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ABSTRACT

We introduce a Bayesian approach to model assessment in the class of graphical vector au-
toregressive (VAR) processes. Due to the very large number of model structures that may
be considered, simulation based inference, such as Markov chain Monte Carlo, is not feasible.
Therefore, we derive an approximate joint posterior distribution of the number of lags in the
autoregression and the causality structure represented by graphs using a fractional Bayes ap-
proach. Some properties of the approximation are derived and our approach is illustrated on
a four-dimensional macroeconomic system and five-dimensional air pollution data.
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1. INTRODUCTION

The vector autoregression (VAR) can be written as

(1.1) ve=> My ite, t=1,..,n,

where x; is a p-dimensional vector of time series observations at time ¢, II; are p x p coefficient
matrices determining the dynamics of the system and €1, ..., &, i Ny(0,%). Deterministic vari-
ables can be added to the model, leading only to trivial modifications of the results obtained
here.

The statistical properties of the VAR model are by now well explored, see e.g. Liitkepohl
(1993). The number of parameters in the VAR model is typically very large and it is complicated
to investigate the dynamic relations between the time series simply by looking at estimates
of IIy, .., Il and X. Several tools have been suggested to aid in the interpretation of VAR
models, most notably the impulse response functions methodology introduced by Sims (1980),
and causality tests (Granger, 1969; Sims, 1972).

Our focus here is on causality relations modelled by mathematical graphs. Graphical models,
1.e. models which use mathematical graphs to represent multivariate relations, have become
widely known and used statistical tools in cross-sectional data analysis, see e.g. Whittaker (1990),
Lauritzen (1996) and Wermuth (1998). A typical graph consists of a set of vertices representing
the variables and a set of edges between these vertices. The presence of an edge between a pair
of vertices means that the variables are, in some sense, related. In multivariate cross-sectional
data the graph usually represents the conditional independence structure of the system and, as
independence is a symmetric relation, the edges are undirected. The time dimension of a process
makes it feasible to consider directed flow, or causality, and it is therefore natural to set up a
graph for a time series system with this notion defining the relations between variables.

A majority of the research concerning graphical models has concentrated on modelling cross-
sectional multivariate observations and only recently have more systematic efforts been made
to utilize graph concepts in the context of stochastic processes (Eichler, 1999, Dahlhaus, 2000,
Dahlhaus and Eichler, 2003). These works have focused on the development of fundamental
probabilistic properties of graphical models for multivariate time series in a general context,
while leaving the inference aspects more open for further research. Recently, Bach and Jordan
(2004) introduced a learning algorithm based on a similar spectral representation as in Dahlhaus
(2000). However, no attempts to use Bayesian methods seem to have appeared. As inference
in graphical models is often essentially a model determination problem, a field where Bayesian
methods have dominated during the last decade, the lack of Bayesian research in this area is
surprising. In the cross-sectional data domain, on the other hand, the potential of Bayesian
analysis has been rapidly recognized, and there is a large literature on Bayesian inference for
graphical models of cross-sectional data, see e.g. Dawid and Lauritzen (1993), Madigan and
Raftery (1994), Madigan and York (1995), Dellaportas and Forster (1999), Giudici and Green
(1999), Corander (2003), and Tarantola (2004). Convincing arguments for a Bayesian approach
in a more general setting may be found in the many books on the subject, see e.g. Bernardo and
Smith (1994) and the references therein.

We concentrate here on the class of VAR processes for mainly two reasons: first, the VAR
process is widely used in applied time series analysis, and second, statistical inference proves to
be tractable for this class of models. In contrast to the traditional graphical modelling of cross-
sectional data, the widely used Markov chain Monte Carlo (MCMC) techniques do not provide a
practical solution for the graphical models considered here, mainly due to the much larger space
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of possible graph structures. To make inference jointly about the causality structure and the lag
length of the process, we use the fractional Bayes approach of O’Hagan (1995), which has proven
to be well suited for multiple time series analysis (Villani, 2001a, Corander and Villani, 2004).

