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Abstract

A central bank pursuing the policy of inflation targeting aims to
keep inflation as close as possible to a pre-announced value. But which
‘inflation’ should this be? Quarterly, annual, biennial? In theoreti-
cal models it is typically inflation during one period. We analyze
how changing the period over which the inflation rate is defined — i.e.
changing central bank preferences — affects optimal monetary policy.
It is shown that when targeting inflation is the sole objective of the
central bank, more aggressive monetary policy results; but when out-
put stabilization is also a concern, a ‘longer-term view’ typically leads
to a more cautious conduct of monetary policy and less variability
in output. The conditions under which inflation targeting in effect
becomes price level targeting are also examined.

Key words: Inflation targeting, price level targeting, optimal mon-
etary policy.

JEL Classification: E52, E58.

∗Presented at the Sveriges Riksbank workshop ”Inflation Targeting and Exchange Rate
Fluctuations”, August 24-25, 1999. Many thanks to Claes Berg, Kerstin Hallsten, Paul
Söderlind, Ulf Söderström, Lars E. O. Svensson, the discussant Rodrigo Valdés and Anders
Vredin for comments and helpful discussions on earlier drafts.
**marianne.nessen@riksbank.se; Research Department, Sveriges Riksbank, 103 37 Stock-
holm, Sweden. The views expressed in this paper are solely the responsibility of the author
and should not be interpreted as reflecting the views of the Executive Board of Sveriges
Riksbank.

1



1 Introduction
Theoretical models of optimal monetary policy under inflation targeting typ-
ically assume that the central bank has a loss function defined over inflation
and output (and possibly other variables). But which ‘inflation’ is this?
Quarterly, annual, biennial or some other measure? Resolving this issue
would raise fundamental questions about the welfare costs of inflation. And
while our understanding of these costs remain scant, models of inflation tar-
geting simply assume which ‘inflation’ it is the central bank dislikes, most
often the ‘one-period’ inflation rate. Yet, obviously, this assumption regard-
ing central bank preferences will affect conclusions regarding the design of
optimal monetary policy. The purpose of this paper is to analyze how these
conclusions change as central bank preferences, in regard to how inflation is
defined, are altered.
This question is not just of theoretical interest, there is also a practical

side to it. While most inflation targeting central banks aim to stabilize the
annual inflation rate, there is (at least) one exception — the Reserve Bank
of Australia aims to stabilize inflation “over the cycle” (Reserve Bank of
Australia (1996)). In its very first Monthly Bulletin, the European Central
Bank, although not a “pure” inflation targeter, stated that it will ensure that
“price stability is maintained over the medium term” and “... a medium-
term orientation of monetary policy is important to permit a gradualist and
measured response” (ECB (1999), p.47).1 The analysis in this paper hopes
to shed some light on the effects of, and the rationale behind, this policy.
Thus, does the way in which “inflation” is defined matter for optimal

monetary policy and for the macroeconomy? In particular, does taking what
may be denoted as “a longer-term view” imply a more cautious conduct of
monetary policy? A reasonable first guess is perhaps that indeed it should.
Extending the period over which inflation is defined can be thought of as
extending the window of a moving average, and a shock to inflation in one
period will matter less and less to the moving average as the window in
enlarged. And if it is this moving average that enters the central bank’s loss
function, a less aggressive response should perhaps be expected than if the
one-period inflation rate is the target variable.2

1Quotes of this nature are typically used as indicators of ‘flexible’ inflation targeting,
i.e. when central banks also have an explicit dislike for output variation. We propose an
alternative (perhaps complementary) interpretation.

2This initial intuition rhymes well with results obtained in Williams (1999) where dif-
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In this regard, we offer a potentially new (albeit partial) explanation of
the observed discrepancy between the predictions given by theoretical models
of optimal monetary policy and real-world central bank behavior. Typically,
the theoretical models give interest rate responses that are much too volatile
when compared with actual policy (see e.g. Rudebusch (1999)). In response,
other models have been constructed to produce more gradual, i.e. realistic
behavior where either the central bank’s preferences are altered or the struc-
ture of the economy. Examples of the former are models that postulate a
dislike for output variability or, more directly, interest-rate variability. Ex-
amples of the latter include Sack (1998) and Söderström (1999a, 1999b) who
analyze the implications of lags in the transmission mechanism and param-
eter uncertainty on optimal monetary policy.
In this paper, we examine the implications for optimal monetary policy

of extending the period over which inflation is measured in a basic model
of inflation targeting due to Svensson (1997, 1999). To preview some of the
results, the analysis shows under some general conditions extending the mea-
surement period has the same effect on optimal monetary policy as increasing
the relative weight on output stabilization - a smoother path of policy and
output is the result. Alternatively, given a specific weight on output stabi-
lization, we obtain smoother paths of the policy instrument without having
to introduce explicit costs from interest-rate variability.
The outline of the remainder of the paper is as follows. Section 2 presents

the model of the economy and describes the loss function of the central
bank. In Section 3 numerical methods are used to explore the implications
for optimal monetary policy of using different definitions of inflation. Section
4 contains a discussion of the implications for the price level of extending the
measurement period. Section 5 summarizes the main results and concludes.
Appendix A contains a short presentation of the original Svensson (1997)
model, while Appendix B contains some details concerning the state-space
representation.

