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Abstract 
This paper investigates the power properties of the Sargan test in the presence of 
measurement errors in dynamic panel data models. The general conclusion from the Monte 
Carlo simulations is that the Sargan test, in many cases, leads the econometrician to accept 
misspecified models with sometimes severely biased parameter estimates as a result. This is 
especially true when the number of cross-sectional units is small and when there are 
measurement errors in the dependent variable. To investigate if the simulation results have any 
bearing in real applications, we used the data in Arellano and Bond (1991) and re-estimated 
their employment equations with the difference that we deliberately imposed additive and 
multiplicative measurement errors in the employment and wage variables. It turned out that 
the Sargan test always accepted the misspecified models while we at the same time ended up 
with biased parameter estimates. The conclusion from this paper is that in the very likely case 
of measurement errors in either the dependent or any of the independent variables, we will, if 
we rely on the Sargan test, quite likely accept a misspecified model and end up with biased 
results. 
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1. Introduction 

In empirical work, some specification test to test the initial model is desirable. In GMM 

estimations of dynamic panel data models, the Sargan test for over-identifying restrictions has 

become the standard one to use. This performs a joint test of the model specification and the 

validity of the instruments (i.e. it tests if the moments are fulfilled). However, very little is 

known about the test’s power.1 Can we feel comfortable with our model specification if the 

Sargan test does not reject, or might there still be some misspecification leading to serious 

misinterpretations of the empirical results? 

 

The purpose of this paper is to investigate the power properties of the Sargan test in dynamic 

panels, when the moments are not fulfilled. Questions that we will try to answer are the 

following: Will the Sargan test reject the false null that the moments are fulfilled? If it doesn’t, 

will the estimated coefficients be biased? In order to answer these questions we will perform 

Monte Carlo simulations where we impose measurement errors in the data, either in the 

dependent variable or in an independent variable. We will also deliberately impose 

measurement errors in real data and investigate the consequences for the specification tests 

and for the estimated coefficients (using the Arellano and Bond (1991) data). 

 

We find that it is quite possible to get a model where the Sargan test has very bad power 

properties (i.e., we accept a misspecified model too often) while, at the same time, the 

estimates of all coefficients are severely biased. The problem is especially pronounced for 

small sample sizes and for measurement errors in the dependent variable (and hence in the 
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lagged dependent variable). The results from the empirical application are in line with the 

Monte Carlo findings: when imposing measurement errors, the estimated coefficients change, 

but the Sargan test does not detect the misspecification. 

 

2. Measurement errors in x 

2.1 Experimental Design 

We start by investigating a case with measurement errors in the independent variable x . Our 

intention is to study the performance of the Sargan test both when x  is treated as exogenous 

and when it is treated as endogenous. 

 

We use the following data generating process (DGP): 

 
 itiitittit fxyy εδβα ++++= −1  (1) 
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where cross-sections are denoted by i N= 1,...,  and time periods by t T= 1,..., . tα  are 

time dummies and f i  are individual specific effects.  

 

We let x follow an AR(1)-process: 

 
 ititit uxx += −1γ  (3) 

  

                                                                                                                                             
1 An exception to this is Bowsher (2000), where the power properties of the Sargan test is explored when 

the error term follows an AR(1) process. 



 4

In the simulations, we will use sample sizes of ( )1000,...,100=N  and 7=T , and let data be 

generated by 5.0=β , 1=δ , ( )8.0,5.0=γ , 0ix ~ ( )NID 01, , ε it~ ( )NID 01, , 

iυ ~ ( )( )2
111,0 β−NID , itu ~ ( )NID 01, , f i ~ ( )NID 01, , and tα ~ ( )NID 01, .  