The paper is organized as follows. In Section 2 we specify graphical VAR models, and in
Section 3 the joint posterior distribution for the lag length and the causality structure is derived.
The inference procedure is illustrated numerically in Section 4, and some concluding remarks are
given in the final section.

2. GRAPHICAL CAUSAL VAR MODELS

Eichler (1999), and Dahlhaus and Eichler (2003) introduced a general class of Granger causality
graphs, including graphical VAR models as a subclass. In the specification of such models, we
follow the framework of Dahlhaus and Eichler (2003). Let V = {1,...,p} be a set of vertices,
representing indices of the stochastic processes in (1.1). In the sequel, we assume that the
multivariate process in (1.1) is stationary, and that 3 is positive definite. For an arbitrary
subset A C V, X4 denotes the sub-process {X4(t),t = 1,2,...} given by the indices in A, and
X a(t) = {Xa(s),s <t} defines the history of X 4 before time t.

Let E1 and Es be subsets of {V x V'}, denoting the directed and undirected, respectively, edges
of a mixed graph G = (V, E) on V, where F = F; U E,. Here, (a,b) € Ej is interpreted as a
directed edge from a to b, for all a,b € V with a # b. We use G~ = (V, E3) as a symbol for
the undirected part of a mixed graph. Notice, that there are 9(2) undirected and 23(3) mixed
graphs, respectively, for a set of p vertices. The induced subgraph of A C V| G4, is obtained by
removing from V all vertices not in A together with all edges which do not join two vertices in A.
A graph is complete if it has maximum number of edges, and a subset A C V is called a clique
if it is maximally complete, i.e. if its induced subgraph is complete but the induced subgraph of
any extension of A is incomplete.

The following definition gives the conditions under which a mixed graph G = (V, F) specifies
a Granger causality graph for Xy .

Definition 1. A mixed graph G = (V, E) is a Granger causality graph for Xy, if for all a,b € V
with a # b, the following holds for all ¢

() (@.0) ¢ Er & Xo(t) LXa(0) Ky (o) (1)

(i) (a,0) ¢ B2 < Xa(t)LX5()| X v (t), X1\ (a0} (1)

The two conditions specify, respectively, that X, is noncausal for Xj, and that X,, X} are contem-
poraneously uncorrelated, relative to the process Xy . For simplicity, Granger causality graphs
are in the sequel termed causality graphs.

A certain property of undirected graphs, called decomposability, is extremely useful for infer-
ential purposes. An undirected graph is said to be decomposable if it has no chordless cycles of
length larger than three. When the part G™ of a mixed graph G = (V, E) is decomposable, the
joint density of Xy (¢) conditional on Xy (t), factorizes according to (Lauritzen, 1996)

 eeeia pPXe®)Xv (1)

[sesey P(Xs@)Xv (1)’
where C(G™) and S(G™) are the sets of cliques and separators, respectively, of the graph G™.
The separators of G™ are obtained as intersections of the successive cliques in a so called per-

fect sequence (see, Lauritzen, 1996). Causality graphs with decomposable G~ are here termed
decomposable causality graphs.

(2.1) P(Xv ()| Xv(t)



Parametric characterization of a causality graph for the familty of VAR processes is provided
by the following lemma.
Lemma 1. For a VAR process Xy with a causality graph G(V, F), the following holds

(i) (a,b) ¢ Ey < I;(a,b) =0, for all i =1, ..., k,

(i) (a,b) ¢ Ey < Q(a,b) =0,

where II;(a, b) is the (a, b)th element of II; and = X1,

Proof. Follows directly from Corollary 2.2.1 in Liitkepohl (1993) and Corollary 6.3.4 in Whittaker
(1990). O

A VAR process satisfying the conditions in Lemma 1 will be called a graphical causal VAR
model, or VAR(G, k) for short.

