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1 Introduction and Motivation 

The general form of the standard Taylor rule suggests that the short-term interest rate ti  

applied by the central bank at time t  can be set according to the formula 

  ( *) ( *) * *t y t ti y y r           (1) 

where y  represents the output gap (deviation of real GDP from potential GDP as percent 

of potential GDP);    represents inflation rate;  subscript t  refers to the time the rule is 

applied, using information up to that time;  superscript * represents the desired 

equilibrium value;  ˆr i    is the real interest rate;  and y ,   are coefficients 

associated with the output gap and inflation rate respectively.  In the original publication 

[1] it was assumed that * 0y  , * 2%  , * 2%r  , 1.5  , 0.5y  , with quarterly 

data for output gap, and annual data for inflation rate.  Variants of the above basic Taylor 

rule have been studied in literature, such as rules with an inertia term containing 1ti   

and/or with projected future values of   and y  in the right-hand side of eqn. (1) [2, and 

references therein]. The stated objective for inertia-based policies is interest rate 

smoothing, to avoid large variations in interest rates and to produce robust policy rules 

[3-5]. Additional variants of the Taylor rule containing more lagged terms of i  have also 

appeared [6, 7].  

 While the initial inspiration for the Taylor rule was based on fitting actual 

historical data, Taylor rules and some of its variants can be derived by application of 

optimization theory on a quadratic objective function, using a small-scale model of the 

economy to capture the effect of interest rate on inflation and output gap [8-11].  Such 

derivations have mainly focused on the effect of the specific form of the quadratic 
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objective function on the resulting rule.  This approach, however, has not been successful 

at producing a rigorous derivation of explicit Taylor rules when a zero lower bound 

(ZLB) on the interest rate is included in the optimization.  Nevertheless, a number of 

approaches for determining an optimal interest rate subject to ZLB have been proposed, 

which can be broadly classified into two categories:   

 The first category includes explicit rules that truncate to zero the interest rate TR

ti  

calculated by an unconstrainted Taylor rule (i.e. TRmax[0, ]t ti i ), to ensure that a non-

negative interest rate ti  is produced [12-14].  The rationale behind approaches in this 

category relies on qualitative analysis of a ZLB-constrained quadratic optimization 

problem or on other qualitative analysis of optimal policy effects on inflation and output 

gap.   

 The second category does not produce explicit rules; rather, it employs numerical 

simulation, i.e. repeated numerical solution of a ZLB-constrained optimization problem, 

to determine the optimal values of interest rate for inflation and output gap values in a 

range of interest [8, 15-18].  Most studies in this category rely on a constrained dynamic 

programming formulation of the underlying optimization problem, whose explicit 

analytical solution is hard to get. 

 Interesting observations were made in these studies.  For example, it was 

observed that resulting policies may be nonlinear, (rather than piecewise linear, according 

to truncated Taylor rules) and more aggressive for interest rates close to ZLB (a behavior 

characterized as pre-emptiveness).  However, a rigorous derivation of simple explicit 

Taylor rules subject to ZLB is, to our knowledge, not currently available.   
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 In this paper, we rigorously derive explicit rules for interest rate subject to ZLB.  

Our approach relies on a formalism known as multi-parametric (mp)  programming, a 

technique applied by the engineering community to constrained model predictive control 

(MPC) [19] or constrained state estimation problems [20].  The following are the key 

elements of the proposed approach. 

 When a ZLB is present, explicit rules can be developed that produce a value for 

the interest rate through application of one from a finite number of explicit 

formulas.  These formulas entail a finite number of Taylor-like rules.  To know 

which of these formulas will be applied at any time, one has to simply pick an 

entry from a look-up table, based on checking which inequality is satisfied out of 

a finite number of a priori developed mutually exclusive linear inequalities on the 

inflation and output gap. 

 Various forms of Taylor-like rules result rigorously from the particular form of 

the quadratic objective used in MPC.  For example, Taylor rules with inertia 

terms arise from inclusion of a quadratic penalty on the rate of change of the 

interest rate (rather than on the interest rate itself). 

 Application of any interest rate policy, Taylor-like or not, essentially creates a 

closed-loop feedback controlled economy.  Therefore, any policy should, at the 

very least, result in a stable closed loop.  Additionally, it should be fairly robust, 

namely it should produce sensible results in the presence of discrepancies 

between assumed economy models and the actual economy. 

In the rest of the paper we first provide some background on MPC and mpMPC, and 

elaborate on the small-scale economy model used.  Within this setting, we derive a 
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number of Taylor-like rules, based on a number of MPC quadratic objectives, and 

examine their dependence on relative weights of various terms in the MPC objective.  

The effect of these rules on the resulting closed-loop behavior is examined.  Comparison 

with the standard Taylor rule and actual interest rates implemented by the Central bank is 

provided.  Finally, future extensions are proposed. 

2 Preliminaries: Model Predictive Control (MPC) and 

Taylor rules 

MPC is a class of model-based feedback control algorithms for systems with constraints 

[21, 22]. MPC finds the value of the manipulated input (interest rate in our case) of a 

controlled process at each point in time by setting up and solving a constrained 

optimization problem at that time.  The optimization involves an objective function 

(usually quadratic) over a future horizon.  The objective contains terms involving future 

predictions of the controlled variables (output gap and inflation in our case) as well as 

penalty terms on manipulated inputs within the horizon.  Future output predictions are 

established in terms of a model and existing measurements. 

 As will be made clear below, MPC (also known as “open-loop optimal feedback”) 

differs from stochastic dynamic programming (also known as “closed-loop optimal 

feedback”) in that MPC does not explicitly account for information that is now expected 

to be available in the future, thus avoiding the computational complexity of the nested 

optimization (curse of dimensionality from Bellman’s principle of optimality) which 

burdens stochastic dynamic programming. 
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 Next, we first provide a description of the model we use, and subsequently 

explain its use in formulating the MPC optimization.   

2.1 Economy model structure 

A semi-empirical linear model around a baseline can describe the evolution of the 

economy as 

   1 1

y

t t t t ty y i e       , (2) 

  
1 1t t t ty e      . (3) 

[11] where y ,  , and i  are as above;    and   are positive constants;   0,1 ;  1

y

te   

and 1te  are zero-mean white noise signals;  and the sampling period (time interval from 

t  to 1t  ) is one year.  The above model is similar in spirit to more complicated models 

used by many central banks.  The model’s main purpose is to capture the overall dynamic 

causal relationship between the manipulated input i  and the two controlled outputs, y , 

 .  Note that eqns. (2) and (3) capture the aggregate effect of the interest rate on the 

economy, namely effects due to phenomena such as rational expectations are assumed to 

have been incorporated in the model structure.  Other kinds of models can also be 

converted to the aggregate form of eqns. (2) and (3) [17]. 

 At steady state (equilibrium point), we have *ti i , 0ty   and *t  , with 

* * *r i   .  Hence, in the terms of deviation variables from the equilibrium point, eqns. 

(2) and (3), can be written as 

  1 1t t t tu   x Ax B  , (4) 

where 
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x , *ˆ ˆ   u i i i , ˆ
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 , (5)  

  ˆ
1

 



 
  
 

A , (6) 

  ˆ
0

 
  
 

B . (7) 

 Using the above model, the optimal k -step-ahead prediction for the state x  with 

initial condition 
tx  is  

  
1

1
0

ˆ
k

k

tt k t t k t
u



   


 x A B A x , (8) 

[23] where ˆ
t k t

x  stands for the expected value of x  at time t k  using all information 

available at time t .  The above prediction will be used in the formulation of the MPC 

objective below. 

 It should be noted that the idea here is not to fully explain the complex dynamics 

of the economy with such a simple linear model.  Rather, the intended use of the above 

model is to help understand how optimal monetary policies are affected by various 

objective functions and by a ZLB on the interest rate when constrained MPC is used to 

derive such policies.  The dimension of the state vector x  is also limited to two, so that 

the solution of the constrained MPC optimization problem can be easily understood 

graphically in 2-D and 3-D plots using the mpMPC approach. 
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2.2 Economy model calibration 

The economy model expressed by eqns. (2) and (3) is calibrated using US revised 

economy data over the time period 1976-2007.  The annual revised output gap data is 

taken from the Congressional Budget Office [24]. Inflation is calculated as annual 

percentage change in the GDP deflator Q4/Q4 basis (Bureau of economic Analysis).  The 

real interest rate, r , is calculated as the annual average of the interest rate deflated by the 

annual inflation rate.  Interest rates are taken from the database of the Federal Reserve 

System.  Figure 1 plots these data for the time period 1976-2010.  Based on these data, 

Table 1 presents estimated values of parameters for the economy model, obtained using 

the prediction error method. Based on the parameter estimates in Table 1, the matrix A , 

eqn. (6) turns out to be 

  
0.63 0.19

0.12 1

 
  
 

A . (9) 

The eigenvalues of A  are 0.58 and 1.05, suggesting that the economy model for the US 

economy is mildly unstable.  Consequently, whatever control policy ones chooses to 

control the US economy, such a policy must be, at the very least, a stabilizing policy.  We 

develop such a policy below via MPC. 