ferent simple reaction functions are evaluated in the FRB/US macroeconometric model. It
is found that “policy should in general respond to a much ‘smoother’ measure of inflation,
specifically, the growth rate of prices over the last three years. This measure of inflation
evidently filters out the high frequency noise in the inflation process, leaving policy to react
to sustained movements in inflation or ‘core’ inflation. By reacting to a smooth inflation
measure, policy implicitly purchases a reduction in output and funds rate variability at
the cost of some high frequency variability in inflation” (p.11).
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2 A simple model of the economy and central
bank behavior

Consider a highly simplified model of a closed economy (this is a simplifica-
tion of the model analyzed in Svensson (1997, 1999a)):

π1,t+1 = π1,t + αyyt + εp,t+1 (1)

yt+1 = βyyt − βr (it − π1,t) + εy,t+1. (2)

The notation is as follows. π1,t represents the one-period inflation rate at
time t, i.e. π1,t ≡ pt − pt−1, pt being the (log) price level in period t. yt
is the output gap (deviation of output from the natural rate), and it is the
(repo) interest rate in period t. The coefficients are assumed to fulfill the
conditions αy > 0, βr > 0, and 0 < βy < 1. The first equation may thus
be interpreted as a traditional Phillips curve, which relates the one-period
inflation rate to the output gap and lagged (one-period) inflation. The second
equation represents an aggregate demand relation, where the output gap is
determined by its own lag and by the lagged real interest rate.3 The timing of
the variables is crucial for the subsequent analysis in this paper; as written
now, equations (1)—(2) imply that a change in it affects output after one
period and one-period inflation after two. We will refer to this as the two-
period control lag.
Introduce now a central bank that wishes to stabilize (i) inflation around

a constant target, π∗, and, possibly, (ii) output around the natural rate.
If inflation targeting is the only concern then the central bank is said to
pursue strict inflation targeting in the terminology of Svensson (1999a). If
the central bank also cares about the variability of output, the central bank
pursues flexible inflation targeting. Formally, the bank acts so as to minimize

min
{iτ}∞τ=t

Et
∞X
τ=t

δτ−tL (πj,τ , yτ ) , (3)

3Alternatively, one could start from the formulation

yt+1 = β̃yyt − βr
¡
it − π1,t+1|t

¢
+ εy,t+1,

where the subindex t+1 | t is short-hand representing the conditional expectation at time
t. For example, π1,t+1|t ≡ E {π1,t+1 | t}. Since, by equation (1), π1,t+1|t = π1,t+αyyt, we
get (2) where βy ≡ β̃y + βrαy.
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where δ is a discount factor fulfilling 0 < δ < 1, the period loss function is
defined as

L (πj,t, yt) ≡ 1
2

h
(πj,t − π∗)2 + λ y2t

i
,

where λ is the relative weight on output stabilization, and the target inflation
rate πj,t is defined as

πj,t ≡ 1

j

j−1X
s=0

π1,t−s

=
1

j
(pt − pt−j) . (4)

This j-period moving average permits us to vary the time-span over which
‘inflation’ is calculated. For example, if the equations (1)—(2) represent an
annual model of the economy, then π1,t is of course simply the annual inflation
rate, π2,t (=1

2
(pt − pt−2)) is the average two-year inflation rate (measured on

an annual basis), while π4,t is the average four-year inflation rate.4 Varying
j from 1 and upwards corresponds to the central bank “taking a longer-
term view” as discussed in the introduction. The parameter j, being the
measurement period for the target variable, will occasionally be referred to
as the window.5

Appendix A discusses some properties of this model when j = 1, which
is the case solved analytically in Svensson (1997, 1999a).

2.1 State-space representation and solution

As soon as j > 1 it is no longer possible to obtain analytical solutions. In-
stead, we cast the problem in terms of a standard optimal regulator problem,
and use well-established tools to solve for the optimal reaction function. A
basic state-space representation of equations (1) and (2) is"

π1,t+1
yt+1

#
=

"
1 αy

βr βy

# "
π1,t
yt

#
+

"
0

−βr

#
it +

"
εp,t+1
εy,t+1

#
,

4If instead equations (1)—(2) represent a quarterly model, then π4,t is annual inflation
measured at a quarterly rate (unless π1,t ≡ 4(pt − pt−1), in which case π4,t is annual
inflation measured at an annual rate).

