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Power properties of the Sargan test in the presence of measurement
errorsin dynamic panels:

Matz Dahlberg?, Eva Johanssor® and Per Tovmo®

Abstract

This paper invedigates the power properties of the Sargan test in the presence of
measurement errors in dynamic pand data modds. The generd concluson from the Monte
Carlo smulations is that the Sargan test, in many cases, leads the econometrician to accept
misspecified modds with sometimes saverely biased parameter estimates as aresult. Thisis
epecidly true when the number of cross-sectiond units is smdl and when there are
measurement errorsin the dependent variable. To investigate if the Smulation results have any
bearing in red gpplications, we used the datain Arellano and Bond (1991) and re-estimated
their employment equations with the difference that we deliberately imposed additive and
multiplicative measurement errors in the employment and wage varigbles. It turned out that
the Sargan test dway's accepted the misspecified modds while we a the same time ended up
with biased parameter estimates. The conclusion from this paper isthat in the very likely case
of measurement errors in ether the dependent or any of the independent variables, we will, if
werely on the Sargan test, quite likely accept a misspecified modd and end up with biased
results.
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1. Introduction

In empiricd work, some specification test to test the initid modd is dedrable. In GMM

estimations of dynamic panel data models, the Sargan test for over-identifying restrictions has
become the standard one to use. This performs ajoint test of the modd specification and the
vdidity of the instruments (i.e. it tests if the moments are fulfilled). However, very little is
known about the test’s power.1 Can we fed comfortable with our modd specification if the
Sargan test does not regect, or might there till be some misspecification leading to serious

misinterpretations of the empiricd results?

The purpose of this paper isto investigate the power properties of the Sargan test in dynamic
pands, when the moments are not fulfilled. Questions that we will try to answer are the
following: Will the Sargantest rgect the fase null that the moments are fulfilled? If it doesn't,
will the estimated coefficients be biased? In order to answer these questions we will perform
Monte Carlo smulations where we impose measurement errors in the data, either in the
dependent varidble or in an independent varidble We will aso ddiberately impose
measurement errors in rea data and investigate the consequences for the specification tests

and for the estimated coefficients (using the Ardllano and Bond (1991) data).

We find that it is quite possible to get a modd where the Sargan test has very bad power
properties (i.e., we accept a misspecified model too often) while, a the same time, the
estimates of dl coefficients are severdly biased. The problem is especidly pronounced for

smdl sample sizes and for measurement errors in the dependent variable (and hence in the



lagged dependent variable). The results from the empirica gpplication are in line with the
Monte Carlo findings. when imposing measurement errors, the estimated coefficients change,

but the Sargan test does not detect the misspecification.

2. Measurement errorsin X

2.1 Experimental Design

We dart by investigating a case with measurement errors in the independent varigble x. Our
intention is to study the performance of the Sargan test both when X is treated as exogenous

and when it is treated as endogenous.

We use the following data generating process (DGP):

Vi =a, + by, , +dx, + f +e, 1

Yio = — +U; ()

where cross-sections are denoted by i =1,...,N and time periodsby t=1...,T. a, ae

time dummiesand f; areindividud specific effects.

We let x follow an AR(1)-process:

X =P Uy ©)

1 An exception to thisis Bowsher (2000), where the power properties of the Sargan test is explored when
the error term follows an AR(1) process.



In the smulations, we will use sampleszesof N :(100,...,1000) and T =7, and |let databe
generatled by b =05, d=1, g=(0508), x,~NID(01), e~ND(0]),

u,~NID(0,3/{L- b2)), u,~NID(0), f;~NID(0}), and a,~NID(07).

To investigate how the Sargan test works when we have problems with measurement errors,
we consder three different types of errors. The first one is an additive error, where the

observed x (denoted X) is generated as

X =X, +hy, 4)

with the measurement error generated as h,, ~ NI D(O ;L) (yidding rather severe measurement

erors. the sandard deviation of the errors is the same as the standard deviation of x) or as

h,~ NID(0,0.l) (yidding less savere erors. the standard deviation of the measurement

errors is 10 times smaller than the standard deviation of x).2 The second measurement error

isamultiplicative one, where the obsarved x (X) is generated as

X, =X, *hy, 5)

with h generated as h,~NID(10.5) and h,~NID(1,0.1) respectively. Finaly, we

consder an exponentia measurement error given by

Ry =%, * € (6)

2|nthe Appendix we show that the moments are not fulfilled when there is measurement errorsinx or y.
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where h,, ~NID(0,0.1).