2.3 Formulation of MPC optimization  

The central bank’s generalized loss function projected to infinity at time t  is generally of 

the form  

  
0

ˆ( , )k

t k t t k t
k

L u


 


 x . (10) 
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After minimizing the above objective at time t , the first element opt

|t tu  of the optimal 

sequence opt opt

| 1|{ , ,...}t t t tu u   is implemented, and the system (i.e. the economy) runs until the 

next decision making point, 1t  .  At time 1t   the optimization problem in eqn. (10) is 

reformulated, solved, the first element opt

1| 1t tu    of the optimal sequence opt opt

1| 1 2| 1{ , ,...}t t t tu u     is 

implemented, the system runs until the next time, and the process continues to infinity.  

The difference ( 1)t t   is selected here to be one quarter.  It should be stressed that, in 

general, opt opt

1| 1 1|t t t tu u    because of modeling uncertainty and external disturbances. 

 It has been shown [25] that for quadratic ˆ( , )
t k t t k t

L u
 

x , stability of constrained 

MPC can be ensured if the objective in eqn. (10), which involves an infinite number of 

terms, is replaced by an equivalent objective that involves summation of a finite number 

of terms plus a terminal cost and/or terminal constraints.  A particular realization of this 

idea can take the form 

  
1

2 2 2 2 2 2

0

ˆ ˆ ˆ ˆmin
N

k T T N N

t k t t k t t k t t k t t N t t N t t N t
k

R u S u S u    


      


 
    

 


u
x Qx x Qx , (11) 

subject to the model constraints 

  
1

1
0

ˆ
k

k

tt k t t k t
u



   


 x A B A x , 1,...,k N , (12) 

  ˆ
tt t

x x , (13) 

the unstable mode stabilization constraints 

  1 2

u u, ,...,T N N T N

t

     v A B A B B u v A x , (14) 

the input move restriction constraints 
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1t k t t m t

u u
  

 , ,..., 1k m N  , (15) 

and the inequality constraints 

 *
t k t

u i


  , 0,..., 1k N  , (16) 

where  

  

1

1

.ˆ

.

t

t t

t N t

i

i

i



 

 
 


 
 
 
 
 
 

u , (17) 

  
1

ˆ
t k t t k t t k t

u u u
   

  , 0,...,k N , (18) 

  
1 0

0ˆ
0





 
  
 

Q ,  0 1   (19) 

  s s
s2

s

0ˆ
1

T
T

s
J




v Qv
Q v v , (20) 

(see Appendix A) with the vectors sv  and sv  coming from the diagonalization of the 

matrix A  as 

  
uu1

u s

ss

0

0


    

      
      

T

T

J

J

v
A VJV v v

v
, (21) 

where uJ  and sJ  refer to the unstable and stable eigenvalues of the matrix A  with 

corresponding eigenvectors, uv  and sv , respectively. 

 The main rationale behind the above formulation is that closed-loop stability can 

be guaranteed by including the terminal penalty term ˆ ˆT

t N t t N t 
x Qx  in the objective, eqn. 
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(11), and by explicitly forcing a terminal constraint, eqn. (14), to stabilize the unstable 

mode corresponding to the eigenvalue 
uJ .  The values of the weights R  and S  

determine the aggressiveness of the resulting control action, with small values of R  and 

S  encouraging more aggressive action and faster closed-loop response, at the cost of 

decreased closed-loop robustness [5, 10].  In particular, higher values of S  are preferred 

when persistent external disturbances force the input i  away from its nominal 

equilibrium value *i .  Finally, the values of 1   and   in eqn. (19) determine the 

relative attention paid by the policy to output gap and inflation, respectively. 

3 Taylor rules from MPC 

In this section we show how Taylor rules can be derived from unconstrained MPC.  

Specifically, in section 3.1 we derive rules that follow the Taylor structure (eqn. (1)) 

while in section 3.3 we show how Taylor rules with inertia can be naturally derived from 

MPC with an additional quadratic penalty on the rate of change of interest rate.  For both 

cases we examine the effects of MPC weights ( , R , or S  in eqn. (11)). 

3.1 Taylor rules from MPC without zero lower bound 

In the absence of ZLB, eqn. (16), and without penalty on the change of interest rate 

( 0S  ), the MPC optimization with objective function in eqn. (11) subject to equality 

constraints in eqns. (12)-(15) results in the unconstrained quadratic minimization  

  
1 1

min
2 2m

T T T

m m t m t t

 
  

 u
u Hu x Fu x Yx , (22) 
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where ( 1) ( 1)   m m
H , 2 ( 1)  m

F , 2 2Y  are function of A , B ,  , N , m , and the 

weights R  and ;  and the decision variable is 

  

1

2

.ˆ

.

t

t t

m

t m t

i

i

i



 

 
 


 
 
 
 
 
 

u . (23) 

(see Appendix A).  The minimum in eqn. (22) is attained at opt 1 T

m t

 u H F x , resulting in 

the optimal interest rate 

    1

1

1 0 0 * * ( *) ( *) * *T

t t y t

m

i r y y r     



         H F x . (24) 

at time t , which is clearly a Taylor-like rule, as in eqn. (1).  It is also clear that y ,   are 

functions of the economic model matrices A , B , and of the weights R ,  , given N , m  

and  . 

3.1.1 Choice of prediction horizon length, N  

For an unstable system such as the one described by eqns. (2) and (3), the horizon length, 

N , should be made long enough to ensure that the MPC optimization problem is feasible 

and ensure closed-loop stability.  Systematic methods can be used for selecting N  [26-

28]. 

 In all subsequent developments we will consider 80N  . 
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3.1.2 Choice of control horizon length, m  

As eqn. (15) indicates, only a small number of inputs are included as decision variables in 

the MPC optimization.  In addition to convenience (i.e. a small number of decision 

variables) there are deeper reasons for this choice.   

 First, increasing the value of m  (with 1 m N  ) quickly reaches a point of 

diminishing returns, namely no appreciable change in the closed-loop dynamics.  Table 2 

substantiates this claim by example, showing that the closed-loop poles remain almost 

unchanged after increasing the value of m  beyond 4.  The associated Table 3 shows the 

resulting coefficient for the Taylor-like solution provided by MPC.   

 Second, it has been rigorously shown that keeping m  small improves the 

robustness of the closed loop, namely it helps maintain closed-loop stability in the 

presence of discrepancies between the model used by MPC and the actual system under 

control [29-31].   

 In all subsequent developments we will consider 4m  .  

3.1.3 Choice of discount factor,   

Following the literature [15, 16] we use a value of the discount factor 0.99  , except in 

situations where we explicitly specify a different value.  We will comment below on how 

different values of   affect the resulting Taylor rules and closed-loop stability and 

performance. 

3.1.4 Effects of MPC objective function weights on resulting Taylor rules 

For the choice of 80N  , 4m  , and 0.99  , discussed in the preceding sections, we 

now proceed to examine the effect of R  and   on the resulting Taylor rules, via eqn. 
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(24).  Following the calculations in Appendix A, the matrices H  and F  in eqn. (22) are 

calculated as functions of R  and  , and coefficients of the output gap and inflation in 

the Taylor rule or eqn. (1) are expressed analytically in terms of R  and  , as  

  

6 4

6

2

,3 ,2 ,1 ,0

2

3 2 1 0

4

( ) ( ) ( )

( ) ( ) ( )

y y y y

y

q R q R q R q

p R p R p R p

  

 




  




 
, (25) 

  

2

,3 ,2 ,1 ,0

2

3 2

6 4

6 4

1 0

( ) ( ) ( )

( ) ( ) ( )

q R q R q R q

p R p R p R p

   



  


  

  

  
 , (26) 

respectively, where the values of the corresponding parameters are shown in Table 4.  In 

general, the numerator and denominator for y  and   are polynomial functions of 

degree 1m  in both 2R  and  . 

