is e¢cient if there is no other strategy pro…le that
yields a higher sum of expected utilities to the players.

In general, the strategies at any time are a function of all possible histories
up to period t¡ 1. However, we restrict attention to stationary strategies.

De…nition 3 A strategy ¾i for player i is stationary if for any t; t0 ¸ 1, any
two histories ht¡1 2 Ht¡1 and ht0¡1 2 Ht0¡1 such that the …rm has reached
an agreement with the same set of workers, we have ¾it(ht¡1) = ¾it0(ht0¡1).

Thus, for any two histories leading up to agreements with the same set of
workers, a player is restricted to play the same strategy. A strategy pro…le
¾ is stationary if the strategy for each player is stationary.

Stationarity implies that for any two histories ht and ht0 such that the …rm
has reached an agreement with the same set of workers, we have ~Ui(ht; ¾) =
~Ui(ht0; ¾). Let E denote a set of workers without an agreement. Consider
any stationary strategy pro…le ¾. For any ht such that the …rm has reached
an agreement with W

0nE we de…ne Ui(E; ¾) = ~Ui(ht; ¾).
Let ¹¾(±) denote the stationary strategy pro…le which is constructed as

follows. For any E and i 2 E we have the following. Recall that E denotes
the workers without an agreement. Presume a worker i and the …rm bargain.
Then, if the worker is the proposer he/she o¤ers the …rm ±UF (E; ¹¾(±))+(1¡
±)f(W

0nE). This bid is accepted by the …rm. Similarly, if the …rm is the
proposer it o¤ers the worker ±Ui(E; ¹¾(±))+(1¡±)¹ui. This bid is accepted by
the worker. Thus, when any two players are bargaining the proposer o¤ers
the other player his continuation payo¤. Any player presented with a bid
equal to his continuation payo¤ accepts the bid. This strategy is well de…ned
for subgames with only one worker remaining. It follows by induction that
it is well de…ned for any subgame with more than one worker remaining. A
formal analysis is found in the proof of Theorem 1.

We have the following lemma.

Lemma 1 For all i 2 W 0 [F , the expected utilities Ui(W
0
; ¹¾(±)) are contin-

uous functions of ± on [0; 1]:
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Proof. See Appendix.

Given some discount factor ± 2 [0; 1), let SPES(±) denote the set of
e¢cient subgame perfect equilibria in stationary strategies.

Lemma 2 Suppose restricted strict superadditivity is satis…ed. For all ±, if
SPES(±) 6= ?, then SPES(±) = f¹¾(±)g.

Proof. See Appendix.

By using Lemma 1 and Lemma 2 we can show the following.

Theorem 1 Let f±kg1k=1 be a sequence such that ±k 2 [0; 1) for all k.
If limk!1 ±

k = 1 then, for all Ci 2 W 0
,

lim
k!1

Ui(W
0
; ¹¾(±k)) =

f(W
0
)¡ f(W 0ni) + ¹ui

2
¡ c

2
:

Also,

lim
k!1

UF (W
0
; ¹¾(±k)) = f(W

0
)¡

X

i2W 0

f (W
0
)¡ f(W 0ni) + ¹ui

2
¡

¯̄
¯W 0

¯̄
¯ c
2
:

Proof. See Appendix.

The intuition is that if a worker makes unacceptable demands when bar-
gaining with the …rm, then ultimately other workers will strike deals with
the …rm, leaving the worker as the only one without an agreement.

Theorem 2 Suppose restricted strict superadditivity is satis…ed and c > 0.
Then, there exists ¹± < 1 such that for all ± 2 [¹±; 1), SPES(±) is nonempty.

Proof. See Appendix.2

Remark 1 A potential problem is that the …rm can make negative pro…ts.
The reason why the …rm still reaches an agreement with all the workers is
that otherwise it has to pay the bargaining cost ad in…nitum. This makes it
pro…table for the …rm to agree. The way we choose to circumvent this weak-
ness of the model is to allow the …rm to choose employment before bargaining
starts. Then negative pro…ts can be avoided.

2The bargaining cost could be a function of ±. If the result in Theorem 2 is to be true
we need lim

±!1
c(±) ! ² > 0:
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2.3 Equilibrium in the employment game

Now consider the equilibrium in the employment game. Let

¹c = min
ŴµW

½
min
i2Ŵ

n
f(Ŵ )¡ f(Ŵni)¡ ¹ui

o¾
:

By restricted strict superadditivity it follows that ¹c > 0. We have the fol-
lowing result.

Theorem 3 Let s¤ be a subgame perfect equilibrium strategy pro…le in the
employment game. For c < ¹c and ± > ¹±, for all i 2 W , we have s¤i = fY ESg.
Also,

s¤F = arg max
ŴµW

f (Ŵ )¡
X

i2Ŵ

f (Ŵ )¡ f (Ŵni) + ¹ui
2

¡
¯̄
¯Ŵ

¯̄
¯ c
2
: (1)

Proof. First, consider any sF 2 SF . The payo¤s for any worker i 2 sF that
accepts to bargain with the …rm is given by the payo¤s in Theorem 1 (where
W 0 = fj 2 sF j sj = fY ESgg). From the de…nition of ¹c, restricted strict
superadditivity and c < ¹c the payo¤ when accepting is strictly higher than is
the payo¤ when rejecting bargaining with the …rm, for any W 0 µ sF . Thus,
any worker selected to bargain with the …rm accepts. From s¤i being a best
response in the subgame following sF it follows that, for all i 2 W we have
s¤i = fY ESg. The …rm then chooses s¤F as in expression (1).