We edimate equation (1) in firg-differenced form, usng the GMM-estimator described in
HoltzEakin, Newey and Rosen (1988) and Arellano and Bond (1991).3 All Monte Carlo
experiments are caried out in GAUSS, usng the program's pseudo-random number

generator. In each experiment we carry out 1000 Monte Carlo replications.

2.2 Results
The results from the smulations with measurement errorsin x are presented in tables 1 and 2.

The presented results are for g =0.84. Regarding choice of instruments, we consder two

different cases. In the first case, we treat x as exogenous and hence use contemporaneous x

as an indrument (in firg-differenced form) aswell aslags of y dated two periods back and

more. These results are presented in Table 1. In the second case, we treat x as endogenous
and use lags of x as insruments (dated one period back and more) instead of

contemporaneous values of X .5 These results are presented in Table 2.

In the base case, where X is measured without errors and contemporaneous X is treated as
an exogenous regressor, we note from the first panel in Table 1 that the Sargan test has good
Sze properties and that there is virtudly no bias in d . For smal sample sizes, there is

however abiasin the coefficient for the lagged dependent variable.

3The wei ghting matrix we useis the one proposed by Holtz-Eakin, Newey and Rosen.
4 For g =05 and measurement errors in X, the Sargan test get worse power properties compared to the
g = 0.8 case (no matter if xistreated as exogenous or endogenous). Theresultsfor g = 0.5 are available

upon request.



When we impose an additive and savere measurement error in X, it turns out that the Sargan
test has low power a smdl sample Szes when contemporaneous X is trested as an
exogenous instrument (see the second panel of Table 1). To get a rgection rate over 80
percent when testing a the five percent level, we need a sample of more than 600 cross-
sections (see Figure 1). In gpplications we would hence far too often accept the fse null of a
well-specified modd when we have a smdl number of cross-sectiond units. Thiswouldn't be
S0 problematic if the estimates were unbiased, but here we have a rather severe bias in both

b andd.

In the third panel we investigate the performance when the additive measurement error isless

severe. We find that the Sargan test has very low power, but the biasin b and d israther

low, even though there might be a problem for smdl sample szes for N =100, the biasis

approximately 27 percent for b and 5 percent for d . These results are very similar to the

cases of multiplicative and exponential measurement errors with asmall variation in the errors
(cf. the fourth and last panels of Table 1). However, dso for multiplicative measurement
errors, the results are senstive to how severe the errors are. When the standard deviation of
the measurement errors is half that of x, we see from the fifth pane that the Sargan test has

bad power when N islow and that we have a severe biasin both b and d . From Figure 2

we see that we need a sample of at least 900 cross-sectiond unitsto get argection rate over

80 percent (when testing at the five percent leve).

S|t can be noted that we always use lags of y asinstruments (dated two periods back and more).



The results when X is treated as endogenous are presented in Table 2. We find a smilar
pattern as the one found when x was treated as exogenous. There are some differences

however; the biasin b isless serious when X is treated as endogenous (c.f. the second

pandsin the two tables) and the power increases faster when the sample sizes grow.

3. Measurement errorsiny

3.1 Experimental Design

Let us now consider measurement errors in the dependent varigble y . Since we estimate a
dynamic model, this will induce measurement errors in one of the regressors as well (namely
the lagged dependent varigble). We will consider three types of measurement errors. one
additive (y,=y,+h,), one multiplicaive (Vy,=y,*h,), axd one exponentid
(9., =y, *€"), where h is generated as in Section 2. There is no measurement error in x
and the rest of the DGP is as above. As instruments we use lags of y dated two periods

back or more together with contemporaneous x in first differences.