 Figure 2 employs the preceding eqns. (25) and (26) to calculate the policy 

coefficients y ,   for a range of values of R  and  .  The point corresponding to the 

original Taylor rule ( 0.5y  , 1.5  ) is not present in Figure 2.  However, various 

values of R  and   result in y  in the range of 1 to 3 (Figure 3) and   in the range of 2 

to 6 (Figure 4). 

 The following general observations can be made on Figure 3 and Figure 4: 

 When R  is small (i.e. control is aggressive) it has a strong effect on y  and  . 

 The value 0R   results in large values of y  and  , i.e. aggressive policy. 

 When R  is small, the inflation coefficient   is more sensitive to the choice of   

than y  is. 
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 After approximately 1R  , further increase in R  has very small effect on 
y  and 

 . 

For the economy model under consideration, the nearest point to the original Taylor rule 

is found at 1y  , 2.4   for 0.55R   and 0.05  .  These values are close to the 

original Taylor rule and other Taylor-like rules [8, 32]. 

3.1.5 Original Taylor rule in MPC framework 

Even though the specific y  and   values of the original Taylor rule were not recovered 

in the preceding section for the value of   used mostly in literature, such values can be 

obtained if a different value of   is considered.  It turns out that the original Taylor rule 

can be recovered for 0.96  , for which expressions for y  and   similar to eqns. (25) 

and (26) can be derived in the same way.  As shown in Figure 5 and Figure 6, the original 

Taylor rule values for y  and   can be derived when 0.96   for 1.06R   and 

0.36   in eqn. (11).   

 In general, determining values of MPC weights that would correspond to specific 

values of y  and   is an instance of the inverse linear quadratic regulator problem.  An 

infinite number of solutions generally exist for that problem.  Feasibility and 

characterization of these solutions can be obtained in terms of linear matrix inequality 

algorithms [33, section 10. 6, p. 147].  This issue will be explored elsewhere. 
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3.1.6 Taylor rules and resulting closed-loop stability  

For any rule proposed, it is important to determine, at the very least, whether such a rule 

results in a stable closed loop.  Combination of the Taylor rule in eqn. (1) with the simple 

economy model, eqn. (4), yields (Appendix B) the closed loop structure 

  
1 CL 1  t t tx A x ε , (27) 

where 

  
CL ˆ

1

  
   

 

yT    


A A + Bc . (28) 

It can be shown (Appendix B) that both eigenvalues of CLA  are inside the unit disk, i.e. 

the closed-loop system is stable, if and only if 

  1  , (29) 

  2.1 0.12 8.5 0.06y        . (30) 

as illustrated in Figure 7.  This is in agreement with the well established Taylor principle 

that the central bank should raise its interest rate more than one-for-one with increase in 

inflation [34, 35].  Figure 4 shows that this requirement is satisfied for all combinations 

of the MPC weighting parameters R  and  .  In fact, Figure 8 illustrates that the stability 

conditions, eqns. (29) and (30), are satisfied for all choices of R  and   when 0.99  .  

However, this is not the case for 0.95  , as illustrated in Figure 9, which shows that as 

the value of   is reduced, the value of R  should not be too small, to avoid closed-loop 

instability. 

 It is interesting to note that as R , namely high values of interest rate are 

heavily penalized, the closed loop remains stable, due to the stabilizing equality 
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constraint, eqn. (14).  For R , eqns. (25) and (26) suggest that 
,3

3

0.70
y

y

q

p
   and 

,3

3

2.5
q

p


   . 

 Following the preceding observations, it should be noted that the widespread 

practice of using a discount factor   may be more problematic than realized, in the sense 

that it may not result in robustly stabilizing strategies.  This situation, namely the need to 

shape weights of the terms in the MPC objective in an increasing rather than decreasing 

fashion in order to ensure robustness, has been rigorously analyzed in the past [30, 31] 

and should be explored further.  

3.2 Taylor rules from MPC with zero lower bound 

When the interest rate must satisfy a ZLB constraint, the optimization problem to be 

solved by MPC entails the objective in eqn. (11), the equality constraints  in eqns. (12)-

(15), and the inequality constraint in eqn. (16).  It can be shown (see Appendix C) that for 

0S  , the entire optimization problem can be cast in the form 

  
1

min
2

T

z
z Hz , (31) 

subject to 

    tGz w Dx , (32) 

where 1
ˆ

  T

m tz u H F x , 1 TD E GH F , and G , w , E  are defined in Appendix C. 

 Eqns. (31) and (32) suggest that the optimization problems solved by MPC at 

successive points in time differ only by the right-hand side of eqn. (32), which is affine in 
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the state 
tx .  No single formula exists for the explicit solution of all of these problems.  

However, the optimal solution can be expressed explicitly at each point as 

     
1

opt 1 1

|


  T T

t t A A A A A tz H G G H G w + D x , (33) 

where 
AG , 

Aw , 
AD  correspond to the set of active inequality constraints in eqn. (32), 

and are finite in number.  Which inequality constraints in eqn. (32) will be active (i.e. 

equalities) at any time point t  depends only on 
tx  and this can be shown [19] to be easily 

determined by checking the conditions 

     
1

1 1


   T T

A A A A A t tGH G G H G w + D x w Dx  (34) 

and  

     
1

1 0


 T

A A A A tG H G w + D x , (35) 

for each of the possible choices of { AG , Aw , AD }.  While the number of combinations 

of active/inactive inequality constraints may be generally large, we show in the sequel 

that this number is fairly small for the problem at hand, resulting in a small set of explicit 

rules in the form of eqn. (33), which are shown to be Taylor-like. 

 More specifically, for a certain { AG , Aw , AD }, the inequalities in eqn. (34) and 

(35) define a linear polytope, for which the same sets of constraints remain active or 

inactive, and the same formula, eqn. (33), can be used to express the optimal solution for 

any tx  in that polytope.  The collection of all polytopes, which are finite in number, 

spans the entire set in which tx  lies and which is bounded for a stable closed loop.  

Therefore, determining the active and inactive constraints in eqn. (32), and consequently 
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the corresponding 
AG , 

Aw , 
AD , is a simple matter of using a look-up table, to determine 

in which polytope 
tx  lies, i.e. for which of the possible {

AG , 
Aw , 

AD } eqns. (34) and 

(35) are satisfied.  Then, eqn. (33) can be used to determine the optimal interest rate 

either as 

  
    1

1 1

1

[1 0 0] * *

( *) ( *) * *


 



    

     

T T T

t A A A t t

m

y t

i r

y y r



    

A AH G G H G w + D x F x
, (36) 

which is a Taylor-like rule, or as  

  0ti   (37) 

namely at the ZLB value.  

 To our knowledge, the above development is the first rigorous derivation of an 

explicit Taylor-like rule that satisfies the ZLB without resorting to either ad hoc clipping 

of the interest rate value produced by a Taylor rule [12-14] or numerical simulation [8, 

15-18].   

3.3 Taylor rules with inertia from MPC 

A simple form of a Taylor-like rule with an inertia term is 

  1( *) ( *) ( *) * *t y t t i ti y y i i r             . (38) 

Rules such as the above have been proposed based on empirical arguments and 

simulation studies, in efforts to reduce large interest rate fluctuations [2, and references 

therein, 4].  We explain below that such rules result naturally from appropriate tailoring 

of the MPC objective function to include terms that penalize the rate of change of interest 

rate. 
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 To illustrate this, consider again the MPC optimization problem formulated in 

eqn. (11) with 0R   and 0S  , namely no penalty on the interest rate itself, but a 

penalty on its rate of change.  As in section 3.1, it can be shown (Appendix D), that the 

resulting MPC optimization in this case becomes 

  
1 1

min
2 2m

T T T

m m t m t t

 
  

 u
u Hu x Fu x Yx , (39) 

where ( 1) ( 1)   m m
H , 3 ( 1)  m

F , 3 3Y  are functions of A , B , S , and  ;  and the 

vector x  is defined as 

  

1 1

*

*ˆ ˆ

* 

    
   

   
   
       

t t

t t t

t t

y y y

u u u

  x . (40) 

 In the absence of a ZLB, the minimum in the optimization problem in eqn. (39) is  

attained at opt 1 T

m t

 u H F x , resulting in the optimal interest rate 
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H F x

. (41) 

which in exactly eqn. (38). 