5Haldane (1997) refers to this as the periodicity of inflation.
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or simply
xt+1 = Axt +Bit + εt+1,

where xt is the state vector. In analyzing the effects of having different
windows j on monetary policy and on the economy, it is however useful to
introduce additional state variables. Doing so, it is then straight-forward to
present the central bank’s objective (which will include not only the current
one-period inflation rate, but also lagged ones) as a quadratic form in the
state vector. Expand the vector xt by inserting a (j − 1)× 1 column vectoreπt of lagged inflation rates (i.e. eπt ≡ h

π1,t−1 π1,t−2 ... π1,t−(j−1)
i0
):

ext ≡ h
π1,t eπ0t yt

i0
.

The state vector in this extended set-up, ext, will be a (2 + j − 1)× 1 vector.
The extended state-space representation is hence

ext+1 = Aj ext +Bjit + εj,t+1, (5)

where the matrices Aj and Bj have been adapted to conform to the new
state vector, and εj,t+1 is simply the old εt+1 with some additional zeros in
the appropriate places. The objective of the central bank is correspondingly
expressed in terms of the extended state-vector:

min
{iτ}∞τ=t

Et
∞X
τ=t

δτ−t ex0τ Qj exτ , (6)

where the matrix Qj is of dimension (2 + j − 1)× (2 + j − 1) with elements

Qj ≡



1
qj

1
qj

· · · 1
qj

1
qj

1
qj

· · · 1
qj

...
...
. . . . . .

1
qj

1
qj

· · · 1
qj

0j×1

01×j λ


,

and where qj = j2. Appendix B contains an example (j = 4).6

6Alternatively, we may express the central bank objective as

min
{iτ}∞τ=t

Et

∞X
τ=t

δτ−t Y
0
τ K Yτ ,
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Minimizing (6) subject to the constraint (5) results in an optimal reaction
function of the form7

it = Fj ext, (7)

where the vector Fj has (2+j−1) elements. Substituting the optimal reaction
function into equation (5) gives the reduced form of the model:

ext+1 = Aj ext +BjFj ext + εj,t+1

= (Aj +BjFj) ext + εj,t+1

≡ Mj ext + εj,t+1. (8)

where the matrix Mj is of dimension (2 + j − 1)× (2 + j − 1).

3 Optimal monetary policy with different mea-
surement periods

This section reports the results on optimal monetary policy for different val-
ues of j (and of λ) derived using numerical methods. The numbers assigned
to the parameters in equations (1) and (2) have been taken from Orphanides
and Wieland (1999), who estimate these equations on annual data 1976 -
1998 for the Euro area. The numbers are presented in Table 1 below.

Table 1: Parameter values
αy βy βr Var(εp) Var(εy)
0.34 0.77 0.40 0.88 0.71

Our interest here is to see the implications of changing the measurement
period j in the loss function, equation (3). The benchmark against which we
compare is the case of j = 1 (i.e. the original model due to Svensson 1997),
and the main question we pose is whether a ‘longer-term view’ leads to less
aggressive monetary policy as compared to this benchmark. As indicators
of the ‘aggressiveness’ of policy we look at i) the dynamic response of policy

where Yt contains the goal variables (i.e. πj,t and yt), being formed as Yt ≡ G0
xjext and K

is simply
·
1 0
0 λ

¸
. Naturally we have Qj = G

0
xjextGxj .

7In this model with no forward-looking variables, the solutions under discretion and
under commitment coincide.

7



(i.e. the impulse responses); ii) the immediate response of policy (from the
reaction function); and iii) the variability of policy (the unconditional stan-
dard deviation of the change in the instrument). We will also look at the
effect on other variables, most notably output and the one-period inflation
rate.
Thus: does a ‘longer-term view’ lead to less aggressive monetary policy?

The answer varies with the value of λ, and we can identify three ranges.