By restricted strict superadditivity any worker that is selected by the …rm
strictly gains when c is small. Thus, in a subgame perfect equilibrium, all
workers selected by the …rm accept. The …rm’s optimal labor choice is then
given by expression (1).

The payo¤s for the …rm and workers selected by the …rm is given by
Theorem 1 where W

0
= s¤F . For any worker i 2 Wns¤F the payo¤ is ¹ui.

3 Extensions

3.1 Arbitrary selection probabilities

In the bargaining game above, each worker is selected with the same proba-
bility to bargain with the …rm. Now suppose that, after a history ht, a worker
i without an agreement is selected to bargain with the …rm with probability
pi(ht). Further, assume that the worker is selected to be the proposer with
probability ppi (ht).
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We assume that the selection probabilities are stationary in the following
sense. Consider two histories ht and ht0 such that the …rm is without an
agreement with the same set of workers. Then pi(ht) = pi(ht0) and ppi (ht) =
ppi (ht0). Recall that E denotes the set of workers without an agreement.
Then, for all E µ W 0, we can write pi(E) = pi(ht) and ppi (E) = p

p
i (ht) for

any ht such that the …rm is without an agreement with the workers in E. We
assume that the bargaining cost is split according to the proposer selection
probabilities.

LetMPi(W 0) = f (W
0
)¡f (W 0ni)¡ ¹ui. In general, the payo¤ for a worker

is a linear combination of the payo¤s in two player games. This follows from
stationarity. In two player games a worker i gets a fraction of MPi(W 0), in
addition to his outside option and a share of the bargaining cost, for ± close
to one.

We have the following result.

Theorem 4 Suppose that
P

l2E
pl(E)p

p
l (E)

(1¡pl(E)(1¡ppl (E)))
< 1 holds for all E µ W

0
.

Let f±kg1k=1 be a sequence such that ±k 2 [0; 1) for all k. If limk!1 ±k = 1
then, for all i 2 W 0

,

lim
k!1

Ui(W
0
; ¹¾(±k)) = ppi (i)MPi(W

0) + ¹ui ¡ ppi (i)c:

Also,

lim
k!1

UF (W
0
; ¹¾(±k)) = f (W

0
)¡

X

i2W 0
(ppi (i)MPi(W

0) + ¹ui)¡
X

i2W 0
(1¡ ppi (i)) c:

Proof. See Appendix.

The condition on the selection probabilities is needed to guarantee conti-
nuity of the expected utilities. The payo¤ for a worker depends only on the
worker’s own marginal productivity. The reason is similar to the explanation
given previously in this paper. If the worker demands a higher wage than
the …rm is willing to agree to, the …rm can threaten the worker with agreeing
with all other workers …rst, leaving the worker alone without an agreement.
An interesting fact is that the probability that a worker is selected to bargain
with the …rm does not a¤ect the payo¤s. Even if a worker is selected with
a high probability to bargain with the …rm he cannot ask for a higher wage.
This follows because the …rm can reject the worker’s o¤er and agree with the
other workers …rst. Because ± is close to one the cost of carrying out this
action is small. Some of the other results also change. For example, for step
1 in Lemma 2 to be true, we need conditions on the selection probabilities.
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Theorem 5 Suppose c > 0. Then there exists ¹± < 1 such that for all ± 2
[¹±; 1) the strategy pro…le ¹¾(±) is a stationary subgame perfect Nash Equilib-
rium.

Proof. This follows from a modi…cation of the proof in Theorem 2.

In this case, we cannot necessarily show that the strategy pro…le ¹¾(±) is
e¢cient. To do this we need conditions on the selection probabilities. The
reason we need these conditions can be readily understood with reference
to the following example. Suppose we have three workers. Furthermore,
presume one worker, say worker 1, is much more productive than are the
other two workers. Suppose that if one of the low productive workers is se-
lected, the selection probabilities in the next period are as follows. If the
…rm agrees with the selected worker, then in the next period the …rm meets
the other low-productive worker with a very high probability; otherwise, it
meets the high-productive worker with a high probability. Depending on the
production function, e¢ciency might require that the …rm disagrees with the
selected low-productive worker.

4 Conclusions

In this paper we derive payo¤s for a …rm bargaining with a …nite set of
workers. First, the …rm selects the workers it wishes to hire. The selected
workers then decide whether they want to bargain with the …rm or not.
Finally, bargaining takes place.

In the basic model, all workers are selected to bargain with the …rm with
equal probability. In the bargaining game, we study e¢cient, stationary sub-
game perfect equilibria. In equilibrium, it is found that the payo¤ for an
employed worker is given by half of the contribution to production, in addi-
tion to the worker’s outside option, treating all other workers as employed.
This holds because if a worker’s demands are unacceptable to the …rm, the
…rm can threaten the worker with agreeing with all other workers before it
agrees with the worker that demands too much. On the other hand, if the
…rm demands too much, the worker can wait until the …rm has agreed with
all the other workers, as prescribed by the …rm’s strategy.

We also consider the case when the workers are selected with di¤erent
probabilities. We study a strategy pro…le that has the property whereby an
agreement is reached with each worker the …rst time the worker is selected to
bargain with the …rm. It is shown that this pro…le is a stationary subgame
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perfect equilibrium. The payo¤ for an employed worker is a share of the
workers contribution to production, treating all other workers as employed,
in addition to the workers outside option.