 

To investigate how the Sargan test works when we have problems with measurement errors, 

we consider three different types of errors. The first one is an additive error, where the 

observed x (denoted x̂ ) is generated as 

 
 ititit xx η+=ˆ  (4) 

 
with the measurement error generated as itη ~ ( )NID 01,  (yielding rather severe measurement 

errors: the standard deviation of the errors is the same as the standard deviation of x) or as 

itη ~ ( )1.0,0NID  (yielding less severe errors: the standard deviation of the measurement 

errors is 10 times smaller than the standard deviation of x).2 The second measurement error 

is a multiplicative one, where the observed x ( x̂ ) is generated as 

 
 ititit xx η*ˆ =  (5) 

 
with η  generated as itη ~ ( )5.0,1NID  and itη ~ ( )1.0,1NID  respectively. Finally, we 

consider an exponential measurement error given by  

 

itexx itit
η*ˆ =       (6) 

 

                                                 
2 In the Appendix we show that the moments are not fulfilled when there is measurement errors in x or y. 
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where itη ~ ( )1.0,0NID . 

 

We estimate equation (1) in first-differenced form, using the GMM-estimator described in 

Holtz-Eakin, Newey and Rosen (1988) and Arellano and Bond (1991).3 All Monte Carlo 

experiments are carried out in GAUSS, using the program's pseudo-random number 

generator. In each experiment we carry out 1000 Monte Carlo replications. 

 

2.2 Results 

The results from the simulations with measurement errors in x are presented in tables 1 and 2. 

The presented results are for 8.0=γ 4. Regarding choice of instruments, we consider two 

different cases. In the first case, we treat x as exogenous and hence use contemporaneous x 

as an instrument (in first-differenced form) as well as lags of y  dated two periods back and 

more. These results are presented in Table 1. In the second case, we treat x as endogenous 

and use lags of x as instruments (dated one period back and more) instead of 

contemporaneous values of x .5 These results are presented in Table 2. 

 

In the base case, where x  is measured without errors and contemporaneous x is treated as 

an exogenous regressor, we note from the first panel in Table 1 that the Sargan test has good 

size properties and that there is virtually no bias in δ . For small sample sizes, there is 

however a bias in the coefficient for the lagged dependent variable.  

                                                 
3 The weighting matrix we use is the one proposed by Holtz-Eakin, Newey and Rosen. 
4 For 5.0=γ  and measurement errors in x, the Sargan test get worse power properties compared to the 

8.0=γ  case (no matter if x is treated as exogenous or endogenous). The results for 5.0=γ  are available 

upon request. 
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When we impose an additive and severe measurement error in x, it turns out that the Sargan 

test has low power at small sample sizes when contemporaneous x is treated as an 

exogenous instrument (see the second panel of Table 1). To get a rejection rate over 80 

percent when testing at the five percent level, we need a sample of more than 600 cross-

sections (see Figure 1). In applications we would hence far too often accept the false null of a 

well-specified model when we have a small number of cross-sectional units. This wouldn’t be 

so problematic if the estimates were unbiased, but here we have a rather severe bias in both 

β  and δ .  

 

In the third panel we investigate the performance when the additive measurement error is less 

severe. We find that the Sargan test has very low power, but the bias in β  and δ  is rather 

low, even though there might be a problem for small sample sizes: for 100=N , the bias is 

approximately 27 percent for β  and 5 percent for δ . These results are very similar to the 

cases of multiplicative and exponential measurement errors with a small variation in the errors 

(c.f. the fourth and last panels of Table 1). However, also for multiplicative measurement 

errors, the results are sensitive to how severe the errors are. When the standard deviation of 

the measurement errors is half that of x, we see from the fifth panel that the Sargan test has 

bad power when N is low and that we have a severe bias in both β  and δ . From Figure 2 

we see that we need a sample of at least 900 cross-sectional units to get a rejection rate over 

80 percent (when testing at the five percent level). 

 

                                                                                                                                             
5 It can be noted that we always use lags of y as instruments (dated two periods back and more). 
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The results when x is treated as endogenous are presented in Table 2. We find a similar 

pattern as the one found when x was treated as exogenous. There are some differences 

however; the bias in β  is less serious when x is treated as endogenous (c.f. the second 

panels in the two tables) and the power increases faster when the sample sizes grow.  

