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Abstract 

Consider a market where producers submit supply functions to a procurement auction — e.g. 

an electric power auction — under uncertainty, before demand has been realized. In the 

Supply Function Equilibrium (SFE), every firm commits to the supply function maximizing 

his expected profit given the supply functions of the competitors. The presence of multiple 

equilibria is one basic weakness of SFE. This paper shows that with (i) symmetric producers, 

(ii) inelastic demand, (iii) a reservation price, and (iiii) capacity constraints that bind with a 

positive probability, there is a unique symmetric SFE.  
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1. INTRODUCTION 

The Supply Function Equilibrium (SFE) was introduced by Klemperer & Meyer in 1989 [10]. 

The equilibrium concept assumes that producers submit supply functions simultaneously in a 

one-shot game. In the non-cooperative Nash Equilibrium, each producer commits to the 

supply function that maximizes his expected profit given the bids of the competitors and the 

properties of the uncertain demand. The equilibrium is often used when modeling bidding 

behavior in electric power auctions. This useful application was first observed by Green & 

Newbery [9] and Bolle [5]. Although there are few papers with other applications, SFE can be 

applied to any uniform price auction where bidders have common knowledge, quantity 

discreteness is negligible and the demand/supply of the auctioneer is uncertain. The 

multiplicity of equilibria is one basic weakness of SFE. This paper shows that under certain 

conditions, which are reasonable for electric power markets, and especially so for balancing 

markets, there is in fact a unique SFE.  

Supply Function Equilibria are traditionally found by making the following observation: 

each producer submits a supply function, such that, for each demand outcome, the price in the 

market is optimized with respect to his residual demand. Intuitively, the optimal price of a 

producer is given by the optimal monopoly response. Hence, the mark-up percentage should 

be inversely proportional to the elasticity of the residual demand curve for every outcome.  

The elasticity of the residual demand comprises derivatives of the supply functions of the 

competitors. Thus the optimal response of each producer is given by a differential equation. In 

equilibrium all producers make optimal bids; hence, the SFE is given by the solution to a 

system of differential equations.  For symmetric producers, one can show that only symmetric 

equilibria exist [10] and the system can be reduced to a single differential equation. However, 

there is no end-point condition, so the solution normally has one arbitrary constant.   

The arbitrary constant allows for a continuum of symmetric equilibria; from  Nash-Cournot 

down to Bertrand, if marginal costs are constant. The continuum can intuitively be understood 

from the monopoly mark-up rule. When the supply functions of the competitors are very 

elastic, i.e. they have low mark-ups at every supply, the best response is to have a low mark-

up at every supply. When the competitors have a very inelastic supply, i.e. they have high 

mark-ups at every supply, the best response is to have a large mark-up at every supply. 

Multiple equilibria make it difficult to predict outcomes with SFE. Further, it is a nuisance for 

comparative statics. How can one be sure that the arbitrary constant associated with an 
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equilibrium does not change, when market conditions are changed? Hence, the multiplicity of 

equilibria is a considerable drawback for SFE.  

I consider a market with symmetric producers, inelastic demand and capacity constraints 

that bind with a positive probability. I show that under these conditions, there is a unique 

symmetric SFE3. A price cap, i.e. reservation price, is needed to limit the equilibrium price 

and guarantee the existence of the equilibrium. The unique symmetric equilibrium price 

reaches the price cap precisely when the capacity constraints bind. Hence, it turns out that the 

arbitrary constant, in the solution of the differential equation, is pinned down by the price cap 

and the total production capacity. The assumptions leading to uniqueness and existence are 

very reasonable for electric power markets. In the short-term, demand is very inelastic in the 

electric power market. Thus inelastic demand is often assumed for spot markets [2,7,8,13]. It 

is even more realistic for real-time and balancing markets.  

Capacity constraints reduce the set of SFE in the electric power market. This has been 

observed in previous work [4,8,9]. In particular Genc & Reynolds have recently shown that 

pivotal suppliers may drastically limit the range of SFE [8]. But that there is a risk of power 

shortage is a new assumption in the literature. It is a plausible assumption; even if there are 

several years, or even decades, between power shortages, they are not zero-probability events. 

The risk of power shortage may have increased after the deregulation of the power market, as 

power producers have often trimmed their reserve capacities. A profit-maximizing producer 

will not pay for reserve capacity that is used with a negligible probability.  

Price caps are used in most deregulated power markets and are considered in some 

previous models of electric power markets [4,7,8]. One argument for having them is that even 

if consumers do not switch off their equipment for extremely high electricity prices, it does 

not mean that they have an extremely high marginal benefit of power. The reason they do not 

switch off is that they do not have this option or that they, due to long-term contracts, do not 

face the short-term price. To maximize social welfare, it is sometimes better to randomly 

disconnect consumers (consumer rationing) than to force supply to meet demand at an 

extremely high price.  

The uniqueness of the symmetric equilibrium can intuitively be understood from the 

following reasoning (see Fig. 1): When the capacity constraints of the competitors bind, a 

producer faces an inelastic residual demand. Following the monopoly response, his optimal 

price for this outcome should equal the price cap, otherwise there would be a profitable 

                                                 
3 Inelastic demand and symmetry simplify the analysis, but intuitively these assumptions are not critical to get 
uniqueness. 
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deviation. Further, there are profitable deviations from equilibrium candidates hitting the price 

cap before the capacity constraints bind. The reason is that it is profitable to slightly undercut 

horizontal supply of the competitors when the price exceeds the marginal cost, á la Bertrand.  
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Fig. 1. Capacity constraints and a price cap rule out all traditional SFE, but one.  

 

However, just deviating at the point where the capacity constraint binds does not change 

expected profits. To get a profitable deviation, a producer must deviate before his capacity 

constraint binds. This means that he will lose profits for some demand outcomes. The same is 

true for producers deviating by slightly undercutting the price cap. Thus intuitive reasoning 

and optimization of the price for one demand outcome at a time is not satisfactory. To make 

the analysis rigorous, it is carried out using optimal control theory.  

Many papers in the SFE literature try to single out a unique equilibrium. Klemperer & 

Meyer show that if outcomes with infinite demand occur with positive probability, and if 

demand can be met with non-binding capacity constraints — not realistic for the electric 

power market — then there is a unique SFE.  With a price cap and capacity constraints, 

Baldick & Hogan [4] actually single out the same equilibrium as in this paper, but with a 

weaker motivation. Price caps are seen as a public signal that coordinates the bids of the 

producers. In some papers, the equilibrium with the highest profit — the worst case — is used 

[9]. For some specific combinations of demand and capacity constraints, the worst case turns 

out to be a unique equilibrium [9]. Newbery gets a unique SFE by considering entry and 
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assuming bid-coordination; incumbent firms coordinate their bids to the most profitable 

equilibrium that deters entry [12]. Baldick & Hogan [4] and Anderson & Xu [3] find a unique 

equilibrium, in some cases, by ruling out unstable equilibria. Stability is tested assuming an 

infinite speed of adjustment when there are small deviations from best-response bids. One 

could argue, however, that with a sufficiently slow speed of adjustment, other equilibria might 

be stable as well. The stability literature predicts that high mark-ups tend to be unstable. 

Inspired by these results, Rudkevich et al. [13] assume that the least profitable equilibrium 

should be closest to the reality.  

