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Abstract
The degree of empirical support of a priori plausible structures on the cointegration vectors
has a central role in the analysis of cointegration. Villani (2000) and Strachan and van Dijk
(2003) have recently proposed �nite sample Bayesian procedures to calculate the posterior
probability of restrictions on the cointegration space, using the existence of a uniform prior
distribution on the cointegration space as the key ingredient. The current paper extends this
approach to the empirically important case with di¤erent restrictions on the individual coin-
tegration vectors. Prior distributions are proposed and posterior simulation algorithms are
developed. Consumers� expenditure data for the US is used to illustrate the robustness of
the results to variations in the prior. A simulation study shows that the Bayesian approach
performs remarkably well in comparison to other more established methods for testing restric-
tions on the cointegration vectors.
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1. Introduction

The analysis of cointegration (Engle and Granger, 1987) has received an enormous attention
both in the theoretical and the more applied economic and econometric literature, see e.g.
Johansen (2005) for a recent overview of the econometric analysis. One of the main reasons
for the popularity of cointegration models is the separation of the long-run component, where
economic theory may provide useful information, from the less understood short-run dynamics.
This separation opens up the possibility to determine the degree of empirical support of long
run equilibria suggested by economic theory, which is often the centerpiece of the analysis.
Traditionally, this has been tackled by classical hypothesis tests of restrictions on the space
spanned by the cointegration vectors, the so called cointegration space, see Johansen (1995a)
for the likelihood ratio test. Opinions on the usefulness of classical tests are very diverse,
but it is probably agreed that such tests become much less appealing if more than one �null�
hypothesis is present, which is typically the case in cointegration analysis. In addition, only
asymptotic distributions of the statistics are available, and the sample size necessary for them
to be useful seems to be larger than the sample size in typical applications (Gredenho¤ and
Jacobson, 2001), although bootstrapping procedures (Gredenho¤ and Jacobson, 2001) and a
Bartlett-type correction (Johansen, 2000) have been suggested to alleviate this de�ciency.
The Bayesian analysis of restrictions on the cointegration space focuses on the posterior dis-

tribution over the set of cointegration restrictions, or, more generally, models, and is straight-
forward in principle: formulate a prior distribution for the parameters in each model under
comparison and compute the posterior distribution over the set of models. The di¤erence
between classical hypothesis tests and its Bayesian alternative is well documented in the lit-
erature, see e.g. Lindley (1957), Edwards, Lindman and Savage (1963), and Berger and
Delampady (1987). Previous Bayesian analyses of restrictions on the cointegration vectors
include Strachan (2003), where an extension of the embedding approach of Kleibergen and
Paap (2002) and Kleibergen and van Dijk (1998) is used, and Martin (2000) and Martin and
Martin (2000) where restrictions in bivariate systems are analyzed. Paap and van Dijk (2003)
analyze restrictions in a more �exible Markov switching model.
The non-linearity and high dimensionality of the parameter space in error correction (EC)

models make both the prior formulation and the posterior computation a real challenge, how-
ever. Even the development of a di¤use, �non-informative�, reference prior has taken more than
a decade, see Kleibergen and van Dijk (1994), Bauwens and Lubrano (1996), Geweke (1996),
Kleibergen and van Dijk (1998), Martin and Martin (2000), Kleibergen and Paap (2002),
Strachan (2003), Strachan and Inder (2004) and Villani (2005a) for di¤erent suggestions. The
�eld of Bayesian cointegration is surveyed in Koop, Strachan, van Dijk and Villani (2005).
An additional complication when it comes to comparing models in the Bayesian approach

is that the prior distribution must necessarily be proper, with the possible exception of those
dimensions of the parameter space which are common to all models under comparison; see
O�Hagan (1995) for a discussion. Villani (2000) and Strachan and van Dijk (2003) have pointed
out that the EC model belongs to the class of models where there exists a well-de�ned, non-
controversial, proper uniform distribution. This comes from the fact that the cointegration
vectors are only determined up to arbitrary linear combinations, i.e. only the cointegration
space is identi�ed (Johansen, 1995a). The parameter space of the cointegration vectors is
therefore not Euclidean, but rather the abstract space consisting of all subspaces with a �xed
dimension, the Grassman manifold (Villani, 2005a,b; Strachan and Inder (2004); Strachan
and van Dijk, 2004). This is important as the Grassman manifold is bounded and admits a
unique invariant probability measure, which may be used to de�ne the uniform distribution on
this space (Mardia and Khatri, 1977). The other parameters of the model, such as adjustment
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coe¢ cients and short-run dynamics, may conveniently be assigned improper priors as these
parameters do not di¤er across the hypothesized cointegration spaces.
We make a number of contributions in this paper. First, we extend the analysis of cointe-