 

3. Measurement errors in y 

3.1 Experimental Design 

Let us now consider measurement errors in the dependent variable y . Since we estimate a 

dynamic model, this will induce measurement errors in one of the regressors as well (namely 

the lagged dependent variable). We will consider three types of measurement errors: one 

additive ( ititit yy η+=ˆ ), one multiplicative ( ititit yy η*ˆ = ), and one exponential 

( iteyy itit
η*ˆ = ), where η  is generated as in Section 2. There is no measurement error in x 

and the rest of the DGP is as above. As instruments we use lags of y  dated two periods 

back or more together with contemporaneous x in first differences.  

 

3.2 Results 

The Monte Carlo results from the case with measurement errors in y are given in Table 3. 

When the error is additive and severe (the second panel) the estimates of β  are severely 

biased (60 percent when 1000=N ) and so are the ones of δ , however to a smaller extent 

(approximately 8 percent). The power increases as the sample size grows, but is still 

relatively low: for example, when 500=N  the Sargan test rejects the false null in only 40 % 

of the Monte Carlo simulations (testing at the ten percent significance level). The worst case 

is when the measurement error is exponential (see the last panel). The bias is substantial in 
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both of the estimated coefficients and the power is extremely low; when testing at the ten 

percent significance level, the Sargan test rejects in only 17 percent of the times even for 

large N. When the error is multiplicative, the size of the error matters for the results. When 

imposing a small error (see the fourth panel), there is virtually no bias in δ , whereas β  is 

biased, even though the bias diminishes when the sample size grows. When we increase the 

standard deviation in the error (the fifth panel), the bias in β  increases dramatically even for 

large N (for 1000=N , the bias is as large as 80 percent). The power of the Sargan test is 

however low; when testing at the five-percent level, the Sargan test rejects in only 38 percent 

of the cases for a sample size as large as 1000.6 

 

The general conclusion from the simulations is hence that it is quite possible to get a model 

where the Sargan test has very bad power properties (i.e., we accept a misspecified model 

too often) while at the same time the estimates of both β  and δ  are severely biased. This is 

especially true for small sample sizes and for measurement errors in the dependent variable.7 

8 

 

4. Application: The Arellano and Bond (1991) data 

                                                 
6 The power properties are unaffected of the size of γ  when there are measurement errors in y. However, 

the lower the autoregressive process in x is, the lower is the bias in β . 

7 Can the power of the Sargan test be improved by relying on bootstrap critical values using the GMM 

bootstrap estimator proposed by Hall and Horowitz (1996)? The answer is no. It turns out that in the 

experiments conducted, the bootstrapped Sargan test almost never rejects a false null. 
8 It has been suggested, see for example Bowsher (2000), that the power of the Sargan test can be 

improved by using fewer moment conditions. Doing this does not solve the problem in our case. Some 

simulation results showing this are available upon request.  
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As we have seen from the simulations, the Sargan test for overidentifying restrictions often 

leads us to accept models where the moments are not fulfilled with sometimes severely 

biased parameter estimates as a result. This is especially true when the number of cross-

sectional units is small. But of course, the models in the Monte Carlo experiments are very 

stylized and parsimonious. Do the results have any bearing in real applications? To investigate 

this, we will use the data in Arellano and Bond (1991) and re-estimate their employment 

equations with the difference that we have deliberately imposed measurement errors in the 

employment and wage variables. In their application, they have 140 cross-sectional units 

(quoted U.K. companies) for the period 1979-1984.  