In Section 2, I present the notation and assumptions used in the analysis of this paper. The 

unique SFE is derived in several steps in Section 3. A first order condition is derived for 

smooth and monotonically increasing segments of a symmetric SFE by means of optimal 

control theory. The result is the first-order condition derived for unconstrained production by 

Klemperer & Meyer [10]. Next various equilibrium candidates that are not completely smooth 

are ruled out. Symmetric equilibria with vertical or horizontal segments can be ruled out by 

using optimal control theory with final values and their associated transversality conditions. 

Some candidates cannot be ruled out by means of optimal control theory; instead they are 

excluded by the observation of a profitable deviation. To avoid horizontal and vertical 

segments in the supply, the equilibrium price must reach the price cap exactly when the  

capacity constraint binds. It is shown that there is exactly one smooth symmetric SFE 

candidate that fulfills this end-condition and the first-order condition. It is verified that the 

unique candidate is an equilibrium, i.e. it fulfills a second order condition.  

In Section 4, the unique SFE is characterized. Comparative statics show that the 

equilibrium has intuitive properties, e.g. mark-ups are reduced if there are more competitors. 

An important implication of the analysis is that the price cap and capacity constraints affect 

the equilibrium price also when the constraints do not bind. The assumptions leading to the 

unique SFE are realistic for electric power auctions, but even more so for balancing markets. 

Such a market is considered in Section 5. In Section 6, the unique equilibrium is illustrated by 

an example with a quadratic cost function. The paper is concluded in Section 7. 

 

2. NOTATION AND ASSUMPTIONS 
Assume that there are N symmetric producers. The bid of each producer i consists of a supply 

function Si(p), where p is the price. Si(p) is required to be non-decreasing. The aggregate 

supply of the competitors of producer i is denoted S-i(p) and the total supply S(p).  
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In the original work by Klemperer & Meyer [10], the analysis is confined to twice 

continuously differentiable supply functions4. In this paper the set of admissible bids is 

extended to include piece-wise twice continuously differentiable supply functions, see Fig. 2. 

The extension allows for supply functions with vertical and horizontal segments, i.e. binding 

slope constraints. Allowing for deviations with partly horizontal or vertical segments is very  

useful, when ruling out SFE candidates. Si(p) is not necessarily differentiable at every price, 

but it is required that it is differentiable on the left and right at every price. Further, it is 

required that all supply functions are left-hand continuous. From the requirements of the 

supply functions, it follows that, a sufficiently large p- can always be found for every p such 

that all supply functions are twice continuously differentiable in the interval [ ]., pp−  

 

Fig. 2. The considered supply functions are piece-wise twice continuously differentiable. 

 

Denote the inelastic demand by ε  and its probability density function by f(ε).  The density 

function is continuously differentiable and has a convex support set, which includes ε=0. Let 

the capacity constraint of each producer be N/ε , so that ε  is the total capacity of the 

producers. A key assumption is that the capacity constraints of all producers will bind with a 

positive probability, i.e. there are extreme outcomes, for which εε > .  

The demand is assumed to be zero above the reservation price. In the electricity market this 

is achieved by means of forced disconnection of consumers, when the price threatens to rise 

above the price cap. Thus the market price for extreme outcomes equals the price cap. 

Allowing for extreme outcomes and rationing is different from the traditional SFE view on 

                                                 
4 There is an alternative model that considers stepped supply functions [7].  

p 

Si 
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market clearing. The new assumption is crucial to get a unique equilibrium. It is realistic for 

electric power markets, especially real-time and balancing markets.   

In case the total supply has an inelastic segment that coincides with the inelastic demand, it 

is assumed that the market design is such that the lowest price is chosen5. This means that the 

equilibrium price as a function of the demand is left-hand continuous.  

Let qi(ε,p) be the residual demand that a producer i faces for .pp <  Provided that the 

supply functions of his competitors are non-horizontal at p, his residual demand is given by: 

( ) ( )pSpq ii −−= εε ,    if .pp <  (1) 

All firms have identical cost functions C(qi), which are increasing, strictly convex, twice 

continuously differentiable, and fulfill ./ pN)(C <′ ε  Thus marginal costs are monotonically 

increasing.  

If more than one producer has a supply with a perfectly elastic segment at some price p0, 

supply rationing at this price is necessary for some demand outcomes. The perfectly elastic 

supply of producer i at this price is given by ( ) ( ) ( ),000 pSpSpS iii −+≡∆  where 

( ) ( )pSpS i
pp

i
0

lim0
↓

≡+ 6. Similarly, the total perfectly elastic supply of his competitors is 

( ) ( ) ( ).000 pSpSpS iii −−− −+≡∆  I assume that the rationed supply of producer i at p0 is given 

by:  ( ) ( ) ( ) ( )( ).,, 0000 pSpSpSRpS iii −∆∆−+ ε  It is assumed that the rationing mechanism has 

the following properties: R1≥0, R2≥0, R3≤0, and ( ) ( )( ) .0,,0 00 =∆∆ − pSpSR ii  Further, if 

( ) :00 >∆ − pS i  

 
( ) ( )
( ). if   1

 if   10

021

0021

+==+
+<≤<+≤

pSRR
pSpSRR

ε
ε

 (2) 

The intuition of this assumption is as follows. Consider a case where rationing is needed at p0.  

Assume that producer i increases the price up to p0, for one unit that was previously offered 

below p0. Then his accepted total supply will decrease. The assumption can, for example, be 

verified for a rationing mechanism, where all producers gets a ration proportional to their 

perfectly elastic supply at p0.  

I also assume that if the total supply has perfectly elastic segments at the price cap, all of 

these bids are accepted before demand is rationed.     

 

                                                 
5 The same assumption is used by Baldick & Hogan [4]. 
6 Recall that supply functions are left-hand continuous for positive demand. 
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3. THE UNIQUE SYMMETRIC SFE 
In previous work, except for the recent paper by Genc & Reynolds [8], optimization for one 

demand outcome at a time has been used in the derivation of Supply Function Equilibria. 

Here optimal control theory is used instead. Optimizing the price for one demand at a time is 

much more straightforward, but when allowing for generalized supply functions, optimal 

control theory is useful when ruling out irregular SFE.  

Vertical and horizontal segments are very useful deviation strategies, when ruling out SFE 

candidates. Nevertheless, allowing for such segments complicates the analysis, as SFE with 

vertical and horizontal segments have to be ruled out as well. To ensure that optimal control 

theory is applicable when testing whether a supply function of a producer is the best response, 

we have to ensure that the supply functions of his competitors are continuously differentiable 

in the integrated price range. Further, the control variable needs to be finite. These 

technicalities imply that supply functions of a potential equilibrium have to be studied piece-

by-piece.   

In Section 3.1, optimal control theory is used to derive conditions that must necessarily be 

fulfilled for all smooth and monotonically increasing segments of a symmetric supply 

function equilibrium. These conditions are simplified to a differential equation, the first-order 

condition. This is the standard first-order condition used in the SFE literature and there is an 

analytic solution for inelastic demand.  

In Sections 3.2-3.4, irregular SFE are ruled out. In Section 3.2, it is shown that there are no 

symmetric equilibria where supply functions have perfectly elastic segments. This can be 

shown by means of optimal control theory with a final value7. The result of Section 3.2 also 

rules out perfectly elastic segments at the price cap. In Section 3.3, equilibria with 

discontinuities in the equilibrium price are ruled out using optimal control theory with a final 

value. To avoid a discontinuity in the price when all bids have been accepted, the total supply 

must be elastic up to the price cap. Section 3.4 rules out kinks, and finally Section 3.5 shows 

that no capacity is withheld in equilibrium.  