This result is in contrast to that of Stole & Zweibel where the workers
get the Shapley value. In the model of Stole & Zweibel, the worker can get
a share of the inframarginal units. The reason is that if a worker disagrees
with the …rm, this leads to a series of recontracting with the remainder of
the workers. In the model presented here, this is not the case.
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A Appendix

Let us assume that the …rm is without an agreement with the workers in
E µW

0
. The expected payo¤ for the …rm, given the strategy pro…le ¹¾(±), is

UF (E; ¹¾(±)) =
X

i2E

1

2 jEj
n
±UF (Eni; ¹¾(±)) + (1¡ ±)f(W 0 [ inE)¡ c

2

¡ [±Ui(E; ¹¾(±)) + (1¡ ±)¹ui]g

+
X

i2E

1

2 jEj
h
±UF (E; ¹¾(±)) + (1¡ ±)f (W 0nE)¡ c

2

i
:

The term ±UF (Eni; ¹¾(±))+(1¡±)f (W 0[inE)¡ c
2
¡[±Ui(E; ¹¾(±)) + (1¡ ±)¹ui]

is the utility for the …rm when it is chosen as bidder when bargaining with
worker i, and the term

£
±UF (E; ¹¾(±)) + (1¡ ±)f(W 0nE)

¤
is the bid o¤ered

by worker i when the worker is bidder. The expression ±UF (Eni; ¹¾(±)) is the
discounted expected utility of the …rm in the beginning of the next period,
after agreeing with worker i. The expression (1¡ ±)f (W 0 [ inE) is the pro-
duction the …rm obtains in the current period by employing worker i. The
expression ±Ui(E; ¹¾(±)) + (1¡ ±)¹ui is the wage paid to the worker. The …rm
makes a proposal such that the worker is indi¤erent regarding accepting or
rejecting the o¤er. The expression ±Ui(E; ¹¾(±)) is the discounted expected
utility in the beginning of the next period for the worker if no agreement is
reached. The expression (1 ¡ ±)¹ui is the utility for the worker in the cur-
rent period. Each worker is selected with probability 1

jEj and the proposer is
selected with probability 1

2
from the selected worker and the …rm.

Analogously, the expected payo¤ for worker i, given the strategy pro…le
¹¾(±), is given by

Ui(E; ¹¾(±)) =
1

2 jEj
h
±UF (Eni; ¹¾(±)) + (1¡ ±)f (W 0 [ inE)¡ c

2

¡±UF (E; ¹¾(±))¡ (1¡ ±)f(W 0nE)
i
+

1

2 jEj
h
±Ui(E; ¹¾(±)) + (1¡ ±)¹ui ¡

c

2

i

+
1

jEj
X

j2E
j 6=i

[±Ui(Enj; ¹¾(±)) + (1¡ ±)¹ui] :

The …rst term is the payo¤ when worker i is selected to bargain with the
…rm and the worker is bidder. The second term is the payo¤ for worker i
when selected to bargain with the …rm and the …rm is bidder. The remaining
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terms involves the payo¤ when some other worker is selected to bargain with
the …rm.

These expressions can be written in the form (when jEj ¸ 2)

0
BBBBBBBB@

a b b : : b b
b d 0 : : 0 0
b 0 d : 0
: : : : : :
: : : : 0 0
b 0 0 d 0
b 0 0 : 0 0 d

1
CCCCCCCCA

0
BBBBBBBB@

UF (E; ¹¾(±))
U1(E; ¹¾(±))
:
:
:
:
UjEj(E; ¹¾(±))

1
CCCCCCCCA

=

0
BBBBBBBB@

D±
F (E)

D±
1(E)

:
:
:
:
D±
jEj(E)

1
CCCCCCCCA

; (2)

where a = 1 ¡ ±
2
, b = ±

2jEj and d = 1 ¡ ±
2jEj . This follows from rearranging

the expected utilities for the players.
Here,

D±
F (E) =

1

2 jEj
X

i2E

h
±UF (Eni; ¹¾(±)) + (1¡ ±)f(W 0 [ inE)¡ c¡ (1¡ ±)¹ui

i

+
1

2
(1¡ ±)f (W 0nE):

and

D±
i (E) =

1

2 jEj
h
±UF (Eni; ¹¾(±)) + (1¡ ±)f (W 0 [ inE) ¡ c¡ (1¡ ±)f(W 0nE)

i

+
1

jEj
X

j2E
j 6=i

[±Ui(Enj; ¹¾(±)) + (1¡ ±)¹ui] +
1¡ ±
2 jEj ¹ui:

A.1 Proof of Lemma 1

Lemma 1 For all E µW
0
, for all i 2 F[E, the expected utilities Ui(E; ¹¾(±))

are continuous functions of ± on [0; 1]:

Proof.
The inverse of the matrix in ?? is

0
BBBBBBBB@

¹a ¹b ¹b : : ¹b ¹b
¹b ¹d ¹e : : ¹e ¹e
¹b ¹e ¹d : ¹e
: : : : : :
: : : : ¹e ¹e
¹b ¹e ¹e ¹d ¹e
¹b ¹e ¹e : ¹e ¹e ¹d

1
CCCCCCCCA

; (3)

13



where ¹a = 2jEj¡±
2jEj¡±(jEj+1) ,

¹b = ±
±(jEj+1)¡2jEj ,

¹d = 1
2jEj¡±

³
2 jEj+ ±2

2jEj¡±(jEj+1)

