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Optimal Monetary Policy under Downward Nominal Wage Rigidity�

Mikael Carlssonyand Andreas Westermarkz

October 26, 2007

Abstract

We develop a New Keynesian model with staggered price and wage setting where downward

nominal wage rigidity (DNWR) arises endogenously through the wage bargaining institutions. It is

shown that the optimal (discretionary) monetary policy response to changing economic conditions

then becomes asymmetric. Interestingly, in our baseline model we �nd that the welfare loss is

actually slightly smaller in an economy with DNWR. This is due to that DNWR is not an additional

constraint on the monetary policy problem. Instead, it is a constraint that changes the choice set

and opens up for potential welfare gains due to lower wage variability. Another �nding is that the

Taylor rule provides a fairly good approximation of optimal policy under DNWR. In contrast, this

result does not hold in the unconstrained case. In fact, under the Taylor rule, agents would clearly

prefer an economy with DNWR before an unconstrained economy ex ante.
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Introduction

A robust empirical �nding is that money wages do not fall during an economic downturn, at least

not to any signi�cant degree. A large number of studies report substantial downward nominal wage

rigidity in the U.S. as well as in Europe and Japan.1 Overall, the evidence points towards a sharp

asymmetry in the distribution of nominal wage changes around zero. That is, money wages rise but

they seldom fall. This may not have any noticeable real e¤ects in periods with su¢ ciently high in�ation

rates to allow for a reduction of real wages in response to adverse shocks without reducing nominal

wages. However, in�ation rates have come down in many countries in recent decade(s) and periods

of very low in�ation rates are no longer out of the picture. Recent examples are Japan, Sweden and

Switzerland which have all experienced prolonged episodes with average CPI-in�ation rates below one

percent (see below). Still, downward nominal wage rigidity may not be a concern for real outcomes, if

it is not a feature of low in�ation environments, as conjectured by e.g. Gordon (1996). However, the

empirical evidence shows that the downward rigidity of nominal wages persists even in low in�ation

environments (see Agell and Lundborg, 2003, Fehr and Goette, 2005, and Kuroda and Yamamoto

2003a, 2003b). This, in turn, opens up for potentially important real e¤ects of downward nominal

wage rigidity in the current era of low in�ation rates.

The purpose of this paper is to study the implications for monetary policy in situations where

declining nominal wages are not a viable margin for adjustment to adverse economic conditions. To

this end, we develop a New Keynesian DSGE model that can endogenously account for downward

nominal wage rigidity. More speci�cally, this is achieved by introducing wage bargaining between

�rms and unions as is done in Carlsson and Westermark (2006a), but modi�ed in line with Holden

(1994). Then, downward nominal wage rigidity arises as a rational outcome.

In the model, price and wage setting are staggered. The main di¤erence with our approach, relative

to standard New Keynesian DSGE models including an explicit labor market (see Erceg, Henderson

and Levin, 2000) is that we model wages as being determined in bargaining between �rms and unions

(households).2 We follow Carlsson andWestermark (2006a), and assume that the household is attached

to a �rm.

Wage bargaining is opened with a �xed probability each period, akin to Calvo (1983). Moreover,

1The empirical evidence ranges from studies using data from personnel �les presented in Altonji and Devereux (2000),
Baker, Gibbs, and Holmstrom (1994), Fehr and Goette (2005), and Wilson (1999), survey/register data in Altonji and
Devereux (2000), Akerlof, Dickens, and Perry (1996), Dickens, Goette, Groshen, Holden, Messina, Schweitzer, Turunen,
and Ward (2006), Fehr and Goette (2005), Holden and Wulfsberg (2007), Kuroda and Yamamoto (2003a, 2003b) to
interviews or surveys with wage setters like Agell and Lundborg (2003), and Bewley (1999), just to mention a few.

2For this purpose, we must modify the simplifying assumption of Erceg, Henderson, and Levin (2000), that all
households work at all �rms. Otherwise, each individual household works an in�nitesimal amount at each �rm, implying
that the e¤ect of the individual household�s wage on �rm surplus is zero. Thus, in the standard setup, there is no surplus
to be negotiated over, hence rendering bargaining irrelevant.
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bargaining is non-cooperative as in the Rubinstein-Ståhl model, with the addition that if there is

disagreement but no party is willing to call a con�ict, work takes place according to the old contract.

As argued by Holden (1994), this is in line with the labor market institutions in the U.S. and most

western European countries. Moreover, as in Holden (1994), there are costs associated with con�icts

in addition to costs stemming from impatience, such as disruptions in business relationships, startup

costs and deteriorating management-employee relationships. These costs sometimes render threats

of con�ict non-credible, leading to agreement on the same wage as in the old contract. Since it is

reasonable to assume that these costs are much larger for �rms than for workers, workers can credibly

threaten �rms with con�ict, whereas �rms cannot. Since workers only use the threat to bid up wages,

downward nominal wage rigidity will result.

Given our setup, a non-linear restriction on wage in�ation due to downward nominal wage rigidity

arises endogenously. Then, given the constraints from private sector behavior, the central bank solves

for optimal (discretionary) monetary policy.3

The optimal response to changing economic conditions is asymmetric, and not only in the wage

in�ation dimension. Interestingly, the welfare loss is actually slightly smaller in an economy with

downward nominal wage rigidities in our baseline case. The reason is that downward nominal rigidity

is not an additional constraint on the problem. Instead, it is a constraint that changes the choice

set and opens up for potential welfare gains. Another �nding is that the Taylor rule estimated by

Rudebusch (2002), provides a fairly good approximation of optimal discretionary policy in terms of

welfare under downward nominal wage rigidity. Experimenting with using the original Taylor (1993)

parameters for the Taylor rule indicates that the exact speci�cation of the Taylor rule actually plays a

minor role for this property. In contrast, neither of these results seem to hold in the unconstrained case.

A corollary is that, under the Taylor rule, agents would clearly prefer an economy with downward

nominal wage rigidities to an unconstrained economy ex ante. That is, downward nominal wage

rigidity actually helps stabilizing the economy in the wage in�ation dimension, whereas it does not

induce much more variation in in�ation and the output gap.

In sections 1 and 2, we outline the model and discuss the equilibrium, respectively. In section 3,

we characterize the policy problem facing the central bank. Section 4 discusses optimal policy paths

for endogenous variables as well as the welfare implications of downward nominal wage rigidity under

optimal policy. Moreover, we also discuss the outcome of using a simple instrument (Taylor) rule

instead of the optimal policy. Finally, section 5 concludes.

3We focus on the discretionary policy case, since this is closest to the actual practice of central banks.
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1 The Economic Environment

The model outlined below is in many respects similar to that in Erceg, Henderson, and Levin (2000).

Goods are produced by monopolistically competitive producers using capital and labor. Producers set

prices in staggered contracts as in Calvo (1983). There are also some important di¤erences, however.

In contrast to Erceg, Henderson, and Levin (2000), we follow Carlsson and Westermark (2006a),

and assume that a household is attached to each �rm.4 ;5 Thus, �rms do not perceive workers as

atomistic. In each period, bargaining over wages takes place with a �xed probability. Accordingly,

wages are staggered as in Calvo (1983), but, in contrast to Erceg, Henderson, and Levin (2000),

they are determined in bargaining between the household/union and the �rm. Households derive

utility from consumption, real balances and leisure, earning income by working at �rms and from

capital holdings. Below, we present the model in more detail and derive key relationships (for a full

derivation, see Appendix C and the Technical Appendix to Carlsson and Westermark, 2006a).

1.1 Firms and Price Setting

Since households will be identical, except for leisure choices, it simpli�es the analysis to abstract away

from the households�optimal choices for individual goods. Thus, we follow Erceg, Henderson, and

Levin (2000) and assume a competitive sector selling a composite �nal good, which is combined from

intermediate goods to the same proportions as those that households would choose. The composite

good is

Yt =

�Z 1

0
Yt (f)

��1
�

� �
��1

; (1)

where � > 1 and Yt (f) is the intermediate good produced by �rm f . The price Pt of one unit of the

composite good is set equal to the marginal cost

Pt =

24 1Z
0

Pt(f)
1��df

35
1

1��

: (2)

By standard arguments, the demand function for the intermediate good f , is

Yt (f) =

�
Pt (f)

Pt

���
Yt: (3)

4Several households could be attached to a �rm, if these negotiate together.
5There is no reallocation of workers among �rms. This is obviously a simplifying assumption, but it enables us to

describe the model in terms of very simple relationships.
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The production of �rm f in period t, Yt (f), is given by the following constant returns technology

Yt (f) = AtKt (f)

 Lt (f)

1�
 ; (4)

where At is the technology level common to all �rms and Kt (f) and Lt (f) denote the �rms�capital

and labor input in period t, respectively. Since �rms have the right to manage, Kt (f) and Lt (f) are

optimally chosen, taking the rental cost of capital and the bargained wage Wt (f) as given. Moreover,

as in Erceg, Henderson, and Levin (2000), the aggregate capital stock is �xed at �K. Standard cost-

minimization arguments then imply that the marginal cost in production is given by

MCt (f) =
Wt (f)

MPLt (f)
; (5)

where MPLt (f) is the �rm�s marginal product of labor.6

1.1.1 Prices

The �rm is allowed to change prices in a given period with probability 1 � � and renegotiate wages

with probability 1 � �w. In addition, any �rm that is allowed to change wages is also allowed to

change prices, but not vice versa. Thus, the probability of a �rm�s price remaining unchanged is �w�.

The latter assumption greatly simpli�es our problem; in particular, it eliminates any intertemporal

interdependence between current and future price decisions via its e¤ect on wage contracts for a

given �rm. Besides convenience, this assumption is in line with the micro-evidence on price-setting

behavior presented in Altissimo, Ehrmann, and Smets (2006), where price and wage changes are to a

large extent synchronized in time (see especially their �gure 4.4). Here, we assume that wage changes

induce price changes, since assuming the reverse would imply that the duration of wage contracts could

never be longer than the duration of prices, which seems implausible in face of the empirical evidence,

see section 3.1. Furthermore, since intertemporal interdependencies are eliminated, this allows us to

describe the goods market equilibrium by a similar type of forward looking new Keynesian Phillips

curve as in Erceg, Henderson, and Levin (2000) (see equation (21)).

The producers choose prices to maximize

max
pt(f)

Et

1X
k=0

(�w�)
k	t;t+k [(1 + �)Pt (f)Yt+k (f)� TC (Wt+k (f) ; Yt+k (f))] (6)

s. t. Yt+k (f) =

�
Pt (f)

Pt+k

���
Yt+k;

6 In contrast to Erceg, Henderson, and Levin (2000), the marginal cost is generally not equal among �rms, since �rms
face di¤erent wages out of steady state.
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where TC (Wt+k (f) ; yt+k (f)) denotes the cost function, 	t+k is the households�valuation of nominal

pro�ts in period t+ k when in period t and � is a tax/subsidy on output. The term inside the square

brackets is just �rm pro�ts in period t+k, given that prices were last reset in period t. The �rst-order

condition is

Et

1X
k=0

(�w�)
k	t;t+k

�
� � 1
�

(1 + �)Pt (f)�MCt+k (f)

�
Yt+k (f) = 0: (7)

The subsidy � is determined so as to set ��1� (1 + �) = 1; that is, we assume that �scal policy is used

to alleviate distortions due to monopoly price setting.7

1.2 Households

The economy is populated by a continuum of households, also indexed on the unit interval, which each

supplies labor to a single �rm. This setup can alternatively be interpreted as a unionized economy

with �rm-speci�c unions. In such a framework, each household can be considered as the representative

union member.

The expected life time utility of the household working at �rm f in period t is given by

Et

� 1P
s=t
�s�t

�
u (Cs (f)) + l

�
Ms (f)

Ps

�
� v (Ls (f))

��
; (8)

where period s utility is additively separable in three arguments, �nal goods consumption Cs(f), real

money balances Ms(f)
Ps

, where Ms (f) denotes money holdings, and the disutility of working Ls (f).8

Finally, � 2 (0; 1) is the household�s discount factor.

The budget constraint of the household is

�t+1;tBt (f)

Pt
+
Mt (f)

Pt
+ Ct (f) =

Mt�1 (f) +Bt�1 (f)

Pt
+ (1 + �w)

Wt (f)Lt (f)

Pt
+
�t
Pt
+
Tt
Pt
: (9)

The term �t+1;t represents the price vector of assets that pays one unit of currency in a particular state

of nature in the subsequent period, while the corresponding elements in Bt (f) represent the quantity

of such claims bought by the household. Moreover, Bt�1 (f) is the realization of such claims bought in

the previous period. Also, Wt (f) denotes the household�s nominal wage and �w is the tax/subsidy on

labor income. Each household owns an equal share of all �rms and the aggregate capital stock. Then,

7Thus, we abstract from any Barro-Gordon type of credibility problems (see Barro and Gordon, 1983a, and Barro
and Gordon, 1983b).