First range, λ = 0

In the case of strict inflation targeting (λ = 0) the answer is always no.
The aggressive policy characteristic of strict inflation targeting in the base-
line case of j = 1 (see Appendix A) is in fact increased and perpetuated.
In Figure 1 the dynamic response of policy following a unit shock to the
aggregate supply equation is shown.8 The first column (corresponding to
strict inflation targeting, λ = 0) shows howmonetary policy becomes strongly
cyclical. The reason for this is the behavior of (one-period) inflation, which
also becomes cyclical as the measurement period is extended — this is shown
in Figure 2. Consider first the case of j = 1 (the top left-hand graph). Due to
the two-period control lag, a shock to inflation at time t cannot be eliminated
until t + 2. On the other hand, with no concern for output stabilization,
inflation can then be completely eradicated, and inflation is pushed back to
(the normalized value of) zero. But as soon as j > 1, the central bank must
begin to compensate for past deviations from target – bygones are no longer
bygones. When j = 2, the central bank will look at π2,t+2, i.e the average
inflation over t + 1 and t + 2. Since inflation is 1 percent in t + 1 (the first
half of its window), inflation in the second half (i.e. t+2) must be pushed to
minus 1 percent. Furthermore, at t+3, inflation must be brought up to plus
1 percent, in order to keep the average over two periods (now t+2 and t+3)
equal to zero. This oscillating pattern (+1,-1,+1,-1,...) goes on indefinitely.
If j = 3 a different pattern emerges; the central bank now looks at π3,t+2, i.e.
average inflation over t, t+1 and t+2. Since inflation is 1 percent in the first
third of its window, as well as in the second, inflation in the remaining period
(i.e. t+ 2) must be brought down to minus 2 percent. Moving the 3-period
window ahead one period at a time, t + 3 and t + 4 inflation must be +1
percent, while t+5 inflation must again be minus 2 percent, always in order

8Impulse-responses with respect to shocks to the demand equation are not reported in
this paper, since these do not give additional insights.
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to keep the 3-period average equal to zero. This pattern (+1,+1,-2,+1,+1,-
2...) continues to infinity. For larger values of j the sequence (+1,+1,-2) is
interrupted by sequences of zeros that become longer as j increases.9 Thus,
optimal monetary policy with λ = 0 will, with regular intervals, first become
more expansive (to increase inflation to 1 percent), then more restrictive (first
to halt the increase in inflation and then to reverse it), then more expansive
again (so that inflation returns to zero) and finally restrictive to push the
output gap back to its natural level (see e.g the graphs in the lower left-hand
corners of Figures 1 and 2, corresponding to j = 20).
The cyclical movement in the interest rate is of course mirrored in a

cyclical pattern in output — see the first column of Figure 3 which shows
the response of output. Furthermore, the cyclical pattern in the interest
rate, output and one-period inflation mean that the unconditional standard
deviation of these variables become unbounded (see Table 2, top panel).

Second range, λ positive but very small

For positive, but very small values of λ the answer to our question varies
with j. For medium-sized windows (values of j from around 2 to 8 or 12,
roughly) policy actually becomes more aggressive, and output more volatile.
In Figure 5 the initial responses of monetary policy are shown. The two top
curves, corresponding to λ = 0.01 and λ = 0.1, respectively, reveal a larger
monetary policy response as j increases. Figure 1, second and third columns,
show that the following dynamic response is more volatile. Figure 6 contains
the unconditional standard deviations of the first difference of policy10: it
increases for small j. Consequently, output becomes more volatile (Figure
3 contains the impulse responses, while Figure 7 displays the unconditional
standard deviations).
However, with a larger window (values of j from around 8 or 12 and

onwards) less aggressive monetary policy results. The initial responses in
Figure 5 are now milder than when j = 1, and the dynamic responses in
Figure 1 (second and third columns) are more drawn out; together this may
be termed a more cautious monetary policy. Furthermore, the drop in output
is much smaller, although the response is more prolonged. This is most likely

9For example, when j = 8 the sequence is (1, 1,−2, 0, 0, 0, 0, 0, 1, 1,−2, 0, 0, 0, 0, 0, 1, ...).
See Figure 2, third graph from top, first column.
10See also Table 2 which, however, for reasons of space does not extend to as high values

of j as Figure 6 does.
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why the unconditional standard deviations in Figure 7 only revert to their
original level (i.e. they do not fall below it).
Why does the weight on output stabilization affect how the response of

optimal monetary changes to increasing j? Why do we need to distinguish
between very small and larger values of λ when evaluating the effect of longer
measurement periods? The intuition behind this is the following. There are
two opposing forces that come into play when j is increased, one which
makes policy more aggressive, the other less. The first force, which in itself
makes policy more aggressive, is due to the longer memory implied by a
larger window. As explained above, policy must react also to past deviations
from target, leading to larger response coefficients. However, this effect is
increasing in j only up to a certain point.11 The second mechanism, having
a mitigating effect on policy, is that as j increases, a given shock will matter
less to the j-period average πj,t (see its definition in equation (4)). Put
differently, a given observation of π1,t+2 will be associated with decreasing
values of πj,t+2 as j increases. This gives the central bank more room for
manoeuvre which, with positive weights on λ, it will exploit by not raising
interest rates as much. This second effect is increasing in j for all values of
j, and will thus eventually dominate over the first, regardless of λ.12 It is
also increasing in λ, meaning that when λ is sufficiently large, it dominates
for all values of j. This brings us to the third, and final, range.