 

We estimate the following equation 

 

 itititititititititit ysyskwwnnn υηλδδγββαα +++++++++= −−−− 1211212211  (9) 
 

where itn  denotes the logarithm of U.K. employment in company i at the end of year t, itw  

is the log of the real wage, itk  is the log of gross capital, itys  is the log of industry output, tλ  

is a time effect that is common to all companies, iη  is a fixed but unobservable firm-specific 

effect, and itυ  is the error term.9 Replicating the earlier study, the estimation of equation (9) 

yields the results in column b in Table 4 in Arellano and Bond (1991). Our re-estimations are 

presented in tables 4 and 5. The first two columns in each of these tables restate the results in 

Arellano and Bond.  

 

                                                 
9 For exact definitions of the variables, see Arellano and Bond (1991). 
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In Table 4, we impose measurement errors in the dependent variable, i.e. the employment 

variable. In the middle columns we have imposed additive measurement errors, while we in 

the final columns have imposed multiplicative measurement errors. In both cases the errors 

are distributed NID(5,1). A standard deviation of one corresponds to approximately 6.5 

percent of the standard deviation in the employment variable.10 As can be seen from the 

bottom rows in the table, the Sargan test does not give us any reason to believe that the 

moments are not fulfilled. Neither does the 2m  statistic, which tests for lack of second-order 

serial correlation in the first-differenced residuals. As a matter of fact, both the Sargan and 

the 2m  statistics are very similar to the ones obtained when no measurement errors are 

imposed in the data. What is affected, though, is the parameter estimates. For example, we 

seem to end up with less dynamics when there are additive errors: the second lag of both 

employment and wages is insignificant. The coefficients estimates in the Arellano and Bond 

estimations suggest a short-run wage elasticity of –0.51 while the corresponding figure with 

additive errors is –0.21 and with multiplicative errors –0.39.11  

 

In Table 5, we impose measurement errors in one of the independent variables, namely the 

wage variable. In the middle columns we have imposed additive measurement errors, while 

we in the final columns have imposed multiplicative measurement errors. In the additive case, 

the errors are distributed ( )1,0NID . In the multiplicative case, the errors are distributed 

( )1,3NID . A standard deviation of one corresponds to approximately 18 percent of the 

                                                 
10 The standard deviation of the employment variable is 15.9 (unlogged values). The measurement errors 

are imposed before the variables are logged. The reason for having a mean of five in the errors is to 

ensure that the resulting employment variable is positive. 
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standard deviation in the wage variable.12 Neither the Sargan statistic nor the 2m  statistic 

gives us any reason to believe that something is wrong. As for the results in Table 4, both the 

Sargan and the 2m  statistics are very similar to the ones obtained when no measurement 

errors are imposed in the data. However, turning to the parameter estimates, we see that they 

are indeed affected by the imposed measurement errors. Taking the case of additive errors 

as an example, we see that the short-run wage elasticity decreases from –0.51 to –0.19 and 

there seems to be less dynamics when measurement errors are imposed. 

 

5. Conclusions 

In this paper we have investigated the power properties of the Sargan test in the presence of 

measurement errors either in the dependent variable or in an independent variable (other than 

the lagged dependent variable) in dynamic panels. 

 

The general conclusion from the Monte Carlo simulations is that the Sargan test for 

overidentifying restrictions often leads us to accept models where the moments are not 

fulfilled with sometimes severely biased parameter estimates as a result. The problem is most 

pronounced when the number of cross-sectional units is small and when there are 

measurement errors in the dependent variable. 

 

                                                                                                                                             
11 The long-run wage elasticity is –0.5 in the Arellano and Bond estimations, –0.33 with additive errors, 

and –0.63 with multiplicative errors. 
12 The standard deviation of the wage variable is 5.6 (unlogged values). We have also estimated with 

less variation in the measurement errors (we have used distributions of the errors that corresponds to 

five and ten percent of the distribution in the wage variable). This did, however, not change the results 

substantially. 
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Do our simulation results have any bearing in real applications? To investigate this, we used 

the data in Arellano and Bond (1991) and re-estimated their employment equations with the 

difference that we deliberately imposed additive and multiplicative measurement errors in the 

employment and wage variables. It turned out that the specification tests (Sargan and the test 

for second-order serial correlation in the first-differenced variables) always accepted the 

misspecified models while we at the same time ended up with biased parameter estimates 

(we would, for example, reach the wrong conclusions of less dynamics in the model and 

considerably lower wage elasticities).  