Thus in equilibrium, all supply functions must fulfill the first order condition in the whole 

price range. The end-condition is that the symmetric supply function must reach the price cap 

exactly when all capacity constraint binds. In Section 3.6 it is observed that there is a unique 

SFE candidate that fulfills the first-order condition and the end-condition. In Section 3.7, it is 

shown that, given that the competitors follow the unique candidate, the equilibrium price of 

                                                 
7  In the special case when the total supply is inelastic just below the perfectly elastic segment, this is proven 
with a profitable deviation. 
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the unique candidate globally maximizes the profit of an arbitrary producer for every demand 

outcome. Thus it is a Nash-equilibrium and a SFE.   

 

3.1. The optimal control problem for smooth segments of a SFE 
In equilibrium, an arbitrary producer i submits his best supply function out of the class of 

allowed supply functions, given the bids of his competitors. Now consider a segment of a 

symmetric equilibrium candidate ( )pSi
)

, where supply functions are monotonically increasing 

and twice continuously differentiable in the range +− ≤≤ ppp . Assume that the competitors 

of producer i follow the equilibrium candidate. Will it be a best response of producer i to 

follow as well? In this section, only local deviations in the range +− ≤≤ ppp  are considered. 

His bids outside this range are unchanged. Considering such deviations give a necessary, but 

not sufficient, condition. Let the set  be defined by ( )pSi
)

 and all considered deviations. We 

note that by choosing his supply function, producer i can control the total supply function, 

S(p).  

  ( ) ( ) ( ) ε=+≡ − pSpSpS ii
)

. (3) 

As competitors follow the equilibrium candidate and ( )pSi  is required to be non-decreasing, 

the total supply, S(p), is monotonically increasing in the interval +− ≤≤ ppp . Hence, the 

inverse function of S(p) exists for this range. It is denoted p(ε): 

 ( ) ( )εε 1−≡ Sp . (4) 

In terms of demand, the studied range is given by ,+− ≤≤ εεε where  ( )−− = pS
)

ε  and 

( )++ = pS
)

ε . Due to the assumptions for the bid curves of the competitors, it will also be true 

that ( )−− = pSε  and ( )++ = pSε  for all possible deviations by producer i in the set . Hence, 

controlling the aggregated supply function, producer i effectively determines the price for 

each outcome in the range +− ≤≤ εεε , under the constraints ( )−− = εpp  and ( )++ = εpp . 

The optimal ( )εp  for this range can be calculated by solving an optimal control problem. The 

control variable is defined as ( )εpu ′= , i.e. the rate of change in the price. It is a tool to 

choose p(ε) optimally in the range +− ≤≤ εεε . Thus 

 ( ) ( )++
′= εε lpu  and ( ) ( ),−−

′= εε rpu  (5) 

where the indexes l and r denote the left- and right-hand derivatives, respectively. The 

derivative of the inverse function in (4) can be calculated to be: 
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 ( )
( )( )ε

ε
ε

ε
pSdp

d
d
dppu ′=








==′=

−
1

1

 (6) 

Depending on ( )pSi , S(p) is not necessarily differentiable at very price, but it will be 

differentiable on the left and right at every price. Thus u is piece-wise continuous. Further, 

u<∞, which is required for optimal control problems [6], as ( ) .0>′− pS i
)

 It is required that all 

supply functions fulfill ( )⋅′≤ iS0 , thus the control variable is constrained by: 

 
( )( )

.10 
εpS

u
i
′≤≤

−
)  (7) 

In equilibrium, producer i submits his best allowed supply function, given the bids of the 

competitors. ( )pSi
)

 belongs to the set . Accordingly if it is the best response, it must also be 

the best response in . Thus given the bids of the competitors, it is necessary — but not 

sufficient — that the following optimal control problem returns the equilibrium candidate. 

 
( )

( )( )[ ] ( ) ( )( )( ){ } ( )

( )
( )( )

( ) ( )                   10      s.t.

Max

++−−
−

−−

==′≤≤′=

−−−∫
+

−

pppp
pS

upu

dfpSCppS

i

ii
p

εε
ε

ε

εεεεεεε
ε

εε

)

))

 (8) 

Hence, it is necessary that the contribution to the expected profit, when demand is in the 

interval [ ]+− εε , , is maximized in equilibrium, given ( ) ( ) , , −−++ == pppp εε  and the bids 

of the competitors. The integrand of an optimal control problem should be continuously 

differentiable in the state variable, i.e. p [14]. This sufficient condition is fulfilled as all the 

competitors supply functions are twice continuously differentiable in [ ]+− pp ,  and the cost 

function is twice continuously differentiable.  

The slope constraint 
( )( )εpS

u
i
′≤≤

−
)

10  might bind, if the there is a profitable deviation 

from ( )pSi
)

, i.e. ( )pSi
)

 is not an equilibrium. However, if, as assumed, ( )pSi
)

 is to be an 

symmetric equilibrium with a monotonically increasing and smooth segment, i.e. 

( ) [ ],,for  0 +−∈∞<′< ppppSi
)

  then the slope constraints cannot bind in this interval.  

Hence, the Hamiltonian of the problem in (8) is [6,11]: 

 ( ) ( )( )[ ] ( ) ( )( )( ){ } ( ) ( ) ( ),,,, εελεεεεεεελ ufpSCppSpuH ii +−−−= −−
))

 (9) 
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where λ is a costate or auxiliary variable of the optimal control problem [6]. The control 

variable u should be chosen such that the Hamiltonian is maximized for every ε [6]. Hence,  

 ( )ελ==
∂
∂ 0

u
H  (10) 

and thus 

 ( ) ( ) 0≡′≡ ελελ for [ ]., +−∈ εεε  (11) 

Further, the following equations of motion conditions are necessary for the optimal solution 

[6]:  

 ( ) ( )ε
λ

ε uHp =
∂
∂

=′  (12) 

and 

 ( ) ( )( )[ ] ( )( )( ) ( )[ ] ( )( )( ){ } ( ).εεεεεεεελ fpSppSCpS
p
H

iii
′−−′+−−=

∂
∂

−=′ −−−
)))

 (13) 

Combining (11) and (13) yields: 

 ( )( )[ ] ( )( )( ) ( )[ ] ( )( )εεεεεε pSppSCpS iii
′−−′+−= −−−

)))
0 ( )+−∈∀ εεε ,   

We can now use (3) — supply equals demand — to simplify the equation above. 