Third range, larger λ

For larger values of λ the answer is yes, regardless of j. As just mentioned, the
second effect from increasing j, with a mitigating effect on policy, dominates
for all values of j – the fact that a given shock matters less to the average
πj,t as j increases will lead to more cautious monetary policy. See e.g Figure
5 where the initial response of monetary policy falls for all values of j when
λ = 1. The dynamic responses in Figure 1 (fourth and fifth columns) remain
largely unchanged for the medium-range values of j, while for large values
of j they show a smoother path for optimal monetary policy. Also, the

11Remember, when λ = 0 and j = 2, the optimal response is to push one-period inflation
to -1 percent; when j = 3 one-period inflation should be -2 percent, which also is the case
for higher values of j (with a longer control lag, this “cut-off value” of j would be larger).
Now, with positive λ, optimal policy is not quite as extreme, but the basic pattern remains.
12In Figure 5 , the second effect takes over at approximately j = 13 in the case of

λ = 0.01, and j = 7 in the case of λ = 0.1.
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unconditional standard deviations of policy in Figure 6 fall. As for output,
the drop is less severe the larger the value of j. The dynamic response of
output is also less volatile — see the fourth and fifth columns of Figure 3.
However, the unconditional standard deviations are hardly affected — see
Figure 7.

Summary

To sum up, for given (strictly positive) values of λ, large values of j do indeed
lead to a less ‘aggressive’ monetary policy, especially in terms of the initial
response but also the subsequent dynamic development of the interest rate.
The effect on output is also a ’smoothing’ one: the drop in output is not as
large, while the following dynamic response is more drawn out. However, the
unconditional standard deviations remain about the same, in contrast with
those of policy, which fall.
More generally, these results indicate that in this class of models of op-

timal monetary policy there are two ways of reducing the variability of the
policy instrument. First, and as is well-known, one may assign a higher value
to λ (look at the top row in Figure 1, but note that the scales are different in
each column): as λ increases, the policy response becomes smoother.13 The
second is increasing j. For example, compare the third and fourth columns of
Figure 1. Increasing λ from 0.1 to 0.5 (for given j = 1) has roughly the same
effect as, for given λ, increasing j from 1 to, say, 20. The same holds true for
the behavior of output (see Figure 3, but note that the scales are different
in each column). Hence, when the weight on output stabilization is strictly
positive, there is an observational equivalence between increasing λ (for given
j) and increasing j (for given λ), in terms of the dynamic response of the
interest rate and of output.

4 Implications for the price level

The analysis above showed that the increased memory that comes with longer
measurement periods leads, under strict inflation targeting, to a cyclical be-
havior in one-period inflation. In this section we discuss the behavior of the
price level as the measurement period j is extended.

13Graph A1 in Appendix A provides a summary.
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Consider Figure 8. Here the response of the price level following a unit
shock to aggregate supply is traced out for different combinations of j and λ
(hence, Figure 8 builds on Figure 2). The initial value of the price level has
been normalized to 1, and due to the two-period control lag it always rises
to 3 following the shock. The following development, however, depends on j
and λ. In the first column, corresponding to λ = 0, the top graph shows the
familiar case of j = 1. The central bank now acts to completely eliminate
inflation in t + 2; thus the price level remains at 3. When j > 1 the central
bank must compensate for previous deviations from target (see Figure 2).
This, in turn, implies that the price level will jump between 1 (its original
value), 2 and 3 indefinitely. However, as j increases, the price level remains
at the original level for longer periods of time.
Obviously there is an analogy with price level targeting here. Extending

the pattern shown in the first column of Figure 8, one can see that as j
approaches infinity the price level returns to and remains at 1, i.e. as j in-
creases we approach the case of price level targeting. As is easily understood,
this implies a reduced long-term variability in the price level. On the other
hand, there is increased short-term variability of one-period inflation, the
interest rate and of output, as was seen in the impulse-responses in Figures
1, 2 and 3. In fact, the one-period inflation rate π1,t and the output gap
yt become non-stationary with infinite variances. In this regard, this model
yields results that are well in accord with an old, established view on the
relative merits of price level targeting and inflation targeting.14

That there will be an analogy is perhaps most easily seen by looking
at the definition of πj,t in equation (4) and letting j → ∞. However, this
analogy is not perfect: it holds only when λ = 0. As soon as λ > 0 there will
always be some base-drift in the price level. Consider Figure 8 again, and
now look at the second column (corresponding to λ = 0.01). When j = 1
(top graph), the price level settles at a value slightly higher than 3 (since
one-period inflation rate is brought down to zero almost, but not quite, as
soon as it is possible for the central bank to do so). When j > 1, one-period
inflation will oscillate around zero, but eventually settle down to zero (see
Figure 2). Hence the price level will exhibit a partial reversal of the original
base-drift.15