8 In the Technical Appendix, we also introduce a consumption shock and a labor-supply shock as in Erceg, Henderson,
and Levin (2000). However, introducing these shocks does not yield any additional insights here. In fact, it can easily
be shown that under optimal policy, all disturbances in the model (introduced as in Erceg, Henderson and Levin, 2000)
can be reduced to a single disturbance term (being a linear combination of all these shocks).
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�t is the household�s aliquot share of pro�ts and rental income. Finally, Tt denotes nominal lump-sum

transfers from the government. As in Erceg, Henderson, and Levin (2000), we assume that there exist

complete contingent claims markets (except for leisure) and equal initial wealth across households.

Then, households are homogeneous with respect to consumption and money holdings, i.e., we have

Ct (f) = Ct; and Mt (f) =Mt for all t.

1.3 Wage Setting

When a �rm/household pair is drawn to renegotiate the wage, bargaining takes place in a setup similar

to the model by Holden (1994) and is here introduced in a New Keynesian framework following Carlsson

and Westermark (2006a). There are two key features of the bargaining model in Holden (1994). First,

there are costs of invoking a con�ict, which are di¤erent from the standard costs in bargaining due

to impatience. Instead, they are caused by e.g., disrupting business relationships, startup costs and

deteriorating management-employee relationships (see Holden, 1994). Second, there is an old contract

in place at the �rm and if no con�ict is called and no new contract is signed, the workers work

according to the old contract. As pointed out by Holden (1994), this is a common feature of many

western European countries as well as of the U.S.

The union and the �rm only have incentives to call for a con�ict when the negotiated contract

gives a higher payo¤ than the old contract. As soon as a con�ict is called, payo¤s are determined in a

standard Rubinstein-Ståhl bargaining game and the con�ict costs are paid out of the parties�respective

pockets. However, the costs of con�ict imply that it is sometimes not credible to threaten with a

con�ict in equilibrium. Speci�cally, if the di¤erence between the old contract and the Rubinstein-

Ståhl solution is small relative to the con�ict cost, a party cannot credibly threaten with a con�ict

and force the new contract into place. Then, no new agreement is struck and work continues according

to the old contract, resulting in nominal rigidity. If the di¤erence is su¢ ciently large, however, then

con�ict is a credible threat. Note, though, that there will be no con�icts in equilibrium, since it is

optimal to immediately agree on the Rubinstein-Ståhl solution, rather than waiting and enduring a

con�ict.9

To derive only downward nominal rigidity, asymmetries in con�ict costs are required. Speci�cally,

if the costs are large for the �rm and negligible for the union, the �rm can never credibly threaten

with a con�ict (at least not close to the steady state), whereas the union can always do so when the

Rubinstein-Ståhl solution is larger than the old contract. In reality, con�ict costs for the workers are

probably not zero, but small. Then, wages would be adjusted only if the Rubinstein-Ståhl solution

exceeded some threshold value �! > Wt�1 (instead of �! = Wt�1). For simplicity, we restrict the

9That agreement is immediate follows from e.g. Rubinstein (1982).
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attention to the case when con�ict costs are zero for workers.10

Note that downward nominal rigidity implies that there is a potential relationship between wage

negotiations today and in the future. This interdependence comes from two sources. First, the

wage contract is a state variable in future negotiations and second, the wage set today a¤ects prices

set in the future which, in turn, may a¤ect future wage negotiations. The �rst interdependence is

eliminated by using the steady state distribution in the log linearization of the model (see Appendix

C for details and the caveat in section 2 for a further discussion). The second interdependence is

eliminated by the assumption that prices can be changed whenever wages are allowed to change.

Then, given these two steps, each wage negotiation can be analyzed separately, as in the standard

Calvo setup, thereby leading to a very simple and tractable framework. Note also that there will be

no intertemporal interdependence in price setting decisions for a given �rm either. To see this, note

that since prices can be adjusted in any direction, the current price is not a state variable in future

price setting. Any interdependence in price setting over time must thus come via wage negotiations,

but such interdependence is ruled out by the assumption that prices change whenever wages change.

Unions

The union at a �rm represents all workers at the �rm and maximizes the welfare of all members.

De�ning per-period utility (in the cash-less limiting case), for a given contract wage, as

�t;t+k(f) = u (Ct+k)� v (Lt;t+k (f)) ; (10)

where Lt;t+k (f) denotes labor demand in period t+k when prices were last reset in period t. Moreover,

let

�t+k (dt+k(f)) = �w + (1� �w)Ft+k (dt+k(f)) ; (11)

denote the probability that �rm f�s wages are unchanged in period t + k. The term Ft+k (dt+k(f))

is then �rm f�s probability that the wage is not adjusted conditional on renegotiation taking place,

which is a function of

dt+k(f) =
W o
t+k (f)

Wt (f)
; (12)

where Wt (f) is the current contract and W o
t+k (f) denotes the unconstrained optimal wage in period

t + k for �rm f , de�ned as the wage upon which parties would agree in period t + k if all con�ict

costs were temporarily removed in period t+ k. Then, let Uut+k denote union utility when the wage is

10 A full explanation of downward nominal wage rigidity is likely to include several mechanisms that may be comple-
mentary. Studies like Bewley (1999), and others point towards psychological mechanisms involving fairness considerations
and managers�concern over workplace morale. Moreover, the workers�yardstick for fairness seems to be what happens
to nominal rather than real wages. However, here we focus on the fully rational explanation proposed by Holden (1994).
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renegotiated in period t+ k. Union utility in period t, Uut , is then a probability weighted discounted

sum of future per-period payo¤s, i.e.

Uut = Et

1X
k=0

(�w��)
k�t;t+k(f) + Et

1X
k=1

k�1Y
i=0

�t+i (dt+i(f)) (13)

�

24��t+k (dt+k(f))� �w���k 1X
j=0

(�w��)
j �t+k;t+k+j(f) +

�
1� �t+k (dt+k(f))

�
�kUut+k

35 :
To see the intuition behind the summations in (13), note that the �rst summation in (13) corresponds

to the case when prices are never changed in the future, whereas the second summation corresponds to

outcomes that include future price changes. To understand the second summation in (13), �rst note

that the terms inside the squared bracket are multiplied by the probability of the wage not having

been changed up to period k � 1 (i.e.
Qk�1
i=0 �t+i (dt+i(f))). Then, within a period, t + k, prices can

change in two ways. First, the price can change without the wage changing, which happens with

probability (�t+k (dt+k(f)) � �w�).11 Then, this probability is the weight for the utility associated

with a reset price in period t+ k.12 The second way in which prices are changed in period t+ k is if

the wage changes, which happens with probability (1� �t+k (dt+k(f))). Then, this probability is the

weight for the utility associated with resetting the wage (and price) in period t+ k. Note that Uut+k is

in itself independent of the (unconstrained) wage bargained over today. Finally, for con�rmation, we

note that the sum of probabilities inside the squared bracket at period t+ k equals the probability of

prices being changed within period t+ k (i.e., (1� �w�)).

Firms

Let real per-period pro�ts in period t+k, when the price was last rewritten in period t, be denoted as

�t;t+k (Wt (f)) = (1 + �)
P ot (f)

Pt+k
Yt+k (f)� tc

�
Wt (f)

Pt+k
; Yt+k (f)

�
; (14)

11To understand this probability, note that we have the outcome that the price but not the wage changes in two cases:
First, if the �rm is drawn for a price change but not for a wage change (which happens with probability (1��)�w) and
second, if the �rm is drawn for wage bargaining but downward nominal wage rigidity prevents a wage change (which
happens with probability (1� �w)Ft+k (dt+k(f))).
12Although the utility from a reset price in period t+ k is formulated as if the price would never again change in the

future, it is straightforward to show that the summations here keep track of outcomes where the price is changed more
than once.
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where tc denotes real total cost. Firm payo¤ Uft is then

Uft = Et

1X
k=0

(�w�)
k  t;t+k�t;t+k (Wt (f)) (15)

+Et

1X
k=1

 
k�1Y
i=0

�t+i (dt+i(f))

!�
�t+k (dt+k(f))� �w�

� 1X
j=0

(�w�)
j  t+k;t+k+j�t+k;t+k+j (Wt (f))

+Et

1X
k=1

 
k�1Y
i=0

�t+i (dt+i(f))

!�
1� �t+k (dt+k(f))

�
 t;t+kU

f
t+k;

where the term  t;t+k denotes how the households (which own an aliquot share of each �rm) value

real pro�ts in period t + k when in period t. The intuition behind the sums in (15) is analogous to

that of the sums in (13) discussed above.

Bargaining

Since the Rubinstein-Ståhl solution can be found by solving the Nash Bargaining problem, we can

solve for the unconstrained wage from

max
Wt(f)

(Uut � Uo)
'
�
Uft

�1�'
; (16)

where ' is the household�s relative bargaining power and Uo its threat point. The threat point is

the payo¤ when there is disagreement (i.e., strike or lockout). The payo¤ of the �rm when there is a

disagreement is assumed to be zero. Households are assumed to receive a share of steady-state (after

tax) income and not spend any time working. This interpretation of threat points is in line with a

standard Rubinstein-Ståhl bargaining model with discounting and no risk of breakdown as presented

in Binmore, Rubinstein, and Wolinsky (1986) (see also Mortensen, 2005, for an application of this

bargaining setup). A constant Uo leads to a very convenient and simple analysis; more complicated

models of threat points, e.g. based on workers having the opportunity to search for another job, could

also be introduced in this model. However, as argued by Hall and Milgrom (2005), the threat points

should not be sensitive to factors like unemployment or the average wage in the economy, since delay

is the relevant threat as opposed to permanently terminating the relationship between the �rm and

the workers. For example, United Auto Workers permanently walking away from GM is never on the

table during wage negotiations, as pointed out by Hall and Milgrom (2005). The �rst-order condition

to problem (16) is

'Uft
@Uut

@W (f)
+ (1� ') (Uut � Uo)

@Uft
@W (f)

= 0: (17)

Then, if W o
t (f) is the solution to the above problem, which is equal across all �rms that are allowed
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to renegotiate, the resulting wage for �rm f with the old contract Wt�1 (f) is

maxfW o
t (f) ;Wt�1 (f)g: (18)

Thus, in the case that the unconstrained optimal wage is lower than the present wage contract, the

old wage contract prevails due to the con�ict cost structure outlined above.

As in price setting, we eliminate the distortions that result from bargaining. Since there are two

instruments that can be used to achieve this, i.e., �w and Uo, one of them is redundant. Here, we use

the method in Carlsson and Westermark (2006a), relying on adjusting � and Uo to achieve e¢ ciency.

1.3.1 Wage Evolution

Taking into account that �rms cannot substitute across workers, the average wage is determined by

Wt = �w

Z 1

0
Wt�1 (f) df + (1� �w)

Z
Wt�1(f)>W o

t (f)
Wt�1 (f) df (19)

+(1� �w)
Z
Wt�1(f)�W o

t (f)
W o
t (f) df;

where the second term of (19) is due to downward nominal wage rigidity.

1.4 Steady State

As discussed above, downward nominal wage rigidity is not likely to have any noticeable real e¤ects

in periods with high in�ation rates. However, in�ation rates have come down in most countries in

recent decades and prolonged periods of very low in�ation rates are no longer uncommon. In �gure

1, we plot the CPI-in�ation rate (fourth quarter-to-quarter) for Japan, Sweden and Switzerland and

put a shade on low in�ation periods, identi�ed as quarters where the �ve-point moving average of CPI

in�ation is below 1 percent. As can be seen in �gure 1, lengthy periods where the maneuvering space

for adjusting real wages without reducing nominal wages is seriously limited is very much a real world

possibility.

To set ideas and capture the main mechanisms at work, we focus on a zero steady state in�ation

regime in this paper. It is possible to allow for a (small) positive steady state in�ation rate. However,

in order to retain tractability, we then need to index wages and prices that cannot be changed.13 But

indexation implies that welfare is independent of the steady state in�ation rate. To see this, note that

indexation implies that the downward nominal rigidity will be centered around the positive steady

13 Indexation is needed since it is otherwise impossible to eliminate expectations of variables for more than one period
ahead in the �rst-order conditions for wage and price setting. Thus, in the absence of indexation, it is necessary to keep
track of in�nite sums.
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Figure 1: CPI-in�ation rate in percentage units (fourth quarter-to-quarter). Shaded Regions indicate
periods with average in�ation (�ve point moving average) below 1 percent.

state in�ation rate instead of zero. Or, in other words, wages cannot grow slower than the steady state

in�ation rate. This then gives rise to a an identical problem where downward wage rigidity binds just

as often as in the zero steady state case; hence the focus on a zero steady state regime here.