´
and

¹e = ±
2jEj¡±

±
2jEj¡±(jEj+1) . Since jEj ¸ 2 all coe¢cients are continuous in ± for

± 2 [0; 1] and well de…ned.
When only one worker, i 2 W 0

, remains (jEj = 1), it follows from Lemma
1 in Gül (1989) that

UF (i; ¹¾(±)) =
f(W

0
) + f(W

0ni)¡ ¹ui
2

¡ c

2

and

Ui(i; ¹¾(±)) =
f (W

0
)¡ f(W 0ni) + ¹ui

2
¡ c

2
:

Since Ui(E; ¹¾(±)) is continuous in ± for F and any i 2 W 0
when jEj = 1,

it follows by induction3 and continuity of the inverse in ± that the vector of
Ui(E; ¹¾(±)) terms is continuous in ± for any …nite player game.

A.2 Proof of Lemma 2

Lemma 2 Suppose restricted strict superadditivity is satis…ed. If SPES(±)
is nonempty for some ±, then SPES(±) = f¹¾(±)g.

Proof. Step 1. We claim that restricted strict superadditivity implies that
any e¢cient strategy pro…le requires that an agreement is reached when a
…rm and worker meet.

Suppose that this is not the case. Then there is a strategy pro…le ¾ that
is e¢cient, where after some history, the …rm disagrees with some worker i.

Case 1. Given ¾ an agreement is ultimately reached with all players.
Pick a history ht such that one of the last disagreements is just after ht.
Then construct a new strategy pro…le ¾0 such that an agreement is reached
at all meetings in the subtree following ht, and identical to ¾ otherwise. Let
S [ i be the players without an agreement immediately after ht.

Let Sk denote the players who have reached an agreement with the …rm in
period k after ht. Let Pr(Sk j S) denote the probability that an agreement has
been reached with the players in Sk in the k periods following ht, given that
an agreement initially was reached with the players in W

0nS. Let ¢(T ) =

(1 ¡ ±)
³
f (T ) +

P
i2W 0nT ¹ui

´
. By restricted strict superadditivity, ¢(T ) >

¢(T 0) for any T ¾ T 0.

3If Ui(E; ¹¾(±)) are continuous in ± when jEj = 1; this implies that D±
i (E

0) is continuous
in ± for jE0j = 2 and implies that Ui(E0; ¹¾(±)) are continuous in ±, and so on.

14



Subcase 1. k = 1. The sum of expected utility in period 1 in the subtree
following ht is then under ¾0

X

jµS
Pr(j j S) [¢(S [ j [ i)] =

X

jµS

1

jSj [¢(S [ j [ i)] :

The sum of expected utility in period 1 in the subtree following ht is under
¾ X

jµS[i

1

jSj+ 1 [¢(S [ j)] :

The di¤erence in expected utility between ¾0 and ¾ in period 1 in the
subtree following ht is then

X

jµS

1

jSj [¢(S [ j [ i)]¡
X

jµS[i

1

jSj+ 1 [¢(S [ j)]

=
X

jµS

1

jSj+ 1 [¢(S [ j [ i)¡¢(S [ j)]

+
X

jµS

·
1

jSj ¡ 1

jSj+ 1

¸
[¢(S [ j [ i)]¡ 1

jSj+ 1 [¢(S [ i)]

>
X

jµS

1

jSj+ 1 [¢(S [ j [ i)¡¢(S [ j)]

+
X

jµS

·
1

jSj ¡ 1

jSj+ 1

¸
[¢(S [ i)]¡ 1

jSj+ 1 [¢(S [ i)] > 0:

The …rst inequality follows by restricted strict superadditivity. In the last
expression, the …rst row is positive by restricted strict superadditivity and
the last row zero since

P
jµS

h
1
jSj ¡ 1

jSj+1

i
= 1

jSj+1 . Then, the last inequality
follows.

Thus, ¾0 yields a higher sum of expected utility compared with ¾ in period
1 in the subtree following ht.

Subcase 2. 2 · k · jSj ¡ 1. The sum of expected utility in period k in
the subtree following ht is under ¾0

X

SkµS
Pr(Sk j S)

£
¢(S [ Sk [ i)

¤
:

The sum of expected utility in period k in the subtree following ht is under
¾ X

SkµS[i
Pr(Sk j S [ i)

£
¢(S [ Sk)

¤
:

15



Consider the di¤erence in expected production.
X

SkµS
Pr(Sk j S)

£
¢(S [ Sk [ i)

¤
¡

X

SkµS[i
Pr(Sk j S [ i)

£
¢(S [ Sk)

¤

=
X

SkµS
Pr(Sk j S[i)

£
¢(S [ Sk [ i)¡¢(S [ Sk)

¤
¡

X

SkµS[i
i2Sk

Pr(Sk j S[i)
£
¢(S [ Sk)

¤

+
X

SkµS

£
Pr(Sk j S)¡ Pr(Sk j S [ i)

¤ £
¢(S [ Sk [ i)

¤

=
X

SkµS
Pr(Sk j S [ i)

£
¢(S [ Sk [ i)¡¢(S [ Sk)

¤

¡
X

Sk¡1µS
Pr(Sk¡1 [ i j S [ i)

£
¢(S [ Sk¡1 [ i)

¤

+
X

Sk¡1µS

X

j2S
j =2Sk¡1

·
Pr(Sk¡1 [ j j S)

jSkj ¡ Pr(Sk¡1 [ j j S [ i)
jSkj

¸ £
¢(S [ Sk¡1 [ i [ j)

