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Abstract

We propose a way to model firm mergers using a matching game known as the

roommate problem, whereby firms are assumed to make preference rankings of po-

tential merger partners. The position of a firm in another firm’s ranking is assumed

to be governed by an index, which in turn consists of a deterministic part and of a

stochastic one, similar to the latent indices used in standard discrete-choice models.

Given all firms’ preferences, game-theoretic mechanisms lead to a matching whereby

each firm is either self-matched or assigned a merger partner. We derive expressions

for the probability of a merger between a specific firm pair, and also a log-likelihood

function for estimation using firm-specific data. Using a simulation in a setting with

groups of three firms involved in roommate games within each group, the model’s

finite-sample properties are examined.
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1 Introduction

Mergers and acquisitions have attracted the attention of economists and policymakers for

a long time. One important reason is that mergers can have a potentially negative impact

on social welfare due to increased market concentration. Thus, it is of interest to measure

the effect of mergers on, e.g., consumer prices in the industry of interest.

The present study is concerned with a different aspect, namely the incentives for firms

to form mergers. Using common economic terminology, there are several possible motives

for two firms to merge. For instance, mergers may allow firms to exploit economies of

scale and thus increase their profits. But in addition, increased market power may also

lead to higher profits. Since merger incentives reveal firms’ beliefs about merger effects,

they are also interesting from policymakers’ point of view.

The existing literature on merger incentives is abundant, and the present study is

connected to at least two research areas: Empirical studies attempting to explain merger

probabilities as a function of firm-specific attributes, and more theoretically oriented

work from the industrial organization (IO) field. Specifying a reasonable model for firm

mergers implies difficult challenges, because of the complex dependence among firms’

choices. Firms taking part in a merger formation cannot really make a choice of merging

with another firm. At most, the steering board may want to participate in a merger, and

take appropriate actions. That may or may not lead to an actual merger, depending of

course on what the potential partner’s steering board and shareholders want, but also on

actions taken by other firms.

Recent theoretical studies of endogenous merger theory typically address this complex-

ity using game theoretic tools.1 But most of the empirical studies of the motives behind

mergers do not employ a strict economic model of mergers. Thus there exists a gap

between economic theory and empirical studies.

The present paper addresses this gap by providing a decision framework at individual

firm level, that can be used directly in applied work. We argue that firm mergers can be

seen as an instance of the roommate game. Furthermore, we aim at making the parameters

of the merger model estimable. The analysis is intended to be general, so as to allow for

an analysis of pure roommate games, or other situations that can be translated into a

roommate problem.

In the IO literature, merger behaviour is often analyzed using game theory as a tool.

The present study is most closely related to endogenous merger theory, which Horn and

1The articles by Kamien and Zang (1990), Fridolfsson and Stennek (2005, 2004) Horn and Persson
(2001) fall within the field of endogenous firm mergers. Gowrisankaran (1999) is one of few studies
that present a dynamic model of endogenous mergers. A typical dynamic effect might be that market
concentration increases due to a merger, but may be counterbalanced by increased possibilities of entry
by new firms, and thus the welfare effect for society may not be negative. Gowrisankaran (1999) bases
his model on the work by Ericson and Pakes (1995).
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Persson (2001) is an example of. Horn and Persson introduce a game-theoretic model of

mergers, not very unlike the one proposed in section 2 of the present paper. At the outset,

a number of firms are allowed to form mergers with each other, with a resulting market

structure. Each market structure results in a certain profit for the involved firms. If we

analyze three firms, it might be that if firms one and two merge, they get a profit of a,

while firm three (which has not merged) gets b; or, if firms one and three merge, they get

c while firm two gets d, etc. The firms within a merger are then free to bargain on how to

share the profit. As will be seen in the sequel, in the firm-merger model we propose, an

individual firm cannot be forced to join a merger. In Horn and Persson (2001), however,

a market structure is chosen if a so called decisive group has higher combined profit in it

than in the alternative market structure. This in turn means that a firm could have lower

profit in the chosen market structure than in the alternative one. Thus, an individual

firm may be forced by the decisive group to accept a market structure.

The merger formation mechanism in Fridolfsson and Stennek (2005, 2004) is of a dif-

ferent kind. Firms take turns in submitting merger proposals to their competitors, which

are either accepted or rejected. The model considers a concentrated market with three

firms. Once a firm has accepted a proposal, the bargaining ends; otherwise, a new bidding

round starts at a random point in time. Each firm has a strategy, describing whether and

how much to bid and a reservation price at which to accept an offer from another firm.

The theoretical studies above provide interesting insights into the motives for mergers,

and also explain empirical observations made by other studies. For instance, Fridolfsson

and Stennek (2004) give a reconciliation between theory and the paradox of why mergers

often lead to a rise in consumer prices, which in turn can be assumed to lead to an increase

in competitors’ profits, while competitors’ share prices fall. Nevertheless, it is clear that

the models are theoretical, in the sense that model parameters are not easily estimable.

An econometrician cannot readily use them in her or his econometric specification. At

most, he or she can refer to theoretical results when trying to explain the empirical ones.

As will become clear in the sequel, this is the main difference between the present and

earlier studies: Our merger game is explicitly converted into an estimable econometric

model, giving a clear-cut link between economic theory and empirical estimation. At a

later stage in the paper we are forced to restrict the generality of the analysis due to the

complexity of the model. We begin with a general economic model of firm mergers, but

when the estimation technique is outlined the analysis is limited to oligopoly situations

with groups of three firms that take part in different merger games. This limitation is

discussed at the end of the paper.