 ( )( ) ( )( ) ( ) ( )( )( )[ ] ( )+−− ∈∀=−′− εεεεεεε ,   0' pSCppSpS iii
)

  (14) 

Before we continue with the analysis of this differential equation, note that by means of 

(1), (14) can be rewritten as:    

 
( ) ( )( )[ ]

( )
( )( ) ( )

( )( )
( )( ) ( )

( )( )   1
,

/,/'
res
ii

i

i

ii

p
pq

ppq

pS

ppS
p

pSCp
γεε

εεε

ε

εε
ε

εε
−=

∂
∂

−
=′=

−

−
) . (15) 

A producer maximizes his profit for every outcome ε by following the monopoly mark-up 

rule with respect to the elasticity of his residual demand, .res
iγ   

The supply functions are monotonically increasing and twice continuously differentiable in 

the price range +− ≤≤ ppp . Thus the equilibrium price p(ε) is continuous and montonically 

increasing in the demand range +− ≤≤ εεε . Accordingly, if (14) is fulfilled for all 

( )+−∈ ppp , , then it must also be fulfilled for all ( )., +−∈ εεε  The implication holds in both 

directions. Thus (14) is equivalent to: 

 ( ) ( ) ( )( )[ ] ( )+−− ∈∀=−′− ppppSCppSpS iii ,  0'
)

 . (16) 
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There is a similar differential equation for each producer. The system of differential equations 

corresponds to the system derived by Klemperer & Meyer [10], but their expression is more 

general, as it considers elastic demand. The considered equilibrium candidates are symmetric, 

so Si(p)≡Sj(p), and thus (16) can be written: 

 ( ) ( ) ( ) ( )( )[ ]  .0'1 =−′−− pSCppSNpS iii
)))

  (17) 

A solution to this differential equation is derived by Rudkevich et al. [13] and Anderson & 

Philpott [2]. For the boundary condition ( ) ,++ = pp ε  the solution is: 

 ( ) ( ) ( ) [ ]., if    /1 1
1

1

+−
−

−
+

−
+ ∈

′
−+= ∫

+

εεεε
ε
εε

ε

ε
N

N
N

N

x
dxNxCNpp   (18) 

Optimal control theory is only reliable when ∞<′= pu . Accordingly, equilibrium 

candidates with smooth symmetric transitions to inelastic elastic supply cannot be analyzed 

with optimal control theory.  Nevertheless, the first-order condition in (17) can be used 

indirectly. Lemma 1 below rules out smooth transitions to inelastic supply. This also excludes 

isolated points in the (p,S) space, where ( ) .0=′ pSi    

 

Lemma 1: There are no symmetric equilibria that for a finite positive supply bounded 

away from zero have smooth symmetric transitions to an inelastic supply.  

Proof: See Appendix. 

 

3.2. Symmetric SFE with perfectly elastic segments do not exist 

Now consider symmetric equilibrium candidates, where all producers have segments with 

perfectly elastic supply at some price p0, i.e. the constraint 
S

pu
′

==≤
1'0  binds. Then supply 

rationing is needed for some demand outcomes. In this section, I will show that any producer 

will find it profitable to deviate from the equilibrium candidate. He increases his expected 

profit by undercutting p0 with his units that, for the equilibrium candidate, are offered at p0 

(see Fig. 3). The intuition is the same as for the Bertrand equilibrium, where producers 

undercut each others horizontal bids down to the marginal cost. As marginal costs are 

monotonically increasing, Bertrand equilibria can be ruled out in all price intervals. A formal 

proof using optimal control theory follows in Proposition 2. Optimal control theory is not 

applicable when the total supply is inelastic just below p0, as the control variable pu ′=  must 

be finite. This case is analyzed separately in Proposition 3. Note that one implication of 
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Proposition 2 and 3 is that symmetric SFE with perfectly elastic segments at the price cap can 

be excluded. 

Negative mark-ups are ruled out in Proposition 1. This obvious result is useful when 

proving Proposition 2 and 3.  

 
  p 

ε 

Profitable 
deviation for 
producer i 

( ) ( ) =−+ −− 00 pSpS H
i

H
i

((
Horizontal 

supply of the competitors of 
producer i at the price p0 

ε” ε’ ε- 

 p0 

Symmetric equilibrium 
candidate 

( ) ( ) =−+ 00 pSpS H
i

H
i

((
Horizontal supply 

of producer i at the price p0. 

 
Fig. 3. Symmetric equilibria with perfectly elastic segments can be ruled out. All producers 

will find it profitable to slightly undercut horizontal supply of the competitors.    

 
 

Proposition 1: In equilibrium no units are offered below their marginal cost.  

Proof: See Appendix.   

 

Proposition 2: For positive demand, there are no symmetric SFE with perfectly elastic 

segements at 0p , when the market supply is elastic just below p0.   

Proof: Consider a symmetric SFE candidate with perfectly elastic segments at p0≤ p . 

Denote supply functions following the equilibrium candidate by iS
(

. Thus 

( ) ( ) ( ) 0000 >−+=∆ pSpSpS iii
(((

 and  ( ) .00 >∆ − pS i
(

 All considered supply functions are 

twice continuously differentiable in some price interval [ ],, 0pp−  see Section 2. In this 

Proposition it is also assumed that the market supply is elastic just below p0. Thus 

( ) ∞<′< 00 pSil
(

. Further, a p- can be found such that ( ) ∞<′< pSi
(

0  for all [ )., 0ppp −∈ Let 

( ).−− = pS
(

ε  Assume that ( ) ,0pp =ε  if and only if [ ]εεε ′′′∈ , , where .0 εε ′′<′<   
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For demand outcomes ( )εεε ′′′∈ , , the supply at p0 has to be rationed somehow. The 

accepted ration of the perfectly elastic supply of producer i is given by 

( ) ( )( )00 ,, pSpSR ii −∆∆′−
(

εε , where ( ) ( ).- 00 pSpS ii −∆−′′′=∆
(

εε  

Now consider unilateral deviations of player i, where all his bids above p0  and below −p   

are unchanged. To keep the equilibrium candidate, ( )0pSi
(

 must be the best response out of 

the considered deviation strategies. The best response can be derived from:  

 

( )
( )( )[ ] ( ) ( )( )( ){ } ( ) ( )

( )
( )( )

( ) ( )               

     10      s.t.

Max

0pppp
pS

upu

FdfpSCppS

i

ii
p

=′=

′≤≤′=

′+−−−

−−

−

′

−−∫
−

εε
ε

ε

εεεεεεεε
ε

εε

(

((

  (19) 

The final value of the optimal control problem, F(), returns the contribution to the expected 

profit from the rationed supply at p0.  

 
( ) ( ) ( )[ ]{

( ) ( )[ ]} ( ) εεεεεεε

εεεεεε
ε

ε

dfSSRpSC

pSSRpSF

iii

iii

−−−

′′

′
−−−

∆∆−′′′′−+−′−

+∆∆−′′′′−+−′=′ ∫
(((

(((

,-,

,-,

0

00  (20) 

The slope constraints 
( )( )εpS

u
i
′≤≤

−
(

10  might bind for [ ]−′∈ εεε , , if there is a profitable 

deviation from ( )pSi
(

, i.e. ( )pSi
(

 is not an equilibrium. However, as in Section 3.1, the slope 

constraints can be disregarded when a necessary condition for ( )pSi
(

 is derived under the 

assumption that ( )pSi
(

 is a SFE.   