¤
:

The terms Pr(Sk¡1[ j j S) have to be divided by
¯̄
Sk

¯̄
since Pr(Sk j S) occur¯̄

Sk
¯̄

times in the double summation.4 Symmetry implies, for all S, that
Pr(Sk¡1 [ j j S) > Pr(Sk¡1 [ j j S [ i) for any Sk¡1 µ S. By restricted strict
superadditivity, it follows that the last expression is strictly bigger than the
following expression

X

SkµS
Pr(Sk j S [ i)

£
¢(S [ Sk [ i)¡¢(S [ Sk)

¤

¡
X

Sk¡1µS

©
Pr(Sk¡1 [ i j S [ i)

£
¢(S [ Sk¡1 [ i)

¤

¡
X

j2S
j =2Sk¡1

·
Pr(Sk¡1 [ j j S)

jSkj ¡ Pr(Sk¡1 [ j j S [ i)
jSkj

¸
9
>>=
>>;

£
¢(S [ Sk¡1 [ i)

¤
:

The …rst term is positive by restricted strict superadditivity. For the sum of
expected utility to be larger in period k after ht we need for all 2 · k · jSj

4This follows since there are
¯̄
Sk

¯̄
di¤erent ways of partitioning the set Sk into two sets

Sk¡1 and j.
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that the following expression holds for each Sk¡1 µ S

X

j2S
j =2Sk¡1

·
Pr(Sk¡1 [ j j S)

jSkj ¡ Pr(Sk¡1 [ j j S [ i)
jSkj

¸
¡ Pr(Sk¡1 [ i j S [ i) ¸ 0:

(4)
Since the selection probabilities in any period must sum up to, one we also
know that X

Sk¡1µS

X

j2S
j =2Sk¡1

Pr(Sk¡1 [ j j S)
jSkj = 1

and

X

Sk¡1µS

2
664

X

j2S
j =2Sk¡1

Pr(Sk¡1 [ j j S [ i)
jSkj + Pr(Sk¡1 [ i j S [ i)

3
775 = 1:

This guarantees that condition (??) holds with equality for all Sk¡1 µ S.
Thus, ¾0 yields a higher sum of expected utility compared with ¾ in period

2 · k · jSj in the subtree following ht.
Subcase 3. For period k where k > jSj in the subtree following ht, all

workers are employed under ¾0. By restricted strict superadditivity, the ex-
pected production is at least as high as under the pro…le ¾ in period k in the
subtree following ht.

Since the expected production is higher in all periods in the subtree fol-
lowing ht, and identical elsewhere, the sum of expected utility is higher under
¾0 compared with ¾.

Case 2. After some history ht all meetings end in disagreement. Let
T denote the remaining players. The sum of expected utility in each of the
following periods is (1¡ ±)

³
f(W

0nT ) +P
j2T ¹uj

´
. Now consider the pro…le

¾0 where an agreement is reached at any meeting after ht, and identical to
¾ otherwise. In any period an agreement is reached with more players than
W

0nT . Then it follows by restricted strict superadditivity that the sum of
expected utility is larger.

Since the sum of expected utility is higher in all periods in the subtree
following ht, and identical elsewhere, the sum of expected utility is higher
under ¾0 compared with ¾.

Step 2. Given Step 1, the strategy pro…le ¹¾(±) is e¢cient. Let ¾¤ 2
SPES(±). Suppose that after the history ht¡1 the …rm is without an agree-
ment with the workers in E. Consider player i 2 E. The expected utility for

17



i in the beginning of period t is ~Ui(ht¡1; ¾¤), given ht¡1: Suppose i is selected
to bargain, but not to be the proposer. Let ht be the history after i has re-
jected a proposal. Then, any bid strictly larger than ± ~Ui(ht; ¾¤)+(1¡±)¹ui is
accepted. Also, any bid strictly smaller is rejected. By e¢ciency, a bid equal
to ± ~Ui(ht; ¾¤)+(1¡±)¹ui is accepted. Stationarity implies that ~Ui(ht¡1; ¾¤) =
~Ui(ht; ¾

¤) = Ui(E;¾¤).
Suppose that jEj = 1. Then, from the analysis above, the strategy pro-

…les ¾¤ and ¹¾(±) coincide (see Lemma 1 in Gül (1989)). Then, Ui(E; ¾¤) =
Ui(E; ¹¾(±)).

Now suppose jEj ¸ 2. Assume that the strategies ¾¤ and ¹¾(±) coincide
for games with less than jEj players. Then, for all G Ã E, Ui(G; ¹¾(±)) =
Ui(G; ¾

¤), for all i 2 F [G. It therefore follows from (??) and the de…nition
of D±

i (E) that Ui(E; ¹¾(±)) = Ui(E; ¾¤), for all i 2 F [ E. This implies that
the strategies ¾¤ and ¹¾(±) coincide for games with jEj players.

A.3 Proof of Theorem 1

For the proof we need the following lemma.

Lemma Let f±kg1i=1 be a sequence such that ±k 2 [0; 1) for all k.