 A parametric analysis similar to that in section 3.1.4 can be performed again to 

assess the effect of the MPC weights S  and   on the parameters y ,  , and i .  Similar 

choices of 80N  , 4m   and 0.99   as before yield 
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, (44) 

respectively, where the values of the corresponding parameters are shown in Table 5.  

From eqn. (44) it is clear that the inertial term 
i  is zero for 0S  . Use of eqns. (42), 

(43), and (44) yields the patterns shown in Figure 10, Figure 11, and Figure 12 for the 

coefficients 
y ,  , 

i  as functions of   and S .  The following trends can be observed. 

 The policy coefficients y  and   decrease with increase in S . 

 When S  is small the effect of   on   is dominant compared to the effect on y . 

 After approximately 2S   further increase on S  does not change the policy 

coefficients by much.  

 The inertial term i  increases with increase in S  and eventually converges to 0.7. 

This result can be explained on the basis of the stabilizing policy criterion. If i  is 

large compared to   and y , the closed loop will behave like an open loop and 

due to the unstable nature of the open-loop economy model, related policies will 

not stabilize the economy. These results are consistent with prior literature 

observations [2, and references therein].   

3.3.1 Inertia-based rules and resulting closed-loop stability  

For Taylor rules with inertia as in eqn. (38) the corresponding closed-loop is 

  CL

1

   
   

   t t
 

x x
A , (45) 

where 
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CL 1 0ˆ ˆ

   
   

    
   

 

yT

T

i i

i y i i





    


 

  

A Bc B
A

c
, (46) 

and T

t t tu  c x .  It can be shown (Appendix E) that all eigenvalues of 
CLA  are inside 

the unit disk if and only if 

  1i     (47) 

  142 142 16.7i y       (48) 

  176 108 i     (49) 

  33.5 35.5 16.7i y       (50) 

  217.2 10.5 8.33 ( 28.1 5.06 )i y i y            (51) 

as shown in Figure 13.  As in section 3.1.4, it is also found that all combinations of S  

and   result in stabilizing monetary policies.  Eqn. (47) is the counterpart of eqn. (29)

and has been derived before in a different setting, using a rational expectations approach 

[36]. 

 It is again interesting to note that as S  , namely as aggressive changes in the 

value of interest rate are heavily penalized, the closed loop remains stable, due to the 

stabilizing equality constraint, eqn. (14).  For S  , eqns. (42)-(44) suggest that 

,3

3

0.095
y

y

q

p
  , 

,3

3

0.34
q

p



  , and 
,3

3

0.71i

iq

p
  , which satisfy the inequalities in 

eqns. (48)-(51). 
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3.3.2 Taylor rules with inertia from MPC with zero lower bound 

Following the same approach as in section 3.2, the optimization problem with eqn. (11) 

with 0R  , 0S  , subject to the equality constraints in eqns. (12)-(15), and the 

inequality constraint in eqn. (16) can be cast in the form 

  
1

min
2

T

z
z Hz , (52) 

subject to 

    tGz w Dx , (53) 

where 1 T

m t

z u H F x , 1 TD E GH F  (see Appendix D).  Again, an explicit solution 

through Taylor-like formulas can be obtained by applying the mpMPC solution to get 

direct counterparts of eqns. (33) through (35). 

4 Numerical Simulations 

The objective of this section is to illustrate the interest rate rules resulting from 

application of the methodology we outlined in the previous section.  Emphasis is placed 

on directly including the ZLB constraint in the development of explicit rules. 

4.1 Taylor rules form MPC with ZLB 

The optimization problem defined by eqn. (31) with inequality constraints given by eqn. 

(32) is solved with the help of the mpMPC framework presented in section 3.2, to find 

the optimal interest rate rule.  For the economic model discussed in section 2, the solution 

to the optimization problem depends on the weights   and R  in eqn. (11), for selected 

values of N , m  and   (sections 3.1.1-3.1.3) and with 0S .  For each combination of 
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  and R , a small number of Taylor-like rules emerge, depending on the linear polytope 

in which the inflation and output gap lie, as presented in Table 6 through Table 11.  The 

corresponding linear polytopes are illustrated in Figure 14 through Figure 19. 

 Comparison of these tables and corresponding figures shows that the following 

four classes of rules emerge: 

 Similar in nature to the standard Taylor rule, eqn. (1) (polytope 1), 

 Setting the interest rate at its ZLB while maintaining closed-loop stability 

(polytope 2), 

 Setting the interest rate at its ZLB but with loss of closed-loop stability (polytope 

3) – a case of liquidity trap [12] – and 

 Piecewise linear rules that are more aggressive than the Taylor-like rules that 

would result from optimization without anticipation of ZLB activation in the 

future (remaining polytopes). 

Of these tables, Table 7, corresponding to Figure 15, suggests a rule in polytope 1 closest 

to the standard Taylor rule, in terms of both the values of { , }y    ({1.0,2.4} vs. 

{0.5,1.5}) and the closed-loop eigenvalues ({0.50,0.94} vs. {0.56,0.97}). 

 Further comparison of these figures reveals that the optimal rules follow an 

asymmetric pattern for small values of R  (Figure 14, Figure 16, Figure 18), as has also 

been observed in a number of numerical studies with 0R   [8, 13, 17, 37].  However, 

this asymmetry practically disappears (i.e. it would be observable only for unrealistically 

large output gaps) for large values of R  (Figure 17, Figure 19), namely for very sluggish 

policies. 
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 Specifically, for negative output gap, the resulting interest rate value is equal to 

either what a single corresponding Taylor-like rule would produce, if that value were 

positive, or zero when that same Taylor rule would produce a negative value.  While it is 

obvious that a negative interest rate value produced by a Taylor rule cannot be 

implemented, what is shown from the preceding analysis is that a zero value resulting 

from clipping the unconstrained Taylor rule value is optimal.  In addition, for negative 

output gap, when the interest rate is close to zero and future violations of the ZLB are 

anticipated, no more aggressive action is needed;  the same Taylor rule remains optimal. 

 On the other hand, for positive output gap and low inflation, more interesting 

behavior is observed, namely a small number of piecewise linear rules result, 

corresponding to the linear polytopes numbered 4 and above.  These rules become more 

aggressive as the interest rate approaches the ZLB.  This behavior (pre-emptiveness) has 

also been observed in numerical studies [2, and references therein, 17].  However, in 

contrast to these numerical simulation studies, explicit rules are derived here, and these 

rules are (piecewise) linear rather than nonlinear. 

4.2 Taylor rules with inertia form MPC with ZLB 

For 0.55S   and 0.5  , the resulting piece-wise linear policies and corresponding 

polytopes are shown in Table 12.  The parameter space of mpMPC, which is now three-

dimensional, is partitioned in 6 polytopes shown in Figure 20.  Polytope 1 corresponds to 

no constraint being active and hence it produces a rule as in eqn. (41).  In polytope 2 the 

ZLB is active, i.e. the optimal policy is at zero.  Polytopes 4, 5 and 6 entail rules that are 

different from the Taylor-like rule of polytope 1, in anticipation of future ZLB activation.  

The infeasibility polytope remains the same.  From Table 12 and Figure 20 it can be 
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concluded that in polytopes of low inflation and negative output gap, if the lagged 

interest rate 
1ti 
 is high (polytopes 4 and 6), the optimal rule becomes less aggressive than 

the rule in the unconstrained case.  However, for low 
1ti 
, the optimal rule is just a 

truncation to zero of the unconstrained case, eqn. (41). Also, in polytope 5, characterized 

by low inflation, high output gap, and high 
1ti 
, the optimal rule is more aggressive than 

the rule in the unconstrained case, eqn. (41).  Therefore, an important conclusion is that 

for rules with inertia ( 0S  ), the optimal policy becomes asymmetrical with respect to 

both lagged interest rate and output gap for low inflation economic conditions.  

4.3 Remarks on rules from MPC 

The following can be observed in the results of sections 4.1 and 4.2. 

 Polytope 1, where no constraint is active, grows in size with increasing R  or S . 

 The policy becomes sluggish and the size of polytopes 2, 4 and higher decreases 

as R  or S  increase. 