The Hamiltonian, the Max H condition and the equations of motion are the same as for the 

optimal control problem in (8) [11]. In particular ( ) 0≡ελ for [ ].,εεε ′∈ − The transversality 

condition associated with the terminal constraints at the right end-point is [11]: 

 ( ) ( ) .0,,, =
′∂
′∂

+′
ε
εελ FpuH  (21) 

The first term is the marginal value of increasing .ε ′  The second term, which is negative, 

represents the marginal loss in the final value. It is known that ( ) 0pp =′ε  and 
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( ) .0,,0 =∆∆ −ii SSR
(

 These relations combined with (9), (20) and (21) imply: 

 

( ) ( ) ( ) ( )

( )( ) ( ) ( )

( )( )[ ]{ } ( )∫

∫
′′

′

′′

′

−−

−−⋅′−=

=




















′

∆∆−′′′′−
+⋅′−+

+′′=
′∂
′∂

+′

ε

ε

ε

ε

εε

εε
ε
εεεε

εελ
ε
εελ

dfRRCp

df
d

SSdR
Cp

uFpuH

ii

210

0

1

,-,
1

,,,
((

 (22) 

Costs are strictly convex and there are no equilibria with negative mark-ups. Thus Cp ′>0  for  

[ )εεε ′′′∈ ,  and Cp ′≥0  for  .εε ′′=  Thus the combination of (2) and (22) implies that: 

 ( ) ( ) 0,,, >
′∂
′∂

+′
ε
εελ FpuH . (23) 

For the equilibrium candidate, the marginal value of continuing is larger than the marginal 

loss in the final value. The reason is that by slightly undercutting p0 as in Fig. 3, producer i 

can sell significantly more. The relation in (23) is true as long as producer i has a perfectly 

elastic supply left at p0. Hence, equilibria of the type ( )pSi
(

 can be excluded.   

 

Proposition 3: For positive demand, there are no symmetric SFE with perfectly inelastic 

segements at 0p , when the market supply is inelastic just below p0.   

Proof: See Appendix. Same intuition as in Proposition 2. 

 

One can also rule out perfectly elastic segments starting at ε=0. Perfectly elastic segments 

at or below ( )0C ′  can be ruled out by Proposition 1, as the cost function is strictly convex. 

Perfectly elastic segments starting at ε=0 and that are above ( )0C ′  are ruled out by 

Proposition 3. Thus SFE with perfectly elastic segments can be completely ruled out.  

 

3.3. The equilibrium price is not discontinuous 

Assume that there is a discontinuity in the price at εL ε≤ , where the price jumps from pL to pU. 

This means that all producers have an inelastic supply in the interval ( ),, UL pp  i.e. the slope 

constraint ( )pSi
′≤0  binds in this price interval. Then it turns out that any producer with bids 

just below pL can increase his expected profit by deviating. He can increase the price for some 

units offered at and slightly below pL and offer them slightly below pU instead, see Fig. 4. This 
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will significantly increase the price for realizations just below εL, while the sales reduction for 

the same realizations is small. Thus the deviation increases expected profit. This intuition is 

verified in Proposition 4. This proposition also rules out discontinuities in the equilibrium 

price at the demand outcome, for which all submitted bids of all firms are accepted. Thus in a 

symmetric equilibrium all supply functions must be elastic up to the price cap.  

 
 
  p 

ε 

A profitable 
deviation of 
producer i 

 εL 

 pL 

pU 

 p- 

 ε- 

pD 

 ε’ 

Equilibrium 
candidate 

 
Fig. 4. Discontinuities in the equilibrium price do not exist. All producers, e.g. producer i, 

will find it profitable to deviate.     

 
Proposition 4: For symmetric equilibria there are no discontinuities in the equilibrium 

price. 

Proof: Consider a symmetric equilibrium candidate with a discontinuity in the price at 

.0>Lε  Denote its upper price by pU and its lower by pL. Denote the equilibrium candidate by 

iS~ . All considered supply functions are twice continuously differentiable in some price 

interval [ ],, Lpp−  see Section 2. SFE with perfectly elastic segments are ruled out in Section 

3.2. Further, smooth transitions to an inelastic supply are ruled out in Lemma 1. Thus 

( ) ∞<′< 0
~0 pSil . Further, a p- can be found such that ( ) ∞<′< pSi

~0  for all [ ),, Lppp −∈  i.e. 

neither of the slope constraints bind just below pL. Now, consider the following deviation 

strategy for producer i. Leave the supply above pU and below p- unchanged. Increase the bids 

for the last units in the range [ ),, Lppp −∈  and offer them at a price ( )ULD ppp ,∈  instead. 

If it is optimal to change the bids for a positive amount of units, the deviation is more 
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profitable than the equilibrium strategy and the equilibrium can be knocked out. Whether this 

is true or not can be investigated by an optimal control problem similar to (8), but with an 

added final value. The final value considers the contribution to the expected profit from the 

units sold at the price pD.  

 

( )
( )( )[ ] ( ) ( )( )( ){ } ( ) ( )

( )
( )( )

( ) ( )        

     ~
10      s.t.

~~Max

L

i

ii
p

pppp
pS

upu

FdfpSCppS

=′=

′≤≤′=

′+−−−

−−

−

′

−−∫
−

εε
ε

ε

εεεεεεεε
ε

εε

 (24) 

where 

 ( ) ( )( ) ( )( ){ } ( ) .~~
∫
′

−− −−−=′
L

dfpSCppSF LiDLi

ε

ε

εεεεε  (25) 

The slope constraints 
( )( )εpS

u
i
′≤≤

−
~

10  might bind for [ ]−′∈ εεε , , if there is a profitable 

deviation from ( )pSi
~ , i.e. ( )pSi

~  is not an equilibrium. However, as in Section 3.1, the slope 

constraints can be disregarded when a necessary condition for ( )pSi
~  is derived under the 

assumption that ( )pSi
~  is a SFE.   

The Hamiltonian, the Max H condition and the equations of motion are the same as for the 

optimal control problem in (8) [11]. In particular ( ) 0≡ελ for [ ].,εεε ′∈ − The transversality 

condition associated with the terminal constraint at the right end-point is [11]: 

 ( ) ( )  .0,,, =
′∂
′∂

+′
ε
εελ FpuH  

From (9) and (25) we get: 

 
( ) ( ) ( )[ ] ( ) ( )( ){ } ( )

( )( ) ( )( ){ } ( ).~~

~~,,,

εεε

εεεε
ε
εελ

′−′−−′−

+′−′−′−′=
′∂
′∂

+′

−−

−−

fpSCppS

fpSCppSFpuH

LiDLi

LiLi  

The relation must be true for ,Lεε =′  otherwise ( )pSi
~  cannot be part of an equilibrium.  

Thus 

 ( ) ( ) ( )[ ]( ) ( ) .0~,,, <−−=
′∂
′∂

+
−+

−
=′

LDLLiLL fpppSFpuH
L

εε
ε
εελ

εε
4342144 344 21
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Thus the transversality condition cannot be fulfilled for equilibrium candidates with a 

discontinuity in the price. The marginal value of continuing is less than the marginal loss in 

the final value.  Thus, as in Fig. 4, all producers will find it profitable to unilaterally rise the 

price for some units offered just below pL  

  

3.4 There are no symmetric SFE with kinks 

In this section, symmetric equilibria with supply functions Si(p) that have kinks at a price p 

are ruled out. In a symmetric equilibrium, the first-order condition in (17) must be fulfilled 

just below and just above p, as SFE with vertical and horizontal segments have been ruled 

out. Si(p) is continuous at p and the cost function is twice continuously differentiable. Thus 

the first-order condition implies that S’i(p) must also be continuous at p, i.e. there is no kink at 

p.          

 

3.5 No capacity is withheld in equilibrium 
Producers are not required by law to make bids to the procurement auction with all of their 

capacity. Will firms withhold capacity in equilibrium? Proposition 5 ensures that they do not. 