The roommate game is well-studied in the game-theoretic literature. It is a part of the

literature on matching markets. The book by Roth and Sotomayor (1990) treats two-sided

matching in detail, but the roommate game does not fall within this sub-category. Two-
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sided matching is not suitable for analyzing firm mergers, because it deals with situations

where the group of agents can be naturally divided into two subgroups. In terms of

mergers, this would mean that the firms are exogenously divided into, say, acquirers and

targets.

A well-known example a two-sided matching is the marriage game. Dagsvik (2000)

develops a general framework suited for analysis of two-sided matching markets. Un-

der specific distributional assumptions regarding the agents’ preferences, he derives a

functional relationship between the number of realized matches of a certain type (i.e.,

corresponding to a certain combination of attributes of agents from each type) and the

number of agents with specific attributes from each type. Using this relationship, param-

eters from the preferences of the agents can be estimated. The framework is applied to

a two-sex marriage model in Dagsvik, Flaatten, and Brunborg (1998), where men and

women are grouped with respect to age. Unfortunately, Dagsvik’s framework cannot be

applied to firm mergers, because it is only applicable to two-sided matching markets.

The roommate game does not assume anything about the role of the agents beforehand.

A simple version is as follows:2 Assume that an even number of persons, say k, wish to

divide up into pairs of roommates to share k/2 rooms. Each person ranks the remaining

k − 1 in descending order, beginning with the person most preferred to share room with.

A set of pairings, also called a matching, is called stable if there are not two persons –

currently not sharing room – who prefer each other to their actual roommates. In contrast

to the marriage game, there are examples of preferences for which no stable set of pairings

exists.

A number of theoretical articles consider the roommate problem, and the most relevant

of those will be mentioned in Section 2. Most of the previous work deals with the issue of

stability, i.e., with questions such as whether there exists a stable matching for a specific

roommate problem (to be defined in the sequel), and if so, how to reach such a match-

ing. The present paper instead focuses on introducing an econometric model, stemming

from the roommate game. To make estimation possible, we introduce randomness in the

preference ordering. The resulting econometric specification is much like a discrete choice

model, the main difference being that no agent can choose a roommate the way that indi-

viduals can make choices in a discrete choice model. Instead, an agent makes a ranking,

and then a game-theoretic mechanism leads to a set of pairings.

The next section states the formal economic model of mergers. Sections 3 and 4 deal

with estimation issues. We conclude our analysis in section 5, and figures are left for the

appendix.

2Gale and Shapley (1962, Example 3 on p. 12) is an early reference.
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2 The merger game

We need to make some generalizations to the simple roommate game described above

in order to use it for modelling mergers. Firms can (and often do) stand on their own,

i.e., they do not have to merge with other firms. Thus n, the number of firms, does not

have to be even, and more importantly, the number of mergers is not known a priori, but

depends on the firms’ preferences for one another. The latter implies that not only the

merger decisions, but also the number of mergers, is endogenous. Thus we assume that

the number of mergers lies between zero and n/2.

The rest of this section begins with a formal model of a merger game. At this first stage,

we assume that the preference ordering of each firm over the others is given. But the

interest of this paper is to go deeper than that; we want to know how firm characteristics

influence the preference orderings, and thus the merger decisions. Therefore, stage two

provides a functional relationship between firm attributes and merger formation.

Assume a finite set of firms denoted by F = {f1, f2, . . . , fn}. Firm fi’s preference

ordering over the other firms is denoted by Wi and might for example be of the form

Wi = {f2, f1, fi, f6, . . . , fn}, (1)

implying that firm fi’s first choice is, if possible, to merge with firm f2. If that is impos-

sible, its second choice is to merge with firm f1, and if that also is unattainable, the firm

prefers to continue operating on its own. If fi strictly prefers to merge with fk rather than

with fm, we will sometimes write fk Âfi
fm when we do not need to show the complete

ordering. At this stage we do not assume strict preferences; that is, we might have week

preferences denoted by fk %fi
fm. This notation means that fi finds fk at least as good

as fm. We do, however, assume that preferences are rational, i.e., that they are transitive

and form a complete ordering.

Now we make still one assumption, namely that no firm can be forced into a merger,

thereby excluding the possibility of hostile takeovers. This assumption implies that the

only part of (1) that matters is

Wi = {f2, f1, fi},

because firm fi prefers to operate alone rather than merge with any firms in the set

{f6, . . . , fn}. Another way of stating this is to say that none of the firms in {f6, . . . , fn} is

acceptable to fi. The collected preference orderings of all firms are called the preference

profile and denoted by W = {W1,W2, . . . ,Wn}.
At the outset of the game, all n firms operate on their own, and at this stage we assume

that their preference orderings are known; later this assumption will be dropped. The

purpose of the game is a set of pairings, given the preference profile. Formally, this can
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be expressed in terms of a matching, which is defined below.

Definition 1 (Matching). A matching µ implies that each firm is either self-matched (i.e.,

continues to operate on its own), or is matched to at most one merge partner. A stable

matching is one where all matches are individually acceptable (i.e., none of the matched

firms prefers to be self-matched rather than its current matching), and in addition, no

pair of firms prefer to be matched to each other rather than according to the prevailing

matching.

