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Bayesian Prediction with a Cointegrated Vector
Autoregression

Mattias Villani*

Abstract

A complete procedure for calculating the joint predictive distribution
of future observations based on the cointegrated vector autoregression is
presented. The large degree of uncertainty in the choice of the cointegration
vectors is incorporated into the analysis through a prior distribution on the
cointegration vectors which allows the forecaster to realistically express his
beliefs. This prior leads to a form of model averaging where the predictions
from the models based on the different cointegration vectors are weighted
together in an optimal way. The ideas of Litterman (1980) are adapted
for the prior on the short run dynamics with a resulting prior which only
depends on a few hyperparameters and is therefore easily specified. A
straight forward numerical evaluation of the predictive distribution based
on Gibbs sampling is proposed. The prediction procedure is applied to a
seven variable system with focus on forecasting the Swedish inflation.

Keywords: Bayesian, Cointegration, Inflation forecasting, Model av-
eraging, Predictive density.

1. Introduction

The idea of cointegration (Engle and Granger, 1987; Johansen, 1995) has become
extremely popular in applied work. With the introduction of this concept, econo-
metricians were given the possibility to incorporate theoretically motivated long
run equilibriums into their otherwise relatively unrestricted models.

In most applications, many theoretical cointegration restrictions are available
and the choice between them is often a very difficult task. Even though the restric-
tions are empirically testable, the evidence from such tests is often inconclusive;
we may obtain weak support for one or several of the theoretical restrictions while
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the other restrictions are clearly rejected or we may even find strong support for
more than one of them. In addition, we must also consider the possibility to
ignore them all and estimate the long run relations entirely from data.

If the model is to be used for prediction then there is, of course, always the
possibility to produce forecasts based from each of the models with the different
theoretical restrictions imposed and from the model with empirically estimated
restrictions. It seems reasonable, however, to weight these predictions with a
weight proportional to the empirical support given to the restriction. In any case,
it 1s often unsatisfying, and practically complicated, to have a whole range of
predictions based on different restrictions.

The aim of this paper is to introduce a complete Bayesian approach to pre-
diction using a cointegrated VAR model. In a Bayesian setting, the uncertainty
regarding the correct cointegration restriction should be reflected in the prior dis-
tribution of the model parameters. We propose a prior distribution which allows
us to work simultaneously with several plausible cointegration restrictions with
an optimal way to combine the predictions. Furthermore, the suggested prior
also allows parts or even all of the cointegration restrictions to be estimated freely
from the data. In effect, long run restrictions are imposed only if the data support
them.

Even if we impose long-run restrictions on the VAR, most parameters describe
the short run dynamics of the system and these parameters are still unrestricted.
Litterman (1980, 1986) improved the prediction performance of the unrestricted
VAR by using a prior distribution on the coefficients that centered the VAR over
the unrelated random walk model, a priori. A slight variant of this idea is used
here to improve the estimates of the short run dynamics, and therefore to improve
predictions.

An often neglected part of the prediction phase is the uncertainty in the point
predictions, which in many cases is as important as the point predictions. This
is certainly true in the inflation forecasting application dealt with here as an
increasing number of central banks now reports their inflation targets as an in-
terval rather than a single number. In traditional forecasting applications of the
VAR with cointegration restrictions, the forecasting uncertainty is distorted by
primarily two conditionings. First, the conditioning on one of the theoretical sug-
gestions in the forecasting stage will produce a distorted view of the certainty in
the forecasts. Secondly, the uncertainty attributed to the estimation of the model
parameters is at best accounted for by rough, and often dubious, corrections based
on asymptotic theory. The aim here is to produce uncertainty statements that
fully account for all sources of uncertainty and not only those attributed to future
stochastic disturbances to the system.



2. The cointegrated vector autoregression

Consider the ordinary p-dimensional vector autoregressive process with K lags
K
Xy = Z ILx; ; + ®di+ey, (2.1)
i—1

where x; contains an observation on the p time series at time ¢, I1; is the matrix of
coeflicients describing the dynamics of the system while d; contains d deterministic
trend or dummy variables at time ¢ whose effect on x; is captured by ®. Finally,
g€; is a vector of error terms assumed to follow the N,(0,%) distribution with
independence between time periods.

An equivalent parametrization of the VAR model, better suited for cointegra-
tion analysis, is the error correction model (ECM)

K-1

Ax, =TIx, g + Y TiAx,; + ®dite, (2.2)
=1

where Ax, ; = X, ; — X1, I = Y1 [T =T, and Ty = =S . | TI;. The
greatest merit of the ECM is that it separates the long-run component of the
series (IIx;_) from the short-run dynamics (Zf;l I';Ax; ;), a separation that
both simplifies the interpretation of the non-stationary processes dealt with in
this paper and suggests the two major types of prior beliefs for such processes,
see section 4.

The concept of integration is essential to the definition of cointegration. A
process is integrated of order zero, or I(0), if, in rough terms, it is stationary
but its cumulative sum is non-stationary, see Johansen (1995a) for a more precise
definition. A process is said to be integrated of order d, or I(d), if the dth difference
of the process is 1(0).