3. BAYESIAN MODEL ASSESSMENT FOR VAR(G, k)

The unknown quantities of a VAR(G, k) process are: the underlying causality graph, G, the
number of lags, k, and, conditional on a (G, k)-pair, the elements in IIj, ..., Iy and ¥ which are
unrestricted under G. For notational simplicity we use 6 as a shorthand for the free parameters of
a VAR(G, k) process. Clearly, inference on G and k must be settled, before 6 can be considered.

The main purpose of this paper is to derive the joint posterior distribution of (G, k) conditional
on the observed time series X. Let K be an a priori specified upper bound for the value of k.
Using Bayes rule, the joint posterior distribution of G and k£ can be written as

m(G, k|X)r(G, k)
Sceg Soneo m(G, k[ X)m (G, k)’

where (G, k) is the joint prior of G and k, G is the class of models under consideration, and

(3.1) (G, k|X) =

m(G, k[X) = /L(X|0,G, k) (0]G, )b,

is the marginal likelihood of the observed time series X, where L(X|0, G, k) is the usual likelihood
function under model (G, k) with parameters 6, and 7(0|G, k) is the prior distribution of #. The
joint prior of £ and G is over a discrete set and can be chosen in many ways, e.g., if there is no
reason for favoring any particular graph in G a priori, one may use

(3-2) m(G, k) = =(k)/|9],

where 7(k) is some discrete distribution over the integers k = 0,1, ..., K. The symbol |-| will be
used to represent both the cardinality of a set and the determinant of a matrix.

In the sequel, let G denote the class of decomposable VAR(G, k) models. As 6 varies with G
and k, elicitation of subjective priors for 6 can be a difficult and time-consuming task. In many
problems one can find a relatively rich parametric family of distributions which both leads to a
tractable posterior distribution and at the same is quite easily specified via a few hyperparameters.
However, this is not the case for the parametric family considered here, see, e.g., the discussion
in Giudici and Green (1999). Here we use a model-based reference prior, which can be utilized
without further subjective assessment of prior hyper parameters. Using ¥4 to denote the |A| x| A|
submatrix of ¥ formed by the rows and columns of 3 corresponding to the set A, the prior is of
the form

[eecemy [Bel~1CHD/2

[Tsesc) [Es]7

(3.3) m(0|G, k) EESYR
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The prior in (3.3) is obtained as a limit of a hyper inverse Wishart distribution (see Dawid and
Lauritzen, 1993, or Giudici and Green, 1999) for 3 with degrees of freedom approaching zero
(Geisser, 1965).

The prior in (3.3) is improper and is therefore not directly usable for deriving the joint posterior
of G and k, as explained by e.g. O’Hagan (1995). A solution to this problem is to sacrifice a
small part of the sample in updating the improper prior to a proper posterior and subsequently
use this posterior as a new prior for the remaining observations. To avoid the arbitrary choice of
training observations, O’Hagan (1995, 1997) suggested that the likelihood of the training sample
could be approximated by a fraction of the likelihood for the whole sample, thereby replacing
the choice of specific training observations to the much easier choice of training fraction. Thus,
in the fractional Bayes approach to model inference the marginal likelihood in (3.1) is replaced
by the fractional marginal likelihood (FML)

J L(X|6,G, k)m(0]G, k)db
N [ L(X|0,G, k)or(0]G, k)do’
where 0 < b < 1 is the fraction of the data used to convert the improper prior to a proper
posterior.

Villani (2001a) showed that the FML approach produced favorable results in inference about
k for VAR(G, k) models with G complete, compared to widely used AIC and BIC criteria. As in
Villani (2001a), it will be assumed here that b is minimal, i.e. b = m/n, where m is the smallest
number of observations yielding a proper posterior under the largest model in G (which is the
complete graph).

The following lemma specifies the FML for a certain subclass of G. In the lemma, X denotes
the n X p matrix of row-stacked observations on the p time series, X¢ is the n x |C| submatrix of
X consisting of the columns corresponding to the variables in clique C' and X¢(_y) is X¢ lagged
[ time periods.