14However, see Svensson (1999b) and Vestin (1999) for models that do not imply this
trade-off.
15In fact, when λ = 0 the one-period inflation rate and price level never settle down as

soon as j > 1; they in fact do as soon as λ takes on a strictly positive value.
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The level at which the price level ultimately settles depends not only on
j, but as seen also on λ. This can be seen in the remaining columns of Figure
8 or in Table 3 which documents the value of the price level as t → ∞ for
different combinations of λ and j. Remember, the price level starts at 1,
increases to 3 (due to the two-period control lag) and then evolves in a way
which depends on λ and j. For λ = 0 (first column), the price level settles
down only asymptotically (i.e. as j → ∞) at the starting level of 1 (hence
the analogy with price level targeting). When λ = 0.01 there is a partial
reversal of the initial base drift as soon as j > 1, i.e. the price level settles
at a value less than 3. Note that the degree of reversal increases with j (i.e.
looking down the second column, the value at which the price level settles
drops significantly) but is never complete. However, this pattern does not
hold true for larger values of λ (see remaining columns). As λ is increased,
the effect of changing j becomes smaller and smaller. For example, when
λ = 1, there is hardly any effect at all on the final price level or the size of
the base drift of increasing j.
Thus, the somewhat surprising result is that the intuitive equivalence

between price level targeting and inflation targeting with a very large window
holds only when λ = 0. With higher values of λ, there will never be a
complete return to the initial price level, since the cost of doing so (in output
terms) is deemed to be too high.16

5 Summary and conclusions
The policy of inflation targeting, in theory and in practice, most often focuses
on stabilizing the annual rate of inflation. Yet it is not obvious, from a
theoretical point of view, why this measure, as opposed to inflation measured
over shorter or longer periods, is what should enter the central bank’s loss
function. In this paper we investigate the implications of varying the j-
period window over which the inflation rate is measured. As discussed in the
introduction, the initial intuition concerning such variations is that extending
the window ought to lead to a more smooth conduct of monetary policy, in
the sense of lower response coefficients in the optimal reaction function and
a more muted dynamic response of the interest rate.

16In the price-level targeting model of Svensson (1999b) the reversal back to the original
price level following a shock will always be complete, but will take longer with higher values
of λ.
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The analysis of this paper shows that the effect of increasing j on the
conduct of monetary policy hinges on the relative weight assigned to output
stabilization, λ, and we identify three ranges. 1) In the case of strict inflation
targeting, i.e. when no weight is given to output stabilization, monetary
policy in fact becomes more volatile. The intuition behind this result is that
with a ‘longer-term view’, policy makers acquire a longer memory – optimal
policy must compensate for past deviations from target, past deviations that
would be ‘by-gones’ with shorter definition horizons. 2) In the case with
a positive weight on output stabilization (flexible inflation targeting), but
when this weight is very small, we must distinguish between a medium-sized
window (meaning that j is from approximately 2 to 8 or 12) and a larger
window (values of j from around 8 or 12 and up). In the former case, optimal
monetary policy also becomes more volatile, while in the latter it becomes
more cautious. There are two opposing forces here. The first, making policy
more aggressive, is due to the longer memory just mentioned. But this effect
is increasing in j only up to a point. The second effect, with a mitigating
effect, is due to the simple fact that a single shock will matter less to the j-
period average when j is increased. This effect is increasing in j for all values
of j, meaning that it eventually dominates. 3) Finally, for larger values of λ,
the initial intuition is also borne out — monetary policy does become more
smooth, even in the medium range for j, since the cost of correcting for past
deviations from target is deemed too high. The initial response of monetary
policy following a shock is milder and the subsequent dynamic behavior is less
volatile as the j-period window is extended. It was shown that in terms of the
dynamic response of the interest rate and of output, there is an observational
equivalence between increasing λ (for given j) and increasing j (for given
λ).17

Another conclusion from the analysis is that, as j approaches infinity
and for small values of λ an analogy exists with price level targeting. As is
easily understood, price level targeting implies zero base drift in the price
level, while inflation targeting implies a positive base drift. Furthermore, the
‘conventional wisdom’ regarding the relative merits of price level targeting
and inflation targeting claims that the choice involves a trade-off between low-
frequency price level variability and high-frequency inflation variability.18 In

17Hence a central banker who for some reason wants to obtain less volatility in the policy
instrument, but does not want to increase λ, can instead extend the window over which
‘inflation’ is measured.
18See, however, Svensson (1999b) and Vestin (1999) for models yielding results at odds
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this model, the analogy is at its closest for λ = 0: then the price level returns
to, and stays at, its initial level following a shock to inflation, i.e there is no
base drift. Also, the unconditional variance of one-period inflation becomes
unbounded.19 For very small values of λ, the analogy is less precise, but
nonetheless some elements of price level targeting remain. First of all, the size
of the base drift is reduced by increasing j. Furthermore, the unconditional
variance of one-period inflation increases somewhat. But for larger values of
λ, the analogy disappears. The size of the base drift (and the unconditional
variance of one-period inflation) is largely unaffected by increasing j. Thus,
the somewhat surprising result is that the intuitive equivalence between price
level targeting on the one hand, and inflation targeting with a very long
measurement period on the other, holds only when λ = 0.
In closing, let us note another reason why central banks may wish to target