If the processes are at most I(1), and the rank of IT is equal to r, then there
exist 7 linear combinations of the time-series that are I(0) (Engle and Granger,
1987). That is, the individual processes may be I(1), and therefore drift around
like random walks, but, at least some of them, are tied together by long-run equi-
librium relationships given by the coefficients of the r stationary linear combina-
tions; the original processes are said to be cointegrated. Formally, if rank(II) =
r, we can write I = a3, where @ and 3 are both matrices of dimension p x 7.
By inserting this decomposition into (2.2) we obtain

K-1
Ax, = afx 1+ Y TiAx,; + ®dite, (2.3)

=1
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where (3'x;_; can be interpreted as a new set of r stationary processes representing
departures from the r equilibria while the adjustment coefficients in a describe the
adjustment back to equilibrium. The columns of 3 are the cointegration vectors.

Note that the decomposition of Il into @ and 3 is not unique; any r X r
invertible matrix T can be used to transform a and @3 without affecting their
product; that is, Il = aTT ' = a8, where a* = aT and 8" = Tﬁlﬁ/, and
only the column spaces of a and 3 are therefore determinable and not a and
3 themselves. Thus, without restrictions on e and 3 the model in (2.3) is not
identified. To get a unique decomposition of Il, restrictions on either a or 3 must
be imposed. The latter option is chosen here. Following Johansen (1995a), general
linear identifying restrictions on the ith cointegration vector can be represented
in the form

B, =Hep, (i=1,..r) (2.4)

where H; is an p X (p — r;) matrix determined by the r; restrictions and ¢, is
a vector containing the remaining p — r; free elements in 3,. The restrictions in
(2.4) only determine B, up to an arbitrary constant and a normalization of the
following form will be used to settle this indeterminacy

B;,=h; +H, (i=1,..7) (2.5)

where h; zero vector with unity in the ith position, H* is the same as H; but with
the ith row equal to a zero vector and 1, i1s a vector with thed, = p —r;, — 1
free coefficients left after the identifying restrictions and the normalization. The
conditions on the set of h; and H* to be identifying can be found in Johansen
(1995b) and is automatically checked in computer programs like PcFiml (Doornik
and Hendry, 1997) and Cats in Rats (Iansen and Juselius, 1995).

It will be convenient to have a condensed representation of the ECM in the
actual estimation phase, where all observations are shown explicitly. For this
purpose, let us write the model in (2.3) for the whole sample of T' time periods as

AX =X ,8a +ZI' + D® +E, (2.6)

where AX = (Ax,, ..., A%), X ;= (Xp 4,0, X_;41), Z = (AX
L= (,..Cx),D=(dr,...d,) and E = (e, ...’

7AX7K+1)7

EEPRY

3. An application to inflation forecasting in Sweden

The methods introduced in this paper are applied to a data set collected and
analyzed by Jacobson, Jansson, Vredin and Warne (1999), hereafter referred to as
JJVW, at the central bank of Sweden in an attempt to find a benchmark model



from which monetary policy can be studied and inflation forecasts generated. The
data consist of quarterly observations from 1972:2 to 1996:4 on the following seven
variables
xe=(w pe i e yr opioir ),

where all starred variables refer to foreign variables and the remaining variables are
Swedish measures. 3, denotes 1001n GDP, p, = 1001n CPI, i, = 1001In(1+1,/100),
where [; is the three month treasury bills rate in percent and e; = 1001In S;, where
St 1s the geometric sum of the nominal Swedish Krona exchange rate of Sweden’s
20 most important trading partners.

To control for large devaluations of the Swedish krona and regime shifts in
economic policy both in Sweden and in foreign countries, JJVW added five dummy
variables to the analysis. Finally, a constant term was included in the model and
thus

di= (1 vy dog g ag sy )
where i,; denotes the jth dummy at time ¢. TIurther details can be found in
JIVW.

A battery of tests in JJVW suggested firmly that the four lags in the VAR
model were sufficient. Bayesian lag length inference in the vector autoregression
has been proposed in Villani (1998a) based on the fractional Bayes approach to
model selection (O’Hagan, 1995). With a vague prior on the VAR parameters and
a uniform prior on the lag length from K = 0 to K = 8, the following posterior
probabilities were obtained: p(K = 4[xM) = 0.904, p(K = 5/x™)) = 0.0931,
p(K = 6]X(T)) = 0.0029, where x™) denotes data up to time 7', and approximately
zero for other lag lengths. Thus, this Bayesian analysis supports the use of the
VAR with four lags.

The common trends representation of the cointegrated VAR (Stock and Wat-
son, 1988; Warne, 1993) was used by JJVW in an attempt to identify the number
of cointegration relationships. Basically this idea stems from the fact that if the
VAR process has 7 cointegration relations, then it can be shown (Stock and Wat-
son, 1988) that the individual series are driven by p —r underlying, unobservable,
random walks called common trends. Usually such trends are assumed to be gen-
eral economic factors like technology or money supply, or simply real and nominal
shocks, respectively. In JJVW it is argued that four common trends are expected:
real and nominal stochastic trend both in Sweden and abroad; the usual empirical
tests and descriptive statistics gave some, but far from conclusive, support to this
theoretically motivated choice. To be able to compare our results with the ones
in JJVW, we will use exactly the same model with K =4 and r = 3.