Instead of withholding some units, it is always better to offer these units at the price cap. Thus 

the bids of the producers will be exhausted exactly when the total capacity constraint binds, 

i.e. at .εε =  

 

Proposition 5: If 






′>
N

Cp ε  no capacity is withheld from the supply in equilibrium.  

Proof: Consider a unit that is withheld from the supply by producer i in a potential 

equilibrium. Then there is a profitable deviation for producer i. He can offer the unit at a price 

equal to the price cap. If producer i has a horizontal supply at the price cap, assume that the 

previously withheld unit is offered as the last unit at this price. This deviation strategy will not 

negatively affect the sales of other units or their equilibrium price. Further, as 






′>
N

Cp ε  and 

as there is a positive probability that the demand exceeds or equals the total up-regulation 

capacity of all producers, the expected profit from the previously withheld unit will be 

positive. Accordingly, the deviation increases the expected profit of producer i. Thus there are 

no equilibria where units are withheld from the supply.   
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3.6 There is a unique equilibrium candidate fulfilling the necessary conditions 
 
Proposition 5 ensures that no capacity is withheld from the procurement auction in 

equilibrium. Section 3.2-3.4 rule out all irregular symmetric equilibrium candidates. Thus 

symmetric equilibria must fulfill the first-order condition in (17) for [ ].,0 εε ∈  

For εε > , demand rationing is needed and the price equals .p  According to Proposition 4 

there are no discontinuities in the price for symmetric equilibria. Thus the equilibrium price 

must reach the price cap at εε ≤ . Otherwise, there will be a discontinuity in the price at 

.εε =  Further, Proposition 2 and 3 ensure that the equilibrium price cannot be horizontal at 

the price cap. Thus the equilibrium price must reach the price cap exactly when the total 

capacity constraint binds. This is a necessary terminal condition for all symmetric SFE.  

The solution of the first-order condition is given in (18).There is exactly one solution that 

fulfills the terminal condition, i.e. ( ) :pp =ε  

 ( ) ( ) ( ) 0 if    /1 1
1

1
≥

′
−+= ∫−

−

−
εε

ε

εε
ε

ε
N

N
N

N

x
dxNxCNpp  (26) 

 

3.7. The unique candidate is a SFE 
In Section 3.6 it has been shown that there is a unique symmetric SFE candidate given by (26) 

that fulfills the necessary first-order condition and end-condition. This unique candidate is 

denoted by ( )pS X
j .  In this section it will be verified that the unique candidate also fulfills a 

second order condition, i.e. given the bids of his competitors, the strategy implied by the 

unique candidate is a globally best response. It is sufficient, but not necessary, to show that, 

for every demand outcome, the equilibrium price ( )εXp  globally maximizes the profit.   

Given that the total supply of the competitors is ( )pS X
i− , the profit of producer i is, for the 

outcome ε, given by:  

 ( ) ( )( )[ ] ( ) ( )( )( )., εεεεεεπ pSCppSp X
i

X
iX −− −−−=  

Does ( )εXp  maximize this profit for every ε? 
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Klemperer & Meyer [10] show that ( ) .0,
2

2
<

∂
∂

p
pX επ   The equilibrium price fulfills 

( )
( )

,0
,

=
∂

∂

= ε

επ
Xpp

X
p

p
 as this is the first-order condition. Thus it seems that ( )εXp  globally 

maximizes the profit of producer i for every outcome. However, as has been observed by 

Genc & Reynolds [8], the derivation of Klemperer & Meyer does not consider the reservation 

price and capacity constraints. Hence, before any final conclusions can be drawn, the 

influence by the reservation price and capacity constraints has to be investigated.   

When considering capacity constraints we do not have to consider outcomes ,εε >  as for 

these outcomes all producers are selling all of their capacity at the maximum price. They 

cannot do better than that. For ,
N
εε <  neither the capacity constraint nor the price cap is 

binding for the unique SFE candidate. Thus for these outcomes the result of Klemperer & 

Meyer applies directly. For ,, 







∈ εεε

N
 there is some highest price ( )εp~ , such that the 

capacity constraint of producer i binds, if his last unit is sold at ( )εp~ . It can never be 

profitable for producer i to push the price below ( )εp~ , as his supply cannot increase. Thus the 

best price must be in the range ( )[ ].,~ ppp ε∈  No capacity constraints and the price cap will 

not bind in this price interval, except at the boundaries. Thus the result of Klemperer & Meyer 

can be used. The conclusion is that the equilibrium price globally maximizes the profit of 

producer i for every outcome. Thus the equilibrium candidate is a NE and SFE.  

 

4. CHARACTERIZING THE UNIQUE SYMMETRIC SFE 
It has been shown that with reservation prices and capacity constraints, there is a unique 

symmetric SFE. This is good news for comparative statics. Thus, for symmetric equilibria, the 

formula in (31) is valid, even if e.g. the number of firms changes, the marginal costs change, 

the reservation prices change or the capacity constraints change.  

 

4.1. Mark-ups 
In a competitive equilibrium, the price is set by the marginal cost of the marginal unit. The 

marginal costs of cheaper and more expensive generators have no influence on the price. In 
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the unique SFE, the equilibrium price, see (31), is given by a term related to the price cap and 

a term weighting the marginal costs of generators more expensive than the marginal unit. As 

in the competitive case, generators cheaper than the marginal unit have no influence on the 

equilibrium price. Instead the price of the marginal unit of a producer is limited by the cost of 

the alternative, generators of the competitors with a higher marginal cost. Thus the marginal 

costs of generators more expensive than the marginal unit influence the size of the mark-ups 

and accordingly the bid of the marginal unit. It is evident that for the term with weighted 

marginal costs, the weight decreases, the higher the marginal cost gets. Further, all weights 

are positive and integrate/sum up to less than or equal to one. This is shown with the 

calculation below.   

 ( ) 111 1

1

1

1
1 ≤−=












−=− −

−

−

−
− ∫ N

N

N

N

N
N

xx
dxN

ε

εεε
ε

ε

ε

ε

 

According to Proposition 1, the equilibrium price for positive demand will never go below 

the marginal cost of the marginal unit. It turns out that producers will have a positive mark-up 

for every positive demand. This can be shown by means of (31).    
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4.2. Comparative statics 
For any positive demand outcome, it is obvious from (31) that the equilibrium price will 

increase, if the price cap is increased. (31) can also be used to investigate the effect of a 

symmetric change in the capacity constraints. 

 ( ) ( ) ( )[ ] 0. if ,0/1 1
><

′−−−
=

∂
∂ −

ε
ε

εε
ε
ε

N

NNCpNp  

Hence, an increased capacity constraint decreases the price for all positive demand outcomes.  
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ε =demand
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Fig. 5. Reducing the price cap p  and/or increasing the total capacity constraint of the market 

ε  push down the equilibrium price for every demand.  