In the zero-in�ation non-stochastic steady state, At is equal to its steady-state value, �A. Moreover,

all �rms produce the same (constant) amount of output, i.e. Y (f) = Y , using the same (constant)

quantity of labor and all households supply the same amount of labor, i.e. L(f) = L. Moreover, we

will have that C = Y and that B = 0: M and P are constant.

To �nd the steady state of the model, we use the production function (4) together with the

e¢ ciency condition MPL = MRS (which holds due to having eliminated distortions as in Carlsson

and Westermark (2006a)) to solve for L and, in turn, Y and C.

2 Equilibrium

First, let the superscript � denote variables in the �exible price and wage equilibrium, to which we

refer below to as the natural equilibrium, and a hat above a small letter variable denotes log-deviations

from the steady-state level of the variable. Linearizing around the steady state then gives the following

system of equations, where the parameters are given in Appendix B,

x̂t = Et

�
x̂t+1 �

1

�C

�bit � �̂t+1 � br�t �� ; (20)

�̂t = �Et�̂t+1 + (1� 
)
�
�̂!t � �Et�̂!t+1

�
+�(ŵt � ŵ�t ) +




1� 
�x̂t; (21)

�̂!t = max

�
0;
1 + �w
2�w

�Et�̂
!
t+1 � 
w (ŵt � ŵ�t )� 
xx̂t

�
; (22)

ŵt = ŵt�1 + �̂
!
t � �̂t: (23)
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For clarity, all parameters are de�ned to be positive.

Equation (20) is a standard goods-demand (Euler) equation which relates the output gap x̂t, i.e.

the log-deviation between output and the natural output level, to the expected future output gap and

the expected real interest rate gap (bit � �̂t+1 � br�t ), where bit denotes the log-deviation of the nominal
interest rate from steady state and br�t is the log-deviation of the natural real interest rate from its

steady state.14 This relation is derived taking standard steps and using the households��rst-order

condition with respect to consumption, i.e., the consumption Euler equation.

The price-setting (Phillips) curve, equation (21), is derived using the �rms��rst-order condition

(7), (see Carlsson and Westermark, 2006b, for details) and is similar in shape to the price-setting curve

derived by Erceg, Henderson, and Levin (2000), with the exception that current and expected future

wage in�ation also enter the expression. Thus, price setting is a¤ected by the real wage gap, i.e., the

log deviation between the real wage and the natural real wage (ŵt � ŵ�t ), the output gap x̂t; future

in�ation Et�̂t+1 and current and future wage in�ation �̂!t , Et�̂
!
t+1. As can be seen from Carlsson and

Westermark (2006b), the relevant real marginal cost measure driving in�ation depends on the real wage

gap in �rms that actually change prices (and, naturally, capital prices and productivity). However,

since we are interested in a price-setting relationship expressed in terms of the economywide real wage

gap, we need to adjust for the fact that interdependence in price and wage setting implies that the

economywide real wage gap and the real wage gap in �rms that actually change prices are di¤erent in

our model.15 This motivates the �correction term�(1� 
)
�
�̂!t � �Et�̂!t+1

�
. Thus, in expression (21),

the real wage change in �rms that change prices has been decomposed into the aggregate real wage

change ŵt and wage in�ation terms �̂!t , Et�̂
!
t+1.

Equation (22) describes the wage setting behavior (see Appendix C and Carlsson and Westermark,

2006b, for details). From section (1.3) above, we know that wages are set according to (18). This

implies that wage in�ation is non-negative and set according to the last term in the max operator

of (22) when positive. Hence, the max operator captures the restriction from wage setting in (22).

For positive wage in�ation rates, wage in�ation increases with higher expected wage in�ation. The

coe¢ cient in front of Et�̂!t+1, i.e.
1+�w
2�w

�, is the probability adjusted discount rate from the wage

negotiations 1+�w
2 � (where 1+�w

2 is the (unconditional) steady-state probability that wages remain

unchanged in the next period) multiplied by 1
�w
; which governs how relative wages today (conditional

on �̂!t > 0) feed into wage-in�ationary pressure. Moreover, as in Erceg, Henderson, and Levin (2000),

wage in�ation is in�uenced by the real wage gap and the output gap. Since the parameters associated

14The nominal interest rate It is de�ned as the rate of return on an asset that pays one unit of currency under every
state of nature at time t+ 1.
15Speci�cally, since all �rms that are allowed to change wages are also allowed to change prices, the share of wage-

changing �rms among the �rms that change prices di¤ers from the economywide average.
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with these variables are determined by the bargaining problem, the size (and even the sign) of them

depend on e.g. the relative bargaining strength. See Carlsson and Westermark (2006a) for a detailed

discussion on wage setting in the unconstrained case.16

A caveat is in place here since the linearized wage-setting curve (22) is derived using the steady

state wage distribution. In general, since the last period�s wage is a state variable in today�s wage

setting problem, the aggregate wage outcome today will depend on the history of wage changes in the

economy, described by the wage distribution. However, starting from an initial distribution where all

�rm/union pairs have the same wage, this will not be a problem when downward nominal wage rigidity

binds, since no one will reduce the wage anyway, although for periods beyond the �rst when wage

in�ation is positive, the wage distribution potentially a¤ects the aggregate wage in�ation outcome.

We take this approach since it allows us to retain analytical tractability of the problem. Moreover, as

discussed above, this simpli�cation should not lead us too far astray.

Finally, the evolution for the real wage (23) follows from the de�nition of the aggregate real wage

and states that today�s real wage is equal to yesterday�s real wage plus the di¤erence between the

rates of wage and price change (�̂!t � �̂t).

As a comparison to the results from the economy with downward nominal wage rigidity, it is useful

to look at an economy where wages can adjust symmetrically. As shown in Carlsson and Westermark

(2006a), the unconstrained economy is described by (20), (21), (23) and replacing (22) with

�̂!t = �Et�̂
!
t+1 � 
ucw (ŵt � ŵ�t )� 
ucx x̂t (24)

where, once more, the parameter de�nitions are given in Appendix B.

3 The Monetary Policy Problem

The central bank is assumed to maximize social welfare. Here, we focus on the discretionary policy

case. Although studying optimal policy is in essence a normative enterprise, given that no central

bank formally commits to a policy rule it is natural to focus on the discretionary case. Following

the main part of the monetary policy literature, we focus on the limiting cashless economy (see e.g.

Woodford (2003) for a discussion) with the social welfare function

Et

1X
t=0

�t
�
u (Ct)�

Z 1

0
v (Lt (f)) df

�
: (25)

16See also Carlsson and Westermark (2006a), for a detailed comparison between the unconstrained version of (22), i.e.
equation (24) below, and the wage setting curve resulting from the Erceg, Henderson, and Levin (2000) model.
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Following Rotemberg and Woodford (1997), Erceg, Henderson, and Levin (2000), and others, we take

a second-order approximation to (25) around the steady state. This yields a standard expression for

the welfare gap (see Appendix C.5 for a detailed derivation, also c.f. Erceg, Henderson, and Levin

(2000)), i.e., the discounted sum of log-deviations of welfare from the natural (�exible price and wage

welfare level)

Et

1X
t=0

�t
�
�x (x̂t)

2 + �� (�̂t)
2 + ��! (�̂

!
t )
2
�
; (26)

where we have omitted higher order terms and terms independent of policy. As usual, �x < 0, �� < 0

and ��! < 0 (see Appendix B for de�nitions). The �rst term captures the welfare loss (relative to

the �exible price and wage equilibrium) from output gap �uctuations stemming from the fact thatdmpl will di¤er from dmrs whenever x̂t 6= 0: However, even if x̂t = 0, there will be welfare losses due to
nominal rigidities. The reason is that nominal rigidities imply a non-degenerate distribution of prices

and wages. A non-degenerate distribution of prices and wages implies a non-degenerate distribution

of output across �rms and working hours across households. This leads to welfare losses due to a

decreasing marginal product of labor and an increasing marginal disutility of labor.

Note that welfare only depends on variables x̂t, �̂t and �̂!t which, in turn, can solely be determined

from equations (21) to (23). To �nd the optimal rule under discretion, the central bank then solves

the following problem

V (ŵt�1; ŵ
�
t ) = max

fx̂t;�̂t;�̂!t ;ŵtg
�x (x̂t)

2 + �� (�̂t)
2 + ��! (�̂

!
t )
2 + �EtV

�
ŵt; ŵ

�
t+1

�
; (27)

subject to equations (21) to (23), disregarding that expectations can be in�uenced by policy.

The wage in�ation restriction (22) can be replaced by

�̂!t � 1 + �w
2�w

�Et�̂
!
t+1 � 
xx̂t � 
w (ŵt � ŵ�t )� �̂!t ; (28)

�̂!t � 0: (29)

Note that the problem with the original max constraint (23) and the problem with inequality

constraints (28) and (29) need not be equivalent. It is obviously true that a solution (x̂t; �̂t; �̂!t ; ŵt) to

the problem with the original max constraint also satis�es the two inequality constraints. However, it

is possible that there is a solution (x̂t; �̂t; �̂!t ; ŵt) to the problem with inequality constraints, so that

none of the inequality constraints is binding, thus leading to a violation of the original max constraint.

However, this is ruled out by the following Lemma.

Lemma 1 At least one of the inequality constraints (28) and (29) must be binding.
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Proof : See Appendix D. �

Thus, this possibility is ruled out by the above Lemma, thereby implying that the problems are

equivalent. The intuition for the result is the following. Since the constraints (28) and (29) both put

lower bounds on �̂!t and, as can be seen from expression (26), welfare is decreasing in �̂!t , the central

bank sets �̂!t as low as possible, implying that one of the inequality constraints (28) and (29) must

bind.

From the above, it follows that the central banks�problem (27) gives rise to two systems depending

on whether the inequality constraint binds. These systems, in turn, consist of the case speci�c �rst-

order conditions for optimal policy and restrictions from private sector behavior (see Appendix D for

details).

3.1 Numerical Solution and Calibration

To solve the model, we �nd the paths for x̂t, �̂t, �̂!t and ŵt that maximize welfare, as suggested by

Woodford (2003).17 ;18 As in Erceg, Henderson, and Levin (2000), we look at the e¤ects of a technology

shock, which is assumed to follow an AR(1). It is straightforward to show that there is a positive

linear relationship between ŵ�t and Ât:
19 Then, if technology follows an AR(1) process, ŵ�t also follows

an AR(1) process. We can thus model ŵ�t as

ŵ�t = �ŵ�t�1 + "t; (30)

where "t is an (scaled) i.i.d. (technology) shock with standard deviation ��.

For our numerical exercises, we follow Erceg, Henderson, and Levin (2000), and assume that

u (Ct) =
1

1� �C
�
Ct � �Q

�1��C ; (31)

and that

v (Lt) = �
1

1� �L
�
1� Lt � �Z

�1��n : (32)

Here, we introduce �Q and �Z in order to facilitate the comparison with Erceg, Henderson, and Levin

17We solve the problem in a di¤erent way than Erceg, Henderson, and Levin (2000), where an interest rate rule is
postulated and the parameters are chosen to maximize welfare.
18To solve for the optimal instrument rule, the paths can be used together with the Euler equation and suitable criteria

for the shape of the rule; see Woodford (2003), for a discussion.
19 It is possible to allow for other shocks. In the Technical Appendix of Carlsson and Westermark (2006a), we also

introduce a consumption shock and a labor-supply shock as in Erceg, Henderson, and Levin (2000). However, introducing
these shocks does not yield any additional insights here. In fact, it can easily be shown that under optimal policy, all
disturbances in the model (introduced as in Erceg, Henderson and Levin, 2000) can be reduced to a single disturbance
term (being a linear combination of all these shocks).
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(2000), by mimicking the preferences and the steady state of their model.20 The calibration of the

deep parameters, presented in Table 1, also follows Erceg, Henderson, and Levin (2000), when possible

(thus, e.g., we do not follow Erceg, Henderson and Levin, 2000, when calibrating � and �w, since they

have a di¤erent interpretation in our model).