JIJVW discusses different, a priori plausible, structures of 3 and several fully
specified cointegration vectors are put forward as candidates for long run equilib-
rium relationships. A short summary is given in Table 3.1.



Relation Cointegration vector Fconomic reasoning

ee+p; —pe by =1(0,-1,0,1,0,1,0) Goods market equilibrium: real
exchange rate is 1(0), PPP.

i by, = (0,0,1,0,0,0,0) i, =i, + E(Ap,), where i, is the real
interest rate and both i, and F (Apy)
are assumed to be I(0).

iy b; = (0,0,0,0,0,0,1) See 1;.

1 — 1 by =(0,0,1,0,0,0,—1) Financial markets equilibrium:
i =i} + E(Aet), E(Ae) is 1(0).

Table 3.1: Plausible long-run relationships and their cointegration vectors for the
Swedish monetary data

4. Prior distribution

4.1. The prior on ® and X

Assuming that very little information on @ and X is available, then the following
default prior seems acceptable

p(®,3) oc| 2| T2,

which is the limiting case of a Wishart prior on 3! with the degrees of freedom
approaching zero (Geisser, 1965), and is therefore a prior that adds very little
prior information into the analysis.

4.2. The prior on the short run dynamics

Let T’ be distributed independently of ®, o and 3 a priori, and assume that vec I’
follows a multivariate normal distribution with mean g and covariance matrix W.
In a successful attempt to improve the predictive ability of the unrestricted VAR,
Litterman (Litterman, 1980, 1986; Doan et al. 1984) endowed the normal prior
on the parameters with more structure. Some of his ideas will here be adapted to
fit the short-run dynamics of the cointegrated VAR, see Stark (1998) for a similar
approach. The following statements provide a starting point for the prior on T'.

e The coefficients in I' should be more or less centered around zero, thus

n=0.
e The elements in I' can for convenience be assumed independent a priori.

e Any given element in I'; ;1 is more likely to be zero than the corresponding
element in I';.



e The beliefs about a coefficient that describes the dynamics within a vari-
able may be different from the beliefs about a coefficient that describes the
dynamics between variables.

Let ’yfj denote the element at the ith row and jth column of I'y, that is, the
coeflicient that describes how the difference of the ith series (Aw;,) is affected by
changes in difference of the jth series lagged k time periods (Az;; ). A plausible
structure on W, which is diagonal by the second statement above, satisfying the
stated requirements is

Own lags (i = j)
9 % Foreign lags (i # j)

7

s>

Std(v;) = {

|

where Std(+) denotes the standard deviation, A = Std(v};), for all 7, and, if it is
regarded as more probable a priori that a series is affected by its own lags than
that it is affected by the lags of another series, then 6 € (0,1). o; is the square
root of the ith diagonal element of 3 whose presence adjusts for the differing
variability in the time series. Note that Var(’yfj) is a decreasing function of the
lag length implying that longer lags are more likely to have coefficients equal to
zero. Other damping rates than k! on the standard deviation scale can, of course,
be used if it is considered more appropriate.

If beliefs about one or more coefficients in I' do not conform to the structure
described above, then the corresponding elements in W may simply be modified to
fit the genuine beliefs of the investigator. For example, for quarterly data we may
expect that the coefficients of the fourth lag is more likely to be different for zero
when compared to, for example, the third lag. The elements in ¥ corresponding
to coefficients of the fourth lag should then be increased.

4.3. The prior on the long run structure

Typically, there are some cointegration vectors which the investigator holds as
particularly plausible a priori. Such vectors will here be termed candidate vec-
tors. We have r cointegration vectors to determine and the candidate vectors,
which can of course appear simultaneously if 7 > 1, can therefore be mixed to
form a set of () matriz candidates for 8. Not all r-subsets of the vector candidates
will be plausible a priori, and therefore discarded as matrix candidates, but there
is also the possibility that only some columns of a matrix candidate are specified
and the remaining ones are estimated from data. For the Swedish monetary data
in section 3, the four vector candidates were given in Table 3.1. Plausible matrix
candidates are B, = (by,-,+), By = (by,-,"), By = (be,bs,:), B, = (b1, by,),
Bs = (by,by,bs) and By = (-, -, ), where a dot denotes an unspecified column of



3. Two things are worth noting. First, the matrix consisting of only unspecified
columns, representing complete ignorance regarding the nature of the cointegra-
tion relationships, is included in the set of matrix candidates. Secondly, some
possible matrix candidates have been considered improbable, for example matri-
ces implying that only one of the interest rates is stationary, which seems to be a
plausible assumption.