An example might be useful at this stage. Set n = 3 and assume that the preference

profile is W = {{f3, f1, f2}, {f1, f3, f2}, {f2, f3, f1}}. Consider the matching µ defined by

a merger between f1 and f3, while f2 continues on its own. According to the preference

profile, f1 is satisfied, since it merges with its most preferred choice. But f3 prefers f2

to f1, and since f2 prefers f3 to not merging at all, f2 and f3 would gain if they merged

with each other. Therefore, the matching is not stable. Consider instead the matching

denoted by µ′ where f2 merges with f3 and f1 is self-matched. Now f1 would benefit from

merging with f3, but f3 prefers its current matching. Furthermore, f1 and f2 do not want

to form a merger, since they are not acceptable to each other. Consequently, µ′ is a stable

matching.

As shown in Gale and Shapley (1962), it is easy to construct examples of preference

profiles leading to non-existence of a stable matching in the roommate game. Below we

will discuss conditions for the existence of a stable matching, but before continuing, we

need to introduce the concept of blocking.

Definition 2 (Blocking). A matching µ is blocked by a pair of firms {fi, fj} ⊆ F if fi

and fj both prefer each other to the firms they are matched to in µ. This is valid also

for i = j, i.e., an individual firm fi can block µ if it does not accept its current merging

partner.

The notion of blocking is closely related to our assumption concerning hostile takeovers

– if blocking is permitted, there can be no hostile takeovers. Stated in words, blocking

implies that each individual firm is allowed to choose the best attainable matching for a

given preference profile.

The earliest general treatment of stability in the roommate game can be found in Irving

(1985). Given a preference profile, the algorithm proposed by Irving determines whether

there exists a stable matching, and if so, finds such a matching. But since the algorithm

is defined in terms of a computer program, it is hard to summarize, and what is more

important, it does not give any insight regarding the general conditions on preferences

that lead to a stable matching. Thus, for a given preference profile that does not lead

to a stable matching, one would have to trace Irving’s algorithm step by step in order to

find out the reason for non-stability.
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Later studies provide conditions for stable matchings that are more easily interpreted.

There are two sets of results in the literature concerning stability in the roommate game,

distinguished by whether preferences are assumed to be weak or strict. The paper by Tan

(1991) provides a necessary and sufficient condition for the existence of a stable match-

ing in the case of strict preferences, which is stated in terms of a preference restriction.

This condition is rather technical, and since it will not be used in the present paper, the

interested reader is referred to the article. We will instead focus on the more general

treatment in Chung (2000) which allows for weak preferences, and in addition supplies a

condition which is somewhat less tedious to state, and will therefore prove more suitable

for our needs. Chung identifies a sufficient condition for the existence of stable room-

mate matchings, called the no odd rings condition. Before stating it, we need one more

definition:

Definition 3 (Odd ring). A ring is an ordered subset of firms {f1, f2, . . . , fk}, k ≥ 3,

such that for 1 ≤ i ≤ k,

fi+1 Âfi
fi−1 %fi

fi, for odd i, and

fi+1 %fi
fi−1 %fi

fi for even i.

The subscript is taken modulo k, which is explained by the following example: For k = 3

and i = 1, fi−1 is read f3, because 3 ≡ i − 1 (mod 3) = 0 (mod 3). An odd ring is a

ring such that k is odd, and a strict odd ring is an odd ring in the special case with strict

preferences. (Note that in the latter case, distinguishing between odd and even i is not

needed.)

This seemingly abstract definition will be treated later on in the paper, and for the

special case when n = 3 we will explicitly show all possible odd rings. The main result

in Chung (2000) is that if there are no odd rings in W , there exist stable roommate

matchings. Furthermore, a stable matching can be reached using a simple algorithm, first

described in Roth and Vande Vate (1990). In the present setting involving n firms with

the preference profile W , this mechanism, which we call the Roth-Vande Vate algorithm,

has the following essence: It starts with an arbitrary matching denoted by µ1. If µ1 is

stable, there will be no blocking pairs, and the algorithm stops. If it is unstable, there

will be at least one blocking pair. In that situation we form a new matching denoted by

µ2, where a randomly chosen pair from the ones that block µ1 is allowed to merge, and

their partners under µ1 are self-matched under µ2. Now, if µ2 is stable, the algorithm

stops, and if it is unstable, we form µ3, etc. Chung shows that if there are no odd rings

in W , the sequence {µi}∞i=1 will converge to a stable roommate matching with probability

one.
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In general, Chung’s no odd rings condition is sufficient, but not necessary.3 But he

shows that when preferences are weak and there exists a stable matching despite the

existence of an odd ring, the Roth-Vande Vate algorithm cannot be used to reach the

stable matching. On the other hand, if a stable matching exists (with or without the

existence of odd rings), and in addition preferences are strict, we may use the result from

Theorem 1 in Diamantoudi, Miyagawa, and Xue (2004), stating that the Roth-Vande

Vate algorithm can be used.

Is the above algorithm a plausible description of the actual process of merger formation

in an industry? Among many other things, the answer depends on whether or not we

allow hostile takeovers. If we define a hostile takeover as any firm being forced into a

merger against its will, and allow it, no blocking can take place. If we, on the contrary,

exclude the possibility of hostile takeovers, the algorithm seems rather attractive: It can

be seen as a way for firms to choose freely whether to merge or not, and in addition,

which partner to choose. For the sake of simplicity we therefore assume in the present

paper that hostile takeovers do not take place. Consider for instance the situation where

fi is facing bankruptcy and fj approaches it with a takeover proposition. Even though fi

may be considered forced to accept, in this paper we see it another way: the owners of fi

use their free will to choose the firm being taken over, rather than for it to go bankrupt.