Table 1: Baseline Calibration of the Model
Deep Parameters Baseline values Derived Parameters Baseline values

Constrained (Unconstrained)
dp 2 � 0:505
dw 6 
x (


uc
x ) 0:005 (0:002)

� 0:99 
w (

uc
w ) 0:110 (0:044)


 0:30 �x �0:962
�C 1:5 �� �1:043
�n 1:5 ��! (�

uc
�!) �2:676 (�7:458)

� 4 � (�uc) 0:750 (0:600)
� 0:95 �w (�ucw ) 0:667 (0:833)
�� 0:0067
' 0:5

Moreover, to �nd the steady state of the model, we also follow Erceg, Henderson, and Levin (2000) and

set: Q = 0:3163; Z = 0:03;K = 30Q and A = 4:0266. Then, using the scheme outlined in section (1.4)

we obtain L = 0:27. Thus, L and Z stand for about one quarter of the households�time endowment.

Further, Y = C = 3:1627, giving rise to a steady state capital-output ratio of about three. Moreover,

to achieve symmetric Nash bargaining (equally shared surplus), we set the bargaining power of the

union ' to 0:5.

Here, we treat price and wage contract durations as deep parameters. The probabilities of price

and wage adjustment are then derived from price and wage contract durations. This is due to the

fact that when comparing economies with and without downward nominal wage rigidity, we can either

keep price and wage resetting probabilities �xed or price and wage contract durations �xed. We �nd it

natural to compare economies with the same contract durations. Letting dp and dw denote the duration

of price and wage contracts, respectively, we have dp = ducp = 1=(1��w�) and dw = 1=(1�(1+�w)=2)

and ducw = 1=(1��w) with and without downward nominal wage rigidity. Starting with wage contract

duration, Taylor (1999), summarizes the evidence and argues that overall, the evidence points toward

a wage contract duration of about one year. However, Cecchetti (1987), found that average duration

increases in periods with low in�ation, which is what we want to capture here. In fact, during the

1950s and 1960s when in�ation was low in the U.S., the wage contract duration was about two years

for the large union sector. In the baseline calibration, we set the duration to six quarters, which

20 In the Technical Appendix of Carlsson and Westermark (2006a), where we allow for consumption and labor supply
shocks, �Q corresponds to the steady state value of a consumption shock and �Z to the steady state value of a labor-supply
shock.
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is higher than suggested by Taylor (1999), but still being conservative relative to the low in�ation

estimate from Cecchetti (1987).

For price contract duration, the micro evidence presented by Bils and Klenow (2004), suggests a

price duration of about �ve months, whereas the micro evidence presented by Nakamura and Steinsson

(2007), and the survey evidence in Blinder, Canetti, Lebow, and Rudd (1998), suggest about eight

months. In our baseline calibration, we set the price duration to two quarters which is in the range

given by the above studies.

Then, using the steady state solution together with the de�nitions for the derived parameters

(presented in appendix A) yields the values presented in Table 1.

It is interesting to see the high coe¢ cient for wage in�ation variance in the loss function (��!).

Starting with the constrained case, we see that the coe¢ cient on wage in�ation variance (��!) is about

three times larger than the coe¢ cient on the variance in the output gap (�x) and the coe¢ cient on

the variance in in�ation (��). Thus, variation in wage in�ation is associated with considerable welfare

losses. Moreover, when relaxing the downward nominal wage rigidity constraint, the coe¢ cient on

wage in�ation almost triples in size relative to the constrained economy. The reason is that since

wages never fall in the constrained economy there will be a cap on the relative wage misalignment

that a given wage in�ation gives rise to.

To obtain a ball-park estimate of ��, we make use of a the Taylor (1993) rule estimated by

Rudebusch (2002) (see expression (33) below) as an approximation of actual monetary policy and

impose it on the unconstrained version of the model. Then, we set �� to match the standard deviation

of quarterly in�ation in the model with the actual standard deviation of the U.S. quarterly CPI in�ation

(1987:Q4-1999:Q4).21 This results in a standard deviation of the innovation to the ŵ�t process of 0:0067

(= ��).

Numerically, we solve the model by iterating on the policy functions and updating the value

function given the new policy functions. In the procedure, we also take into account how expectations

in the constraints are a¤ected by this (see (121) in Appendix D).

A standard reference for algorithms with occasionally binding constraints is Christiano and Fisher

(2000). Unfortunately, we cannot use this algorithm since our model is slightly di¤erent. Speci�cally,

our problem includes expectations of the control variables in the constraints. The way in which we

take care of this problem is to use that the control variables are functions of the state variables (i.e.,

the policy functions) and rewrite the constraint set in terms of state variables only.22 This is related

21We focus on in�ation for the calibration, since this is the only variable we can directly observe without resorting to
some �ltering technique.
22Note that policy functions are potentially nonlinear, since there is a non-linear constraint to the problem (i.e.

constraint (22)).
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to the method used in e.g., Soderlind (1999). However, instead of using the policy functions from

the previous iteration as is done in Soderlind (1999), we use the current policy functions, as in the

algorithm used in e.g., Krusell, Quadrini, and Rios-Rull (1996). Note that the algorithm in Krusell,

Quadrini, and Rios-Rull (1996) can be considered as analyzing a one-period deviation from a proposed

policy. Iteration �nishes when there are no gains from deviating from the proposed policy. The full

algorithm is outlined in appendix A.

4 Optimal Policy V.S. Simple Rules

First, we solve the model for the calibration described above, both in the case with and without

downward nominal wage rigidity under optimal discretionary monetary policy. In �gure 2, we plot

the impulse responses to a one standard deviation negative shock to the natural real wage ŵ�t .
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Figure 2: Impulse responses to a one standard deviation negative shock in the natural real wage. Scale
corresponds to percentage units.

Starting with the unconstrained case, the negative shock drives down the natural real wage implying

that the actual real wage is higher than the natural real wage, thus initially causing a positive real-wage

gap. The real wage can be adjusted by changing in�ation and wage in�ation. Holding the in�ation

rate above the wage in�ation rate decreases the real wage. However, since it is costly to stabilize the

real wage gap, in terms of the implied variation in in�ation, wage in�ation and the output gap, it is

optimal not to fully compensate for the shock. For the same reason, optimality requires that in�ation
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and wage in�ation should be kept (approximately) at opposite sides of zero (the path of x̂t must also

be considered). Thus, the optimal initial in�ation response is positive, whereas the wage in�ation

response is negative. But the di¤erence between them is not su¢ ciently large to immediately fully

close the real-wage gap.

Given the AR(1) structure of the shock, the natural real wage increases towards the steady value

of zero after the initial negative shock. So at some point, the central bank needs to start increasing the

real wage in order to continue to stabilize the economy. This is also what we see after approximately

four quarters. For this purpose, the relationship between in�ation and wage in�ation needs to be

reversed, which also happens at this point in time.

In the constrained case, wage in�ation cannot be used to initially lower the real wage. Instead,

optimal policy prescribes a stronger initial in�ation reaction relative to the unconstrained case, and

also allow for a larger output gap in order to stabilize the real-wage gap. However, the initial optimal

in�ation response is not su¢ cient to stabilize the real wage gap to the same extent as in the uncon-

strained case. This is re�ected by the initial real wage response in the constrained case lying above

the real wage response in the unconstrained case.

In �gure 3, we plot the resulting impulse responses to a one standard deviation positive shock

to ŵ�t . For the unconstrained case, the impulse responses are a mirror image through the horizontal
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Figure 3: Impulse responses to a one standard deviation positive shock in the natural real wage. The
scale corresponds to percentage units.

axis of the negative case. We now see that the initial optimal in�ation and output gap responses are
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smaller than in the unconstrained case. However, the initial wage in�ation response is larger than

in the unconstrained case. Note that downward nominal wage rigidity does not only a¤ect private

sector behavior but also the parameters in the loss function in making the parameter for wage in�ation

smaller. Below we will decompose the e¤ects on welfare from the change in the loss function from the

e¤ects stemming from changes in private sector behavior. However, any asymmetry in the impulse

response paths across positive and negative shocks must stem from private sector behavior and not

from the (symmetric) loss function.

In �gure 4, we plot the optimal interest rate path (in terms of deviations from steady state) for

the unconstrained and constrained case, respectively. As can be seen in �gure 4, the optimal interest
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Figure 4: Optimal interest-rate responses to a one standard deviation positive and negative shock in
the natural real wage. The scale corresponds to percentage units.

rate response is asymmetric in the constrained case. Especially, the interest rate response is larger in

the constrained case for negative shocks and smaller for positive shocks relative to the unconstrained

case.

Next, we turn to welfare analysis. Note �rst that it need not be the case that the model with

the downward nominal wage rigidity constraint necessarily leads to lower welfare relative to the un-

constrained case. The reason is that this is not just an additional constraint on the problem, i.e., a

constraint that makes the feasible set smaller. Instead, it is a constraint that changes the choice set.23

23To see this, consider the relationship between, say �̂! and x̂ in equation (22), treating other variables as constants.
Then, in the unconstrained case, the relationship is linear with slope 
x. In contrast, in the constrained case, the
relationship is piecewise linear with zero slope below some critical value of x̂ and with slope 
x above this value.
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Also, another factor is that the parameter on wage in�ation variance in the welfare function changes

when imposing downward nominal wage rigidity. Thus, overall, the welfare e¤ect from downward

nominal wage rigidity is ambiguous a priori.

To compute welfare, we construct sequences of shocks for 1000 periods and use these to �nd paths

for the variables x̂t, �̂t, �̂!t and ŵt. Then, welfare is computed from these paths using the welfare

criterion (26), ignoring the periods t > 1000. This is repeated 1000 times to generate an approximation

of the expectation. Finally, to express the welfare loss as a fraction of steady state consumption, we

scale the welfare di¤erence (26) by 1=
�
uC
�
�C; �Q

�
�C
�
.

In the unconstrained case, we �nd a welfare di¤erence relative to the natural (�exible price and

wage) welfare level of 0:186 percentage units of steady state consumption. Interestingly, the result

for the constrained case is almost identical with a di¤erence of 0:181. Thus, downward nominal wage

rigidity does not necessarily lead to large welfare losses, as is often considered. In fact, in our model we

�nd a (very) modest welfare gain. Now, since introducing downward nominal wage rigidity does not

only a¤ect the behavior of the private sector, but also the parameter in the loss function on variation

in wage in�ation (c.f. Table 1 above), it is interesting to try to isolate the e¤ects. To this end, we both

solve for the unconstrained optimal policy, as well as calculate the welfare loss using the parameters

for the loss function from the constrained case. The resulting welfare di¤erence is 0:178, which is

very close to the original results for the unconstrained case (0:186). Thus, the similarity between

the welfare outcomes in the unconstrained and constrained cases is not driven by the increase in the

loss-function parameter on wage in�ation variance.

The intuition for the small welfare e¤ects is that downward nominal wage rigidity is not all that

harmful since it may help keep down wage dispersion (see below). This, in turn, can be exploited by

the central bank when designing optimal monetary policy.

A Simple Rule

Next, we turn to analyzing the e¤ects on welfare from relying on a simple instrument rule instead of

the optimal policy rule. To this end, we impose a Taylor (1993) rule, i.e.

bit = 1:24�̂t + 0:33x̂t; (33)

where the parameters for (33) are calibrated to match the estimates in Rudebusch (2002). Note

that this rule does not take any asymmetry into account when setting the interest rate, although the

economy will react asymmetrically to positive and negative shocks, due to private sector behavior.24

24To implement the Taylor rule, we replace the central bank�s �rst-order condition in systems (135) and (139) in
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In �gure 5, we plot the resulting impulse responses to a one standard deviation negative shock to

ŵ�t when the nominal interest rate is governed by a Taylor rule as well as under optimal policy.
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Figure 5: Impulse responses to a one standard deviation negative shock to ŵ�t when the nominal
interest rate is governed by a Taylor rule as well as under the optimal policy. Scale corresponds to
percentage units.