 For any MPC formulation, situations may arise in which either a negative interest 

rate would be optimal (when the ZLB is not explicitly included in the 

optimization) or a stabilizing interest rate at or above the ZLB is not feasible 

(when the ZLB is explicitly included in the optimization).  It can be shown 

(Appendix F) that for an economy model such as described by eqns. (4)-(7) the 

infeasibility polytope is characterized as the set of state values tx  that satisfy the 

inequality 

  u
u *

1

T
T

t

u

i
J




v B
v x   (54) 
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It is clear that the state 
tx  may satisfy eqn. (54) fairly easily for economies with 

low *i , i.e. such economies at corresponding conditions run the risk of falling 

into the infeasibility polytope where a stabilizing interest rate above the ZLB may 

not exist.  This situation has also been studied in literature numerically [e.g., 38]. 

 For 
tx  in a polytope such that a feasible MPC solution exists but not all of the 

corresponding closed-loop eignevalues are inside the unit disk, the state will 

definitely escape from that polytope and will enter one where stability is 

guaranteed.  By contrast, for tx  in a polytope such that no feasible MPC solution 

exists and not all of the corresponding closed-loop eigenvalues are inside the unit 

disk, instability will persist.  This is illustrated further in Figure 23, discussed 

below. 

 It should be noted that entering into the polytope 2, where the ZLB is active, is an 

alarming situation, as the infeasibility polytope 3 seats next to this polytope.  The 

longer the economy stays at ZLB, the higher the chance of getting into the 

infeasibility polytope (a case of liquidity trap) as a result of sudden adverse 

fluctuations in the economy.  Similar observations have been made through 

numerical simulation [12]. 

 In Figure 14 through Figure 19 real-time economy data are plotted for 

2008Q1:2011Q1. It is clear that from Figure 14, Figure 16 and Figure 18 

( 0.07R  ) that clipping to zero is optimal interest rate for nearly all economic 

points while in Figure 15, Figure 17 and Figure 19 ( 0.55R  ) more of the 

economic data indicate non-zero interest rate due to the policy rule being 

sluggish. 
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4.4 Closed-loop Simulations 

4.4.1 Illustration of proposed approach 

The first set of simulations serves to simply illustrate the effects of ZLB on the closed-

loop system.  Simulations are shown using the rules presented in Table 6 through Table 

11, as well as the rules with inertia shown in Table 12 along with five additional rules 

with similar structure but different MPC weights R  and S  (not shown in Table 12 for 

brevity).  For this set of simulations the economy is considered to be at 3.7y    and 

1.9   in year 1, corresponding to 2009Q1.  The results are summarized in Figure 21 

and Figure 22.  The resulting sums of squared errors (discrepancies between actual and 

desired values) are summarized in Table 13 and Table 14.   

 Based on these simulation results, it is clear that for small values of R  or S , 

optimal interest rate rules are aggressive and more likely to produce interest rate values at 

the ZLB when corresponding conditions arise.  Conversely, increase in the values of R  

or S  results in sluggish response, as expected.  

 The second set of simulations illustrates a liquidity trap case.  Figure 23, shows 

state-space partition for 0.07R   and 0.5  .  Two different initial conditions of the 

economy are considered.  For the first case we let the initial point be 1 7.1y   , 1 1.5   

(2009Q3), which lies in polytope 2 in Figure 23 and hence the corresponding optimal 

interest rate is zero.  For the second case we let 1 7.1y   , 1 0  , which lies inside the 

infeasibility polytope 3, namely no non-negative interest rate can stabilize the economy at 

that point.  A zero interest rate alone results in an unstable closed loop.  The only way to 

stabilize the closed loop would be through additional external stimulus.  Given the fact 
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that it is practically difficult to exactly quantify the polytope of liquidity trap, the central 

back should focus on external stimulus as soon as the ZLB is reached.  Closed-loop 

simulations, the results of which are shown in Figure 24, confirm the preceding assertions 

for both cases.  It is also interesting to note that even though the interest rate in the first 

case is stabilizing, recovery of the economy is very slow due to the effect of ZLB 

(inflation stabilization, in particular, takes many years). 

4.4.2 Comparison with historical data 

We use real-time data available to the central bank at the time of making a decision on 

the interest rate, for the period 1987Q4:2008Q4.  For output gap we use Greenbook data 

over the period 1987Q4:2005Q4;  for the remaining period we consider CBO data [39].  

The real-time inflation data is also taken from the same publication. 

 We focus on the interest rate rule with inertia, eqn. (38), with * 1.9r   and 

* 2  .  Since the coefficients y ,   and i  are functions of the weights S  and   as 

given by eqns. (42)-(44), these weights and corresponding coefficients are estimated 

using regression to fit the historical data.  Estimated values over the entire period of data 

are shown in Table 15.  Figure 25 compares the interest rate resulting from fitting eqn. 

(38) to the interest rate implemented, as well as to the interest rate suggested by the 

standard Taylor rule (eqn. (1) with 0.5y  , 1.5  ), and by the Taylor rule with values 

fitted over the entire period of data examined (eqn. (1) with 0.77y  , 2.0  ).  It is 

clear that the inertial rule captures the central bank decisions better, as also demonstrated 

by the residuals shown in Figure 27.   
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 It is also interesting to examine whether additional insight may be gained by 

fitting data over short periods for which large residuals result from fitting the entire data 

set.  One such period with large residuals is 2000Q1:2004Q4.  Table 15 (line 2a) suggests 

that this period may be problematic, in that the corresponding inertial rule, if applicable, 

is not stabilizing, i.e. the fitted value of 
i   is greater than 1, thus violating the closed-

loop stability condition in eqn. (47).  In fact, it is dubious whether the same objective as 

on the average was used over that period, since the value of   fitted over that period is 

negative, hence unacceptable.  Constrained fitting (i.e. enforcing 0 1  ) produces 

parameter values that do correspond to a stabilizing rule (Table 15, line 2b) but 

nonetheless places all emphasis on output gap (growth).  The actual policy implemented 

over that period and its role on stimulating over-expansion of the economy has been the 

subject of intense discussion [40]. 

5 Conclusions and Future Work 

The main issue addressed in this work is the effect of zero lower bound on the optimal 

interest rate determined by a central bank.  We address this issue in a multi-parametric 

model predictive control framework, which allows the derivation of explicit feedback 

rules even when inequality constraints are present.  Application of this framework to a 

simple model of the US economy produced a number of Taylor-like rules, depending on 

the form and parameter values in the objective function employed by MPC.  The results 

suggest that a small number of simple Taylor-like rules can be applied at each time, 

depending on the state of the economy.  However, it was also shown that simply setting 

to zero negative interest rates produced by unconstrained Taylor rules is optimal in 
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situations of negative output gap, as happened recently.  Furthermore, it was observed, as 

has been noted elsewhere, that rules with inertia appear to better capture past decisions by 

the central bank.  Such rules have been systematically derived here by considering 

penalties on the rate of interest rate change in the MPC objective function. 

 A number of issues touched in this work warrant further investigation, such as the 

following: 

 The inverse problem:  Given a suggested Taylor-like rule, what objective 

function, as in eqn. (11), is minimized?  A promising approach is suggested in 

section 3.1.5. 

 Robust stability and performance:  There is a vast body of work in the automatic 

control community addressing the robustness issue, namely how a controller 

performs when the model assumed in controller design has quantifiable 

uncertainty. 

 Modeling and selection of controlled variables:  Should the pair output gap and 

inflation be the main focus or could variables such unemployment [5] be central 

in controlling an economy? 

 Policy adaptation:  The main attractiveness of a fixed rule is its simplicity and 

predictability [38].  However, such a rule may become sub-optimal over time, as 

the economy or disturbance models change [10].  Can a fixed rule be replaced by 

a fixed rule adaptation policy that maintains robustness? 

We hope to address the above issues in forthcoming publications. 
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8 Appendices 

Appendix A.  mpMPC formulation for Taylor rules 

Based on the optimization function in eqn. (11) and the method discussed in Muske and 

Rawlings [25] with discount factor  , the terminal penalty weight matrix Q  is 

  
0

iT i i

i






Q A QA . (55) 

Since the unstable mode is constrained to be zero at time k N , it follows that 

  T

s s Q v v . (56) 

where 

  
21

T

s s

s

Q

J
 



v v
. (57) 

From eqns. (56) and (57) it follows that 

  
21

T
Ts s

s s

sJ




v Qv
Q v v . (58) 

Further, eqn. (14) along with eqn. (15) results in 

  
1 
 T T

m t m mt m t
u a x b u , (59) 

where 

  
 

u

u .....




  

T N
T

m T N m

v A
a

v A B AB B
, 

 

2

u

u

..., ,

.....