Lemma 2. Assuming the prior (3.3), the fractional marginal likelihood of a p-dimensional VAR(G, k)
process with empty S(G™) and G¢ complete for each C' € C(G™) is

(3.4) my(G, k|X)

Lic(n)
me (G, k|X) = e
b( | ) Cel_([GN) F‘C‘(m)

where I'\¢((1) = H|]c:'\1 L[l —k|C|—7+1)/2], T(-) is the gamma function,

Yo

)

- ‘—(n—m)/2

-~

¢ = n}(Xce - ZeAco) (Xe — ZeAc)
Zc = (Xg(-1)s - Xo(-k))
Ao = (ZeZo)'ZcXo,
a multiplicative constant, common to all G and k, has been discarded, and m = p(K + 1) yields

the minimal training fraction b = m/n.

Proof. The lemma is a straightforward extension of Theorem 3.1 in Villani (2001a), applied to
independent clique processes. ]

Unfortunately, the marginal likelihood does not factorize under a general VAR(G, k) model
with overlapping cliques in G™ as it does for ordinary Gaussian graphical models (see Dawid
and Lauritzen, 1993, or Giudici and Green, 1999). This is due to the discordance between the
inference for a separator S € S(G™) within a clique C € C(G™) and the inference where all
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cliques in C(G"™) containing S are considered jointly. For a detailed discussion of this model
marginalization issue at a general level, see Lauritzen (1996). To enable a solution to the model
assessment problem within the class G with a non-empty separator set, we follow Corander and
Villani (2004) and derive an approximation of the FML. A corresponding approximation was
shown in Corander and Villani (2004) to perform well in the assessment of dimensionality in
reduced rank regression, including cointegrated VAR models.

In the sequel, let the subset specific in-degree of vertex a in A C V be defined as the difference
da(a) between cardinalities |b € V : (b,a) € E1|-|{b € V\A : (a,b) € Ex} N{(b,a) € E1}|. That
is, da(a) counts the total number of directed edges to a minus the number of directed edges to
a from vertices b outside A such that b is adjacent to a in G~ = (V, Es). Notice that the sum of
the subset specific in-degrees ), 4 da(a) equals the total number directed edges in G,.
Definition 2. Assuming the prior (3.3), the approximate fractional marginal likelihood of a p-
dimensional VAR(G, k) is

‘ (n—m)/2
mb(Gv k|X) =

o (n
Cec(G ) o (m
[s)(m

)
)
)
HSeS(G T ( )

‘ (n—m)j2’

where 34 is the submatrix of the maximum likelihood estimate 3 of ¥ under the restrictions
given by @G, formed by the rows and columns corresponding to A, and I A|( ) = Hlﬁl N

k(da(a) + 1) —a + 1)/2], with d4(a) equal to the subset specific in-degree of vertex a € A. A
multiplicative constant, common to all G and k, has been discarded, and m = p(K + 1) yields
the minimal training fraction b = m/n.

The maximum likelihood estimate 3 of ¥ under the restrictions imposed by G can be computed
as follows. Conditional on ¥, the maximum likelihood estimate of free parameters of 11y, ..., Tl
under G is given in Liitkepohl (1993, Sect. 5.2.3) and the corresponding estimate of ¥ under
the restrictions in G conditional on IIj,...,II; is given in Lauritzen (1996, Proposition 5.9).
The maximum likelihood estimate 3 is thus obtained by iterating between these two conditional
estimators until convergence. In the empirical illustrations in Section 4 convergence was generally
reached within few iterations.

In at least two cases the approximate FML is equal to the exact FML. First, within the
subclass of G treated in Lemma 2 we have dco(c) + 1 = |C|, for all ¢ € C,C € C(G™), and the
approximate FML is thus equal to the exact FML. Second, conditional on the complete graph, the
approximate FML of the lag length reduces to the exact FML in Villani (2001a). The following
theorem further supports the validity of our approximation.