3 A discrete-response framework

Up to this point, we have taken the firms’ preference profile as given, which is an unrealistic

assumption for an empirical application. It is true that in theory, one could think of survey

data with firms’ rankings of each other. Using those, a researcher might then analyze

possible stable matchings. But such data are bound to be difficult – if not impossible –

to obtain. Firstly, mergers are often kept secret until the day of the announcement of a

merger proposal, and it is not likely that a researcher would be able to obtain advance

information. After a merger proposal is announced, the steering board of a firm would

probably find it unappropriate to give information about the ranking of its other potential

merger candidates, because such information would probably affect the outcome of the

ongoing merger or merger negotiations. Secondly, if the firms of interest are limited

liability companies, for practical purposes such a survey would have to be addressed

toward the steering boards, and not toward the shareholders. But it is the latter that

in fact take the final decision, and it is not unusual that shareholders do not follow the

steering board’s advice. Consequently, even if a ranking in theory could be obtained, it

is not likely that it is the correct one.

3For an example of preferences with an odd ring where a stable matching exists, see Chung (2000,
Example 2)
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This section provides an empirical framework based on a specific distributional as-

sumption regarding the preference profile. We will consider all possible outcomes of a

merger game and derive their probabilities. A log-likelihood function and a correspond-

ing maximum-likelihood estimator of the population parameter vector is derived and its

finite-sample properties examined, and as will become clear in the sequel, our approach

has many similarities with discrete-choice models. The data we have in mind is assumed

to consist of several groups of firms, where a roommate merger game takes place among

the firms within each group. Along the way, the analysis will be restricted to a maximum

of three firms in each group due to the complexity of the resulting probability expressions.

This limitation is further discussed at the end of the paper.

To this end, assume that we are dealing with a one-shot game in which n firms par-

ticipate. The main idea is that each firm fi, i = 1, 2, . . . , n, observes every other firm’s

attributes, and uses those (possibly relating them to its own attributes) to make a pref-

erence ordering of all firms, including fi itself. Collect fi’s attributes in the vector xi and

assume the following:

Assumption 1. The position of fj in fi’s preference ordering solely depends on the index

Πij = g(xi,xj) + εij, where we let j = 1, 2, . . . , n. The function g(·) is deterministic and

assumed to be known up to an unknown parameter vector and εij are random error terms.

Each εij is i.i.d. extreme value with probability density function fεij
(εij) = e−εije−e−εij

.

Note that this assumption ensures strict preferences, since the indices have continuous

cumulative distribution functions. The index might for instance represent the profit to

fi’s owners from a merger with fj, or it might be seen as an aggregated utility index that

the owners of fi get from merging fj. Both parts of the index (and thus the ranking)

are assumed to be known by the firm, but only the deterministic part (up to a set of

parameters) is known to the econometrician. From the perspective of the researcher, the

variables εij are treated as random because they influence the index, but are known only

to the firm. Thus εij is simply defined so as to capture the difference between the true

value of the index and the part that is known to the researcher. If Πij > Πik, then fj is

ranked higher than fk in Wi, and thus, there is a one-to-one correspondence from Πij to

Wi ∀ j. Note that by construction, the level of the index does not matter for the ranking,

solely the order does. Moreover, fi does not have to place fj at the same position in its

preference ordering, as fj places fi.

To get a feeling for the construction of the index, consider a hypothetical example

of a matching game among firms of different sizes with locations spread over a whole

continent. Assume that in their search of a merging partner, firms’ rankings of each other

are influenced by geographical distance and by differences in firm size. Then if xk = (sk, lk)

for k = i, j, where s is size and l is location, we might have g(xi,xj) = g(si − sj, li − lj).
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Let Iij = 1 if fi and fj merge, and zero otherwise, and consider the probability of a

merger between the two firms, denoted by Pij ≡ P(Iij = 1). For a given number of firms,

we are interested in deriving the probability of a merger between any specific firm pair, and

the probability that the all firms are self-matched. In the sequel, we restrict the analysis

to the case when n = 3. This restriction is imposed simply because of the complexity of

the resulting expressions. It can be seen as a limitation to oligopoly situations with groups

of three firms that take part in different merger games, and will be further discussed in

the last section of this paper. Generalization of the results to a larger number of firms is

in theory straightforward, but since no general formulas are available, it is bound to be

time-consuming.

Consider first the possible outcomes resulting from a game with three firms. If f1

merges with f2, then f3 must necessarily be self matched, and so this is one possible

matching. The same applies to a merger between f1 and f3, and f2 and f3. Next we have

the possibility of all firms being self-matched, and finally, the possibility of preferences

leading to no stable matching. Thus, the sample space of a game with three firms consists

of five mutually exclusive outcomes and is denoted by S = {{I11 = I22 = I33 = 1}, {I33 =

I12 = 1}, {I22 = I13 = 1}, {I11 = I23 = 1}, {I11 = I22 = I33 = I12 = I13 = I23 = 0}} ≡
{A,B, C, D, E}. It is easy to check that we must have P(A)+P(B)+P(C)+P(D)+P(E) =

1.

For reasons which will soon become clear, we begin by considering a specific event,

rather than an outcome. The probability of a merger between f1 and f2 is given below. For

conciseness, below each individual probability is its corresponding short-hand denotation

p1, p2, . . . , p11.

P(I12 = 1) =

P(Π12 > max{Π11, Π13})
p1

× P(Π21 > max{Π22, Π23})
p2

+ P(Π13 > Π12 > Π11)
p3

× P(Π21 > max{Π22, Π23})
p4

× P(Π33 > Π31)
p5

+ P(Π23 > Π21 > Π22)
p6

× P(Π12 > max{Π11, Π13})
p7

× P(Π33 > Π32)
p8

+ P(Π13 > Π12 > Π11)
p9

× P(Π23 > Π21 > Π22)
p10

× P(Π33 > max{Π31, Π32})
p11

.