The matrix candidates define submodels of the ECM. The usual approach is to
determine, by hypothesis tests, the support given by the data to these submodels
and then condition on the most plausible one in the subsequent analysis and
prediction. At the very best, several models (matrix candidates) are entertained
and different scenarios (e.g. predictions) are presented. In a Bayesian analysis
we need only to assign priors to all uncertain aspects of the problem. Since there
is uncertainty regarding the appropriate matrix candidate we simply assign prior
probabilities p(3,), ..., p(BQ) to them and then proceed to calculate the posterior
distribution. As we will see in section 6, this leads to a procedure sometimes
referred to as Bayesian model averaging (Draper, 1995) where each submodel
contributes to the final inference with a weight proportional to the support in the
data of this submodel. Bayesian model averaging allows us to treat each model
separately. Thus we focus on the inference of one of the subset models and in
section 6 we show that there is a simple way to combine the subset models into
an overall inference tool.

By imposing fully specified vector candidates to some columns of 3, we are
effectively fixing the corresponding restriction matrices, h; and H* for those
columns. Of course, restricting whole columns of 3 to known numbers will pro-
duce over-identifying restrictions.

If a matrix candidate fully specifies 3 then a uniform prior for a could be
used as a default prior without much controversy. For matrix candidates with
one or more unspecified columns, we have to assign priors to both a and the
remaining free parameters of 3. A uniform prior for all these parameters has
been used by Geweke (1996) and Bauwens and Lubrano (1996). Another prior
has been developed by Villani (1999b). To write down this prior some notation is
needed first. Define a;; as the ith diagonal element of (H;H;)™! and let C; equal
(H;H;)"! with the ith row and column deleted. Finally, let C,(p, A) denote the
g-variate Cauchy with location g and scale (precision) matrix A. The prior in

Villani (1999b) is then of the form

P, € Cdi<0 ailci%

» YV

with independence between the 1,. The motivation of this prior is that it assigns
equal probability to each possible r-dimensional space spanned by the columns of
B (the cointegration spaces), which constitutes the distinguishable outcomes’ of
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3. Villani (1999b) suggests that a uniform prior on & can be used for convenience
in the calculations.

There is ongoing research about the appropriate prior for ¢ and 3 and the
final word has certainly not been said on this issue. We wish to concentrate on
other aspects of the analysis here, however, and we note that in situations where
the data are at least moderately informative relative to the prior then the choice
of prior will matter little.

5. Numerical evaluation of the posterior distribution by
Gibbs sampling

The posterior is analytically intractable and a numerical evaluation is called for.
The popular Gibbs sampler provides an automatic numerical method for routine
applications. We will only give an outline of the algorithm and we refer to Smith
and Roberts (1993) for a more complete introduction. Briefly, the posterior distri-
bution of the parameters in the cointegrated ECM does not belong to a standard
family of distribution from which we can generate samples. The posterior distri-
bution of each parameter matrix (i.e. one of a, 3,3, " and ®) conditional on
the other parameter matrices, the so called full conditional posterior, are all easy
to sample from, however. The Gibbs sampler exploits this fact and produces a
sample from the posterior distribution by iterating through the full conditional
posteriors. Although this sample consists of dependent observations, estimates
of functions of the parameters (e.g. forecasts) based on the Gibbs samples do
converge to the right values.

To implement the Gibbs sampler, the full conditional posteriors of the cointe-
grated ECM are needed. The necessary results are derived in Geweke (1996) and
Villani (1999b) for a uniform prior on the short run dynamics. The more general
case of a normal prior for I' gives the following full conditional posterior

VeCF’Q,ﬁ, 27 X(T)E NPQ(k71)<:Yu 971)7

where x() denotes dataup totime T, Q@ = X 10Z'Z + ¥ ' 5 = QH(Z'eZZ)H
and y=vec (Z'Z)'Z'(AX — X ,Ba’'—D®). This follows from the treatment of
the multivariate regression in Zellner (1971) and the details will not be presented
here.

A complication arises in the full conditional posterior of X, since diag(X) is
not only present in the likelithood but also in the prior covariance matrix of I'.
The most frequently used solution to this dilemma is to set 0? = s? in the prior

covariance matrix of I', where s? is the 7th diagonal element of 5], the ML estimate

of 2.



6. Prediction

6.1. The predictive distribution

The predictive distribution of a set of future observations x71,..., X5 condi-
tional on data up to time 7', denoted by p(x741, .-, XT+h]X(T)), is the single mea-
sure needed for a Bayesian treatment of the prediction problem. Note that the
predictive distribution is not conditional on the parameters and the uncertainty in
estimation is therefore fully accounted for. The full predictive distribution cannot
be obtained analytically, but Thompson and Miller (1986) have proposed a dou-
ble simulation procedure for univariate autoregressions which is easily extended to
the multivariate case with parameters generated from the posterior distribution

by Gibbs sampling. The plan is as follows, where 8 = (o, 3, T, ®,X0).

1. Use the Gibbs sampler to generate a sequence of n; observations from the
posterior distribution of 6.

2. For each 6 in this sequence, simulate nsy prediction paths from the following
decomposition of the conditional predictive distribution
p(Xri1, s XT+h’97X(T)) = P(XT+1’9,X(T)) -+ p(x7 140, X(THFI))-
Thus, generate xp,q from p(XTH]B,X(T)) and then continue to generate
X719 [rom p(X7.2]0, X(TH)) by conditioning on data up to time 1" and the
previously generated xp,; and so on.