Theorem 3. The posterior mode estimator of (G, k) based on the approximate FML is weakly
consistent.

Proof. See the appendix. O

4. JLLUSTRATIVE EXAMPLES

Example 1. Macroeconomic data

We illustrate the graphical VAR approach first on the four-dimensional macroeconomic system
of the Danish economy in Johansen (1995). The data consist of 55 quarterly detrended obser-
vations from 1974:1 to 1987:3 on log real money, measured by M2, (m), log real GDP (y), the
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bond rate (b) and bank deposit rate (d). The modulus of the largest eigenvalues of the VAR
companion matrix for k£ = 2 are .921, .748 and .748, indicating a stationarity process.

The upper bound for the lag length was set to four and the joint posterior distribution of G
and k was computed using the approximate FML. For a fixed lag length there are 262144 possible
VAR(G, k) models and 249856 of them are decomposable. The marginal posterior distribution
of k is p(k = 0|]X) = .000, p(k = 1|X) = .043, p(k = 2|X) = .830, p(k = 3|X) = .118 and
p(k = 4|X) = .010, so the upper bound k = 4, does not appear to be restrictive. It is interesting
to compare this marginal distribution with the posterior distribution of k conditional on the
complete causality graph, which is the model under which the lag length is usually determined.
Conditional on the complete graph, p(k = 1|X) = .559, p(k = 2|X) = .441 and essentially zero
probability for other k. A simultaneous analysis of lag length and graph structure thus shifts the
probability mass to larger k compared to the usual analysis conditional on the complete graph.
This is of course entirely natural, since increasing the lag length under a less than complete
graph is not as costly in terms of lost degrees of freedom as under the complete graph where
every increase in lag length adds another p? parameters to the model. The standard practice of
testing zero restrictions, e.g. causality restrictions, on the parameters after a lag length has been
selected is thus likely to be suboptimal.

The proof of Theorem 3 shows that the approximate FML corresponds asymptotically to
the well-known BIC criterion introduced by Schwarz (1978). However, it has also been widely
recognized that BIC tends to underestimate model dimension when the sample size is small
(Hannan and Quinn, 1979, Villani 2001a, Corander and Villani 2004). Villani (2001a) and
Corander and Villani 2004) showed that the FML and approximate FML approach performed
favorably in this respect compared to BIC. This feature is mainly due to the nonlinearity of the
penalty for model dimension used in the FML approach, which seems to better approximate the
amount of curvature in the likelihood function in the neighborhood of the maximum likelihood
estimate. To illustrate the comparison of the two criteria in the current framework, we calculated
also the approximate joint posterior distribution of G and k based on BIC. From this, the marginal
posterior distribution of k gives the probabilities p(k = 1|X) = .852, p(k = 2|X) = .148, and
practically zero probabilities for the remaining values. Here, it is again evident that the BIC
approximation assigns considerably more posterior weight to simpler models.

The most probable causality graphs and their marginal posterior probabilities are displayed
in Figure 1. The posterior probabilities of the most probable graphs are not as small as they
may seem at first sight when the size of the model space is taken into consideration. A useful
benchmark for comparison is the uniform distribution over the set of all causality graphs (for a
fixed k) which assigns a probability of roughly 4-107° to each causality graph. Another measure
of precision in the posterior distribution of G is that 5% of the graphs account for approximately
93% of the total probability mass.

00 @0 @0
!0’ (@ !Q’ (@ g"@

p(GIX) =.0033 p(G|X)=.0028 p(G|X)=.0025

Figure 1. Causality graphs with highest posterior probability for macroeconomic data.



Directed edges Undirected edges

m Y b d m oy b d
m | — 263 .996 .292 m|— .956 .966 .696
y|.733 — 322 .631 Y — 460 .419
b |.347 721 — 251 b - 481
d|.396 .245 987 — d —

TABLE 1. Marginal posterior probabilities of the presence of edges in the macro-
economic data based on the FML approximation. The directed edges are directed
from the variables in the column labels to the variables in the row labels.