 

What happens if the number of producers increases? Assume that the total capacity and 

aggregated cost function is independent of the number of producers. Denote the total cost to 

meet the demand by Ctot(ε). In the unique symmetric SFE, this total cost is N times the cost of 

each symmetric producer. Hence, 

 ( ) ( ) ( )./ NNCSNCC itot εε ==  

Thus 

 ( ) ( )./ NCCtot εε ′=′  (27) 

Combining (31) and (27), the equilibrium price of the unique SFE can be written: 

 ( ) ( ) ( ) 0. if   11
1 ≥











 ′
−+= ∫−

− ε
ε

εε
ε

ε
N

tot
N

N

x
dxxCNpp  

The cost function is twice continuously differentiable and strictly convex. Thus ( ) .0>″ εtotC  

Now, using integration by parts, the equilibrium price for positive demand can be rewritten: 
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 (28) 
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It is evident that all terms are positive and that the first and last term decreases with N, unless 

εε = . The middle term is not influenced by N at all. Hence, for every positive demand below 

ε , the equilibrium price of the unique SFE decreases, when the number of symmetric 

producers increases, while the total capacity and aggregated cost function is kept constant. By 

means of (28), it can also be noted that the equilibrium price approaches the marginal cost of 

the marginal unit as the number of symmetric producers goes to infinity.  

What happens if entrants increase the total capacity? This can be seen as a combination of 

an increase in the number of producers and an increase in the total capacity. Both will 

decrease the equilibrium price for every positive demand.  

With (28) it is also easy to verify that ( ) ( ) ( ).000 CCp tot ′=′= Hence, the equilibrium price 

equals the marginal cost of the marginal unit for zero demand.  

 

4.3. The slope at zero demand 
 
The unique SFE fulfills the first-order condition in (17) for all prices ( )[ ]pCp ,0′∈ . Using 

(18) and integration by parts it can be shown that: 
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 (29) 

Thus ( )
∞<

∂
∂

<
ε
εp0  for positive demand. What happens if ε→0+? For N>2, the limit is of the 

type  ,0 ∞⋅  as ( ) 0>″ εC  and .
0

1∫ ∞→
−

ε

Nx
dx  The limit can be written on the form .

∞
∞  Thus it 

can be calculated by means of l’Hospitals rule [1].   
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Thus ( )
∞<

∂
∂

<
ε
εp0  for N>2, as the cost function is twice continuously differentiable by 

assumption.  What happens for N=2?  The following can be proven by means of (29):  

 ( ) ( ) ( )( ) ( ) ( ) ./1/1
1

2

∫
′′−

+
′−−

≥
∂
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−

− ε

εε
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ε
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dxNxC
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NNCpNp

N

N
 

Thus ( ) ,lim
0

∞=
∂
∂

↓ ε
ε

ε
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The conclusion is that the equilibrium price increases monotonically and continuously in 

the demand, if N>2. For N=2, there is an exception at ε=0, where the symmetric supply 

functions are inelastic. 

 

5. BALANCING MARKETS 
 
The assumptions used in this paper: inelastic demand, price caps backed up with possible 

disconnection of consumers, risk of power shortage and a convex support of f(ε) that includes 

both ε=0 and εε = are especially reasonable for balancing markets.  

It is very expensive to store electric energy, compared to the production cost. Hence, in 

most power systems the stored electric energy is negligible; power consumption and 

production have to be roughly in balance, every single minute. Most of the electric power 

produced is traded on the day-ahead market or with long-term agreements. Neither 

consumption nor production is fully predictable, so to maintain the balance, adjustments have 

to be made in real-time. The balancing market is an important component in this process. It is 

an auction, where the independent system operator (ISO) can buy additional power (positive 

demand) from the producers or sell back power (negative demand) to the power producers. 

The latter is called down-regulation and occurs if total production in real-time, including 

inflexible production — which cannot be adjusted on short-notice—, exceeds the total 

demand. A producer can offer down-regulation, if he has less inflexible power running than 

the power he has sold on the day-ahead market or committed to in long-term contracts. 

Somewhat different assumptions should be made for down-regulation bids: Si(p) should be 

right-hand continuous. Further, in case an inelastic segment of the total supply coincides with 

a negative inelastic demand, the highest price should be chosen, i.e. the best price of the ISO. 

The total down-regulation capacity is denoted byε , which is a negative number. Hence, the 
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cost function C(ε) can have negative arguments. This reflects flexible production — which 

can be adjusted on short-notice— that has already been sold, e.g. on the day-ahead market, 

but that can be bought back and turned off. The power will not be bought back, if the price 

exceeds the marginal cost. Instead producers will use their market power to push down the 

price below the marginal cost. Thus for down-regulation, there should be a price floor. It does 

not have to be positive and is denoted by .p  It is assumed that 





′≤

N
Cp ε . One can use 

arguments analogous to the up-regulation case to show that for down-regulation there is a 

unique symmetric SFE. Considering both up- and down-regulation, the equilibrium price is 

given by: 

 ( )
( ) ( )

( ) ( ) 0 if
0 if

 
/1

/1

1
1

1

1
1

1

<
≥













′
−+

′
−+

=

∫

∫

−
−

−

−
−

−

ε
ε

ε
ε

ε

ε
ε

ε

ε ε

ε

ε

ε

N
N

N

N

N
N

N

N

x
dxNxCN

p
x

dxNxCNp

p  (31) 

Klemperer & Meyer [10] show that p(0)=C’(0) for all symmetric SFE. This was also 

verified for (26) in Section 4.2. It is true for all combinations of . and  , , εε pp  Thus the 

equilibrium price is continuous at ε=0.  

 

6. A NUMERICAL ILLUSTRATION OF THE UNIQUE SFE 

If the cost function is given by a polynomial, it is straightforward to analytically solve for the 

equilibrium price as a function of the demand by means of (31). Here the equilibrium is 

illustrated with a simple example with a quadratic cost function, i.e. marginal costs are linear. 

 kxcxCtot +=′ 0)( . 

The result for N>2 is: 
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Negative demand is relevant for normal auctions and positive demand for procurement 

auctions, i.e. electric power auctions. In case of balancing markets, both positive and negative 

demand is relevant. (32) is used in Fig. 6 to illustrate the influence the number of producers 

have on the equilibrium price. For positive (negative) demand, more producers reduce the 
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mark-ups (mark-downs). In Section 4.2, this was proven for all strictly convex and twice 

continuously differentiable cost functions. For N=100, the market price is very close to the 

marginal cost, except near the capacity constraints. The residual demand is less elastic and 

mark-ups more extreme closer to the capacity constraints. This is in agreement with the 

monopoly mark-up rule in (15). For negative demand, the market price is below the marginal 

cost. The oligopoly producers use their market power to buy back power at a price below their 

marginal cost. Note also that in all cases the price equals the marginal cost at zero 

supply/demand.  

Demand (ε )

Pr
ic

e 
( p

)
p

p

N=3

N= 6
N= 10

N= 100
c 0

 
Fig. 6.  The unique symmetric supply function equilibrium for linear marginal costs. N= 

number of symmetric producers. Negative demand is relevant for auctions and positive 

demand for procurement auctions. Both are relevant for balancing markets.  

 

7. CONCLUSIONS 

Inelastic demand and capacity constraints that bind with a positive probability are reasonable 

assumptions for electric power markets and balancing markets in particular. Under these 

conditions, it is shown that for symmetric producers there is a unique symmetric SFE.  

A reservation price, i.e. price cap, is often used in electric power markets and other 

procurement auctions. The market price in the unique supply function equilibrium reaches the 

price cap exactly when the capacity constraints bind. The equilibrium does not depend on the 

probability density of the demand. 
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If the price cap is decreased or if the capacity constraint is increased, the equilibrium price 

decreases for each positive demand outcome. Thus changing these constraints affects the 

price, also for outcomes when the constraints are not binding. Increasing the number of 

producers decreases the equilibrium price for every level of positive demand. Mark-ups are 

zero at zero supply and positive for every positive supply.  