gration restrictions in Strachan and van Dijk (2003), to the case where the restrictions may
di¤er across cointegration vectors, which is a common situation in applied work. We propose
a prior distribution and devise tailored numerical simulation algorithms to compute the pos-
terior distribution over the set of restrictions. We also discuss, and illustrate by an empirical
example, the crucial role played by the prior on the adjustment coe¢ cients for the inference
on the cointegration restrictions. Finally, we conduct a simulation study to evaluate the per-
formance of the Bayesian approach to restrictions on the cointegration space in comparison to
more established methods like the likelihood ratio test (with and without Bartlett correction)
and some widely used information criteria.
The analysis of the restrictions on the cointegration space proceeds conditional on a pre-

speci�ed lag length in the VAR model. Since our focus here is on testing restrictions on
the cointegration space we shall also assume the cointegration rank to be known a priori.
The proposed procedure for posterior analysis of restrictions may be trivially extended to a
joint analysis of restrictions and cointegration rank if the proper prior distribution on the
adjustment coe¢ cients is used, see Strachan and van Dijk (2003). Alternatively, the posterior
distribution of the cointegration rank may be obtained separately using one of the procedures
in Kleibergen and Paap (2002), Strachan (2003), Corander and Villani (2004), Strachan and
Inder (2004), Strachan and van Dijk (2004) and Villani (2005a).

2. The cointegrated vector autoregressive model

The base model used throughout this paper is the p-dimensional error correction (EC)
model

(2.1) �xt = ��
0xt�1 +

k�1X
i=1

�i�xt�i +�dt + "t;

where xt is a column vector containing the p time series at time t, dt contains observations on q
exogenous variables and "t � Np(0;�) with independence between time periods. The columns
of � (p� r) are the cointegration vectors such that �0xt represents the stationary departures
from the r long run equilibria and � contains the adjustment coe¢ cients which control the
adjustment back to equilibrium. The space spanned by � has been termed the cointegration
space. The exogenous variables in dt may be restricted to the cointegration space, as discussed
in Johansen (1995a). The analysis presented here can easily accommodate such extensions by
a suitable rede�nition of xt�1 and dt in exactly the same way as in the maximum likelihood
analysis.
The model can be written in the following compact form

Y = X��0 + Z	+ E;

where the tth row of Y , X, Z and E is given by �x0t, x
0
t�1, (�x

0
t�1; :::;�x

0
t�k+1; d

0
t) and "

0
t,

respectively, and 	 = (�1; :::;�k�1;�)0.
Any r� r non-singular matrix U and its inverse can be used to transform � and � without

a¤ecting their product. i.e. ��0 = ����0, where �� = �U 0�1 and �� = �U . Hence, what the
data can determine is the cointegration space, sp�, and the adjustment space, sp�, but there
is no way to further discriminate between the elements in � and �. In order to identify � and
�, linear restrictions can be imposed on the columns of �. Assume that ri restrictions are
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imposed on the ith cointegration vector

(2.2) R0i�i = 0;

where Ri is a p�ri full rank restriction matrix and �i is the ith column of �. Over-identifying
restrictions are of course represented in the same way by increasing the number of columns
of Ri. Necessary and su¢ cient conditions for the restrictions to be identifying are given in
Johansen (1995b). Alternatively, restrictions may be imposed on � and analyzed in the same
way as � (the problem is symmetric in � and �), provided � is left unrestricted. If both
� and � are restricted, the analysis is more complicated, however, and this case will not be
considered here.
It is useful to parametrize the restricted �i in terms of its unrestricted elements (Johansen,

1995a)

(2.3) �i = Hi'i;

whereHi = Ri?; an p�(p�ri)matrix orthogonal to Ri; and 'i is the (p�ri)-dimensional vector
of free elements in �i after the restrictions given by Ri have been imposed. For future reference,
let si = p � ri, and ' = ('01; :::; '

0
r)
0. As Hi is of full column rank, each Hi may be made

orthonormal by the transformation Hi ! Hi(H
0
iHi)