   
  

T m

T

m T N m

v A B AB B
b

v A B AB B
 (60) 

and the optimization variable mu  contains the first 1m  elements of u . 
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 Using eqns. (12) and (15) for the case when k m  yields 

  
1

1 1
1

ˆ
m k

k k k

tt k t t t t m t
m

x u u


 

    
 

 
    

 
 x A A B A B . (61) 

 Using eqns. (59) and (61) yields 

  
1

, , 1
1

ˆ


  


 
m

k t kt k t t t
ux f x h , (62) 

where 

  
,

,  

,

0  ,

k
k k

m

k k

k m k
b

k m k

k m k

 





    
  

  
 

 
  

A A B

h
A B

, (63) 

  

2 ( 1)

,1 , 1

,

......

for 

for 

m

k k k m

k
k k l T

mk

k

k m

k m

 







   


 

 
 



f f f

A A Ba
f

A

, (64) 

  ( 1) ( 1)

,1 , 1...... m m

k k k m

  


   h h h . (65) 

Substituting eqns (62)-(65) into eqn. (11) with 0S   yields eqn. (22). 

 The solution to eqn. (22) is 

  1 T

m t

 u H F x . (66) 

where 

  
11

2

1 1





 
    

 


m NN
T k T N T

k k N N R

k

R
 

 


H h Qh h Qh bb D , (67) 

  2diag 1 . .ˆ
   

m

R  D  (68) 
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11

2

1 1





 
   

 


m NN
T k T N T

k k N N

k

R
 

 


F f Qh f Qh ab . (69) 
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Appendix B.  Closed-loop stability for Taylor rule  

The standard Taylor rule can be written as 

  T

t tu  c x , (70) 

where ˆ
T

y     c .  

 The characteristic equation for the matrix CLA  in eqn. (28) is given by  

     2( ) 1ˆ y yf                 , (71) 

where   is an eigenvalue of the matrix CLA .  For closed-loop stability the eigenvalues of 

the matrix CLA  should lie inside the unit disk, which is guaranteed (by the Jury-Routh–

Hurwitz stability criterion) if and only if 

  2 2 2 ( 1) 0y         , (72) 

  1 ( 1) 0y         , (73) 

  ( 1) 0    .  (74) 

Given that 0  , eqn. (74) is satisfied if and only if 1  . 
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Appendix C.  mpMPC formulation for Taylor rules with inertia 

Using the equality constraints in Appendix A, the ZLB constraint given in eqn. (16) can 

be written as, 

   m tGu w Ex , (75) 

where ˆ
 

  
 

T

I
G

b
; I  is the identity matrix in ( 1) ( 1)   m m ;  * *̂ 

T mi iw ; 

T

 
  
 

Θ
E

a
;  ( 1) 2

0 0

0 0

  
  
 

T

m
Θ .  Therefore, the optimization problem eqn. (22) 

subject to the constraint eqn. (75) can be formulated as  

  
1

min
2

T

z
z Hz  (76) 

    tGz w Dx  (77) 

where 1
ˆ

  T

m tz u H F x , 1
ˆ

  T
D E GH F . 
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Appendix D.  mpMPC formulation for Taylor rules with inertia 

Adopting the same approach as shown in Appendix A, a similar kind of expression for 

the optimization problem set-up in eqn. (11) can be derived when 0S   as  

  
1 1

min
2 2m

T T T

m m t m t t

 
  

 u
u Hu x Fu x Yx , (78) 

where, 

  

1

ˆ

t

t t

t

y

u





 
 

 
 
  

x , (79) 

  

   

1

1 1

1

2 1 1

0 0 0

N
T k T N

m m k k N N

k

Tm N TS

 

 



  



 

  

   

H h Qh h Qh

b b b b bb S

, (80) 

 where   1

0 0 0 1
T m b , ( 1) ( 1)

0

m m  S  is given by,  

  

 1

,

2

,

0 ,

,

,

1 , , 1

, , 1

, 1

0, 1

i

i j

m

i j

i j

i j

i j

s i j i m

s i j i m
s

s i j

s i j

 









     


   
   

   


  

S , (81) 

and 

  
  

1
2 1 1

0

1
3 1

2

2

,0.......0

N
TT T m N T

k k N N

k
m

m

S

S

 


 


 



              
 
  

f Qh f Qh a b b b

F . (82) 

When there is no inequality constraint, the solution to eqn. (78) is given by  

  1 T

m t

 u H F x . (83) 
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ZLB constraint given by eqn. (16) is equivalent to,  

   m tGu w Ex , (84) 

where  0E E E  and  0 0 0
T m E .  Eqns. (78) and (84) can be formulated 

as, 

  
1

min
2

T

z
z Hz  (85) 

    tGz w Dx  (86) 

where 1
ˆ

  T

m tz u H F x , 1
ˆ

  T
D E GH F .  Eqn. (85) and inequality constraints eqn. (86) 

are used for mpMPC formulation to derive explicit inertia-based Taylor rules with ZLB 

constraints. 
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Appendix E.  Closed-loop stability for inertial Taylor-like rule  

The interest rate rule is 

  
1

T

t i t tu u  c x , (87) 

The characteristic equation for the matrix 
CLA  is given by  

  
 

      

3 2( ) 1ˆ

1 1

y i

y i i

f



     

         

    

       
. (88) 

Closed-loop stability is guaranteed (by the Jury-Routh–Hurwitz stability criterion) if and 

only if 

  2 2 2 (1 ) 2 (1 ) 0i i y i               ,  (89) 

  4 4 (1 3 ) 0i i         , (90) 

  2 2 2 ( 1 ) 2 (1 3 ) 0i i y i                , (91) 

  ( 1) 0i     , (92) 

  
     
    

2

2

8 1 1

1 2 1 1 0

i i i i y

i i y 

     

      

      

       
, (93) 



44 

 

Appendix F.  Infeasibility polytope  

The model decomposition of A  is represented by, 

  
uu1

u s

ss

0

0


    

      
      

T

T

J

J

v
A VJV v v

v
 (94) 

where 

  
21 (1 ) 4

1
2

uJ
     

   (95) 

  
2

s

1 (1 ) 4
1

2
J

     
   (96) 

Eqns. (94) and (8) imply 

  
1

1 1 1

1
0

ˆ
k

k

tt k t t k t
u


  

   


 V x J V B J V x  (97) 

From eqn. (97) stable and unstable modes can be treated separately.  In terms of the 

unstable mode 

  
1

u u u1
0

ˆ
k

T T k T

u u tt k t t k t
J u J



   


 v x v B v x  (98) 

If tx  lies in the polytope of attraction, then 

   
u
ˆlim 0T

k t k t 
v x  (99) 

and 

  
1

u u 1
0

k
T k T

t u u t k t
J J u




  


  v x v B  (100) 

since 
1

*
t k t

u i
  

  . 
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 The polytope of attraction is given by 

  
1

u u

0

lim *
 







 
  

 


k
T k T

t k uJ iv x v B  u
u *

1

T
T

t

u

i
J




v B
v x . (101) 

 Hence the infeasibility polytope is characterized by, 

  u
u *

1

T
T

t

u

i
J




v B
v x . (102) 

Similarly, in the case of inertial policy the above exercise can be repeated and the 

counterpart of eqn. (101) can be derived. 
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 Table 1.  Parameter estimates of US economy model 

Parameter Estimate Standard Error 

  0.63 0.06 

  0.19 0.05 

*r  1.9 0.74 

  0.12 0.06 

ye
  1.4  

e
  0.93  
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Table 2.  Closed-loop eigenvalues for Taylor-like rules derived from unconstrained 

MPC for 0.05   and 0.07R   

m  

N  

20 40 60 80 

1  2  1  2  1  2  1  2  

2 0.05 0.95 0.05 0.95 0.05 0.95 0.05 0.94 

3 0.07 0.95 0.07 0.97 0.07 0.96 0.07 0.96 

4 0.07 0.95 0.07 0.97 0.07 0.97 0.07 0.96 

8 0.07 0.95 0.07 0.97 0.07 0.97 0.07 0.97 

12 0.07 0.95 0.07 0.97 0.07 0.97 0.07 0.97 

16 0.07 0.95 0.07 0.97 0.07 0.97 0.07 0.97 
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Table 3. Output gap and inflation coefficients in Taylor-like rules (eqn. (1)) derived 

from unconstrained MPC for 0.05   and 0.07R   

m  

N  

20 40 60 80 

y  
  y  

  y  
  y  

  