Note that p(XTﬂ-[@,X(TM*l)) is a normal distribution for ¢ > 0. The sample
of nyny prediction paths from p(x7y1, ..., XT+h]X(T)) can be used in a vast number
of ways to gain a rich understanding of the future behavior of the processes. For
example, we can focus on the joint predictive distribution over future time periods
for a given variable or the joint predictive distribution of a subset of the variables
in the system for a given future time period.

Even though the double simulation technique is manageable even in larger
systems like the one we deal with in section 7, it is often sufficient to calculate
the mean and covariance matrix of the marginal predictive distribution since the
predictive distribution is often fairly close to normal. The mean and variance can
be computed by simple Gibbs sampling without the need for double simulation.

6.2. The mean of the marginal predictive distribution

The mean of the marginal predictive distribution can be written

B(xrn)x™)) = By [B(xr44|0,xM)] (6.1)

10



where EB‘X(T)<') and F(-) denotes expectation with respect to posterior of @ and

the distribution of x; conditional on 6, respectively. The representation in (6.1) is
convenient since it is well-known from previous work (see, for example, Liitkepohl,

1991) that

h—1
B(xri]0,xT) = I Yr + 33 I@dri s, (6.2)
=0
where Y = (X, X7 1, Xp i)', = (1,,0,...,0) and
(M, I, - Ty g |
I, 0 0 0
m—|0 1, 0 0
0 0 I, 0

The mean of the predictive distribution in (6.1) can be calculated numerically
by a simple arithmetic average of the conditional expectation, F (XT+h]9,X(T)),
over the Gibbs samples. To calculate the conditional expectation in (6.2) the
coefficients of the VAR are needed, which can be obtained from the ECM from
the following relationships

Hl = I‘l_l_aﬁ/_'_]:p
Hj = I‘j—I‘j,l,jZQ,...,K—l

6.3. The variance of the marginal predictive distribution

Using the well-known conditional variance formula, the covariance matrix of the
predictive distribution can be expressed as

V(xrinx ) = By oy [V (eryn18,x)] + Vo) [B(erynl,xT)] (6.3)

The first term in (6.3) can be estimated as an arithmetic average of
h-1
V<XT+h’97 X(T)> = Z @,E@;,
i—0

where ©; = JIT'J' , over the Gibbs draws from the posterior. The second term
in (6.3) is simply the posterior variance of the conditional expectation and can

11



therefore be estimated by the sample variance of the conditional expectations in
each Gibbs draw.

The most common classical approach is to consider only the first term in (6.3)
with the posterior distribution replaced by the Dirac delta function at the ML
estimate of 8. This only takes the future disturbances into account when forming
prediction intervals and is therefore called the error based prediction variance. A
likelihood based approach to account for the uncertainty regarding the unknown
parameters of the model, which in a Bayesian setting corresponds (approximately)
to the second term in (6.3), is only available by using an asymptotic approxima-
tion, an approximation which is often very crude, especially if unit roots are
present in the system (Liitkepohl, 1991; Doornik and Hendry, 1995). Intervals
based on this approximation will here be termed asymptotic prediction intervals.

6.4. Predicting the first difference of the process

Our main concern in the analysis of the Swedish monetary data described in
section 3 is the prediction of the future path of inflation; we are thus interested in
predicting Ap; rather than the level p;. In general, suppose we are interested in
predicting Axr;, given data up to time T'. The mean of the predictive distribution
of Axpyp is, of course, simply F(Axr4|x™) = E(xpn|x®) — E(xp 1 |xD).
The variance of this distribution is still given by the conditional variance formula
(6.3) with x75 replaced by Axry,. Everything remains unchanged except that
we need an expression for

V(Axr 1 xD,0) = V(xrin|x™,0)+V (xin-1/x7,0) =20 (x748, X7 1-1]x7, 9),

(6.4)
which requires C (X7, X751 ]X(T), 0), the covariance between xr,; and X751,
to be calculated. From Liitkepohl (1991, p. 32) we know that

h—1 .
V(Yra YD, 0) =Y IS,
=0

where, as before, Yryn = (X, 0, X n 1+ Xpyn_xy1) - The components needed
for V(Axyy4]xT),8) in (6.4) are given by the 2p x 2p submatrix in the upper left
corner of V(Y14 Y™ ).

Note the special case h = 1, then V(Axp1[x),8) = V(xr 1 |x(1,0) = %,
since X7 1s known.