Note that the impulse responses are not smooth as under optimal policy. The reason for this is that

the Taylor rule is not optimally chosen and has the same functional form for both the case when

downward nominal wage rigidity binds and when it does not. Interestingly, the Taylor rule responses

for in�ation are in fact fairly similar to the optimal responses. However, for wage in�ation, the Taylor

rule undershoots slightly when the constraint stops binding, all in all leading to substantial excess

volatility in the output gap. In �gure 6, we plot the resulting impulse responses to a one standard

deviation positive shock to ŵ�t : Once more, the Taylor rule responses for in�ation are similar to the

optimal responses. However, the initial wage in�ation response now overshoots. Once more, the

volatility in the output gap is substantially larger than in the optimal responses. 25

Next we turn to welfare. Note that it is not a trivial result that optimal discretionary policy

outperforms the Taylor rule, since the Taylor rule is, in fact, a commitment rule and hence, could

Appendix C with the sticky price Euler equation (20), where we have used the corresponding �exible-price Euler equation
to eliminate the real natural interest rate and the Taylor rule to eliminate the nominal interest rate. For the system
under the Taylor rule, there is no need to iterate on the value function. Instead, we can directly solve the system for the
policy functions (i.e. we only do step 1 in the numerical algorithm outlined in Appendix A). Then, we can simulate the
model and evaluate welfare as done above.
25 For brevity, we do not plot interest rate responses, since they are mainly a re�ection of di¤erences in the output

gap responses.
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Figure 6: Impulse responses to a one standard deviation positive shock to ŵ�t when the nominal
interest rate is governed by a Taylor rule as well as under the optimal policy. Scale corresponds to
percentage units.

perform better than the optimal discretionary rule. However, we do �nd that optimal discretionary

policy performs better than the policy prescribed by the Taylor rule. In terms of steady state con-

sumption, the additional loss is about 0:07 percentage units of steady state consumption. But, all in

all, the Taylor rule seems to be a fairly good approximation of optimal discretionary monetary policy

in the presence of downward nominal wage rigidity.

Finally, we look at the impulse responses for the unconstrained economy versus an economy with

downward nominal wage rigidity under the Taylor rule. In �gure 7, we plot the resulting impulse

responses to a one standard deviation negative shock to ŵ�t . The key result here is that downward

nominal wage rigidity actually helps stabilize the economy in the wage in�ation dimension, whereas it

does not induce much more variation in in�ation and the output gap. A fairly similar result appears

from �gure 8, where we plot the resulting impulse responses to a one standard deviation negative

shock to ŵ�t . Most notably, the wage in�ation variability is not substantially larger in the downward

rigid case. This is also the dimensions about which the households care most (c.f. table 1).

When looking at welfare di¤erences, we �nd that welfare loss is quite a bit lower in the economy

with downward nominal wage rigidity relative to the unconstrained economy when monetary policy

is governed by the Taylor rule. In terms of steady state consumption, the welfare gain is about 0:14

percentage units of steady state consumption. Thus, an agent would in this case prefer an economy
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Figure 7: Impulse responses to a one standard deviation negative shock to ŵ�t when the nominal
interest rate is governed by a Taylor rule. Scale corresponds to percentage units.
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Figure 8: Impulse responses to a one standard deviation positive shock to ŵ�t when the nominal
interest rate is governed by a Taylor rule. Scale corresponds to percentag units.
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with downward nominal wage rigidity over an economy with downward nominal wage �exibility ex ante.

Evaluating the unconstrained economy with the loss function of the constrained economy suggests a

welfare gain from downward nominal wage rigidity of about 0:08 percent of steady state consumption.

Thus, once more, the above result is not just driven by the increase in the loss-function parameter on

wage in�ation, when relaxing the constraint while keeping the duration of price and wage contracts

constant. Instead, private sector behavior plays an important part in explaining the results.

Wage-In�ation Distributions and Welfare

To see the consequences for welfare, we illustrate the wage-in�ation distributions in four histograms;

see �gure 9. First, if we vary policy, i.e., compare the Taylor rule and optimal policy, the distribution
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Figure 9: Histograms of simulated wage-in�ation paths.

is more dispersed under the Taylor rule. This seems to hold irrespectively whether there are downward

nominal wage rigidities or not. If we �x the policy regime, on the other hand, the distribution seems

to have lower variability with downward nominal wage rigidities than without.

4.1 Robustness

A key parameter for welfare evaluation is the standard deviation of the innovation to ŵ�t , ��. We now

consider increasing �� by 50 percent. The results of this experiment are presented in Table 2. We see
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Table 2: Robustness - Shock Size
Welfare Di¤erences Relative to Flex Price

Baseline (�� = 0:0067) Big Shocks (�� = 0:0101)
Unc. Opt. �0:1856 �0:4176
Con. Opt. �0:1809 �0:4125
Unc. Taylor �0:3872 �0:8723
Con. Taylor �0:2508 �0:6118

The values are expressed in terms of percentage units of steady state consumption.

that this does not change the qualitative conclusions from our baseline simulation, in terms of welfare

rankings. But increasing the shock size does increase the welfare loss in all four cases.

In the baseline calibration, the wage-contract duration is six quarters. Since this may seem to

be on the high side (even though it is in line with the evidence of wage-contract durations in low-

in�ation environments), we also see to what extent our results are robust to varying the wage-contract

duration. In table 3, we present the results from decreasing the wage duration by a quarter. As can

be seen in the table, decreasing the duration of the wage contracts leads to slightly smaller welfare

Table 3: Robustness - Contract Durations
Welfare Di¤erences Relative to Flex Price

Contract Durations dp = 2; dw = 6 dp = 2; dw = 5

Unc. Opt. �0:1856 �0:1759
Con. Opt. �0:1809 �0:1761
Unc. Taylor �0:3872 �0:3767
Con. Taylor �0:2508 �0:2436

The values are expressed in terms of percentage units of steady state consumption.

losses in all cases. Also, note that the welfare ranking between the optimal policy in the constrained

and unconstrained case shifts to a tiny advantage for the unconstrained case. However, the key point

that downward nominal wage rigidity does not imply large welfare losses is robust.

Finally, we have also experimented to see how sensitive the results are to the exact values of the

parameters in the Taylor rule. In table 4, we present the result from using the original values from

Taylor (1993) (i.e., ��̂ = 1:5 and �x̂ = 0:5). When using the Taylor (1993) parameter values for

Table 4: Robustness - Taylor Rule Parameters
Welfare Di¤erences Relative to Flex Price

Taylor Rule ��̂ = 1:24; �x̂ = 0:33 ��̂ = 1:5; �x̂ = 0:5

Unc. Taylor �0:3872 �0:3224
Con. Taylor �0:2508 �0:2604

The values are expressed in terms of percentage units of steady state consumption.

the Taylor rule, the welfare loss decreases without downward nominal wage rigidity, while the welfare

loss almost remains unchanged when downward nominal wage rigidities are present. Thus, the results
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indicate that downward nominal wage rigidity makes the welfare outcome less sensitive to the exact

calibration of the Taylor rule.

Overall, the key points from the previous section seem to be robust.

5 Concluding remarks

In this paper, we study the implications for optimal monetary policy when declining nominal wages

do not constitute a viable margin for adjustment to adverse economic conditions. To this end, a

New Keynesian model is developed that can endogenously account for downward nominal wage rigid-

ity. This is achieved by introducing wage bargaining between �rms and unions in the model as in

Holden (1994). Under asymmetric con�ict costs, downward nominal wage rigidity arises as a rational

endogenous outcome.

Focusing on optimal discretionary monetary policy, we show that when money wages cannot fall,

the optimal policy response to changing economic conditions becomes asymmetric. More speci�cally,

in�ation and the output gap respond more when the downward nominal wage rigidity constraint binds.

Interestingly, in our baseline case the welfare loss is actually slightly smaller in an economy with

downward nominal wage rigidities. The reason is that downward nominal rigidity is not an additional

constraint on the problem. Instead, it is a constraint that changes the choice set and opens up for

potential welfare gains. Another e¤ect of downward nominal wage rigidity is that the loss function

parameter for wage in�ation variation is changed, although this latter e¤ect seems to play a small

role in explaining the welfare e¤ects of downward nominal wage rigidity (at least under optimal

policy). We also �nd that the Taylor rule estimated by Rudebusch (2002), provides a fairly good

approximation of optimal discretionary policy in terms of welfare under downward nominal wage

rigidity. Experimenting with using the original Taylor (1993), parameters for the Taylor rule indicates

that the exact speci�cation of the Taylor rule actually plays a minor role for this property. In contrast,

the Taylor rule does not provide such a good approximation of optimal policy in the unconstrained case.

A corollary then is that, under the Taylor rule, agents would clearly prefer an economy with downward

nominal wage rigidities rather than an unconstrained economy ex ante. That is, since downward

nominal wage rigidity actually helps stabilizing the economy in the wage in�ation dimension and

hence, reduces wage variability, but does not induce much more variation in in�ation and the output

gap.
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Appendix

A Numerical Algorithm

The main outline of the algorithm follows algorithm 12.2 in Judd (1998). We �rst de�ne N � R2

nodes over the state space.

Step 0. Guess policy functions U0i , i.e., parameter values in second-order complete polynomials

�̂0 (ŵt�1; ŵ
�
t ) ;

�̂!0 (ŵt�1; ŵ
�
t ) ; (34)

x̂0 (ŵt�1; ŵ
�
t ) ;

and value function

V 0 (ŵt�1; ŵ
�
t ) : (35)

Then proceed to step 2.

Step 1. Consider systems (135) and (139) derived by using the �rst three �rst-order conditions in

(130) to eliminate the Lagrange multipliers in the last �rst-order condition, together with the three

constraints (21) to (23) (see the discussion in section 4 and Appendix C) We �nd the new guess

for the policy functions U l+1i by solving for these from systems (135) and (139), respectively, with a

collocation method. While solving for policy functions, we take into account that the policy functions

a¤ect the expectations.

Step 2. Compute current period utility P l+1i for i = 1; : : : ; N , given policy function guesses U l+1i .26

Step 3. Update the value function V l+1 (ŵt�1; ŵ�t ) using

V l+1 =
�
I � �QU l+1

��1
P l+1; (36)

where QU
l+1

is the transition matrix de�ned by the new guess for the policy functions for in�ation

and wage in�ation and the �ow equation for real wages.

Step 4. If


V l+1 � V l

 < " stop. Otherwise, go to step 1.

B Parameter De�nitions

The parameters in the equilibrium relations are de�ned as

26 In terms of Judd (1998) p. 416, compute �
�
yi; U

l+1
i

�
where U l+1i consists of �̂t, �̂!t and x̂t and yi = (ŵt�1; ŵ

�
t )i,

which gives P l+1i = �
�
yi; U

l+1
i

�
.
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x = �1
�x
�d
; 
ucx = �uc1

�x
�d
;


w = �1
�w
�d
; 
ucw = �uc1

�w
�d
;

(37)

where

�1 =
�
1� 1+�w

2 �
�
1��w
�w

; �uc1 = (1� �w�) 1��w�w
;

� = 1��w�
�w�

(1� �w��) ;
(38)

and �x, �w and �d are de�ned as (see the Appendix C below for details)

�d = "L
1

� � 1 (' (2 + (1 + �L) "L)� (1 + "L)) �vL
�L� ' �vL

�L

1� 
 (1� 
)
2 (39)

�x =

�
�' "L

� � 1

�
�C � �L

1� �

1� 


�
� (1� ')�


�
�vL �L+ '

1

� � 1
�vL �L

1� 
 (1� �
 � �C (1� 
))

�w = �
�
�' "L

� � 1 (1� ��L) + (1� ') (1� 
)�
�
�vL �L+ '

1

� � 1
�vL �L

1� 
 (1 + "L)

where

"L = � (
 + � (1� 
)) : (40)

Let

�C = �
�uCC �C

�uC
= �C

�C
�C � �Q

and �L = �
�vLLL

�vL
= ��n

�L

1� �L� �Z
: (41)

The loss function parameters in (26) are then de�ned as

�x =
�C

2
�uC

�
��C + �L

1

1� 
 �



1� 


�
;

�� = ��vL
�L

2

� (
 (1� �) + 1 + 
)
1� 


1

�
; (42)

��! = ��vL
�L

2

�
�
"L + (1� 
)� (1 + 
 (1� �))

�1
� (1� 
) � (
 (1� �) + 1 + 
)

�

�
:

and for the unconstrained case we need to replace ��! with �uc�! de�ned as

�uc�! = �
�vL �L

2

�
�
"L + (1� 
)� (1 + 
 (1� �))

�uc1
� (1� 
) � (
 (1� �) + 1 + 
)

�

�
: (43)
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C Some Derivations

Most of the derivations in the paper are similar to those in Carlsson and Westermark (2006b). Here,

we present the derivations that must be modi�ed due to downward nominal wage rigidity. Thus, the

changes concern the sections where wage setting is a part. Hence, wage setting itself must be modi�ed,

as well as part of the steady state analysis and the welfare computations.