 

Arellano and Bond conclude after their empirical application: “The GMM estimator offers 

significant efficiency gains compared to simpler IV alternatives, and produces estimates that 

are well-determined in dynamic panel data models. … The robust 2m  statistics perform 

satisfactorily as do the two-step Sargan …” (p. 293). From the results in this study, we do 

however think that this statement must be qualified. The Sargan statistic performs 

satisfactorily and the GMM estimator will produces estimates that are well-determined in 

dynamic panel data models given that the models are correctly specified. In the very likely 

case of measurement errors in either the dependent or any of the independent variables, we 

will with a rather high probability accept a misspecified model and end up with biased results. 
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Table 1. Measurement errors in x. x treated as exogenous. 
 Sargan rejection rates (%) Bias (%) 
N 10 5 1 β  δ  
 No measurement errors  
100 11.5 5.5 0.3 -28.0 -3.8 
500 13.5 7.0 1.8 -4.7 -0.7 
1000 10.1 5.2 1.3 -2.0 -0.3 
 η+= xx̂ , η ~ ( )NID 01,   

100 28.8 13.7 4.0 -8.1 -64.9 
500 80.1 70.8 47.9 43.4 -62.3 
1000 97.8 96.3 89.1 50.8 -61.8 
 η+= xx̂ , η ~ ( )1.0,0NID   
100 12.0 5.3 0.4 -27.2 -5.5 
500 13.7 6.2 1.8 -3.2 -2.3 
1000 10.9 5.0 1.3 -0.5 -1.8 
 η*ˆ xx = , η ~ ( )1.0,1NID  
100 13.0 5.7 0.5 -26.4 -7.4 
500 14.4 7.0 1.8 -1.5 -4.2 
1000 11.3 5.9 1.6 1.3 -3.8 
 η*ˆ xx = , η ~ ( )5.0,1NID  
100 21.7 12.7 2.5 -12.7 -50.5 
500 63.7 51.5 28.0 31.6 -47.8 
1000 91.2 85.1 63.6 37.6 -47.3 
 ηexx *ˆ = , η ~ ( )1.0,0NID  
100 13.0 5.6 0.5 -26.4 -7.9 
500 14.7 7.0 1.7 -1.5 -4.7 
1000 11.3 6.0 1.6 1.3 -4.3 
Note: As instruments we use lags of y dated two periods back and more and x in first-differenced form. 
β  is the coefficient for the lagged dependent variable y and δ  is the coefficient for x. 
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Table 2. Measurement errors in x. x treated as endogenous. 
 Sargan rejection rates (%) Bias (%) 
N 10 5 1 β  δ  
 No measurement errors 
100 6.6 2 0.1 -8.9 -7.4 
500 9.6 4.4 1 -1.5 -1.5 
1000 10.2 5.6 0.8 -0.8 -0.8 
 η+= xx̂ , η ~ ( )NID 01,  

100 16.4 6.6 0.7 -12.1 -74.2 
500 97.0 94.4 80.3 13.0 -61.6 
1000 100 100 100 17.5 -58.8 
 η+= xx̂ , η ~ ( )1.0,0NID  
100 6.4 2.5 0.1 -8.4 -8.7 
500 8.7 4.1 0.5 -0.6 -1.9 
1000 9.6 4.8 1 0.2 -1.2 
 η*ˆ xx = , η ~ ( )1.0,1NID  
100 6.3 2.2 0.2 -8.1 -10.3 
500 9.3 4.1 0.5 0.4 -2.5 
1000 12.4 5.7 1.4 1.3 -1.7 
 η*ˆ xx = , η ~ ( )5.0,1NID  
100 12.3 4 0.2 -12.1 -60.1 
500 94.8 91 68.4 8.0 -45.1 
1000 100 100 99.6 11.5 -42.1 
 ηexx *ˆ = , η ~ ( )1.0,0NID  
100 6.6 2.2 0.2 -8.1 -10.8 
500 10.1 4.7 1.2 0.4 -3.1 
1000 11.1 5.3 0.9 1.2 -2.2 
Note: As instruments we use lags of y dated two periods back and more and lags of x dated one period 
back and more. β is the coefficient for the lagged dependent variable y and δ  is the coefficient for x. 