(2)

This expression looks disorganized, but is in fact rather intuitive. (For conciseness, when

we are considering two specific firms, we will sometimes refer to them as “he” and “she”.)

It is a sum of four terms, with the first term covering the probability of f1 giving f2

highest rank in her preference ordering, at the same time as f2 ranks f1 at the top of his.

If this is the case, both firms will clearly block any other matching, and we will end up

with a merger between them. The second term deals with the case when f2 acceptable
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to f1, but is ranked lower than f3, at the same time as f1 is the most preferred in f2’s

ordering. In this case, I12 = 1 if and only if f1 is not acceptable to f3. The third term

is analogous to the second, the roles of f1 and f2 being reversed. Finally, the last term

covers the case when f1 and f2 are acceptable to each other, but each prefers f3 the most.

Here, f1 and f2 will still merge if none of them is acceptable to f3.

Given the distributional properties of Πij given in Assumption 1, we will derive a closed-

form formula for (2). First, notice that p4 = p2, p7 = p1, p9 = p3, and p10 = p6, and thus

we only need to attend to p1, p2, p3, p5, p6, p8, and p11. Consider p1, p2, p5, p8, and p11,

which can all be written on any of the forms P(Πij > max{Πik, Πil}) or P(Πij > Πik). A

well-known result is readily applicable to this case, namely the formula for logit choice

probabilities which is derived in e.g., McFadden (1974) using the same distributional

assumptions as here. Notice that we are not referring to the logit model, but merely to

the expression for logit choice probabilities. The formula is defined for an agent i making

a choice among J alternatives. Each alternative j = 1, 2, . . . , J gives to i the utility Πij,

which is according to Assumption 1. A utility-maximizing agent i will choose alternative

j if Πij > Πik ∀ k 6= j, and the probability for this, also called the logit choice probability,

is given by

P(Πij > Πik ∀ k 6= j) =
eVij

∑J
m=1 eVim

,

where Vij ≡ g(xi,xj). This formula is directly applicable to the five expressions mentioned

above and using it results in

p1 =
eV12

eV11 + eV12 + eV13
p2 =

eV21

eV21 + eV22 + eV23
p5 =

eV33

eV31 + eV33

p8 =
eV33

eV32 + eV33
p11 =

eV33

eV31 + eV32 + eV33
.

(3)

The formula for logit choice probabilities cannot be applied to the remaining probabilities

p3 and p6. Nevertheless, there are results in the literature that can be used. McFadden

(1984, p. 1414) presents a formula for the probability of an observed ranking of m of the

alternatives in a choice set of a logit model, which in our setting can be written as

P(Πi1 > Πi2 > · · · > Πim) =
eVi1

∑m
k=1 eVik

eVi2

∑m
k=2 eVik

· · · eVi(m−1)∑m
k=m−1 eVik

. (4)

Using this gives the following analytical expressions for p3 and p6:

p3 =
eV13

eV11 + eV12 + eV13

eV12

eV11 + eV12
p6 =

eV23

eV21 + eV22 + eV23

eV21

eV21 + eV22
(5)
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The formulas in (3) and (5) inserted in (2) result in an analytical expression for the

probability of a merger between f1 and f2, given by

P12 = p1p2 + p3p4p5 + p6p7p8 + p9p10p11

=
eV12

∑3
j=1 eV1j

eV21

∑3
j=1 eV2j

+
eV13

∑3
j=1 eV1j

eV12

(eV11 + eV12)

eV21

∑3
j=1 eV2j

eV33

(eV31 + eV33)

+
eV23

∑3
j=1 eV2j

eV21

(eV21 + eV22)

eV12

∑3
j=1 eV1j

eV33

(eV32 + eV33)

+
eV13

∑3
j=1 eV1j

eV12

(eV11 + eV12)

eV23

∑3
j=1 eV2j

eV21

(eV21 + eV22)

eV33

∑3
j=1 eV3j

.

Simplifying this results in

P12 =
eV12+V21

∑3
j=1 eV1j

∑3
j=1 eV2j

(
1 +

eV13+V33

(eV11 + eV12)(eV31 + eV33)

+
eV23+V33

(eV21 + eV22)(eV32 + eV33)
+

e
P3

k=1 Vk3

(eV11 + eV12)(eV21 + eV22)
∑3

j=1 eV3j

)
.

(6)

The probabilities of a merger between f1 and f3, and f2 and f3 can be written in a similar

way. It is simply a matter of changing the indices in the expression above.

Next, consider the probability of the non-existence of a stable matching. Remember

that in general, the condition of no odd rings is sufficient for the existence of a sta-

ble matching. But for the special case of three firms, it is also necessary, i.e., a stable

matching cannot exist when an odd ring exists. This can be easily checked using Def-

inition 3, as shown below. A strict odd ring exists if the preference profile is either

W1 = {{f2, f3, f1}, {f3, f1, f2}, {f1, f2, f3}} or W2 = {{f3, f2, f1}, {f1, f3, f2}, {f2, f1, f3}}.
To see why, consider the ordered set {f1, f2, f3}. Using Definition 3, we can derive a

preference profile with a strict odd ring, namely

f2 Âf1 f3 Âf1 f1,

f3 Âf2 f1 Âf2 f2, and

f1 Âf3 f2 Âf3 f3,

which is just another way of writing W1.