6.5. Accounting for the uncertainty of the appropriate matrix candidate

The discussion so far in this section has implicitly been conditional on a given
matrix candidate for B3 and it would therefore have been more appropriate with

12



the notation p(xzn|x™, B,), where B3; is the ith matrix candidate. The final goal
is, of course, the overall unconditional predictive distribution of x7,

Q
p<XT+h ’X(T)) = Z p(ﬁz ’X(T) )p<XT+h ’X(T) B4), (6-5>
i=1

where p(3,]x(™) is the posterior probability that B = 3,. From Bayes theorem,
p(BilxD) o< p(B;)mi(x), (6.6)

where

mi(x) = [ pxD10,)p(6 ),
is the marginal likelihood of the ith submodel, where 8; = (o, T, ®, %), @

contains the free parameters of 3 under model i, p(x|@) denotes the likelihood
function and p(@) the prior. The proportionality constant in (6.6) is determined
by the condition EQ 1 p(B; ]X(T)) = 1. Thus, a Bayesian gives credence to model
(matrix candidate) i, for a given set of p(3; ) if the expected (with respect to the
prior) likelihood of the data under model i is large.

The exact calculation of m;(x(™)) can be performed numerically by, for ex-
ample, importance sampling, see Villani (1999¢). We are mainly interested in
weights to form an overall prediction, however, and the following approximation
will often be precise enough for that purpose (Draper, 1995)

k;i P I{JZ
lnmi(X(T)) ~s 5 In27 + Inp(x|6,) — 5 InT, (6.7)

where k; is the number of free parameters in the ith model and p(x[@l) is the
maximum of the likelihood function under the ith model.

A sample of n observations from the overall predictive distribution, p(Xx744 ]X(T)),
can be obtained by generating n - p(3,]x(7)) observations from p(x7,,|x™,3,),
fori =1,...,Q), via the algorithm in section 6.1.

The mean of the overall predictive distribution is

E( XT+h’X ZP (B; ’X( NE XT+h’X(T)7Bi)7

and the variance 1s

Q
Vixp[x®) = > p(B,xD)V (xp4/x™"), 8;)
=1

Q

+ > p(Bix") [B(xrinlx™, 8;) — B(xrnx™)] (6.8)

=1
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which follows directly from the conditional variance formula. It should be noted,
however, that even if each p(XT+h’X(T)7 3;) is normal then p(XT+h]X(T)) is a discrete
mixture of normal distributions, which may be badly summarized by its first two
moments.

The usual approach is to choose one of the matrix candidates, say 3,, and
then condition on this choice in the prediction phase. It should be clear, however,
that unless p(x7yn|x™, B3;) = p(xr41|x™) then this conditioning is producing
distorted prediction statements. If V(xr,4|x("), 3,) are approximately equal for
all 3, with posterior weights significantly different from zero, then the second sum
in (6.8) measures the uncertainty that is neglected by conditioning on only one of
the matrix candidates (Draper, 1995).

The uncertainty regarding the lag length and the cointegration rank can be
accounted for in the predictive distribution in exactly the same way by simply
averaging with respect to the posterior distribution of K and r. As seen in section
3, however, the posterior distribution of K is very concentrated over K = 4 and
little is probably lost by conditioning on four lags in the VAR. Judging from the
inconclusive evidence regarding the cointegration rank in JJVW, there is probably
something to be gained from weighing the predictive distribution with respect to
this posterior, but unfortunately, a reliable procedure for calculating this posterior
distribution does not seem to exist yet.

7. Empirical example

The Swedish monetary data described in section 3 and, more fully, in JJVW will
be used to illustrate the Bayesian procedure introduced in this paper. The focus
will be on forecasting the Swedish inflation and the 12 last quarters of the data
set (1993:4 to 1996:4) will be reserved (i.e. excluded in the estimation phase) for
evaluation of the inflation forecasts. The data will be analyzed conditional on
r = 3 and K = 4, for reasons explained in section 3.

The posterior weights of the six possible matrix candidates were computed
using the approximation in (6.7). The results are shown in Table 7.1 which
presents the six candidates, the log-likelihood, the p-value of the likelihood ratio
test and the approximate posterior weights under the uniform prior, p(3;) = 1/6
fori=1,...,6.

The sad conclusion from Table 7.1, one that is also reached in JJVW, is that
the data give almost all support to the unrestricted matrix Bq; that is, none of
the theoretically motivated long run equilibria are supported by data. Since only
the unrestricted candidate would matter significantly in an overall analysis (see
equation 6.5), there is no need to produce predictions based on any other matrix
candidate. JJVW nevertheless continue to use both 35 and B¢ in the forecasting
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Matrix candidate | Loglike  p-value p(ﬁi’X(T))
B, = (by,-,-) 242.26 1.6-103 0.037
By = (by,-, ") 237.55 2.1-107% | 3.2.107%
B; = (bs, bs, ) 217.88 3.0-107 | 22.10°%
B, = (by,by,) 226.33 5.4-107% | 1.0-10°¢
(
(

Bs = (by,by,by) | 19582 5.1-10°8|1.3.10 "7
= (") 250.96 — | 0.963

Table 7.1: Restrictions on 3

stage under the motivation that the model with B3, is theoretically reasonable and
produces good forecasts. Stark (1998) observes the same feature in his forecast-
ing model. We will also analyze both B, and B, for comparability reasons, but
it should be remembered that a strict Bayesian analysis would only analyze the
model with B = 3, if its posterior weight is meaningfully different from zero and
such a posterior weight requires an extremely, and probably unreasonably, large
prior probability on 35 (in Table 7.1, 1/6 was used). We adopt the same termi-
nology as JJVW and call 85 and B4 the theoretical and empirical cointegration
vectors, respectively.