C.1 Wages

As in Carlsson and Westermark (2006b), we use gradient notation (r) to indicate derivatives. We can

write the derivative of U tu as

rWU tu = Et

1X
k=0

(�w��)
krW�t;t+k + Et

1X
k=1

k�1Y
i=0

�t+i (dt+i)
�
�t+k (dt+k)� �w�

�
�k

�
1X
j=0

(�w��)
j rW�t+k;t+k+j + Et

1X
k=1

k�1X
i=1

0B@ k�1Y
m=0
m6=i

�t+m (dt+m)

1CA (1� �w)rW �t+i (dt+i)
�

0@��t+k (dt+k)� �w���k 1X
j=0

(�w��)
j �t+k;t+k+j +

�
1� �t+k (dt+k)

�
�kU t+ku

1A (44)

+Et

1X
k=1

 
k�1Y
i=0

�t+i (dt+i)

!
rW �t+k (dt+k)�k

0@ 1X
j=0

(�w��)
j �t+k;t+k+j � U t+ku

1A
and the derivative of U tf as

rWU tf = Et

1X
k=0

(�w�)
k  t;t+krW�t;t+k + Et

1X
k=1

k�1Y
i=0

�t+i (dt+i)
�
�t+k (dt+k)� �w�

�

�
1X
j=0

(�w�)
j  t;t+k+jrW�t+k;t+k+j + Et

1X
k=1

k�1X
i=1

0B@ k�1Y
m=0
m6=i

�t+m (dt+m)

1CArW �t+i (dt+i) (45)

�

0@��t+k (dt+k)� �w�� 1X
j=0

(�w�)
j  t;t+k+j�t+k;t+k+j (W (f)) +

�
1� �t+k (dt+k)

�
 t;t+kUf;t+k

1A
+Et

1X
k=1

 
k�1Y
i=0

�t+i (dt+i)

!
rW �t+k (dt+k)

0@ 1X
j=0

(�w�)
j  t;t+k+j�t+k;t+k+j �  t;t+kUf;t+k

1A :
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Note that, evaluating at the steady state distribution, we have

rWU tf = Et

1X
k=0

(�w�)
k  t;t+krW�t;t+k (46)

+Et

1X
k=1

k�1Y
i=0

�t+i (dt+i)
�
�t+k (dt+k)� �w�

� 1X
j=0

(�w�)
j  t;t+k+jrW�t+k;t+k+j

with rW�t+k;t+k+j < 0 and hence, rWU tf < 0.

Then, using the �rst-order condition (17) in steady state, we have

rWU tu = �
1� '
'

Uu;t � Uo
Uf;t

rWU tf > 0 (47)

and hence
@W (f)

@'
=

1�'
' + 1

SOC| {z }
(�)

(Uu;t � Uo)| {z }
(+)

rWU tf| {z }
(�)

> 0: (48)

The ideal wage for the workers is when ' = 1 and the ideal wage for the �rm is when ' = 0. Thus, the

desired wage of the workers is larger than the ideal wage for the �rm. Thus, for small shocks around

the the steady state, the union would never want to reduce the wage.

C.2 Steady state

We now turn to the (non-stochastic) steady state of the model.27 Note that the steady state of the

real variables is the same in the �exible price model and the sticky price model. In the steady state,

R, C, Y (f) and B are constant. Moreover, B = 0. M and P also grow at the rate ��, i.e., we have
Pt+1
Pt

= �� and �I = �R��.

Now, let us analyze the Nash Bargaining solution in steady state. Since Ft (dt) = 0 for all dt � 1

and Ft (dt) = 1 for all dt < 1, the �rst-order condition (17) is well de�ned for any W (f) 6= Pt �w, given

that all other variables are at their steady state values28, and we have

� (W (f)) = ' �Uf (W (f))rW �Uu (W (f)) + (1� ')
�
�Uu (W (f))� �Uo

�
rW �Uf (W (f)) ; (49)

where �Uu (W (f)) etc. indicates that all variables except W (f) are at steady state levels, noting that

the steady state value of  t;t+k is � k = �k. When W (f) > Pt �w, we have dt+k < 1 and Ft+1 (dt+k) = 1

27 That is, a situation where the disturbance At is equal to its mean value at all dates.
28 If all other variables are at their steady state values dt = 1 () W (f) = Pt �w:
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and hence, �t+i (dt+k) = 1

�Uu (W (f)) =
1

1� �
�� (W (f)) ; (50)

�Uf (W (f)) =
1

1� �
�� (W (f)) :

Letting

�Uo =
1

1� �
��o (51)

and

�D (W (f)) = '�� (W (f))rW �� (W (f)) + (1� ')
�
�� (W (f))� ��o

�
rW �� (W (f)) : (52)

When W (f) > Pt �w; we have

� (W (f)) =
'

1� �
�� (W (f))

1

1� �rW
�� (W (f)) +

1� '
1� �

�
�� (W (f))� ��o

�
rW �� (W (f)) (53)

and hence

� (W (f)) =

�
1

1� �

�2
�D (W (f)) : (54)

When W (f) < Pt �w, we have

� (W (f)) =

�
1

1� �w�

�2
�D (W (f)) +

+
� (1� �w)
(1� �w�)2

�
' �Uf (Pt �w)rW �� (W (f)) + (1� ')

�
�Uu (Pt �w)� �Uo

�
rW �� (W (f))

�
:

As Pt �w ! W (f), the term on the second row converges to #�D (Pt �w) where # > 0, since �Uf (Pt �w)

and �Uu (Pt �w) converges to �Uf (W (f)) and �Uu (W (f)), respectively. Hence, we must have

�D (Pt �w) = 0

in steady state. Since per-period utility and pro�ts are concave and continuously di¤erentiable in

wages, there is a unique wage such that this holds.
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As in Carlsson and Westermark (2006a), we have

�� = �u� �v;

��o = u
�
�C � b �w�L; �Q

�
� v

�
0; �Z

�
;

�� = � �y; (55)

@ ��

@W (f)
= �uC (1 + �w) (1� (
 + � (1� 
)))

�w�L

W (f)
+ �vL (
 + � (1� 
))

�L

W (f)
;

@��

@W (f)
= � (1� 
) tc

W (f)
;

and �D (W (f)) = 0 can be written as

'� �y [�uC (1 + �w) (1� �) �w (1� 
) + �vL (
 + � (1� 
))] �L� (1� ')
�
�u� �v � ��o

�
(1� 
) �y = 0: (56)

Potentially, the parties can settle on wages where �D (W (f)) � 0. However, in the case when

prices are �exible, there is a unique wage agreement on the wage where �D (W (f)) = 0. We focus on

the same point here.

C.2.1 E¢ ciency

Since there are two distortions and three instruments, one instrument is redundant. Here we use the

same method as in Carlsson and Westermark (2006a), relying on adjusting � and ��o, i.e., the per

period version of �Uo, to achieve e¢ ciency.

C.3 Optimal Wages and the Wage Setting �Phillips�Curve

Here, it is important to distinguish the period when the wage contract was last rewritten, the period

when the price was last changed and the current period. Therefore, we use the following notation

xtt+k;t+k+j to denote the value of variable x in period t + k + j, when the wage contract was last

renegotiated in t and the price was last changed in t+ k.

C.4 Case 1 Wages are adjusted

In this section, we derive the wage setting �Phillips�curve. Assume that the downward nominal wage

rigidity constraint does not bind. Log-linearizing the �rst-order condition (17) gives

0 = 'rW �Uu \rWU tu + (1� ')
 
1
�Uf
rW �Uf �UuÛ tu �

�Uu � �Uo�
�Uf
�2 rW �Uf �Uf Û tf

!
(57)

+(1� ')
�Uu � �Uo
�Uf

rW �Uf \rWU tf :
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The four terms in the above expressions are29

�UuÛ
t
u = Et

1X
k=0

(�w��)
k �̂tt;t+k (58)

+Et

1X
k=1

�
1 + �w
2

�k�1�
�w (1� �) +

1� �w
2

�
�k

1X
j=0

(�w��)
j �̂tt+k;t+k+j ;

�Uf Û
t
f = Et

1X
k=0

(�w�)
k � k

���̂
t

t;t+k (W (f)) (59)

+Et

1X
k=1

�
1 + �w
2

�k�1�
�w (1� �) +

1� �w
2

� 1X
j=0

(�w�)
j � k+j

���̂
t

t+k;t+k+j (W (f)) ;

rW �Uu\rWU
t

u = Et

1X
k=0

(�w��)
krW�\rW�

t

t;t+k (60)

+Et

1X
k=1

�
1 + �w
2

�k�1�
�w (1� �) +

1� �w
2

�
�k

1X
j=0

(�w��)
j rW�\rW�

t

t+k;t+k+j ;

and

rW �Uf
�
�\rWU tf

�
= Et

1X
k=0

(�w�)
k � krW�

�
�[rW�

t

t;t+k

�
+

+Et

1X
k=1

�
1 + �w
2

�k�1�
�w (1� �) +

1� �w
2

�
(61)

�
1X
j=0

(�w�)
j � k+jrW�

�
�[rW�

t

t+k;t+k+j

�
:

Leading the �rst-order condition for wages one period, multiplying with �w� and taking the

expectation at t gives

0 = 'rW �Uu
�
\rWU tu �

1 + �w
2

�Et
\rWU t+1u

�
+ (1� ') 1�Uf

rW �Uf �Uu
�
Û tu �

1 + �w
2

�EtÛ
t+1
u

�
+(1� ')

 
�
�Uu � �Uo�
�Uf
�2 rW �Uf �Uf �Û tf � 1 + �w2

�EtÛ
t+1
f

�!
(62)

+(1� ')
�Uu � �Uo
�Uf

rW �Uf
�
�\rWU tf �

1 + �w
2

�Et

�
� \rWU t+1f

��
:

29The last summation in the expressions contains all future price changes during the present wage contract.
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We de�ne n̂t (f) as the log-linearized relative wage (nt (f) =
W (f)
Wt

). Let

�n̂t (f) =
1

1� 1+�w
2 �

�
n̂t (f)� 1 + �w

2
�
�
Etn̂

t+1 (f) + Et�̂
!
t+1

��
(63)

and, from Carlsson and Westermark (2006b)

n̂t =

Z
n̂t (f) df =

�w
1� �w

�̂!t : (64)

Moreover, we need to distinguish the period where the wage contract was last rewritten for the

terms �̂t+k;t+k+j and �̂t+k;t+k+j as well as for the corresponding derivatives. As for �rm payo¤

and union utility, we indicate the wage contract period with superscripts, i.e., we use the notation

�̂
t

t+k;t+k+j and �̂
t
t+k;t+k+j .

We eliminate the two distortions in the economy stemming from monopoly power in the intermedi-

ate goods market and from union bargaining power in the labor market as in Carlsson and Westermark

(2006a). Following the method in Carlsson and Westermark (2006b), we then have

�d�n̂
t +�xx̂t +�w (ŵt � ŵ�t ) = 0; (65)

where

�d =

�
"L

1

� � 1 (' (2 + (1 + �L) "L)� (1 + "L))� ' (1� 
)
�
�vL �L;

�x =

��
�' "L

� � 1

�
�C � �L

1� �

1� 


�
� (1� ')�


�
+ '

1� �
 � �C (1� 
)
(� � 1) (1� 
)

�
�vL �L; (66)

�w =

�
�
�
�' "L

� � 1 (1� ��L) + (1� ') (1� 
)�
�
+ '

1 + "L
(� � 1) (1� 
)

�
�vL �L:

Using (66), when dividing expression (65) with �d and dividing through with 1 + "L, we get

�x
�d

=
'
�
1��

1�


1+�L"L
1+"L

� �C
�
+ (1� ')� 


1�


'
�

"L
1+"L

(1 + �L"L) + 1
�
� (1� ') "L

; (67)

�w
�d

=
'
�

"L
1+"L

(1� ��L) + 1
1�


�
+ (1� ')�

'
�

"L
1+"L

(1 + �L"L) + 1
�
� (1� ') "L

:

Using (63) and (64)

Z
�n̂t (f) df =

1

1� 1+�w
2 �

�
�w

1� �w
�̂!t �

1

1� �w
1 + �w
2

�Et�̂
!
t+1

�
; (68)
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and using (38), the labor market Phillips curve is

�̂!t =
1 + �w
2�w

�Et�̂
!
t+1 ��1

�
�x
�d
x̂t +

�w
�d

(ŵt � ŵ�t )
�
: (69)

C.4.1 Case 2. Wages are not adjusted

With negative shocks, we get

n̂t = �̂!t = 0: (70)

C.5 Welfare

First, consider the relationship between relative prices and wages. This can be derived from the

price setting relationship; see Carlsson and Westermark (2006b). As in the Technical Appendix, we

consider the relative price q̂t (f) and the relative wage in period t (where prices were last rewritten in

some period s < t). By similar arguments as in the Technical Appendix of Carlsson and Westermark

(2006a), we then have the following relationship between relative prices and wages

q̂t (f) = (1� 
) n̂t (f) +K 0: (71)