If limk!1 ±
k = 1, if for any G µ E such that jGj = jEj¡1 for all i 2 G

lim
k!1

Ui(G; ¹¾(±
k)) =

f(W
0
)¡ f(W 0ni) + ¹ui

2
¡ c

2

and

lim
k!1

UF (G; ¹¾(±
k)) = f(W

0
)¡

X

i2G

f(W
0
)¡ f(W 0ni) + ¹ui

2
¡ jGj c

2
:

then, for all i 2 E ,

lim
k!1

Ui(E; ¹¾(±
k)) =

f(W
0
)¡ f (W 0ni) + ¹ui

2
¡ c

2

and

lim
k!1

UF (E; ¹¾(±
k)) = f(W

0
)¡

X

i2E

f(W
0
)¡ f(W 0ni) + ¹ui

2
¡ jEj c

2
:
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Proof. We have (when ± = 1)
0
BBBBBBBB@

U1F (E; ¹¾(1))
U11 (E; ¹¾(1))
:
:
:
:
U1jEj(E; ¹¾(1))

1
CCCCCCCCA

=

0
BBBBBBBB@

a0 b0 b0 : : b0 b0

b0 d0 e0 : : e0 e0

b0 e0 d0 : e0

: : : : : :
: : : : e0 e0

b0 e0 e0 d0 e0

b0 e0 e0 : e0 e0 d0

1
CCCCCCCCA

0
BBBBBBBB@

D1
F (E)

D1
1(E)

:
:
:
:
D1
jEj(E)

1
CCCCCCCCA

;

where a0 = 1¡2jEj
1¡jEj , b

0 = 1
1¡jEj , d

0 = 2jEj(1¡jEj)¡1
(2jEj¡1)(1¡jEj) and e0 = ¡ 1

(2jEj¡1)(1¡jEj) .
Also, we know that

D1
F (E) =

1

2 jEj
X

i2E
UF (Eni; ¹¾(1))¡ c:

From the hypothesis in the lemma we know that

UF (Eni; ¹¾(1)) = f(W 0
)¡

X

j2E
j 6=i

f (W
0
)¡ f(W 0nj) + ¹uj

2
¡ (jEj ¡ 1) c

2
¡ c:

Therefore,

D1
F (E) =

1

2 jEj

"
jEj f(W 0

)¡ (jEj ¡ 1)
X

i2E

f (W
0
)¡ f(W 0ni) + ¹ui

2
¡ (jEj ¡ 1) c

2
jEj ¡ jEj c

#
:

Also, we know that

D1
i (E) =

1

2 jEjUF (Eni; ¹¾(1)) + 1

jEj
X

j2E
j 6=i

Ui(Enj; ¹¾(1)):

The expression for Ui(Enj; ¹¾(1)) is given by

Ui(Enj; ¹¾(1)) = f(W
0
)¡ f(W 0ni) + ¹ui

2
¡ c

2
;

from the hypothesis in the lemma.
By plugging the expressions Ui(Enj; ¹¾(1)) and UF (Eni; ¹¾(1)) into D1

i (E)
we get

D1
i (E) =

1

2 jEj

2
664f(W

0
)¡

X

j2E
j 6=i

f (W
0
)¡ f(W 0nj)¡ ¹uj

2
¡ c¡ (jEj ¡ 1) c

2

3
775
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+
jEj ¡ 1

jEj

·
f(W

0
)¡ f (W 0ni) + ¹ui

2
¡ c

2

¸
:

The expression for U 1F (E; ¹¾(1)) is given by

1¡ 2 jEj
1¡ jEj D

1
F (E) +

1

1¡ jEj
X

i2E
D1
i (E):

The expression for U 1i (E; ¹¾(1)) is given by

1

1¡ jEjD
1
F (E)+

2 jEj (1¡ jEj) ¡ 1
(2 jEj ¡ 1)(1¡ jEj)D

1
i (E)¡

1

(2 jEj ¡ 1)(1¡ jEj)
X

j2E
j 6=i

D1
j (E):

By using the expressions for the Ds, it can be shown that the payo¤s are
as stated in the theorem by using some algebra.5

From the proof in Lemma 1, the payo¤s, when only one worker remains,
are as in the lemma. The conclusion in Theorem 1 therefore follows by
induction and from setting E = W

0
.

A.4 Proof of Theorem 2

Before the proof of this theorem, we introduce some additional notation.
Consider any set of workers E without an agreement. For the …rm to (weakly)
gain by making an acceptable proposal to a worker i 2 E the following must
hold, given that the players adhere to ¹¾(±) in future periods

±UF (Eni; ¹¾(±)) + (1¡ ±)f(W 0 [ inE)¡ (±Ui(E; ¹¾(±)) + (1¡ ±)¹ui)

¸
³
±UF (E; ¹¾(±)) + (1¡ ±)f(W 0nE)

´
: (5)

A similar condition holds if worker i makes a proposal. The …rst two terms
on the left hand side (LHS) of the inequality is the payo¤ for the …rm, if the
…rm is allowed to use the labor of worker i; the last two terms is the wage
sum paid to the worker. The wage sum paid to the worker is equal to what
the worker would acquire by rejecting the …rm’s bid. The LHS is the …rm’s
utility when making the lowest acceptable o¤er to the worker. The right

5The possibly easiest way of doing this is to compute the coe¢cient in front of each
f(:) and c term.
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hand side (RHS) is the …rm’s utility when making an unacceptable o¤er to
the worker. If an agreement is to be reached, the LHS must be larger than
the payo¤ for the …rm when making an unacceptable o¤er to the worker.
Now we de…ne

£i(E; ±) = ±UF (Eni; ¹¾(±)) + (1¡ ±)f (W 0 [ inE)

¡
³
±UF (E; ¹¾(±)) + (1¡ ±)f (W 0nE)

´
¡ (±Ui(E; ¹¾(±)) + (1¡ ±)¹ui) ;

for all i 2 W 0
.