inflation measured over longer periods. Figure 4 shows how target inflation
πj,t evolves following a shock to aggregate supply, for different values of λ
and j. Naturally, the larger the j, the smoother the behavior of the target
variable. In this sense a central bank employing a longer window may appear
to be more ‘successful’, ex post, than one that uses a shorter window. While
this is a matter of speculation, it is difficult to rule out the possibility of
such considerations completely, especially in situations where the credibility
of the inflation target is a concern.
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Appendix A: The Svensson (1997) model
The case of j = 1 is analyzed in Svensson (1997, 1999a) and we briefly
present the results here in order to cast them in terms of our notation. The
first-order condition for minimizing (3) subject to (1)-(2) is

π1,t+2|t = π∗ + c
³
π1,t+1|t − π∗

´
, (9)

where

c ≡ λ

λ+ δ α2y k
,

and

k ≡ 1
2

1− λ (1− δ)

δ α2y
+

vuutÃ1 + λ (1− δ)

δ α2y

!2
+
4λ

α2y

 ≥ 1.
Consider first the case of strict inflation targeting (λ = 0 → c = 0). Then
the central bank should set its instrument so that the first inflation that can
be affected is equal to the target (on an expected basis). Since we have a
two-year control lag, it will be expected inflation two periods hence. In effect,
the conditional inflation forecast becomes an intermediate target.
For flexible inflation targeting (i.e., λ > 0) the central bank should only

gradually adjust its inflation forecast to the target, since this will reduce
output fluctuations. The higher the weight on output stabilization, the slower
the adjustment of the inflation forecast to the target (c is increasing in λ;
Svensson (1997), p. 1132). See Figure 9 for an illustration of this.
The central bank’s optimal reaction function may be derived by, first,

noting that expected inflation two periods into the future is

π1,t+2|t = (1 + αyβr)π1,t + αy(1 + βy)yt − αyβrit, (10)

(which follows from equations (1)-(2)) and, second, substituting this into the
first-order condition, equation (9). Solving for it we thus get

it = π1,t +
1− c
αyβr

(π1,t − π∗) +
1− c+ βy

βr
yt,

which is on a ‘Taylor-rule’- like form. Hence the repo rate is increasing in
the excess of current inflation over the target, and in the output gap. For
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later reference we can also state the reaction function as:

it =
1 + αyβr − c

αyβr
π1,t +

1− c+ βy
βr

yt, (11)

(where for simplicity π∗ = 0). Hence a positive weight on output stabilization
(leading to c > 0) leads to smaller coefficients in the reaction function, i.e.
concern about real variability leads to ’smoother’ policy.

Illustration using assumed parameter values

Using the parameter values from Orphanides and Wieland (1999) we now
illustrate some properties of this base-line model. Impulse-responses follow-
ing a shock to the aggregate supply equation are displayed in Figure 9 (the
response of one-period inflation, output and the instrument) for six different
values of λ ranging between 0 and 1. In the case of strict inflation targeting
inflation returns to target as soon as it is possible for the central bank to
force it to do so. This quick return to target requires very dramatic changes
in the interest rate and in output. When some weight is assigned to output
stabilization, the picture changes. Now inflation is only gradually returned
to target — as was shown in equation (9) — and the greater the weight on
output stabilization, the slower is this return. Hence, the required interest
rate changes are much smaller, and output is much smoother.
See also the first column of Table 2, which shows the unconditional stan-

dard deviations of inflation and output when j=1. Looking down the column,
we see that the standard deviation of inflation rises, and the standard devi-
ation of output falls, as more weight is placed on output stabilization.
Finally, see Figure 5 which contains the initial policy responses for differ-

ent λ and j. The intercept of each curve corresponds to j = 1. Here, again,
we see that optimal policy becomes ’smoother’ as λ increases — as shown in
equation (11).
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Appendix B: Statespace representation, an ex-
ample
As an example, consider the case of j = 4. The objective of the central bank
is to minimize the squared deviations of the four-period average inflation rate
π4,t from the target π∗, where π4,t ≡ 1