2 3.2 2.9 3.1 2.4 3.1 2.4 3.1 2.5 

3 3.2 2.9 3.1 2.4 3.1 2.4 3.1 2.5 

4 3.2 2.9 3.1 2.4 3.1 2.4 3.1 2.5 

8 3.2 2.9 3.1 2.3 3.1 2.3 3.1 2.3 

12 3.2 2.9 3.1 2.2 3.1 2.2 3.1 2.2 

16 3.2 2.9 3.1 2.2 3.1 2.1 3.1 2.2 
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Table 4.  Polynomial coefficients in eqns. (25) and (26) as functions of    

 

  

  

   

  

   

,3

,2

,1

4

,0

,3

,3

,1

3

,0

3

2

1

1.04

0.297 0.444

1.04 0.420

6.11 10 1.06 1.01 0.365

3.67

0.37 2.28

0.124 1.09 0.084

1.59 10 1.12 1.01 0.05

0.04

9

1.48

0.197 0.157

0.010

y

y

y

y

q

q

q

q

q

q

q

q

p

p

p











 

  



 

  









 

   

      



 

    

      



 

 



  

   4

0

8 1.02 0.641

1.32 10 1.03 1.01 0.512p
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Table 5.  Polynomial coefficients in eqns. (42) -(44) as functions of   

 

  

  

   

  

   

,3

,2

,1

4

,0

,3

,2

,1

3

,0

,3

,2

0.428

1.03 3.17

0.117 1.05 0.372

6.11 10 1.06 1.01 0.365

1.51

0.911 14.0

0.323 1.11 0.0653

1.59 10 1.12 1.01 0.0588

3.19

0.29

y

y

y

y

i

i

q

q

q

q

q

q

q

q

q

q











 

  



 

  







 

    

      



 

    

      





  

  

   

,1

3

2

1

4

0

4 0.370

4.50

0.920

0.00278

1.42

0.0326 1.03 0.553

1.32 10 1

1.02 0.690

.03 1.01 0.512

iq

p

p

p

p
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Table 6. mpMPC solution and state space partition for 0.07R  , 0.05   

No. Polytope bounds Interest rate ti  

Closed-loop 

Eigenvalues 

1 
0.78 0.62 0.98

0.14 0.99 1.71

t

t

y



      
         

  3.12 2.49
t

t

y



 
 
 

 

0.07 

0.96 

2 

0.78 0.62 0.98

0.27 0.96 3.70

0.76 0.65 1.03

0.62 0.79 1.39

t

t

y



   
               
   

   

 3.9  

0.58 

1.05 

3  0.27 0.96 3.70
t

t

y



 
  

 
 3.9  (Infeasible) 

0.58 

1.05 

4 

0.76 0.65 1.03

0.20 0.98 2.02

0.14 0.99 1.71

t

t

y



    
                

  3.15 2.70 0.36
t

t

y



 
 

 
 

0.07 

0.96 

5 

0.62 0.79 1.39

0.13 0.99 4.42

0.20 0.98 2.02

t

t

y



    
                

  3.52 4.49 4.05
t

t

y



 
 

 
 

0.05 

0.92 

6 
0.27 0.96 3.70

0.13 0.99 4.42

t

t

y



      
         

  5.55 19.6 71.3
t

t

y



 
 

 
 

0.00 

0.58 
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Table 7. mpMPC solution and state space partition for 0.55R  , 0.05   

No. Polytope bounds Interest rate ti  

Closed-loop 

Eigenvalues 

1 
0.39 0.92 1.47

0.28 0.96 1.67

t

t

y



      
         

  1.03 2.44
t

t

y



 
 
 

 

0.50 

0.93 

2 

0.39 0.92 1.47

0.27 0.96 3.70

0.37 0.93 1.52

t

t

y



   
                

 3.9  

0.58 

1.05 

3  0.27 0.96 3.70
t

t

y



 
  

 
 3.9  (Infeasible) 

0.58 

1.05 

4 

0.38 0.93 1.50

0.32 0.95 1.63

0.28 0.96 1.67

t

t

y



    
                

  1.13 2.77 0.59
t

t

y



 
 

 
 

0.50 

0.92 

5 
0.37 0.93 1.52

0.32 0.95 1.63

t

t

y



      
         

  1.34 3.39 1.65
t

t

y



 
 

 
 

0.48 

0.89 



 53 

Table 8. mpMPC solution and state space partition for 0.07R   0.8   

No. Polytope bounds Interest rate 
ti  

Closed-loop 

Eigenvalues 

1 
0.35 0.94 0.40

0.17 0.98 0.74

t

t

y



      
         

  3.39 9.09
t

t

y



 
 
 

 

0.22 

0.76 

2 

0.35 0.94 0.98

0.27 0.96  3.70

0.28 0.96 0.57

0.33 0.95 0.45

t

t

y



   
               
   

   

 3.9  

0.58 

1.05 

3  0.27 0.96 3.70
t

t

y



 
  

 
 3.9  (Infeasible) 

0.58 

1.05 

4 

0.33 0.95 0.45

0.21 0.98 0.76

0.17 0.98 0.74

t

t

y



    
                

  3.65 10.6 1.13
t

t

y



 
 

 
 

0.21 

0.72 

5 
0.28 0.96 0.57

0.21 0.98 0.76

t

t

y



      
         

  5.17 17.5 6.48
t

t

y



 
 

 
 

0.04 

0.61 
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Table 9.  mpMPC solution and state space partition for 0.55R  , 0.8   

No. Polytope bounds Interest rate 
ti  

Closed-loop 

Eigenvalues 

1  0.28 0.96 0.86
t

t

y



 
   

 
  1.29 4.36

t

t

y



 
 
 

 

0.56 

0.83 

2 
0.28 0.96 0.86

0.27 0.96 3.70

t

t

y



     
         

 3.9  

0.58 

1.05 

3  0.27 0.96 3.70
t

t

y



 
  

 
 3.9  (Infeasible) 

0.58 

1.05 
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Table 10. mpMPC solution and state space partition for 0.07R  , 0.5   

No. Polytope bounds Interest rate 
ti  

Closed-loop 

Eigenvalues 

1 
0.44 0.90 0.49

0.14 0.99 0.72

t

t

y



      
        

  3.51 7.11
t

t

y



 
 
 

 

0.12 

0.84 

2 

0.44 0.90 0.49

0.27 0.96  3.70

0.41 0.91 0.52

0.32 0.95 0.66

t

t

y



   
               
   

   

 3.9  

0.58 

1.05 

3  0.27 0.96 3.70
t

t

y



 
  

 
 3.9  (Infeasible) 

0.58 

1.05 

4 

0.44 0.91 0.52

0.18 0.98 0.86

0.14 0.99 0.72

t

t

y



    
                

  3.67 8.26 0.84
t

t

y



 
 

 
 

0.12 

0.81 

5 
0.32 0.95 0.66

0.18 0.98 0.86

t

t

y



      
         

  4.72 13.95 5.82
t

t

y



 
 

 
 

0.04 

0.69 
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Table 11.  mpMPC solution and state space partition for 0.55R  , 0.5   

No. Polytope bounds Interest rate 
ti  

Closed-loop 

Eigenvalues 

1 

0.31 0.95 1.0

0.29 0.96 1.09

0.27 0.96 1.14

t

t

y



    
                  

  1.21 3.71
t

t

y



 
 
 

 

0.53 

0.87 

2 

0.31 0.95 1.00

0.27 0.96 3.70

0.30 0.95 1.04

t

t

y



   
                

 3.9  

0.58 

1.05 

3  0.27 0.96 3.70
t

t

y



 
  

 
 3.9  (Infeasible) 

0.58 

1.05 

4 

0.61 0.79 2.03

0 1 4.51

0 1 2.99

t

t

y



    
               

  1.4 4.38 0.8
t

t

y



 
 

 
 

0.53 

0.84 

5 

0.61 0.79 2.03

0 1 4.51

0 1 2.99

t

t

y



    
               

  1.77 5.63 2.23
t

t

y



 
 

 
 

0.51 

0.79 
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Table 12. mpMPC solution and state space partition for 0.55S  , 0.5   

No

. 