3.2 Results
The Monte Carlo results from the case with measurement errorsin y are given in Table 3.

When the error is additive and severe (the second panel) the estimates of b are severdly

biased (60 percent when N =1000) and so arethe ones of d , however to asmaller extent
(approximately 8 percent). The power increases as the sample Sze grows, but is ill
relatively low: for example, when N =500 the Sargan test rgjects the false null in only 40 %
of the Monte Carlo smulations (testing at the ten percent sgnificance level). The worst case

is when the measurement error is exponentia (see the last panel). The bias is subgtantid in



both of the estimated coefficients and the power is extremely low; when testing at the ten
percent sgnificance level, the Sargan test rgects in only 17 percent of the times even for
large N. When the error is multiplicative, the Sze of the error matters for the results. When
imposng a samdl error (see the fourth pand), there is virtudly no biasin d , whereas b is
biased, even though the bias diminishes when the sample sze grows. When we increase the
dandard deviation in the error (the fifth pane), the biasin b increases dramaticaly even for
large N (for N =1000, the bias is as large as 80 percent). The power of the Sargan test is
however low; when testing at the five- percent level, the Sargan test rgjects in only 38 percent

of the cases for a sample size aslarge as 1000.6

The generd conclusion from the smulations is hence thet it is quite possible to get a modd
where the Sargan test has very bad power properties (i.e., we accept a misspecified model
too often) while a the same time the estimates of both b and d are severdly biased. Thisis

especidly true for smal sample Szes and for measurement errors in the dependent variable.”

4. Application: The Ardlano and Bond (1991) data

6 The power properties are unaffected of the size of g when there are measurement errorsiny. However,
the lower the autoregressive process inx is, the lower isthe biasin p .

7 Can the power of the Sargan test be improved by relying on bootstrap critical values using the GMM
bootstrap estimator proposed by Hall and Horowitz (1996)? The answer is no. It turns out that in the
experiments conducted, the bootstrapped Sargan test almost never rejects afalse null.

8 It has been suggested, see for example Bowsher (2000), that the power of the Sargan test can be
improved by using fewer moment conditions. Doing this does not solve the problem in our case. Some
simulation results showing this are available upon request.



As we have seen from the smulations, the Sargan test for overidentifying restrictions often
leads us to accept modds where the moments are not fulfilled with sometimes severdly
biased parameter etimates as a result. This is especidly true when the number of cross-
sectiond units is smdl. But of course, the models in the Monte Carlo experiments are very
ylized and paramonious. Do the results have any bearing in red gpplications? To investigate
this, we will use the data in Ardlano and Bond (1991) and re-edtimate their employment
equations with the difference that we have deliberatdly imposed measurement errors in the
employment and wage vaiables. In ther goplication, they have 140 cross-sectiond units

(quoted U.K. companies) for the period 1979-1984.

We estimate the following equation

n, =a,n,, +a,n_, +bw, +b,w _, +&, +d,ys, +d,ys;, +I +h, +u, (9

where n,, denotes the logarithm of U.K. employment in company i &t the end of year t, w,
isthelog of thered wage, k,, isthelog of gross capitd, ys, isthelog of industry output, | ,
is atime effect that is common to dl companies, h; isafixed but unobservable firm-specific
effect, and u,, isthe error term.® Replicating the earlier study, the estimation of equetion (9)

yiddsthe resultsin column b in Table 4 in Arellano and Bond (1991). Our re-estimations are
presented in tables 4 and 5. The firgt two columnsin each of these tables restate the results in

Ardlano and Bond.

9 For exact definitions of the variables, see Arellano and Bond (1991).



In Table 4, we impose measurement errors in the dependent variable, i.e. the employment
vaiable. In the middle columns we have imposed additive measurement errors, while we in
the find columns have imposed multiplicative measurement errors. In both cases the errors
are digtributed NID(5,1). A standard deviation of one corresponds to approximately 6.5
percent of the standard deviation in the employment variable1® As can be seen from the
bottom rows in the table, the Sargan test does not give us any reason to believe that the

moments are not fulfilled. Neither does the m, statistic, which testsfor lack of second-order

serid corrdation in the firg-differenced resduds. As a matter of fact, both the Sargan and

the m, datigtics are very similar to the ones obtained when no measurement errors are

imposed in the data. What is affected, though, is the parameter estimates. For example, we
seem to end up with less dynamics when there are additive errors. the second lag of both
employment and wages is indgnificant. The coefficients estimates in the Arellano and Bond
esimations suggest a short-run wage dadticity of —0.51 while the corresponding figure with

additive errorsis—0.21 and with multiplicative errors —0.39.11

In Table 5, we impose measurement errors in one of the independent variables, namely the
wage vaiable. In the middle columns we have imposed additive measurement errors, while
we in the find columns have imposed multiplicative measurement errors. In the additive case,

the errors are distributed NID(0,1). In the multiplicative case, the errors are distributed

NID(31). A standard deviation of one corresponds to approximately 18 percent of the

10 The standard deviation of the employment variable is 15.9 (unlogged values). The measurement errors
are imposed before the variables are logged. The reason for having a mean of five in the errorsis to
ensure that the resulting employment variable is positive.