Our next task is to determine appropriate values for the two parameters A
and @ in the prior for the short-run dynamics. To pin-point exact values for
these parameters may be difficult even for an experienced analyst and it would be
desirable if relatively small changes in A and 6 did not lead to large changes in the
prediction paths. To check this, the square root of the mean squared error (RMSE)
of the dynamic (see below) predictions was calculated for a range of values for
both A and #. The results are presented in Table 7.2. It is evident that RMSE
is very insensitive to changes in € and, with the exception of A = 0.1, the RMSE
changes also very little when A varies. Like the RMSFE’s, the prediction paths
did not change significantly when we changed A\ and #, the exception again being
A = 0.1 which produced a somewhat different prediction path (results available
from the author by request). Commonly used values for A ranges from 0.1 to 0.4
and around 0.2 for 0, see Liitkepohl (1991), Litterman (1986), Doan et al. (1992)
and Karlsson and Kadiyala (1996). Since the exact choice A and 6 is of lesser
importance, it seems to be safe to use A = 0.3 and # = 0.2 in our application.

Within the two models based on empirical and theoretical cointegration vec-
tors, JJVW produced inflation predictions using both unrestricted estimation of
the short run dynamics and from a restricted version of the models where a se-
quence of tests was used to set insignificant coefficients in I' to zero. This is of
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AN\¢ 01 02 03 04 05
0.1 [0725 0.748 0.736 0.733 0.751
0.2 | 0.604 0.594 0.549 0.575 0.542
0.3 | 0562 0.512 0.527 0.518 0.492
04 | 0545 0.506 0.514 0.507 0.520
0.5 | 0511 0.496 0.512 0.519 0.562

Table 7.2: Root Mean Squared FErrors (RMSE) of the forecasts from 1994:1 to
1996:4 for the empirical cointegration vectors for different priors on the short run
dynamics.

1994-96 1997-98
Forecasting model Dynamic Recursive | Dynamic Recursive | Average
Bayes, theo. 0.415 0.422 0.598 0.503 0.485
Bayes uniform, emp. 0.512 0.405 0.499 0.535 0.488
ML restr., emp. 0.509 0.440 0.509 0.669 0.532
Bayes Cauchy, emp. 0.670 0.403 0.459 0.629 0.540
Random walk 0.645 0.578 0.530 0.663 0.604
ML restr., theo. 0.535 0.486 1.149 0.531 0.675
MI. unrestr., emp. 0.836 0.481 0.553 0.905 0.694
ML, unrest., theo. 0.703 0.499 1.237 0.653 0.773

Table 7.3: Root Mean Squared Frror (RMSE) of the predictions for the quarterly
Swedish inflation during 1994-1998.

course the usual classical way to circumvent the explicit use of a shrinkage prior,
like the one suggested here, and reflects the widespread belief that unrestricted
VAR models are often overparametrized. Not only is the classical significance
testing much cruder than the Bayesian shrinkage approach, but, to the best of
our knowledge, in the current state of classical (ML) cointegration estimation,
3 must be assumed known in order for a reestimation of the model after exclu-
sion restrictions to be possible (see, for example, PclFiml in Doornik and Hendry,
1997). Thus, B cannot be reestimated after the imposition of restrictions and the
assumption that 3 is known will make the prediction intervals too narrow. This
is in contrast to our Bayesian approach where the simplification of the model by
shrinkage priors and the estimation of cointegration relations are handled simul-
taneously.

Both dynamic (ex ante) and recursive l-step ahead inflation forecasts were
calculated. The dynamic forecasts for periods ¢ + 1 to t + h only use data for
estimation of model parameters up to time ¢, while the recursive forecasts are
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based on an updating procedure where the model parameters are reestimated in
each time period using the maximum sample length available prior to forecasting.

Initial experimentation with the double simulation procedure described in sec-
tion 6.1 produced predictive distributions of Ap; which were very close to normal.
Thus, in the following only the mean and the variance of the distributions will
be reported. All reported predictions are based on 100000 iterations of the Gibbs
sampling algorithm, although the convergence of the predictions to their right
values was obtained already after approximately 50000 iterations.

The evaluation data for the period 1994:1 to 1996:4 have been consumed to
some extent in the determination of the prior parameters A and € in the Bayesian
approach and perhaps even more in the significance testing for the restricted
models. The data set has therefore been updated by eight more quarters to include
1998:4 as the last data period. By using exactly the same models as before (but
using data up to 1996:4 for estimation of parameters in the dynamic forecasts and
data up to 1996:4, 1997:1,... for the recursive forecasts) a pure evaluation period
from 1997:1 to 1998:4 is obtained.

The prediction performance of eight forecasting models during the two eval-
uations periods are displayed in Table 7.3. The last column of this table is an
average over the four preceding columns and represents overall performance. The
use of an unweighted average, which gives more weight to the eight last obser-
vations, is motivated since the second evaluation period is more 'pure’ than the
first. In Table 7.3, the models are ranked from the best to the worst with respect
to overall RMSE. Thus, the three Bayesian procedures are ranked first, second
and fourth best.