Directed edges Undirected edges
m Y b d m oy b d
m| — A15 999 124 m|— .981 .964 .469
y | .25 — 142 857 Y — 284 .149
b |.310 .491 -— 232 b — .616
d|.322 233 977 -— d —

TABLE 2. Marginal posterior probabilities of the presence of edges in the macro-
economic data based on the BIC approximation. The directed edges are directed
from the variables in the column labels to the variables in the row labels.

Perhaps the most striking feature of Figure 1 is the appearance of the same simple structure
of the Es-graph in all three causality graphs, conveying the message that conditional on a money
innovation, all other innovations are independent. The marginal posterior probability of this
particular Es-graph is .131 which should be compared to the benchmark of 1/61 ~ .016 in the
uniform distribution. The second, third and fourth most probable Fs-graphs were all extensions
of the simple structure in Figure 1 with exactly one of the undirected edges between y,b and d
added to the graph. The posterior probabilities of these graphs were all around .08.

The presence of an edge between any two specific variables is most accurately inferred from the
marginal posterior probability of this hypothesis. Table 1 displays these posterior probabilities,
both for directed and undirected edges. For comparison we calculated also these values based on
the BIC approximation (Table 2). Apart from a few exceptions, the resulting probability of any
edge was considerably lower than the corresponding FML based value, which is consistent with
earlier findings. This results also holds when we condition on a specific lag length (not shown
here).

An important issue in macroeconomics is whether or not money has any effect on real variables
such as real GDP; see Walsh (1998, Ch. 1) for a review of some empirical evidence and further
references. The posterior probability p(m — y|X) = .733 in Table 1 indicates that money
probably does matter for real activity. Furthermore, there is much weaker support for the reverse
causality from y to m, which is in line with the results of Sims (1972).

It is interesting to compare the posterior probabilities of directed edges in Table 1 with clas-
sical hypothesis test of non-causality with the absence of a particular directed edge as the null
hypothesis (Liitkepohl, 1993). The p-values in Table 3 agree fairly well with the marginal poste-
rior in Table 1. The main difference concerns the relative evidence of the two edges m — y and
y — b, where the p-value of the latter hypothesis is larger than the p-value of the former even



m Y b d

m|— 931 .002 .96%
y|.017 — 135 .079
b|.542 093 — 713

d|.322 882 .000 —

TABLE 3. p-values from Granger non-causality tests conditional on k& = 2 for the
macroeconomic data.

CO NO NO; Oz GRI
CO | — .000 .000 .003 .000
NO |.000 — .038 .073  .000
NOg | .000 .000 — .000 .000
Oz |.052 .849 .000 -— .000
GRI | .000 .000 .016 0.000 -—

TABLE 4. p-values from Granger non-causality tests conditional on k& = 7 for the
air pollution data.

though the two hypothesis receive almost the same posterior probability. It should be kept in
mind, however, that the hypothesis tests are conditional on k = 2 whereas the Bayesian analysis
is marginalized with respect to k.b

Example 2. Air pollution data.

As a second example, we reconsider here the dependence structure of an air pollution data set
investigated earlier in Dahlhaus (2000) using partial correlation graphs. The data involves 4386
daily (4-hour interval) measurements of CO, NO, NO2, O3 and the global radiation intensity GRI;
for a detailed description of the data, see Dahlhaus (2000). A nonparametric causal analysis of
air pollution using 30-minute interval observations can be found in Dahlhaus and Eichler (2003).

Due to the astronomic size of the model space, we investigated whether the lag length could
be settled prior to the analysis of the graph structure. The fractional posterior distribution of k
(Villani, 2001a) under a uniform prior on {0, 1, ..., 10} for k, has its mass completely concentrated
on the value 7, which reflects the daily cycle of the observations. The concentration is quite
expectable given the large number of observations, and the graph structure is thereby investigated
conditional on k = 7.