10



dandard devidtion in the wage variable.l2 Neither the Sargan dtatistic nor the m, datigtic

gives us any reason to bdlieve that something iswrong. As for the resultsin Table 4, both the

Sargan and the m, datistics are very sSmilar to the ones obtained when no measurement

errors are imposed in the data. However, turning to the parameter estimates, we see that they
are indeed affected by the imposed measurement errors. Taking the case of additive errors
as an example, we see that the short-run wege dadticity decreases from —0.51 to —0.19 and

there seems to be less dynamics when measurement errors are imposed.

5. Conclusions
In this paper we have investigated the power properties of the Sargan test in the presence of
measurement errors either in the dependent varigble or in an independent variable (other than

the lagged dependent variable) in dynamic panels.

The generd concluson from the Monte Carlo smulaions is that the Sargan test for
overidentifying redtrictions often leads us to accept modes where the moments are not
fulfilled with sometimes severdly biased parameter etimates as a result. The problem is most
pronounced when the number of cross-sectiond units is smdl and when there are

measurement errors in the dependent varigble.

11 The long-run wage elasticity is—0.5 in the Arellano and Bond estimations, —0.33 with additive errors,
and —0.63 with multiplicative errors.

12 The standard deviation of the wage variable is 5.6 (unlogged values). We have also estimated with
less variation in the measurement errors (we have used distributions of the errors that corresponds to
five and ten percent of the distribution in the wage variable). This did, however, not change the results
substantially.

11



Do our smulation results have any bearing in red gpplications? To investigate this, we used
the datain Arellano and Bond (1991) and re-estimated their employment equations with the
difference that we ddiberatdy imposed additive and multiplicative measurement errorsin the
employment and wage variables. It turned out that the specification tests (Sargan and the test
for second-order serid corrdation in the firg-differenced variables) aways accepted the
misspecified modes while we at the same time ended up with biased parameter estimates
(we would, for example, reach the wrong conclusions of less dynamics in the model and

congderably lower wage dadticities).

Ardlano and Bond conclude after their empirical gpplication: “The GMM egsimator offers
ggnificant efficiency gains compared to smpler 1V dternatives, and produces estimates that

are well-determined in dynamic pandl data models. ... The robust m, datistics perform

satisfactorily as do the two-step Sargan ...” (p. 293). From the results in this study, we do
however think that this statement must be qudified. The Sargan datistic performs
satisfactorily and the GMM egtimator will produces estimates that are well-determined in
dynamic pand data modds given that the models are correctly specified. In the very likely
case of measurement errors in ether the dependent or any of the independent variables, we

will with arather high probakility accept a misspecified modd and end up with biased results.

12
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Table 1. Measurement errorsin X. X treated as exogenous.

Sargan regjection rates (%) Bias (%)
N 10 5 1 b d
No measurement errors
100 115 5.5 0.3 -28.0 -3.8
500 135 7.0 1.8 -4.7 -0.7
1000 10.1 5.2 1.3 -2.0 -0.3
%=x+h, h~NID(0})
100 28.8 13.7 4.0 -8.1 -64.9
500 80.1 70.8 47.9 43.4 -62.3
1000 97.8 96.3 89.1 50.8 -61.8
% =x+h, h~NID(00.1)
100 12.0 5.3 0.4 -27.2 -5.5
500 13.7 6.2 1.8 -3.2 2.3
1000 10.9 5.0 1.3 -0.5 -1.8
% =x*h, h~NID(10.1)
100 13.0 5.7 0.5 -26.4 7.4
500 14.4 7.0 1.8 -15 -4.2
1000 11.3 5.9 1.6 1.3 -3.8
% =x*h , h~NID(10.5)
100 21.7 12.7 2.5 -12.7 -50.5
500 63.7 51.5 28.0 31.6 -47.8
1000 91.2 85.1 63.6 37.6 -47.3
x=x*€", h~NID(0,0.1)
100 13.0 5.6 0.5 -26.4 -7.9
500 14.7 7.0 1.7 -1.5 -4.7
1000 11.3 6.0 1.6 1.3 -4.3

Note: As instruments we use lags of y dated two periods back and more and x in first-differenced form.
b isthe coefficient for the lagged dependent variabley and d isthe coefficient for x.