In order to see where W2 comes from, make the following name changes: f1 → c2,

f2 → c1, and f3 → c3. Obviously, such a name change should not alter the preferences in

any real way – for instance, if f1 places f2 at the top of her preferences, c2 should place
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c1 on top of hers. Thus, using the new names, W1 can be written as

c3 Âc1 c2 Âc1 c1,

c1 Âc2 c3 Âc2 c2, and

c2 Âc3 c1 Âc3 c3.

Changing names from ci to fi for i = 1, 2, 3 gives us the preference profile W2.

If we start out from W1, but instead make the name changes f1 → c1, f2 → c3, and

f3 → c2, we still end up with W2. Since the same applies to the name changes f1 → c3,

f2 → c2, and f3 → c1, we can conclude that the only two preference profiles giving rise to

a strict odd ring are W1 and W2.

It is easily checked that the preference profiles W1 and W2 never lead to a stable

matching. This can be done by considering each of the four possible matchings in S for the

preference profiles W1 or W2. For each matching and preference profile, there will always

be a blocking pair, which is another way of saying that there does not exist any stable

matching. For instance, consider the matching µ1 = {I33 = I12 = 1} with preference

profile W1. Firm f1 is matched to its most-wanted partner, and has no incentives to block

µ1, but f2 prefers to be matched to f3, and f3 prefers to be matched to f2, resulting in the

blocking pair {f2, f3}. Satisfying the blocking pair leads to µ2 = {I11 = I23 = 1}. But

µ2 is blocked by {f1, f3}, because f1 ranks f3 higher than f2, and f3 ranks f1 higher than

f2. Satisfying the blocking pair leads to µ3 = {I22 = I13 = 1}, which in turn is blocked

by {f1, f2}, because f1 ranks f2 higher than f3 and f2 ranks f1 higher than itself. But

satisfying {f1, f2} leads to µ1, which starts the blocking procedure all over again. What

about the matching µ4 = {I11 = I22 = I33 = 1}? There are several blocking pairs, each of

them necessarily leading to one of the matchings µ1–µ3 and thus to the unstable blocking

procedure described above. For instance, {f1, f2} is a blocking pair because each of the

firms rank one another higher than being self-matched. But satisfying them leads to µ1.

In a similar way, it can be shown that the preference profile W2 cannot lead to a stable

matching, and thus for the case of three firms, the no odd rings condition is both a

sufficient and a necessary one. Therefore the probability of no stable matchings is equal

to the probability of a strict odd ring, i.e., of observing W1 or W1. In terms of preference

index comparisons, this can be written as

PE = P(Π12 > Π13 > Π11)
p12

P(Π23 > Π21 > Π22)
p13

P(Π31 > Π32 > Π33)
p14

+ P(Π13 > Π12 > Π11)
p15

P(Π21 > Π23 > Π22)
p16

P(Π32 > Π31 > Π33)
p17

.
(7)

Applying (4) from p. 10 on this results in the following analytical expression for the
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probability of an odd ring:

PE = p12p13p14 + p15p16p17

=
eV12eV13

∑3
j=1 eV1j(eV13 + eV11)

eV23eV21

∑3
j=1 eV2j(eV21 + eV22)

eV31eV32

∑3
j=1 eV3j(eV32 + eV33)

+
eV13eV12

∑3
j=1 eV1j(eV12 + eV11)

eV21eV23

∑3
j=1 eV2j(eV23 + eV22)

eV32eV31

∑3
j=1 eV3j(eV31 + eV33)

=
eV12+V13+V21+V23+V31+V32

∑3
j=1 eV1j

∑3
j=1 eV2j

∑3
j=1 eV3j

(
1

(eV11 + eV13)(eV21 + eV22)(eV32 + eV33)

+
1

(eV11 + eV12)(eV22 + eV23)(eV31 + eV33)

)
.

(8)

The sample space S = {A,B, C, D, E} (see p. 9 for the definition of each outcome)

contains all possible outcomes of the game. Now, since a merger between f1 and f2 is

only possible in conjunction with f3 not merging, we can write P(I12 = 1) ≡ P(I12 =

I33 = 1) = P(B). Similar arguments lead to the following equivalences:

P(I13 = 1) ≡ P(C)

P(I23 = 1) ≡ P(D).

We have already derived formulas for P(B), P(C), P(D) (see equation (6)), and P(E)

(see equation (8)). Therefore, using the equivalence relations above, we only need P(A)

in order to be able to calculate the probability of each outcome in S. But since A is the

complement of {B ∪C ∪D ∪E}, we must have P(A) ≡ 1−P(B)−P(C)−P(D)−P(E).

This completes the treatment of the probabilities of each possible outcome, and the next

section is about estimation.

4 ML estimation

For a sample of three firms, given that we observe x = (x1 x2 x3), the log-likelihood

function can be written as

`(β|x) = yA ln P(A) + yB ln P(B) + yC ln P(C) + yD ln P(D) + yE ln P(E)

=
5∑

r=1

yr ln Pr

where r = A,B, C, D, or E, yr = 1 if the outcome of the game is r and zero otherwise,

and Pr were derived in the previous section. Since only one outcome is possible for a

given sample of firms, the likelihood function is simply the probability of that outcome.

A natural way to estimate β is to perform a numerical maximization of the log-likelihood
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function. But we have a problem, namely the few observations available. In an realistic

setting, a researcher would need data on more than three firms in order to get an estimate

of β, but for say n = 100, `(β|x) would become extremely complicated to even write down.