No capacity will be withheld from the auction in equilibrium. However, this result depends 

on the assumption that nothing prevents the producers from bidding all the way to the price 

cap. If the bidding is constrained by e.g. competition law, morals or public relations, the 

offered capacity would probably decrease. If so, the risk of a capacity shortage would 

increase. 

Supply functions with binding slope constraints, i.e. supply functions with horizontal or 

vertical segments, are not considered in the previous SFE literature. Here such supply 

functions are allowed, as they are useful deviation strategies when ruling out equilibria. 

Extending the space of valid supply functions complicates the analysis, as non-smooth SFE 

have to be ruled out as well.  Optimal control theory with final values is a useful tool in this 

process. With more than two producers, all SFE with inelastic or perfectly elastic supply can 

be ruled out.  

 

8. REFERENCES  

[1] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover Publications, 

New York, 1972. 

 
[2] E. J. Anderson and A. B. Philpott, “Using supply functions for offering generation into an 

electricity market”, Operations Research, 50, No. 3, pp. 477-489, 2002. 

 

[3] E. J. Anderson and H. Xu, “Necessary and sufficient conditions for optimal offers in 

electricity markets”, SIAM J. Control Optim., 41, No. 4, pp. 1212-1228, 2002. 

 

[4] R. Baldick and W. Hogan, Capacity constrained supply function equilibrium models for 

electricity markets: Stability, Non-decreasing constraints, and function space iterations, 

University of California Energy Institute POWER Paper PWP-089, 

www.ucei.berkeley.edu/ucei/PDF/pwp089.pdf, August 2002.  

 



 28

[5] F. Bolle, “Supply function equilibria and the danger of tacit collusion. The case of spot 

markets for electricity”, Energy Economics, 14, pp. 94-102, 1992. 

 

[6] A.C. Chiang, Elements of dynamic optimization, McGraw-Hill, New York, 2001. 

 

[7] N.H. von der Fehr and D. Harbord, “Spot Market Competition in the UK Electricity 

Industry”, The Economic Journal, vol. 103, pp. 531-546, 1993. 

 

[8] T. Genc & S. Reynolds, Supply Function Equilibria with Pivotal Electricity Suppliers, 
http://www.u.arizona.edu/~sreynold/sfe2.pdf, March 2004. 
 

[9] R.J. Green and D.M. Newbery, “Competition in the British Electricty Spot Market”, 

Journal of Political Economy, vol. 100, no. 5, pp. 929-953, 1992. 

 

[10] P.D. Klemperer and M.A. Meyer, “Supply function equilibria in an oligopoly under price 

uncertainty”, Econometrica, 57, pp. 1243-1277, 1989. 

 

[11] D. Léonard and N.G. van Long, Optimal control theory and static optimization in 

economics, Cambridge University Press, New York, 1992.  

 

[12] D. M. Newbery, “Competition, contracts, and entry in the electricity spot market”, 

RAND Journal of Economics, Vol. 29, No. 4, 1998, pp. 726-749.  

 

[13] A. Rudkevich, M. Duckworth and R. Rosen, “Modeling electricity pricing in a 

deregulated generation industry: The potential for oligopoly pricing in poolco”, The Energy 

Journal, 19, No. 3, pp. 19-48, 1998. 

 

[14] A. Seierstad & K. Sydsaeter, Optimal Control Theory with Economic Applications”, 

North-Holland, Amsterdam, 1987. 



 29

 

APPENDIX 

 
Proof of Lemma 1: 

The result follows from the symmetric first-order condition in (17). If 0>≥ Aε , i.e. 

( )
N
ApSi >

)
 then ( ),0 pSm i

′≤<
)

 where m is a number independent of ε. Thus 
( )pSi
′)
1  is 

bounded for a positive supply bounded away from zero.  

If there would have been a smooth transition to ( ) 00 =′ pSil
)

from the left, then ( )pSi
′)  is 

twice continuously differentiable and monotonically increasing in some interval below, but 

arbitrarily close to p0. From the argument above it follows that 
( )pSi
′)
1  is bounded for p 

arbitrarily close to p0. Thus a smooth transition to ( ) 00 =′ pSi
)

from the left can be ruled out. 

With similar reasoning it can be shown that there are no smooth transitions from the right to 

an inelastic supply, if the positive supply is bounded away from zero.   

 
 
Proof of Proposition 1: 
 

Assume that there is an equilibrium, where producer i offers production below its marginal 

cost, i.e. there are some prices p , for which ( )[ ] .ppSC Z
i >′ Denote this set of prices by . 

Then there is a profitable deviation for producer i. Adjust the supply of producer i such that 

units previously offered below their marginal cost are now offered at their marginal cost. 

Formally, ( )[ ] ppSC i =′ for all ∈p , where ( )pSi  is the adjusted supply function. The 

supply is unchanged for all other p, i.e. ( ) ( ) ∉∀= ppSpS Z
ii   . ( )pSi  is non-decreasing like 

( ),pS Z
i  as C() is strictly convex and increasing. The contribution to expected profits from 

units that are offered at or above their marginal costs are not negatively affected by the 

deviation. Their contribution might even increase, as the equilibrium price increases for some 

imbalance outcomes. Now consider a unit that was previously offered below its marginal cost 

c0. Let ε0 denote the imbalance, for which the market price reaches c0 in the assumed 

equilibrium. After the deviation, the price will reach c0 at an imbalance ε≤ε0. Further, market 

prices will not decrease for any positive imbalances. Thus the positive contribution of the 
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considered unit to the expected profit is increased or unchanged. Further, demand outcomes 

for which the considered unit has a negative contribution to the profit are avoided after the 

deviation. The same reasoning is true for all units offered below their marginal cost. Thus the 

deviation increases the expected profit of producer i. Thus in equilibrium no production is 

offered below its marginal cost. 

 
 
Proof of Proposition 3 
 

Use the same notation as in Proposition 2, but now the aggregate supply is inelastic just 

below p0. Denote supply functions following the equilibrium candidate by the superscript H. 

Isolated inelastic points are ruled out by Lemma 1. Thus the supply must be inelastic in a 

price interval below p0. Consider the following deviation. Producer i can offer ′−′= 0εεx  

units previously offered at p0  to the price p0-η, where η is positive and infinitesimally small. 

As in Proposition 2, the perfectly elastic aggregate supply starts at ε’. In the potential 

equilibrium, ε’=ε’0. The optimal ε’≥ε’0 is given by:  
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In order to keep the potential equilibrium with discontinuous supply functions at p0, ε’=ε’0 

must be optimal. 
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The first term is negative, but infinitesimally small, as η is infinitesimally small. It is known 

from the proof of Proposition 2 that the second term is positive and bounded away from zero. 
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Thus .0
0

>
′∂

Ω∂
′=′ εεε

 Hence, producer i will find it profitable to deviate by slightly reducing 

the price of his perfectly elastic supply at p0, i.e. ε’>ε’0 for the optimal ε’.   Accordingly, 

symmetric equilibria where supply functions are perfectly elastic can be ruled out, also if 

supply functions are inelastic just below p0.  
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