Clearly, by the argument in Lemma 1, it follows that £i(E; ±) is contin-
uous for any i 2 E and for any E µ W

0
.

Theorem 2 Suppose restricted strict superadditivity is satis…ed and c >
0, then there exists ¹± < 1 such that, for all ± 2 [¹±; 1), SPES(±) is
nonempty.

Proof. Let E µ W
0

be arbitrary. Suppose that the …rm has not agreed
with the workers in E. By using the method in the proof of Theorem 1, the
solution to the game where an agreement has been reached for any W

0nE
can be computed by induction.

In the limit, the expression in LHS of (??) converges to

UF (Eni; ¹¾(1))¡ Ui(E; ¹¾(1))

= f (W
0
)¡

X

j2E

f(W
0
)¡ f(W 0nj) + ¹uj

2
¡ (jEj ¡ 1) c

2
+
c

2
:

Also, the RHS converges to

UF (E; ¹¾(1)) = f(W
0
)¡

X

j2E

f(W
0
) ¡ f (W 0nj) + ¹uj

2
¡ (jEj) c

2
:

This implies that
£i(E; 1) = c:

Let

±i(E) = min

½
arg min

±2[0;1]
f£i(E; ±) j £i(E; ±0) ¸ 0 for all ±0 ¸ ±g

¾
;

which exists and is unique by continuity of £i(E; ±). Also, ±i(E) < 1 for all
i 2 E since £i(E; 1) = c.
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Let
±(E) = max

i2E
±i(E):

Clearly, ±(E) < 1 for any E µW
0
. Then, let

¹± = max
EµW 0

±(E):

Clearly, it follows that ¹± < 1.
Consider the strategy pro…le ¹¾(±) where the …rm o¤ers worker i

±Ui(E; ¹¾(±)) + (1¡ ±)¹ui

if the …rm is the proposer and the worker o¤ers the …rm

±UF (E; ¹¾(±)) + (1¡ ±)f(W 0nE)

if worker i is the proposer and where these o¤ers (and higher) are accepted.
Then, we claim that, for any ± 2 [¹±; 1), this pro…le is an equilibrium. To
deviate by making an unacceptable proposal is clearly not a pro…table devi-
ation since £i(E; ±) ¸ 0. Also, to reject an o¤er equal to the continuation
payo¤ cannot be a pro…table deviation.

A.5 Proof of Theorem 4

First, we need to introduce some notation. Suppose the …rm is without an
agreement with the workers in E. Let Ki

f (E) be the coe¢cient in front of
f(W

0
). Let Ki

MPl
(E) be the coe¢cient in front of MPl(W 0). Let Ki

¹ul
(E) be

the coe¢cient in front of ¹ul. Also, let Ki
c(E) be the coe¢cient in front of

c for worker i. Thus, for ± close to one, the payo¤ for any worker i 2 E is
approximately

K i
f (E)f(W

0
) +

X

l2E
Ki
MPl
(E)MPl(W

0) +
X

l2E
Ki
¹ul
(E)¹ul +K

i
c(E)c:

We need to show that Ki
f (W

0
) = 0, Ki

¹ul
(W

0
) = 0 for l 6= i, Ki

MPi
(W

0
) =

ppi (i), K
i
c(W

0
) = ¡ppi (i) and Ki

¹ui
(W

0
) = 1 for all i 2 W 0

.
Consider a subgame where the workers in E ½ W

0
have not agreed with

the …rm. Let pi(E) = pi and ppi (E) = p
p
i . Then, the expected payo¤ for the

…rm is

UF (E; ¹¾(±)) =
X

i2E
pi(1¡ ppi )

n
±UF (Eni; ¹¾(±)) + (1¡ ±)f(W 0 [ inE)¡ c
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¡ [±Ui(E; ¹¾(±)) + (1¡ ±)¹ui]g

+
X

i2E
pip

p
i

h
±UF (E; ¹¾(±)) + (1¡ ±)f(W 0nE)

i
:

Analogously, the expected payo¤ for worker i 2 E is given by

Ui(E; ¹¾(±)) = pip
p
i

h
±UF (Eni; ¹¾(±)) + (1¡ ±)f(W 0 [ inE)¡ ±UF (E; ¹¾(±))¡ c

¡(1¡ ±)f(W 0nE)
i
+ pi(1¡ ppi ) [±Ui(E; ¹¾(±)) + (1¡ ±)¹ui]

+
X

j2E
j 6=i

pj [±Ui(Enj; ¹¾(±)) + (1¡ ±)¹ui] :

Lemma Suppose
P

i2E
pi(E)p

p
i (E)

(1¡pi(E)(1¡ppi (E)))
< 1. Suppose the …rm is without an

agreement with the workers in E. Suppose, for all G Ã E, Ui(G; ¹¾(±))
is continuous in ± on [0; 1] and well de…ned for all i 2 F [ G. Then,
the expected utilities Ui(E; ¹¾(±)) are continuous functions of ± for all
i 2 E on [0; 1]:

Proof. The expected payo¤s are given by

0
BBBBBBBB@

a b1 b2 : : : bjEj
b01 d1 0 : : 0 0
b02 0 d2 : 0
: : : : : :
: : : : 0 0

0 0 : 0
b0jEj 0 0 : 0 0 djEj

1
CCCCCCCCA

0
BBBBBBBB@

UF (E; ¹¾(±))
U1(E; ¹¾(±))
:
:
:
:
UjEj(E; ¹¾(±))