4
(π1,t + π1,t−1 + π1,t−2 + π1,t−3) . The

extended state vector then is

ext ≡ h
π1,t π1,t−1 π1,t−2 π1,t−3 yt

i0
and the state-space formulation is

ext+1 = A4ext +B4it + ε4,t+1

=


1 0 0 0 αy
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
βr 0 0 0 βy




π1,t

π1,t−1
π1,t−2
π1,t−3

yt

+


0
0
0
0
−βr

 it +


εp,t+1
0
0
0

εy,t+1


(In A4, three rows/columns have been inserted after the first row/column,
in B4 three rows have been inserted after the first row, and filled with the
appropriate elements.) The central bank’s objective is

min ex0t Q4 ext
where

Q4 ≡



1
16

1
16

1
16

1
16

0
1
16

1
16

1
16

1
16

0
1
16

1
16

1
16

1
16

0
1
16

1
16

1
16

1
16

0
0 0 0 0 λ
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Figure 1: Monetary policy response following unit shock to aggregate supply.
Different combinations of λ and the measurement period j.
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Figure 2: Response of one-period inflation following unit shock to aggregate
supply.
Different combinations of λ and the measurement period j.
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Figure 3: Output response following shock to aggregate supply.
Different combinations of λ and the measurement period j.
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Figure 4: Response of j-period inflation following unit shock to aggregate
supply. Different combinations of λ and the measurement period j.

23



Figure 5: Initial policy response

24



Figure 6: Unconditional standard deviation of change in monetary policy
instrument.

25



Figure 7: Unconditional standard deviation of output.
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Figure 8: Response on price level following unit shock to aggregate supply.
Different combinations of λ and the measurement period j.
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Figure 9: (Appendix) Bench-mark case, j = 1.
Impulse-responses with respect to unit shock to aggregate supply.
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Tables

Table 2. Unconditional standard deviations

Length of window, j
1 2 3 4 - 8 - 12 - 16

λ = 0.0
πj,t 1.36 1.06 0.71 0.53 0.26 0.18 0.13
yt 3.01 ∞ ∞ ∞ ∞ ∞ ∞
∆it 16.46 ∞ ∞ ∞ ∞ ∞ ∞
π1,t 1.36 ∞ ∞ ∞ ∞ ∞ ∞
it 9.81 ∞ ∞ ∞ ∞ ∞ ∞
λ = 0.01
πj,t 1.36 1.12 0.88 0.72 0.43 0.33 0.28
yt 2.81 3.85 4.52 4.53 3.80 3.28 2.95
∆it 14.71 24.16 26.48 23.62 15.99 12.53 10.59
π1,t 1.36 1.38 1.45 1.50 1.61 1.67 1.71
it 8.93 13.62 15.54 14.64 10.75 8.78 7.66
λ = 0.1
πj,t 1.41 1.25 1.10 0.98 0.70 0.57 0.49
yt 2.15 2.27 2.36 2.39 2.27 2.12 2.00
∆it 9.33 10.24 10.40 9.88 7.90 6.72 5.97
π1,t 1.41 1.39 1.38 1.39 1.46 1.54 1.62
it 6.20 6.67 6.86 6.73 5.85 5.25 4.86
λ = 0.5
πj,t 1.57 1.46 1.36 1.28 1.04 0.90 0.80
yt 1.62 1.64 1.65 1.66 1.64 1.59 1.54
∆it 5.67 5.76 5.75 5.61 5.01 4.58 4.28
π1,t 1.57 1.56 1.55 1.55 1.58 1.63 1.70
it 4.34 4.38 4.40 4.36 4.14 3.96 3.83
λ = 1.0
πj,t 1.69 1.60 1.52 1.45 1.23 1.09 1.00
yt 1.44 1.45 1.45 1.46 1.45 1.42 1.39
∆it 4.63 4.66 4.65 4.57 4.23 3.97 3.78
π1,t 1.69 1.69 1.68 1.68 1.70 1.74 1.80
it 3.85 3.87 3.87 3.84 3.73 3.64 3.58
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Table 3. The size of the base drift:
convergence of price level (at t=200).

(Initial price level = 1.)

Window λ = 0.0 λ = 0.01 λ = 0.1 λ = 0.5 λ = 1
j = 1 3.0 3.08 3.56 4.67 5.53
j = 2 — 2.79 3.44 4.61 5.50
j = 3 — 2.51 3.29 4.53 5.44
j = 4 — 2.31 3.17 4.46 5.39
j = 5 — 2.18 3.07 4.40 5.34
j = 6 — 2.08 2.99 4.34 5.30
j = 7 — 2.00 2.92 4.29 5.26
j = 8 — 1.94 2.86 4.25 5.22
j = 9 — 1.89 2.81 4.21 5.19
j = 10 — 1.85 2.77 4.17 5.16
j = 11 — 1.82 2.73 4.14 5.14
j = 12 — 1.79 2.70 4.11 5.11
j = 13 — 1.76 2.67 4.08 5.09
j = 14 — 1.74 2.64 4.06 5.07
j = 15 — 1.72 2.61 4.04 5.05
j = 16 — 1.70 2.59 4.02 5.03
j = 17 — 1.69 2.57 4.00 5.01
j = 18 — 1.67 2.55 3.98 5.00
...

...
j →∞ 1.0
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