14



Table 2. Measurement errorsin X. X treated as endogenous.

Sargan regjection rates (%) Bias (%)
N 10 5 1 b d
NO measurement errors
100 6.6 2 0.1 -89 7.4
500 9.6 4.4 1 -1.5 -15
1000 10.2 5.6 0.8 -0.8 -0.8
%=x+h, h~NID(0})
100 16.4 6.6 0.7 -12.1 -74.2
500 97.0 94.4 80.3 13.0 -61.6
1000 100 100 100 175 -58.8
% =x+h, h~NID(00.1)
100 6.4 2.5 0.1 -8.4 -8.7
500 8.7 4.1 05 -0.6 -1.9
1000 9.6 4.8 1 0.2 1.2
% =x*h, h~NID(10.1)
100 6.3 2.2 0.2 -8.1 -10.3
500 9.3 4.1 0.5 0.4 25
1000 12.4 5.7 1.4 1.3 1.7
% =x*h , h~NID(10.5)
100 12.3 4 0.2 -12.1 -60.1
500 94.8 a1 68.4 8.0 -45.1
1000 100 100 99.6 11.5 -42.1
x=x*€", h~NID(0,0.1)
100 6.6 2.2 0.2 -8.1 -10.8
500 10.1 47 1.2 0.4 -3.1
1000 11.1 5.3 0.9 1.2 2.2

Note: As instruments we use lags of y dated two periods back and more and lags of x dated one period
back and more. b isthe coefficient for the lagged dependent variabley and d isthe coefficient for x.
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Table 3. Measurement errorsin y.

Sargan regjection rates (%) Bias (%)
N 10 5 1 b d
No measurement errors
100 115 55 0.3 -28.0 -3.8
500 135 7.0 1.8 -4.7 -0.7
1000 10.1 5.2 1.3 -2.0 -0.3
§=y+h,h~NID(01)
100 15.3 6.7 1.4 -74.8 -9.3
500 40.4 27.5 10.6 -62.2 -7.6
1000 69.3 58.5 33.6 -60.8 7.7
§=y+h,h~NID(00.1)
100 11.6 15.7 0.3 -28.8 -3.9
500 12.3 7.1 1.6 -5.3 -0.8
1000 10.1 4.2 15 -2.8 -0.4
9=y*h, h~NID(10.1)
100 15.0 7.1 1.0 -37.0 -5.6
500 17.1 9.4 2.8 122 -1.8
1000 18.8 95 3.1 -9.9 -1.6
¥ =y*h, h~NID(10.5)
100 16.8 6.9 0.8 926 -13.4
500 32.1 20.6 75 -80.0 -9.8
1000 51.4 38.2 18.6 -79.0 -9.7
y=y*€&,nh~ND(00.1)
100 9.5 45 0.5 -106.0 26.6
500 17.4 8.0 11 -96.4 41.0
1000 17.1 9.4 2.8 -95.2 425

Note: As instruments we use lags of y dated two periods back and more and x in first-differenced form.
b isthe coefficient for the lagged dependent variabley and d isthe coefficient for x.
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Table 4. Measurement error in employment (the dependent variable)

Arélano and Bond® Additiveerror® Multiplicative error®
Variable Coeff T-ratio Coeff T-ratio Coeff T-ratio
n(-1) 0.47 5.56 0.29 3.28 -0.13 -1.14
n(-2) -0.05 -1.94 0.10 1.56 -0.10 -1.87
w -0.51 -10.40 -0.21 -2.20 -0.39 -2.19
w(-1) 0.22 2.81 0.01 0.06 -0.22 -1.36
k 0.29 7.42 0.09 1.56 0.42 5.36
ys 0.61 5.62 0.34 142 0.66 2.09
ys(-1) -0.45 -3.58 -0.21 -0.89 -0.24 -0.62

Satigic P-vdue Satidic P-vdue Satigic P-vdue
Sargan 30.11 (0.220) 32.18 (0.153) 28.66 (0.278)
m, -0.33 (0.739) 0.51 (0.611) -0.48 (0.633)

Notes: &) ColumnbinTable4in Arellano and Bond (1991)
b) The measurement error is generated as NID(5,1)
¢) The measurement error is generated as NID(5,1)
Time dummies areincluded in al equations.