Since prices and wages are not fully �exible, variances are persistent. We want to �nd the variance

today as a function of previous variances and in�ation. For this purpose, let us express varf (logPt (f))

and varf (logWt (f)) in terms of squared in�ation and wage in�ation. Let �Pt = Ef logPt (f). We have

varf (logPt (f)) = Ef
�
logPt (f)� log �� � �Pt�1

�2 � �� �Pt�2 (72)

where

� �Pt = �Pt � log �� � �Pt�1: (73)

Let us rewrite � �Pt in terms of in�ation. Since logPt = Ef logPt (f) = �Pt, we have 30

� �Pt = logPt � log �� � logPt�1 = log �t � log �� = �̂t: (74)

30This follows from using a �rst-order Taylor approximation of the price level P 1��t =
R 1
0
Pt (f)

1�� df

�P + (1� �) �P��
�
�PP̂t � �P

�
=

Z 1

0

�
�P + (1� �) �P��

�
�PP̂t (f)� �P

��
df:

Since �P = �P (f), we have

P̂t =

Z 1

0

P̂t (f) df

or, by the de�nition of P̂t and P̂t (f), we have (74) (they are constructed as log-deviations around the same mean).
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Similarly, we have 31

� �Wt = logWt � log ��! � logWt�1 = �̂wt : (75)

We can write varf (logPt (f)) as

Ef
�
logPt (f)� log �� � �Pt�1

�2 � �� �Pt�2
= �w�Ef

�
log ��Pt�1 (f)� log �� � �Pt�1

�2
+ (1� �)�wEf

�
logP ot (Wt (f))� log �� � �Pt�1

�2
+(1� �w)

Z
Wt�1(f)>W o

t (f)
Ef
�
logP ot (Wt (f))� log �� � �Pt�1

�2
dF (dt;t) (76)

+(1� �w)
Z
Wt�1(f)�W o

t (f)
Ef
�
logP ot (W

o
t (f))� log �� � �Pt�1

�2
dF (dt;t)�

�
� �Pt

�2
;

recalling that superscript o indicates an optimally chosen price and wage. When evaluating at the

steady state, using that when wages are changed, they are the same for all �rms, i.e., W o
t (f) = W o

t

for all f , and hence optimal prices are the same, we get 32

Ef
�
logPt (f)� log �� � �Pt�1

�2 � �� �Pt�2
= �w�Ef

�
log ��Pt�1 (f)� log �� � �Pt�1

�2 (77)

+(1� �)�wEf
�
logP ot (Wt (f))� log �� � �Pt�1

�2
+(1� �w)

�
logP ot (W

o
t )� log �� � �Pt�1

�2 � �� �Pt�2
when logW o

t � log ��w � �Wt�1 � 0 and

Ef
�
logPt (f)� log �� � �Pt�1

�2 � �� �Pt�2
= ��wEf

�
log ��Pt�1 (f)� log �� � �Pt�1

�2 (78)

+((1� �)�w + (1� �w))Ef
�
logP ot (Wt (f))� log �� � �Pt�1

�2 � �� �Pt�2
otherwise, i.e., when logW o

t � log ��w � �Wt�1 < 0.

Let us express � �Pt in terms of Ef
�
logP ot (Wt (f))� log �� � �Pt�1

�2 and � �Wt. First, suppose that

31This follows from using a �rst-order Taylor approximation of the price level Wt =
R 1
0
Wt (f) df ;

Ŵt =

Z 1

0

Ŵt (f) df;

or, by the de�nition of Ŵt and Ŵt (f) (they are constructed as log-deviations around the same mean);

logWt = Ef logWt (f) = �Wt:

32A caveat is in place since our approach disregards any e¤ects stemming from that the wage distribution may be
non-degenerate. This dramatically reduces the complexity of the problem, c.f. the discussion of the wage distribution in
section 2.
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logW o
t � log ��w � �Wt�1 � 0. We have

� �Pt = �Pt � log �� � �Pt�1 = (1� �)�w
�
Ef logP

o
t (Wt (f))� log �� � �Pt�1

�
(79)

+(1� �w)
�
Ef logP

o
t (W

o
t )� log �� � �Pt�1

�
:

Note that, from the �rms�optimal capital and labor choice and the optimal pricing decision, we can

write the optimal price as P ot = % (W (f))1�
 where % only depend on aggregate variables. We thus

can write

logP ot (W
o
t ) = logP

o
t (��

!Wt�1 (f)) + (1� 
) (logW o
t � log ��!Wt�1 (f)) (80)

Using that we haveWt (f) = ��
!Wt�1 (f) for �rms that do not change prices and since Ef (log ��!Wt�1 (f)) =

log ��! + �Wt�1, we have

� �Pt � (1� 
)� �Wt = ((1� �)�w + (1� �w))
�
Ef logP

o
t (Wt (f))� log �� � �Pt�1

�
(81)

and

� �Wt = (1� �w)
�
logW o

t � log ��! � �Wt�1
�

(82)

when logW o
t � log ��w � �Wt�1 � 0.

When logW o
t � log ��w � �Wt�1 < 0, we have

� �Pt = �Pt � log �� � �Pt�1 = ((1� �)�w + (1� �w))
�
Ef logP

o
t (Wt (f))� log �� � �Pt�1

�
; (83)

and � �Wt = 0. Note that we always have

Ef
�
logP ot (Wt (f))� log �� � �P �pt�1

�2
= Ef

�
logP ot (Wt (f))� Ef logP ot (Wt (f)) + Ef logP

o
t (Wt (f))� log �� � �Pt�1

�2 (84)

= varf logP
o
t (Wt (f)) +

�
Ef logP

o
t (Wt (f))� log �� � �Pt�1

�2
:

Using (81) and (84) when logW o
t � log ��w � �Wt�1 � 0, we have

Ef
�
logP ot (Wt (f))� log �� � �Pt�1

�2
= varf logP

o
t (Wt (f)) +

�
Ef logP

o
t (Wt (f))� log �� � �Pt�1

�2
= varf logP

o
t (Wt (f)) +

�
� �Pt � (1� 
)� �Wt

�2
((1� �)�w + (1� �w))2

: (85)
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and, using (83) and (84)

Ef
�
logP ot (f)� log �� � �Pt�1

�2
= varf logP

o
t (Wt (f)) +

1

((1� �)�w + (1� �w))2
�
� �Pt

�2 (86)

otherwise.

Furthermore, by a similar method as in the Technical Appendix of Carlsson and Westermark

(2006b), using the fact that logP ot (W
o
t ) is the same for all �rms that change wages and the log-

linearization of logP ot (W
o
t ) i.e., (80) we can write

�
logP ot (W

o
t )� log �� � �Pt�1

�2 (87)

= Ef
�
logP ot (��

!Wt�1 (f))� log �� � �Pt�1
�2
+ Ef ((1� 
) (logW o

t � log ��!Wt�1 (f)))
2

+2 (1� 
)Ef
�
logP ot (��

!Wt�1 (f))� log �� � �Pt�1
�
(logW o

t � log ��!Wt�1 (f))

where, using (84)

Ef
�
logP ot (��

!Wt�1 (f))� log �� � �Pt�1
�2 (88)

= varf logP
o
t (Wt (f)) +

1

((1� �)�w + (1� �w))2
�
� �Pt � (1� 
)� �Wt

�2
;

using (75);

Ef ((1� 
) (logW o
t � log ��!Wt�1 (f)))

2 = (1� 
)2
�

1

(1� �w)2
�
� �Wt

�2
+ (��!)2 varf logWt�1 (f)

�
(89)

and, using (75), (81) and (84) that

Ef
�
logP ot (��

!Wt�1 (f))� log �� � �Pt�1
�
(logW o

t � log ��!Wt�1 (f)) (90)

=
1

(1� �)�w + (1� �w)
�
� �Pt � (1� 
)� �Wt

� 1

1� �w
� �Wt � (��!)2 (1� 
) varf logWt�1 (f) :

From (71) we have varf logP ot (Wt (f)) = (1� 
)2 varf logWt (f). Then, using (88), (90) and (89) in

(87), (77) and (85), we have that

varf (logPt (f)) = �w�varf (logPt�1 (f)) + (1� �)�w (1� 
)2 varf logWt (f) (91)

+
�w

(1� �)�w + (1� �w)

�
�
�
� �Pt

�2
+
1� �
1� �w

(1� 
)2
�
� �Wt

�2�
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when logW o
t (f)� log ��w � �Wt�1 � 0 and, from (78) and (86);

varf (logPt (f)) = �w�varf (logPt�1 (f)) + ((1� �)�w + 1� �w) (1� 
)2 varf logWt (f) (92)

+
�w�

(1� �)�w + (1� �w)
�
� �Pt

�2
;

otherwise.

For wages, using a similar method as in (72), we can write when � �Wt > 0

varf (logWt (f)) = Ef
�
logWt (f)� log ��w � �Wt�1

�2 � �� �Wt

�2 (93)

and

varf (logWt (f)) = varf (logWt�1 (f)) ; (94)

otherwise. When � �Wt > 0, we have

Ef
�
logWt (f)� log ��w � �Wt�1

�2 � �� �Wt

�2
= �wEf

�
log ��wWt�1 (f)� log ��w � �Wt�1

�2 (95)

+(1� �w)
�
logW o

t (f)� log ��w � �Wt�1
�2 � �� �Wt

�2
:

Using (75), we have

varf (logWt (f)) = �wvarf (logWt�1 (f)) +
�w

1� �w
�
� �Wt

�2
: (96)

Using � �Wt = �̂wt gives

varf (logWt (f)) = �wvarf (logWt�1 (f)) +
�w

1� �w
(�̂wt )

2 + o
�
k�k3

�
(97)

when logW opt
t (f)� log ��w � �Wt�1 � 0 and

varf (logWt (f)) = varf (logWt�1 (f)) + o
�
k�k3

�
; (98)

otherwise.
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C.5.1 Loss Function

We focus on the limiting cashless economy. The social welfare function is then

E0

1X
t=0

�tSWt (99)

where

SWt = u (Ct; Qt)�
Z 1

0
v (Lt (f) ; Zt) df: (100)

As in the Technical Appendix of Carlsson and Westermark (2006a), the total welfare di¤erence is

E0

1X
t=0

�t (SWt � SW �
t ) = �E0

�vL �L

2

1X
t=0

�t
�
�varf P̂t (f) +

�

2 + 2�
 (1� 
)

�
varfŴt (f)

�
(101)

+E0
�� �C

2

1X
t=0

�t
�
Ŷt � Ŷ �t

�2
+ tip+ o

�
k�k3

�
:

In this expression, the price and wage variances are di¤erent than in Carlsson and Westermark

(2006b), due to the downward nominal wage rigidities, since these are a¤ected by wage setting. Given

the path �̂w, let Tt (�̂w; r) denote the number of times wage in�ation is positive between t and s

Tt (�̂
w; s) = jfr : �̂wr > ��w; t � r � sgj : (102)

Repeatedly substituting (97) and (98) into themselves (forwardly) using (74), starting at 0 gives

varf (logWt (f)) =
�
�Tt(�̂

w;0)
w

�
varf (logW�1 (f)) +

�w
1� �w

tX
s=0

�Tt(�̂
w;s)�1

w (�̂ws )
2 + o

�
k�k3

�
: (103)

Multiplying by �t on both sides, using that varf (logW�1 (f)) is independent of policy and summing

from 0 to in�nity gives

1X
t=0

�tvarf (logWt (f)) =

1X
t=0

�t
�w

1� �w

tX
s=0

�Tt(�̂
w;s)�1

w (�̂ws )
2 + tip+ o

�
k�k3

�
: (104)

Taking the expectation at t = 0 and using the fact that the expression is evaluated at the steady state

and hence that the probability that the constraint binds is 12 gives

E0

1X
t=0

�tvarf (logWt (f)) =
�w

1� �w
1

1� � 1+�w2
E0

1X
t=0

�t (�̂wt )
2 + tip+ o

�
k�k3

�
: (105)
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Now consider prices again and expressions (91) and (92). These can be rewritten as

varf (logPt (f)) = �w�varf (logPt�1 (f)) + (1� �)�w (1� 
)2 varf logWt�1 (f) (106)

+
�w�

(1� �)�w + (1� �w)
(�̂t)

2 +
(1� �)�w

(1� �w) ((1� �)�w + (1� �w))
(1� 
)2 (�̂wt )

2

when logW o
t (f)� log ��w � �Wt�1 � 0 and, from (86) and (78)

varf (logPt (f)) = �w�varf (logPt�1 (f)) + ((1� �)�w + 1� �w) (1� 
)2 varf logWt�1 (f)

+
�w�

(1� �)�w + (1� �w)
(�̂t)

2 ; (107)

otherwise.