1
CCCCCCCCA

=

0
BBBBBBBB@

D±
F (E)

D±
1(E)

:
:
:
:
D±
jEj(E)

1
CCCCCCCCA

(6)

where a = 1¡±P
i2E pip

p
i , bi = ±pi(1¡ppi ), b0i = ±pippi and di = 1¡±pi(1¡

ppi ). This follows from rearranging the expected utilities for the players.
Here,

D±
F (E) =

X

i2E
pi(1¡ppi )

h
±UF (Eni; ¹¾(±)) + (1¡ ±)f(W 0 [ inE)¡ (1¡ ±)¹ui ¡ c

i

+
X

i2E
pip

p
i (1¡ ±)f(W 0nE)

and

D±
i (E) = pip

p
i

h
±UF (Eni; ¹¾(±)) + (1¡ ±)f(W 0 [ inE)¡ (1¡ ±)f(W 0nE)¡ c

i
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+
X

j2E
j 6=i

pj [±Ui(Enj; ¹¾(±)) + (1¡ ±)¹ui] + pi(1¡ ppi )(1¡ ±)¹ui:

By hypothesis in the lemma, these expressions are continuous in ±.
Consider the inverse of the matrix in ??.

0
BBBBBBBB@

a00 a10 : : : : ajEj0
a01 a11 : : : : :
a02 : : : : : :
: : : : : : :
: : : : : : :
: : : : : : :
a0jEj a1jEj : : : : ajEjjEj

1
CCCCCCCCA

We can show that
a00 =

1

1¡ ±P
i2E

pip
p
i

(1¡±pi(1¡ppi ))

;

a0j = ¡ ±pjp
p
j¡

1¡ ±pj(1¡ ppj )
¢a00

for j ¸ 1,

ak0 = ¡ ±pk(1¡ ppk)
(1¡ ±pk(1¡ ppk))

a00

for k ¸ 1,

akj =
±pk(1¡ ppk)

(1¡ ±pk(1¡ ppk))
±pjp

p
j¡

1¡ ±pj(1¡ ppj )
¢a00

for k 6= j, k; j ¸ 1 and

akk =
1

(1¡ ±pk(1¡ ppk))
+

±pkp
p
k

(1¡ ±pk(1¡ ppk))
±pk(1¡ ppk)

(1¡ ±pk(1¡ ppk))
a00 for k ¸ 1:

Suppose that X

i2E

pip
p
i

(1¡ pi(1¡ ppi ))
< 1:

Then, for any ± 2 [0; 1) it is the case that

X

i2E

pip
p
i

(1¡ ±pi(1¡ ppi ))
< 1:

Thus, for any ± 2 [0; 1] the inverse is well de…ned. Since each aij is continuous
in ±, continuity of the inverse follows. Also, since each D±

i (E) is continuous
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in ±, continuity of Ui(E; ¹¾(±)) follows.

Suppose only one worker i remains. The probability that worker i is
selected to be the proposer is ppi (i). It follows from a slight modi…cation of
Lemma 1 in Gül(1989) that

UF (i; ¹¾(±)) = f(W )¡
n
ppi (i)

h
f(W

0
)¡ f (W 0ni)¡ ¹ui

i
+ ¹ui

o
¡ (1¡ ppi (i))c

and

Ui(i; ¹¾(±)) = p
p
i (i)

h
f(W

0
)¡ f(W 0ni)¡ ¹ui

i
+ ¹ui ¡ ppi (i)c:

Clearly, these expressions are continuous in ±.
By this fact, the Lemma and an induction argument, we have the following

corollary.

Corollary 1 Suppose
P

i2E
pi(E)p

p
i (E)

(1¡pi(E)(1¡ppi (E)))
< 1 holds for all E µ W

0
.

Then, for all E µ W
0
, for all i 2 F [ E, Ui(E; ¹¾(±)) is continuous in ±

on [0; 1].

Furthermore, the payo¤ in a game with jEj ¸ 2 is a linear combination
of payo¤s in games with only one worker remaining. This follows from re-
peatedly applying the matrix operation above for all games with less than
jEj players.

Now consider the case when ± = 1. The payo¤ for a worker k is then
X

j2F[E
ajkD

1
j (E):

Suppose the theorem is true for games with less than jEj players. Thus,
for allG Ã E,Ki

f(G) = 0,K
i
¹ul
(G) = 0 for l 6= i andKi

¹uCi
(G) = 1 for all i 2 G.

Consider Ki
f (E). The payo¤ for each worker can depend only on f (W

0
)

through the UF (Eni; ¹¾(1)) terms. In any of these terms the coe¢cient in front
of f(W

0
) is one, by e¢ciency. Now consider the coe¢cients in front of the

UF (Eni; ¹¾(1)) terms. The sum of the coe¢cients in front of the UF (Eni; ¹¾(1))
terms can be shown to be zero by some algebra. This implies that the
expected utility for any worker i 2 E in a game with jEj workers only is a
function of the payo¤s for the workers expected utilities in jEj ¡ 1 worker
games. Thus, Ki

f(E) = 0.
By similar arguments and some algebra, it can be shown that Ki

¹ul
(E) = 0

for l 6= i, Ki
¹ui
(E) = 1, Ki

MPi
(E) = ppi (i), K

i
c(E) = ¡ppi (i) and Ki

MPl
(E) = 0

for l 6= i.
The result then follows by setting E =W

0
.
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