Table 5. Measurement error in wages

Arélano and Bond? Additiveerror® Multiplicative error®
Variable Coeff T-ratio Coeff T-ratio Coeff T-ratio
n(-1) 0.47 5.56 0.29 4.76 0.29 5.36
n(-2) -0.05 -1.94 -0.02 -1.15 -0.04 -19
w -0.51 -10.4 -0.19 -3.97 0.002 0.361
w(-1) 0.22 2.81 -0.004 -0.08 -0.01 -1.77
k 0.29 7.42 0.32 7.65 0.32 7.47
yS 0.61 5.62 0.39 3.39 0.31 2.82
ys(-1) -0.45 -3.58 -0.04 -0.43 0.04 0.487

Satigic P-vdue Satidic P-vdue Satigic P-vdue
Sargan 30.11 (0.220) 31.35 (0.178) 27.17 (0.347)
m, -0.33 (0.739) -0.00 (0.998) 0.18 (0.858)

Notes: &) ColumnbinTable4in Arellano and Bond (1991)
b) The measurement error is generated as NID(0,1)
¢) The measurement error is generated as NID(3,1)
Time dummies areincluded in all equations.
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Figure 1. Power function when additive and severe measurement error in x (and x
treated as exogenous). Testing at the 5% significance level.
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Figure 2. Power function when multiplicative error in x (and x treated as exogenous).
Testing at the 5% significance level.
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Appendix

In this gppendix we will show that the identifying assumptions behind the GMM estimator are
not fulfilled in the experiments we conduct, implying that the models are misspecified and
hence tha the null hypothes's the Sargan test is testing is fase. We show it for additive
measurement errors. For amplicity, we assume that T =3 and that there are no time

dummies.

Measurement error in X

Y, = by, +dx, + f +e, (A1)
X, =X, +h (A.2)
(A.2) into (A.1) yidds.
Yis = by, +d (X, - i) + T, +ey, (A.3)
Firg-differencing (A.3) yidds
Vi~ Yio =B(Yio - ¥u)+d(Xs- %)~ dlh, +hiy)+ (e - ) (A4)
Dis

If X istrested as exogenous, the identifying assumptions behind the GMM estimator are:
E[yilD'liS] = E[yil(ei3 - €,-d (hi3 +hi2))] =0 (A.5)

E[Danuia] = E[(Xi3 +hi3 - Xg- hiz)(eis' € - d(hi3+hi2))] =0 (A-G)

However, (A.6) isnot fulfilled since E(h h,,)* 0 and Efh,;h,;)? O.

If weingtead treat X as endogenous, the identifying assumptions are (A.5) and

19



E[XZDJiS] = E[(Xiz +hi2)(ei3' €2- d(his +hi2))] =0 (A7)

which isnat fulfilled since E(h, h,,)* 0.

Measurement error in y

Yie = Vi +hy, (A-8)
(A.8) into (A.1) yidlds

Yis - hiz = b(yiz - hi2)+dxi3 +f +e;, (A.9)

Firg-differencing (A.9) yidds

9i3 - 9i2 = b(in - 9i1)+d(xi3- Xiz)"'(eis' ei2)+(hi3 B hiz)' b(hi2 B hil) (A.10)

Dus

The identifying assumptions are:
E[yilDuis] = E[(yil +hi1)((ei3 - ei2)+ (his' hiz)' b(hiz - hil))] =0 (A-]-l)
E[DXiSDui3] = E[(Xi3 - )ﬁz)((eia - § 2) +(hi3 - hiz)' b (hiz : hil))] =0 (A.12)

(A.12) is not fulfilled since E(hh,,)* 0.
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