Repeatedly substituting this expression into itself (forwardly), starting at 0, taking expectations

at time 0 and evaluating at the steady state gives, using that the previous variance is passed through

with 1
2 (1� �)�w +

1
2 ((1� �)�w + (1� �w))

E0varf (logPt (f)) = E0

t�1X
s=0

(�w�)
t�s
��
(1� �)�w +

1� �w
2

�
(1� 
)2

�
varf (logWs (f))

+E0

tX
s=0

(�w�)
t�s (1� 
)2 (1� �)�w

(1� �w) ((1� �)�w + (1� �w))
(�̂ws )

2 (108)

+E0

tX
s=0

(�w�)
t�s �w�

(1� �)�w + (1� �w)
(�̂s)

2 + tip+ o
�
k�k3

�
:

Multiplying by �t on both sides, using that varf (logW�1 (f)) is independent of policy and summing

from 0 to in�nity gives

E0

1X
t=0

�tvarf (logPt (f)) = �

�
(1� �)�w + 1��w

2

�
(1� 
)2

1� ��w�
E0

1X
t=0

�tvarf (logWwt (f))

+
(1� 
)2 (1� �)�w

(1� ��w�) (1� �w) ((1� �)�w + (1� �w))
E0

1X
t=0

�t (�̂wt )
2 (109)

+
�w�

(1� ��w�) ((1� �)�w + (1� �w))
E0

1X
t=0

�t (�̂t)
2 + tip+ o

�
k�k3

�
:

Using (109) and (105) in (101) gives

E0

1X
t=0

�t (SWt � SW �
t ) = E0

1X
t=0

�tLt + tip+ o
�
k�k3

�
(110)

where

Lt = �x (x̂t)
2 + �� (�̂t)

2 + ��! (�̂
!
t )
2 ; (111)
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and using similar methods as in Carlsson and Westermark (2006b), and expression (38) we get

�x =
�C

2
�uC

�
��C + �L

1

1� 
 �



1� 


�
;

�� = ��vL
�L

2

� (
 (1� �) + 1 + 
)
1� 


1

�
; (112)

��! = ��vL
�L

2

�
�
"L + (1� 
)� (1 + 
 (1� �))

�1
� (1� 
) � (
 (1� �) + 1 + 
)

�

�
:

Note that �x < 0, �� < 0 and ��! < 0.

D Optimal Discretionary Policy

To �nd the optimal rule under discretion, the central bank solves the following problem

V (ŵt�1; ŵ
�
t ) = max

fx̂t;�̂t;�̂!t ;ŵtg
�x (x̂t)

2 + �� (�̂t)
2 + ��! (�̂

!
t )
2 + �EtV

�
ŵt; ŵ

�
t+1

�
+ tip+ o

�
k�k3

�
(113)

subject to

x̂t = Et

�
x̂t+1 �

1

�C

�bit � �̂t+1 � br�t �� ; (114)

�̂t = �Et�̂t+1 + (1� 
)
�
�̂!t � �Et�̂!t+1

�
+�(ŵt � ŵ�t ) +




1� 
�x̂t; (115)

�̂!t = max

�
0;
1 + �w
2�w

�Et�̂
!
t+1 � 
w (ŵt � ŵ�t )� 
xx̂t

�
; (116)

ŵt = ŵt�1 + �̂
!
t � �̂t: (117)

Note that the max restriction can be replaced by

�̂!t � 1 + �w
2�w

�Et�̂
!
t+1 � 
w (ŵt � ŵ�t )� 
xx̂t; (118)

�̂!t � 0: (119)

The reason for the restriction �̂!t � 1+�w
2�w

�Et�̂
!
t+1 � 
xx̂t � 
w (ŵt � ŵ�t ) is the following. First, if

the desired wage change is positive, it is set according to the �rst-order condition, implying that the

condition holds with equality. Second, if the desired wage change is negative, downward rigidity kicks

in so that wages are higher than those prescribed by the �rst-order condition.
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We solve by using the Lagrange method. The Lagrangian is

L = �x (x̂t)
2 + �� (�̂t)

2 + ��! (�̂
!
t )
2 + �EtV

�
ŵt; ŵ

�
t+1

�
���t

�
�Et�̂t+1 + (1� 
)

�
�̂!t � �Et�̂!t+1

�
+�(ŵt � ŵ�t ) +




1� 
�x̂t � �̂t
�

��wt (ŵt�1 + �̂!t � �̂t � ŵt) (120)

���!t
�
1 + �w
2�w

�Et�̂
!
t+1 � 
xx̂t � 
w (ŵt � ŵ�t )� �̂!t

�
��0t (��̂!t ) :

The �rst-order conditions are

0 = 2�xx̂t � ��t



1� 
�+ �
�!

t 
x;

0 = 2���̂t + �
�
t + �

w
t ;

0 = 2��! �̂
!
t � ��t (1� 
)� �wt + ��

!

t + �0t ; (121)

0 = �EtV1
�
ŵt; ŵ

�
t+1

�
� ��t

�
�Et

@�̂t+1
@ŵt

� (1� 
)�Et
@�̂!t+1
@ŵt

+�

�
+�wt � ��

!

t

�
1 + �w
2�w

�Et
@�̂!t+1
@ŵt

� 
w
�
:

Note that we restrict the attention to Markov-perfect equilibria, i.e., we do not consider any equilibria

with reputational e¤ects that could arise from complex non-Markov behavior. However, we need to

take into account that the real wage is an endogenous state variable. Therefore, expected in�ation

and expected wage in�ation will depend on lagged real wages in equilibrium. An implication of this

is that when designing monetary policy, even in the absence of a commitment mechanism, the central

bank should take into account how changes in the real wage today a¤ect private sector expectations.

We also have the complementary slackness conditions

��
!

t

�
1 + �w
2�w

�Et�̂
!
t+1 � 
xx̂t � 
w (ŵt � ŵ�t )� �̂!t

�
= 0; (122)

�0t (��̂!t ) = 0:

Note that the original constraint (116) and the inequality constraints (118) and (119) need not be

equivalent. It is obviously true that a �̂!t satisfying the original constraint satis�es the two inequality

constraints. However, it is possible that there is a solution to the problem with inequality constraints

so that none of the inequality constraints is binding, leading to a violation of the original constraints.

The following Lemma shows that at least one of the inequality constraints must be binding, ruling

out this possibility.

Lemma 1. At least one of the inequality constraints (118) and (119) must be binding.
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Proof : We prove this by contradiction. Suppose that

�̂!t >
1 + �w
2�w

�Et�̂
!
t+1 � 
xx̂t � 
w (ŵt � ŵ�t ) ; (123)

�̂!t > 0:

Then ��
!

t = �0t = 0 and the �rst-order conditions simpli�es to

0 = 2�xx̂t � ��t



1� 
�;

0 = 2���̂t + �
�
t + �

w
t ; (124)

0 = 2��! �̂
!
t � ��t (1� 
)� �wt ;

0 = �EtV1
�
ŵt; ŵ

�
t+1

�
� ��t

�
�Et

@�̂t+1
@ŵt

� (1� 
)�Et
@�̂!t+1
@ŵt

+�

�
+ �wt :

Using the �rst three �rst-order conditions, we get

2�xx̂t + (2���̂t + 2��! �̂
!
t )

1

1� 
� = 0: (125)

Suppose that we change �̂!t and keep (ŵt � ŵ�t ) �xed. To ensure that the two equality constraints

hold, we require that, for the second constraint, d�̂td�̂!t
= 1 and, for the �rst constraint, dx̂td�̂!t

= 1�

�

1 =
1

1� 
�
dx̂t
d�̂!t

: (126)

The e¤ect on the objective of a change in �̂!t is then�
2�x (x̂t)

dx̂t
d�̂!t

+ 2�� (�̂t)
d�̂t
d�̂!t

+ 2��! (�̂
!
t )

�
d�̂!t =

�
2�x (x̂t)

1� 

�

+ 2�� (�̂t) + 2��! (�̂
!
t )

�
d�̂!t = 0

(127)

using expression (125). From the last �rst-order condition we have

�EtV1
�
ŵt; ŵ

�
t+1

�
= �2���̂t + 2��

! �̂!t



�
�Et

@�̂t+1
@ŵt

� (1� 
)�Et
@�̂!t+1
@ŵt

+�

�
(128)

�2���̂t �
2���̂t + 2��! �̂

!
t



:

The e¤ect on the right-hand side of the change in �̂!t , while keeping real wages constant, is�
� (2�� + 2��!)

�
�+ 1




�
� 2��

�
d�̂!t : (129)

Since the term within the parenthesis is positive and d�̂!t can be changed in any direction, this

implies that the last �rst-order condition is violated. Since the change led to an una¤ected value
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of the problem, there is another change in the variables �̂t; �̂!t ; x̂t and ŵt which leads to a strict

improvement in the value of the problem, ruling out optimality of a solution where both inequality

constraints holds strictly as in (123). �

First, suppose �̂!t > 0. Then, we get �0t = 0 from the complementary slackness condition. The

�rst-order conditions then simplify to

0 = 2�xx̂t � ��t



1� 
�+ �
�!

t 
x;

0 = 2���̂t + �
�
t + �

w
t ;

0 = 2��! �̂
!
t � ��t (1� 
)� �wt + ��

!

t ; (130)

0 = �EtV1
�
ŵt; ŵ

�
t+1

�
� ��t

�
�Et

@�̂t+1
@ŵt

� (1� 
)�Et
@�̂!t+1
@ŵt

+�

�
+�wt � ��

!

t

�
1 + �w
2�w

�Et
@�̂!t+1
@ŵt

� 
w
�
:

We also have the constraints

�̂t = �Et�̂t+1 + (1� 
)
�
�̂!t � �Et�̂!t+1

�
+�(ŵt � ŵ�t ) +




1� 
�x̂t;

ŵt = ŵt�1 + �̂
!
t � �̂t; (131)

�̂!t =
1 + �w
2�w

�Et�̂
!
t+1 � 
xx̂t � 
w (ŵt � ŵ�t ) :

Using the �rst three �rst-order conditions gives

2�xx̂t � ��t



1� 
�+ �
�!

t 
x = 0;

2���̂t + �
�
t + �

w
t = 0; (132)

2��! �̂
!
t � ��t (1� 
)� �wt + ��

!

t = 0:

We get; 0BBB@
��t

�wt

��
!

t

1CCCA = �2

0BBB@
� 

1�
� 0 
x

1 1 0

� (1� 
) �1 1

1CCCA
�1

�

0BBB@
�xx̂t

���̂t

��! �̂
!
t

1CCCA : (133)

We can write the Lagrange multipliers as functions of x̂t, �̂t and �̂!t and hence, we can eliminate the

Lagrange multipliers from the last �rst-order condition

0 = �EtV1
�
ŵt; ŵ

�
t+1

�
� ��t (x̂t; �̂t; �̂!t )

�
�Et

@�̂t+1
@ŵt

� (1� 
)�Et
@�̂!t+1
@ŵt

+�

�
(134)
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t )� ��

!

t (x̂t; �̂t; �̂
!
t )

�
1 + �w
2�w

�Et
@�̂!t+1
@ŵt

� 
w
�
:
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We then get the following system of equations

0 = �EtV1
�
ŵt; ŵ

�
t+1

�
� ��t (x̂t; �̂t; �̂!t )
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�Et
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)
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+�(ŵt � ŵ�t ) +




1� 
�x̂t; (135)

ŵt = ŵt�1 + �̂
!
t � �̂t;

�̂!t =
1 + �w
2�w

�Et�̂
!
t+1 � 
xx̂t � 
w (ŵt � ŵ�t ) :

Second, suppose that �̂!t = 0. Then, we get �
�!
t = 0 from the complementary slackness condition.

The �rst-order conditions then simplify to

0 = 2�xx̂t � ��t
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�;

0 = 2���̂t + �
�
t + �

w
t ; (136)
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1CCCA : (137)

Thus, we can write the Lagrange multipliers as functions of x̂t and �̂t and hence, once more, eliminate

them from the last �rst-order condition. The last �rst-order condition becomes

�EtV1
�
ŵt; ŵ

�
t+1
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� ��t (x̂t; �̂t)
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+ �wt (x̂t; �̂t) = 0: (138)

We then get the following system of equations

0 = �EtV1
�
ŵt; ŵ

�
t+1
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�
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�x̂t; (139)

ŵt = ŵt�1 + �̂
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�̂!t = 0:
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