Results of a classical Granger causality tests, are given in Table 4 conditional on k = 7.
According to these values, only three directed edges can be excluded at a 5%-significance level.
However, the battery of tests is subject to the multiple hypothesis testing problem and it is
difficult to assess the reasonability of a model where several edges are excluded as a whole.
Furthermore, the controversial behavior of p-values for large data sets noticed in the statistical
literature, makes their interpretation problematic, see e.g. Berger and Sellke (1987).

For a given lag length, the number of possible causality graph on five time series is 23°, which
is currently beyond the capability of commonly used computers. Also, the MCMC methods
frequently applied in the more traditional graphical modelling are not expected to provide a
practical solution to the current inference problem. Nevertheless, several flexible heuristic search
algorithms along the lines of Madigan and Raftery (1994) may be used. One possible algorithm
will be illustrated here, taking the complete graph as a benchmark for comparison. Define a
model to be plausible when its approximate FML is higher than that of the complete graph.
For each model found to be plausible, the plausibility of submodels with exactly one directed or
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Directed edges Undirected edges
CO NO NO2 O3 GRI CO NO NO; O3 GRI
CO | — 1.00 1.00 .810 1.00 CO [— 1.00 1.00 .910 .999
NO | 1.00 — 1.00 .083 1.00 NO - 099 .662 .626
NO- [ 1.00 1.00 — 1.00 1.00 NOq — 1.00 1.00
Os |[.701 .003 1.00 - 1.00 O3 - 1.00
GRI [ .975 984 .022 1.00 — GRI —

TABLE 5. Marginal posterior probabilities of the presence of edges in the air
pollution data. The directed edges are directed from the variables in the column
labels to the variables in the row labels.

undirected edge less is investigated, unless they have already been investigated as submodels of
some other model during the execution of the algorithm. The algorithm iteratively adds models
to the class of plausible models, investigates the submodels of the new models, and terminates
when no further plausible submodel can be found.

For the air pollution data, a total of 3744 investigated models were found to be plausible, and
the two models with the highest posterior probabilities are presented in Figure 2. To summarize
the results of the heuristic model search, the marginal posterior probability of the presence of
each edge is also given in Table 5. A rather clear conclusion is that NO and ozone are not directly
impacting each other, reflected by the low probability of a directed edge in either direction. We
also compared here the FML based approximation to the BIC, and contrary to the macroeconomic
example, the resulting model probabilities were not qualitatively different for the two approaches.
Indeed, this is expected given the large number of observations in the air pollution data set, since
the two criteria are asymptotically equivalent.

p(G)X) = .248 p(GX) = .181

Figure 2. The two models with highest posterior probabilities in the class of plausible models
for the air pollution data.

Different conclusions are reached when edges are excluded one at a time. We computed the
approximate FMLs of each individual model where exactly one directed or undirected edge is
excluded. In Figure 3, we have jointly excluded all edges for which the comparison with the
complete graph leads to a larger marginal likelihood for the simpler model. This leads to a
considerably simpler graph structure. Notice, that none of the directed edges corresponding to
a high p-value appear in the graph in Figure 3. However, several of the absent edges correspond
to a very low p-value (<.0001), which is well in concordance with the controversial behavior of
p-values.
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Figure 3. Causality graph for the air pollution data based on pairwise exclusion of edges.

5. CONCLUDING REMARKS

The posterior distribution over G and k should be useful for forecasting based on VAR’s.
The documented poor forecasting performance of VAR models is usually attributed to over-
parametrization. One way to combat the resulting erratic parameter estimates and prediction
paths was proposed by Litterman (1986) who designed a shrinkage prior on the VAR coeffi-
cients which only required modest amounts of subjective inputs from the user. Another way to
smooth the VAR predictions is to use Bayesian model averaging (Draper, 1995) to produce a
forecast path as a weighted average of the prediction paths under each model G and lag length
k, where the weights are the posterior probability of the corresponding pair (G, k). Measures of
prediction uncertainty may be averaged in the same fashion, see Villani (2001b) in the context
of cointegration models.