The prediction paths and their uncertainty are displayed in Figure 7.1 (dy-
namic forecasts) and 7.2 (recursive forecasts). Fach subgraph in these figures
shows the actual inflation and the prediction path with corresponding 50% and
90% prediction intervals. The two evaluation periods are separated by a dot-
ted line. Note that the four MI-based predictions have three prediction bands.
The most narrow interval is the 50% error based (see section 6.3) interval which
ignores the uncertainty in the estimation of the model parameters. The second
most narrow interval is the 90% error based interval while the largest interval is
the 90% asymptotic (see section 6.3) interval which (approximately) accounts for
parameter uncertainty.

The striking feature of Figure 7.1 and 7.2 is the smoothness of the Bayesian
prediction paths compared to their ML counterparts. Bayesian predictions from a
diffuse prior on the short run dynamics (not shown here) gave essentially the same
shaky prediction paths as the ML predictions, so the smoothness of the Bayesian
predictions is caused by the shrinkage prior on the short run parameters. It is our
opinion that the difficulty to produce forecasts that closely tracks the inflation
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Figure 7.1: Dynamic predictions of Swedish inflation (——) 1994-98. Point pre-
diction (- - -) with 50% (dark band) and 90% (lighter band) prediction intervals.
Two different 90% bands of the ML predictions are displayed, one ignoring pa-
rameter uncertainty (medium light band) and another partially accounting for it
(lightest band). The 50% band for the ML predictions ignores parameter uncer-
tainty. The prediction bands for the random walk increase linearly and have been
cut to fit in the graph.
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Figure 7.2: Recursive predictions of Swedish inflation (——) 1994-98. Point pre-
diction (- - -) with 50% (dark band) and 90% (lighter band) prediction intervals.
Two different 90% bands of the ML predictions are displayed, one ignoring pa-
rameter uncertainty (medium light band) and another partially accounting for it
(lightest band). The 50% band for the ML predictions ignores parameter uncer-
tainty.
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Figure 7.3: Standard deviation of the dynamic predictions based on the empirical
cointegration vectors. ML unrestricted (- - -), ML restricted (- - -), Bayes Cauchy
(—V—) and Bayes uniform (——).

(see ML methods, especially dynamic predictions) makes the smoother Bayesian
predictions more convincing.

From Table 7.3 and Figure 7.1 and 7.2, it is apparent that the random walk
does a rather good job in predicting future inflation. This is hardly surprising
given that the inflation was rather constant during the evaluation periods. Ewven if
the no-change forecast implied by the random walk turns out to be good prediction
rule, the intervals of the dynamic predictions in figure 7.1 (which increase linearly
and have been cut to fit the graph) clearly shows that the random walk is not a
good forecasting model for inflation, however; the prediction intervals are simply
too large for any reasonable forecaster.

In accordance with the conclusions in JJVW and Stark (1998), the point pre-
dictions from the models with the, unsupported, theoretical cointegration vectors
do seem to be of about equal quality as the point predictions from the models
based on the empirical cointegration vectors. The prediction intervals are larger
for the theoretical cointegration vectors, however, caused by an inferior statistical
fit to the data.
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Equally important as the point predictions themselves are their standard devi-
ations. Figure 7.3 displays the standard deviations of the predictions (both error
based and asymptotic) from the models with empirical cointegration vectors as
a function of the forecasting horizon. The Bayesian error based standard devi-
ation has been defined as the square root of the first term in (6.3). It should
be noted that the Bayesian error based standard deviation is only presented for
the purpose of comparison with the ML methods error based standard deviation;
there is no reason to ignore parameter uncertainty in a Bayesian approach. The
standard deviations from the two Bayesian methods are close to each other while
there are large differences between the unrestricted and restricted ML method.
The Bayesian standard deviations are always larger than for the unrestricted ML
method for short horizons, but then becomes smaller for larger horizons. The
same is true for the restricted ML method during the first evaluation period while
in the second period, it produces smaller standard deviation for all horizons.

8. Conclusions

The Bayesian approach to prediction in the cointegrated vector autoregression pre-
sented here offers several advantages over traditional approaches. Firstly, whole
predictive densities for the future observations can be obtained and these den-
sities can have any distributional form. Secondly, the predictive density affords
a straight forward probability interpretation, which seems to be the way people
de facto, but falsely, interpret frequentist prediction intervals. Thirdly, predictive
distributions are not conditional on the parameters of the model. Fourthly, the
shrinkage prior on the short run dynamics avoids the dubious sequential testing
procedures which are often used to simplify the model by exclusion restrictions.
Fifthly, the uncertainty about the long run restrictions, the number of lags in the
model and the cointegration rank is reflected in the predictive distribution and
intuitive weighting formulas can be used to average the predictive distributions
obtained by conditioning on the unknown quantities. As expected, these advan-
tages come at the cost of an increased computational burden. This disadvantage
is becoming less and less important with each innovation in computing technology,
however, and our empirical example demonstrates that the proposed procedure is
manageable even in large systems with many variables and lags.
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