Thus, we need to make some additional assumptions in order to construct an estimable

model.

Assume that a researcher has data on a large number of firms, but there is some

additional information, namely that the firms can be divided into groups of three. The

formation of groups is assumed to be exogenously given. Firms within each group are

allowed to merge, but no firm is allowed to merge with a firm in another group. For

instance, the total sample might consist of M groups of firms from a certain country, with

each group representing a certain industry. If we are willing to assume that β is the same

across groups, the log-likelihood for the total sample is

`M(β|X) =
M∑

m=1

5∑
r=1

ymr ln Pmr,

where r = A,B,C,D, or E, ymr = 1 if the outcome in group m is r and zero otherwise,

and X contains vectors of observed data for all M groups.

There is still an issue to consider before we can put the model to work, namely how to

deal with the case when no stable matching exists. In an empirical setting, it might be

the case that distinguishing between the events A and E is impossible, simply because the

non-existence of a stable matching might be impossible to find in a database. Generally,

we do not expect everything to crash if no stable matching exists; instead, firms simply

keep on operating on their own. On the other hand, one could in principle think of data

where A and E are distinguishable. For instance, data on a seemingly never-ending round

of bid proposals among a group of firms could be a sign of instability.

Depending on whether one can or cannot distinguish between A and E, the log-

likelihood function takes on different forms. If there is a possibility to distinguish between

the two events, the log-likelihood function defined above can be used. But in the more

realistic case when it is impossible to detect instability, the set of possible outcomes has to

be redefined as S = {A∪E, B, C, D}. Rewriting the log-likelihood function of a particular

firm group to be in accordance with this results in:

`(β|x) = yAE ln P(A ∪ E) + yB ln P(B) + yC ln P(C) + yD ln P(D)

= yAE ln {1− [P(B) + P(C) + P(D) + P(E)] + P(E)}
+ yB ln P(B) + yC ln P(C) + yD ln P(D)

= yAE ln {1− P(B)− P(C)− P(D)}+ yB ln P(B) + yC ln P(C) + yD ln P(D),
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where yAE = 1 if the outcome is either A or E, and zero otherwise. Accordingly, the

log-likelihood of the whole sample of M groups can be written as

`M(β|X) =
M∑

m=1

4∑
r=1

ymr ln Pmr, (9)

where r = AE, B, C, or D, ymr = 1 if the outcome in group m is r and zero otherwise,

and X contains vectors of observed data for all M groups.

Let β̂(X) ≡ β̂ be the maximum likelihood estimator (MLE) of β, i.e., the parameter

value at which `M(β|X) attains its maximum as a function of β, with X held fixed.

Being a MLE, well-known results state that β̂ is consistent and asymptotically efficient.4

Asymptotic efficiency implies that we can approximate the true asymptotic variance of

the MLE with the Fisher information matrix. Below we will come back to this issue

with an estimation of the error magnitude when using the asymptotic variance in finite

samples. The regularity conditions that each `(β|x) has to fulfill in order for the MLE

to be consistent and asymptotically efficient are nicely summarized in Casella and Berger

(2002, section 10.6.2).

In a realistic setting, samples are always finite, and might in addition be quite small.

Below is a simulation study of the performance of the MLE in such a case. The general

idea is to generate data according to the firm-matching game described above, and perform

a numerical maximization of the log-likelihood function, thus obtaining β̂. Doing this a

large number of times provides us with means of analyzing the sampling properties of the

MLE.

As above, M is the number of groups, and there are three firms in each group. The

first step in each replication is to generate Πij = βxij + εij for each firm group, where β is

set to 0.1, 0.25, 0.5, or 1, xij ∼ i.i.d. N(0, 1), εij ∼ extreme value with location parameter

equal to zero and scale parameter equal to one, and i, j = 1, 2, 3. Firm attributes are the

same for each group and replication, while the stochastic parts of the indices vary. When

the indices are generated, the firms play the matching game and the Roth-Vande Vate

algorithm leads to a matching. Finally, the log-likelihood function in (9) is maximized,

resulting in β̂.

The above is repeated R = 50, 000 times. Index the parameter estimate from each

replication as β̂r, the corresponding vector with attributes as Xr, and define Ĥr to be

the Hessian matrix evaluated at β̂r, where r = 1, 2, . . . , R. The finite-sample properties

of the MLE will be examined using the results from the simulation with the help of the

4See Casella and Berger (2002, Theorems 10.1.6 and 10.1.12).
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M
β 25 50 100 1,000

β − β 0.0212 0.008 -0.0013 0.0000
β̂max 1.5593 1.1392 0.5725 0.1981

0.1 β̂min -0.9557 -0.9212 -0.5330 0.0018
σ̂2bβ 0.060170 0.046883 0.013566 0.000565

Î(β|X) 0.055909 0.045834 0.013380 0.000558
β − β 0.0265 0.0288 0.0049 0.0003
β̂max 1.6849 2.4537 0.8707 0.4919

0.25 β̂min -0.8784 -0.6833 -0.1525 0.0023
σ̂2bβ 0.090244 0.064366 0.011374 0.002835

Î(β|X) 0.083374 0.060727 0.011301 0.002812
β − β 0.0107 0.006 0.0095 0.0001
β̂max 2.1167 1.8049 1.5515 0.6453

0.5 β̂min -0.7000 -0.5660 -0.2590 0.3635
σ̂2bβ 0.080059 0.066275 0.035656 0.001082