 16

 

Table 3. Measurement errors in y. 
 Sargan rejection rates (%) Bias (%) 
N 10 5 1 β  δ  
 No measurement errors 
100 11.5 5.5 0.3 -28.0 -3.8 
500 13.5 7.0 1.8 -4.7 -0.7 
1000 10.1 5.2 1.3 -2.0 -0.3 
 η+= yŷ , η ~ ( )1,0NID   
100 15.3 6.7 1.4 -74.8 -9.3 
500 40.4 27.5 10.6 -62.2 -7.6 
1000 69.3 58.5 33.6 -60.8 -7.7 
 η+= yŷ , η ~ ( )1.0,0NID  
100 11.6 15.7 0.3 -28.8 -3.9 
500 12.3 7.1 1.6 -5.3 -0.8 
1000 10.1 4.2 1.5 -2.8 -0.4 
 η*ˆ yy = , η ~ ( )1.0,1NID  
100 15.0 7.1 1.0 -37.0 -5.6 
500 17.1 9.4 2.8 -12.2 -1.8 
1000 18.8 9.5 3.1 -9.9 -1.6 

 η*ˆ yy = , η ~ ( )5.0,1NID  
100 16.8 6.9 0.8 -92.6 -13.4 
500 32.1 20.6 7.5 -80.0 -9.8 
1000 51.4 38.2 18.6 -79.0 -9.7 

 ηeyy *ˆ = , η ~ ( )1.0,0NID  
100 9.5 4.5 0.5 -106.0 26.6 
500 17.4 8.0 1.1 -96.4 41.0 
1000 17.1 9.4 2.8 -95.2 42.5 
Note: As instruments we use lags of y dated two periods back and more and x in first-differenced form. 
β  is the coefficient for the lagged dependent variable y and δ  is the coefficient for x. 
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Table 4. Measurement error in employment (the dependent variable) 
 Arellano and Bonda Additive errorb Multiplicative errorc 

Variable Coeff T-ratio Coeff T-ratio Coeff T-ratio 
n(-1) 0.47 5.56 0.29 3.28 -0.13 -1.14 
n(-2) -0.05 -1.94 0.10 1.56 -0.10 -1.87 
w -0.51 -10.40 -0.21 -2.20 -0.39 -2.19 
w(-1) 0.22 2.81 0.01 0.06 -0.22 -1.36 
k 0.29 7.42 0.09 1.56 0.42 5.36 
ys 0.61 5.62 0.34 1.42 0.66 2.09 
ys(-1) -0.45 -3.58 -0.21 -0.89 -0.24 -0.62 
 Statistic P-value Statistic P-value Statistic P-value 
Sargan 30.11 (0.220)  32.18 (0.153) 28.66 (0.278) 

2m  -0.33 (0.739) 0.51 (0.611) -0.48 (0.633) 
Notes: a) Column b in Table 4 in Arellano and Bond (1991)  

b) The measurement error is generated as NID(5,1) 
c) The measurement error is generated as NID(5,1) 
Time dummies are included in all equations. 