Polytope bounds Interest rate 
ti  

Closed-loop 

Eigenvalues 

1 

1

0.31 0.94 0.16 1.27

0.33 0.95 0.04 0.97

0.29 0.96 0.01 1.21

t

t

t

y

i





       
       
    
           

  

1

0.96 2.88 0.48

t

t

t

y

i





 
 

 
  

 

0.74

0.59 0.20i

0.59 0.20i





 

2 

1

0.31 0.94 0.16 1.27

0.27 0.96 0 3.70

0.31 0.93 0.19 1.42

0.32 0.92 0.22 1.43

t

t

t

y

i





   
    

       
    
     

   

 3.9  

0.58

1.05

0

 

3  

1

0.27 0.96 0 3.7

t

t

t

y

i





 
 
  
 
  

 3.9  (Infeasible) 

0.58

1.05

0

 

4 

1

0.32 0.92 0.22 1.43

0.28 0.96 0.03 1.33

0.30 0.95 0.04 0.97

t

t

t

y

i





       
      
    
         

 
 

1

0.63 1.88 0.44 1.06

t

t

t

y

i





 
 
 
 
  

 

0.87

0.54 0.13i

0.54 0.13i





 

5 

1

0.31 0.95 0.05 0.89

0.29 0.96 0.01 1.21

t

t

t

y

i





 
      

           

  

1

1 3 0.48 0.16

t

t

t

y

i





 
 
 
 
  

 

0.73

0.59 0.21i

0.59 0.21i





 

6 

1

0.31 0.93 0.19 1.42

0.27 0.96 0.02 3.97

0.31 0.95 0.05 0.89

0.28 0.96 0.03 1.33

t

t

t

y

i





     
    

       
    
     

    

 
 

1

0.71 2.1 0.43 0.69

t

t

t

y

i





 
 
 
 
  

 

0.85

0.54 0.13i

0.54 0.13i
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Table 13.  Sum of squared errors for closed-loop simulations with 0.05   

 0, 0.07S R   0, 0.55S R   0.07, 0S R   0.55, 0S R   

20 2

2 tt
y

  3.30 4.12 3.29 3.65 

20 2

2
( 2)tt



  7.21 6.69 7.22 6.52 

19 2

1
( 3.9)tt
i


  54.5 53.2 54.4 54.3 

19 2

11
( )t tt
i i 
  3.63 1.52 3.32 1.54 
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Table 14.  Sum of squared errors for closed-loop simulations with 0.8   

 0, 0.07S R   0, 0.55S R   0.07, 0S R   0.55, 0S R   

20 2

2 tt
y

  7.14 5.75 7.43 7.99 

20 2

2
( 2)tt



  3.02 3.72 2.97 2.93 

19 2

1
( 3.9)tt
i


  84.0 71.2 85.8 88.4 

19 2

11
( )t tt
i i 
  4.27 1.43 3.59 2.47 
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Table 15: Inertial Policy estimation for US interest rate rule based on real-time 

data.  Standard deviations are reported in brackets. 

 Period S    
y    i  i   

 1987Q4:2008Q4 0.83(0.23) 0.09(0.03) 0.29 0.71 0.62 1.33 

1 1987Q4:1999Q4 1.1(0.43) 0.10(0.06) 0.24 0.67 0.64 1.31 

2a 2000Q1:2004Q4 0.15(0.08) -0.07(0.03) 0.66 0.13 0.47 0.60 

2b 2000Q1:2004Q4 0.3 0 0.48 0.60 0.55 1.15 

3 2005Q1:2008Q4 0.44(0.26) 0.16(0.1) 0.53 1.25 0.55 1.80 
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Figure 1. Revised data for US output gap, GDP deflator inflation rate and federal 

fund rates in annual percentage for year 1976-2010.[24] 
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Figure 2. Taylor-like interest rate rule for when there is no constraint on interest 

rate for various values of tuning parameters R  and  . Solid and dotted lines 

represent inflation and output gap coefficient respectively based on eqn. (25)-(26). 

This solution is also valid when no constraint is active in case of constrained MPC. 
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Figure 3. Output gap coefficient y  for Taylor rule when 0.99   
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Figure 4. Inflation coefficient   for Taylor rule when 0.99   

1   
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Figure 5. Output gap coefficient y  for Taylor rule when 0.96  .  The location of 

Taylor coefficient 0.5y   is shown by the circle. 
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Figure 6. Inflation rate coefficient   for Taylor rule when 0.96  .  The location 

of Taylor coefficient 1.5   is shown by the circle. 
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Figure 7. Closed-loop stability region for the US economy model in terms of Taylor 

rule coefficients y  and   when 0.99  . 

 

 

Figure 8. Closed-loop stability region in terms of MPC tuning parameters R  and   

for 0.99  . 
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Figure 9.  Closed-loop stability region (shaded) in terms of MPC weight parameters 

R  and   for various values of 0.95  .  The location of original Taylor rule is 

shown by circle. 



 69 

 

Figure 10. Output gap coefficient y  for Taylor rules with inertia 
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Figure 11. Inflation coefficient   for Taylor rules with inertia 



 71 

 

Figure 12. Lagged inertest rate coefficient i  for Taylor rules with inertia 



 72 

 

 

 

 

Figure 13. Closed-loop stability region for the US economy model in terms of 

coefficients y ,   and i  for Taylor rule with inertia.  
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Figure 14. State space partition for 0.07R   and 0.05  , corresponding rules are 

in Table 6, o  represents actual economy data points for period 08Q1-11Q1, +  

represents actual economy data points for period 98Q1:99Q4, solid curve represent 

closed loop response from initial state (-3.7, 1.9), dashed line represents truncated 

solution of unconstrained case. 
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Figure 15. State space partition for 0.55R   0.05  , corresponding rules are in 

Table 7, o  represents actual economy data points for period 08Q1-11Q1, +  

represents actual economy data points for period 98Q1:99Q4, solid curve represent 

closed loop response from initial state (-3.7, 1.9), dashed line represents truncated 

solution of unconstrained case. 
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Figure 16. State space partition for 0.07R  , 0.8  , corresponding rules are in 

Table 8, o  represents actual economy data points for period 08Q1-11Q1, +  

represents actual economy data points for period 98Q1:99Q4, solid curve represent 

closed loop response from initial state (-3.7, 1.9), dashed line represents truncated 

solution of unconstrained case. 
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Figure 17. State space partition for 0.55R  , 0.8  , corresponding rules are in 

Table 9, o  represents actual economy data points for period 08Q1-11Q1, +  

represents actual economy data points for period 98Q1:99Q4, solid curve represent 

closed loop response from initial state (-3.7, 1.9), dashed line represents truncated 

solution of unconstrained case. 
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Figure 18. State space partition for 0.07R   0.5  , corresponding rules are in 

Table 10, o  represents actual economy data points for period 08Q1-11Q1, +  

represents actual economy data points for period 98Q1:99Q4, solid curve represent 

closed loop response from initial state (-3.7, 1.9), dashed line represents truncated 

solution of unconstrained case. 
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Figure 19. space partition for 0.55R  , 0.5  , corresponding rules are in Table 11, 

o represents actual economy data points for period 08Q1-11Q1, +  represents actual 

economy data points for period 98Q1:99Q4, solid curve represent closed loop 

response from initial state (-3.7, 1.9), dashed line represents truncated solution of 

unconstrained case. 
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Figure 20. State-space partition for 0.55S   and 0.5  .  Corresponding rules are 

in Table 12. 
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Figure 21. Closed-loop simulation for US economy (start point is 2009Q1) for 

0.05   
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Figure 22. Closed-loop simulation for US economy (start point is 2009Q1) for 

0.8   
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Figure 23.  Closed-loop simulation for  ,y  =(-7.1, 1.5) 2009Q3 and  ,y  =(-7.0, 0) 

virtual point for 0.07R  , 0.5  . The later state lies in infeasibility polytope and 

no positive interest rate can stabilize the closed loop. 
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Figure 24.  Closed-loop simulation for Figure 23. 
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Figure 25 Federal funds rate, standard Taylor rule, fitted inertial and fitted Taylor 

rules (fitting period 1987Q4: 2008Q4) for period 1987Q4: 2011Q1.  Note that the 

interest rate reduction in 2008 suggested by the inertial Taylor rule is more drastic 

than that suggested by the standard Taylor rule.  Note also that the actual interest 

rate over the period 2002-2005 is captured fairly well by the inertial Taylor rule, 

while the standard Taylor rule produces significantly larger values, as has been 

studied extensively by Taylor [40]. 

 



 85 

 

Figure 26. Magnified view of Figure 25 when interest rates are near zero. 
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Figure 27. Residuals for policies in Figure 25 for fitting period 1987Q4: 2008Q4 
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