Î(β|X) 0.077834 0.065906 0.035011 0.001080
β − β 0.0326 0.0229 0.0065 0.0015
β̂max 4.9656 3.2199 1.5381 1.3205

1 β̂min -1.8604 -0.5486 0.6496 0.7329
σ̂2bβ 0.394940 0.134740 0.012067 0.004114

Î(β|X) 0.253540 0.130160 0.011799 0.004108

Table 1 Sampling properties of the MLE for various values of the true parameter β and
of the number of groups M ; 50,000 replications.

following statistics:

β = R−1

R∑
r=1

β̂r

β̂max = max(β̂1, β̂2, . . . , β̂R)

β̂min = min(β̂1, β̂2, . . . , β̂R)

σ̂2bβ = R−1

R∑
r=1

(β̂r − β)2

Î(β|X) = R−1

R∑
r=1

(−M−1Ĥ−1
r ) ≡ −R−1M−1

R∑
r=1

{
̂∂`(β|Xr)

∂β2

∣∣∣∣bβr

}−1

The mean of the estimators in the simulation, β, should be close to β for an unbiased

estimator. The MLE’s bias should decrease with the sample size and asymptotically go

to zero. Î(β|X) is the mean estimate of the Fisher information, i.e., a lower bound of the

variance of the best unbiased estimator of β.

The results from the simulation were generated using Ox version 3.40 and the BFGS
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algorithm was used when maximizing the log-likelihood functions.5 The initial parameter

guess was set to zero, but initial values ranging from −5 to 5 were tested and not found

to alter the results.

To illustrate, Figure 1 shows the log-likelihood function for data generated with β = 0.5,

and for M = 100 and 1,000, respectively. In each graph, the function is evaluated at

1,000 different parameter values. The left-hand graphs show the function value on the

parameter range [β̂ − 5, β̂ + 6], while the ones on right-hand show the function on [β̂ −
0.1, β̂ +0.1]. This graphical examination of the log-likelihood function gives an indication

of its concavity, which in turn explains the apparent insensitivity of the maximization

algorithm to different starting values.

Now, consider the results presented in Table 1. The average of the estimators, β,

behaves as predicted over all values of β, namely converging to the true parameter value

with M increasing. Even for sample sizes of 25 we can expect the MLE to be acceptably

close to β, and when M = 1, 000, the difference is negligible.

Also the span between the extrema of the simulated distribution of β̂ decreases with M .

But even for M = 1, 000, a particular estimator can differ from the true value with between

as much 100 % (for β = 0.1) and 30 % (for β = 1). However, one must keep in mind that

these numbers say nothing about the probability of getting a parameter estimate that far

from the true value. To be able to see the whole picture, we need to look at the whole

distribution of the estimates. To exemplify, in Figure 2 we show the simulated density

of β̂ with β = 0.5 and M = 1, 000. The bars represent the normal distribution with the

same mean and variance, shown as a comparison. First, note that extreme values like

β̂max = 0.65 and β̂min = 0.36 are very unlikely. Second, a visual comparison with the

density of the normal distribution reveals a great resemblance, which asymptotically is to

be expected of a MLE.

Next, consider the variance of the MLE. The estimated Fisher information can be used

as a measure of a lower bound of the variance of β̂, and from theory, we know that it is

asymptotically achieved by the MLE. As we can see, for M = 1, 000 the lower bound is

almost reached. Thus, for practical purposes and for large M , the numerically calculated

Fisher information can be used as an estimate of the true variance of β̂. Note, however,

that this underestimates the true variance, and the underestimation is not negligible for

M ≤ 100. In hypothesis testing, using the asymptotic variance estimate for small samples

would imply a tendency to reject the null too often.

To sum up, our simulation suggests that the MLE proposed in the previous section has

quite good finite-sample properties. For large samples, Fisher information can well be

used as a variance estimate. Furthermore, the percentage bias is small for M ≥ 100, and

acceptable for smaller samples.

5See for instance Judd (1998, p. 114) for a description of the algorithm.
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5 Concluding remarks

This paper proposes a theoretical model of mergers based on individual firm behaviour.

The model can be used directly in applied work, and using simulations, it is shown that

in a laboratory environment, the proposed maximum-likelihood estimator has several

desirable properties in finite samples, and is thus readily applicable to empirical data.

The way it is presented the model has several built-in restrictions, the most obvious

being the assumption of solely three firms in each group. Although a generalization to

larger groups is straightforward, the resulting expressions for different outcomes are bound

to be complex and time-demanding to derive. Thus, an obvious path for further research

is to find more general formulas for the probability of different outcomes with more than

three firms in each group.

A different approach consists of evading the problem by changing the rules of the

roommate game, such that the likelihood function becomes less complicated. This in

practice means that we abandon the roommate game, but in return get a model more

suitable for empirical estimation. Depending on the new game rules, the merger model

might still be economically sensible.

Still one direction for future research is to evaluate the properties of the MLE ana-

lytically. A formal check of consistence and asymptotic efficiency (i.e., a check of the

regularity conditions on each `(β|x), stated in Casella and Berger (2002, Section 10.6.2)),

and a check for global concavity of the log-likelihood function might be useful.
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Figure 1 The log-likelihood function at 1,000 parameter values in each graph, β = 0.5.

0.375 0.400 0.425 0.450 0.475 0.500 0.525 0.550 0.575 0.600 0.625 0.650

β̂ 

Figure 2 Simulated density of β̂ for β = 0.5 and M = 1, 000, using 50,000 replications.
Density of the normal distribution with the same mean and variance as a reference.
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