 
 
 
Table 5. Measurement error in wages  
 Arellano and Bonda Additive errorb Multiplicative errorc 

Variable Coeff T-ratio Coeff T-ratio Coeff T-ratio 
n(-1) 0.47 5.56 0.29 4.76 0.29 5.36 
n(-2) -0.05 -1.94 -0.02 -1.15 -0.04 -1.9 
w -0.51 -10.4 -0.19 -3.97 0.002 0.361 
w(-1) 0.22 2.81 -0.004 -0.08 -0.01 -1.77 
k 0.29 7.42 0.32 7.65 0.32 7.47 
ys 0.61 5.62 0.39 3.39 0.31 2.82 
ys(-1) -0.45 -3.58 -0.04 -0.43 0.04 0.487 
 Statistic P-value Statistic P-value Statistic P-value 
Sargan 30.11 (0.220)  31.35 (0.178) 27.17 (0.347) 

2m  -0.33 (0.739) -0.00 (0.998) 0.18 (0.858) 
Notes:  a) Column b in Table 4 in Arellano and Bond (1991) 

b) The measurement error is generated as NID(0,1) 
c) The measurement error is generated as NID(3,1) 
Time dummies are included in all equations. 
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Figure 1. Power function when additive and severe measurement error in x (and x 
treated as exogenous). Testing at the 5% significance level.
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Figure 2. Power function when multiplicative error in x (and x treated as exogenous). 
Testing at the 5% significance level.
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Appendix 

In this appendix we will show that the identifying assumptions behind the GMM estimator are 

not fulfilled in the experiments we conduct, implying that the models are misspecified and 

hence that the null hypothesis the Sargan test is testing is false. We show it for additive 

measurement errors. For simplicity, we assume that 3=T  and that there are no time 

dummies. 

 

Measurement error in x  
 
 3323 iiiii fxyy εδβ +++=  (A.1) 

 
 ititit xx η+=ˆ  (A.2) 

 

(A.2) into (A.1) yields: 

 
 ( ) 33323 ˆ iiiiii fxyy εηδβ ++−+=  (A.3) 

 

First-differencing (A.3) yields: 

 
 ( ) ( ) ( ) ( )4444 34444 21

3

2323231223 ˆˆ
iu

iiiiiiiiii xxyyyy
∆

−++−−+−=− εεηηδδβ  (A.4) 

 

If x is treated as exogenous, the identifying assumptions behind the GMM estimator are: 

 
 [ ] ( )( )[ ] 02323131 =+−−=∆ iiiiiii yEuyE ηηδεε  (A.5) 

 
 [ ] ( ) ( )( )[ ] 0ˆ 2323223333 =+−−−−+=∆∆ iiiiiiiiii xxEuxE ηηδεεηη  (A.6) 

 

However, (A.6) is not fulfilled since ( ) 022 ≠iiE ηη  and ( ) 033 ≠iiE ηη . 

 

If we instead treat x as endogenous, the identifying assumptions are (A.5) and 
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[ ] ( ) ( )( )[ ] 0ˆ 23232232 =+−−+=∆ iiiiiiii xEuxE ηηδεεη               (A.7) 

 

which is not fulfilled since ( ) 022 ≠iiE ηη . 

 

 

Measurement error in y  

 
 ititit yy η+=ˆ  (A.8) 

 

(A.8) into (A.1) yields: 

 
 ( ) 332233 ˆˆ iiiiiii fxyy εδηβη +++−=−  (A.9) 

 

First-differencing (A.9) yields: 

 
 ( ) ( ) ( ) ( ) ( )444444 3444444 21

3

122323231223 ˆˆˆˆ
iu

iiiiiiiiiiii xxyyyy
∆

−−−+−+−+−=− ηηβηηεεδβ  (A.10) 

 

The identifying assumptions are: 

 
 [ ] ( ) ( ) ( ) ( )( )[ ] 0ˆ 1223231131 =−−−+−+=∆ iiiiiiiiii yEuyE ηηβηηεεη  (A.11) 

 
 [ ] ( ) ( ) ( ) ( )( )[ ] 01223232333 =−−−+−−=∆∆ iiiiiiiiii xxEuxE ηηβηηεε  (A.12) 

 

(A.11) is not fulfilled since ( ) 011 ≠iiE ηη . 

 

 