Extensions of graphical models which includes latent variables have recently been proposed
in the sphere of cross-sectional analysis, see e.g. the graphical factor analysis models in Giudici
and Stanghellini (2002). We are currently working on similar extensions within the fields of time
series analysis with particular emphasis on the common trends model for partially non-stationary
processes (Stock and Watson, 1988).

APPENDIX A. PROOF OF THEOREM 3.

To prove the weak consistency of the posterior mode estimator we first establish the asymptotic
behavior of the approximate FML. Let ¥ denote the maximum likelihood estimate of ¥ under
the graph with cliques C(G™) and separators S(G™). Using that |3] is Op(1) and the following
identity (Lauritzen, 1996, p. 145)

Z log‘f)c‘ - Z log‘f)s‘ = log 3]
CeC(G™) SeS(G™)
the logarithm of the approximate FML can be written

n—m . .
logmy(G, k|X) o« — 5 Z log‘Ec‘— Z log‘ES‘
cec(G) SeS(G™)

+ Z <F*C|(;>)> _ Z log <F*S((:L))> (A1)
CeC(GN \C\ Ses(G~) IS\
= —3 log 13| + Z log 'y (n) — Z log I'g|(n) 4+ Op(1),
Ccec(G~) SeS(G~)

where the proportionality sign signals that unimportant additive constants, not depending on
either the graph structure or the lag length, have been discarded. Following Villani (2001a), we
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may use Stirling’s formula to approximate F|*A|(h) = HLA:H I'[(h — k(da(a) + 1) —a+1)/2] as
follows

|4
log 'y (h) = % Z[h — k(da(a) +1) —a]log <
a=1

4]
%thk(dA(a)H) —a+1+0(1)
a=1

h—Fk(da(a)+1)—a+1
)

1 |A]
x —= Y [k(da(a)+ 1) +a]logh —

a=1

h(1 —logh)|A|
—— T O(1). (A.2)

By defining 7(64) as the numbers of unrestricted parameters in the marginal model for subset
A, the total number of unrestricted parameters in the model with (G, k) may be written

r@)= > rc)- > r6s)

cec(G~) SeS(G~)

since g 5(g~) (0s) subtracts the number of parameters counted multiple times in 3 o (g~ 7(60c¢).-
(

By noting that ZLA:'l a equals the number of non-redundant elements in 3 4, and that & ZLA:'l (da(a)+
1) equals the number of predictors used in the marginal model for subset A, we have from (A.1)
and (A.2) that

n -, 1(0) n(l —logn)
log my(G, k|X) o< —5 log |8 — =~ logn — ———— doodcl= > 18] +0,(1).
CeC(G™) SeS(G~)

Using that 3 cec(gry [Cl = X ses(a~) |5] = p we obtain the following asymptotic formula for the
approximate FML

(A.3) log my (G, k|X) —g log |3| — @ logn 4+ Op(1)

Kim (1998) shows that a weakly consistent criterion for model determination in a rather
general framework, including the current one, is given by selecting the model which maximizes
the expression

r(0)
(A.4) log L(X|0,G, k) —log | [] mu(n) |,
=1

where @ is the maximum likelihood estimate of the model parameter vector 6, hi(n) is the
rate of convergence of the maximum likelihood estimate, 91, of the Ith component of 6. The
models in this paper have y/n-convergence on all the free parameters under the graph restrictions
(see Liitkepohl, 1993, Theorem 5.5 and Lauritzen 1996, formula 5.50), so that h;(n) = y/n, for
[=1,...,7(0). Since log L(X|0, G, k) o —45 log |32|, the weakly consistent criterion of Kim (1998)
in (A.4) reduces to the asymptotic expression of the approximate FML in (A.3), which in turn
shows the weak consistency of the posterior mode estimator based on the approximate FML in
Definition 2.
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