�1=2. Since spHi = sp[Hi(H 0
iHi)

�1=2], the
restrictions on the cointegration space are unchanged by this transformation and there is no
loss in generality in assuming each Hi to be orthonormal. This assumption helps to clarify
the form of the prior distribution presented in the next section.
The identifying restrictions only determine each �i up to a constant and a normalization of

each �i is therefore necessary. This can be done in many ways, but we choose to normalize each
cointegration vector to unit length, thus restricting each 'i to the (si � 1)-dimensional unit
sphere in Rsi , which we denote by Ssi1. The unit length normalization helps in understanding
the type of prior used for � and, more importantly, allows us to assume prior independence
between � and �, see the next section. One indeterminacy remains, however; data cannot
discriminate between the vectors �i and ��i on opposite poles of Ssi . This could be settled
by e.g. restricting the �rst element of 'i to be positive, thus restricting each 'i to the (si�1)-
dimensional unit hemisphere in Rsi . The numerical algorithms developed in Section 5 are
more easily implemented if we do not impose the sign restriction, however. This is possible as
long as all considered densities (priors, proposal distributions in MCMC, see Section 5, etc)
are antipodally symmetric, i.e. satisfy f(x) = f(�x), where x is a vector of unit length; see
also the discussion of the prior in the next section.

3. A reference prior for the unit length normalization

Let 	 be uniformly distributed over Rp�p(k�1)+q and assume that

(3.1) � � IW (A; v);
a priori, where IW denotes the inverted Wishart distribution (Zellner, 1971).
To motivate the prior used for ', let us �rst consider the case with a single cointegration

vector �1. The unit length of �1 implies that �
0
1�1 = '01H

0
1H1'1 = '01'1 = 1. A natural

reference prior for '1 is therefore the uniform distribution on Ss1 . It is easy to see that this
prior implies that the line spanned by �1 = H1'1 is uniformly distributed over the set of all
lines in spH1. Thus, we may say that every possible one-dimensional cointegration space in
Rp which satis�es the (over-)identifying restrictions receives the same prior probability.

1We note that the (p � 1)-dimensional unit sphere in Rp is often denoted Sp�1 rather than Sp. We have
chosen the latter notation for simplicity.
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In the case with r > 1 we would ideally use a prior which assigns the same probability to
every possible r-dimensional cointegration space in Rp which satis�es the (over-)identifying
restrictions. This prior has been derived in the unrestricted case in Villani (2005a) for the
linear normalization (� = (Ir; B0)0) and by Strachan and Inder (2004) in the semi-orthogonal
normalization (�0� = Ir). Over-identifying restrictions destroy the mathematically convenient
symmetry in the just-identi�ed case, which in turn leads to substantial complications for the
prior2. We shall instead assume that the columns of � are independent a priori and that 'i
is uniformly distributed over Ssi . That is, the overall prior on ' is (Mardia and Jupp, 2000)

(3.2) p('1; :::; 'r) =

rY
i=1

�( si2 )

2�si=2
:

The assumption of a priori independent columns of � is very convenient when we later devise
numerical algorithms for computing the marginal likelihood, see Section 5. Note that the
density in (3.2) implictly contains the correction factor in Strachan and Inder (2004) between
the Grassman manifold (in this case the unit hemisphere) and the Steifel manifold (in this
case the unit sphere), which in this special case is 2r. Note also that it does not matter
which orthonormal version of Hi we use since �i = Hi'i = HiQ

0
iQi'i =

�Hi�'i where Qi is
orthonormal and the uniform prior on 'i is rotationally invariant (Mardia and Jupp, 2000),
i.e. p(Qi'i) = p('i) for any orthonormal matrix Qi.
As an illustration, consider a case with a three-element cointegration vector � = (�11; �12; �13)

0

of unit length. Say that we want to impose the restriction �11 = ��12. The cointegration
vector may then be expressed in terms of its unrestricted elements as follows

(3.3) � = H' =

0B@
1p
2

0

� 1p
2
0

0 1

1CA� cos �
sin �

�
=

0B@
1p
2
cos �

� 1p
2
cos �

sin �

1CA ,
where ' = ('11; '12)

0 is the unit length vector of unrestricted coe¢ cients and � 2 [��; �) is
the angle of ' in polar coordinates. As � travels from �� to �, equation (3.3) traces out a
curve in R3, which is the parameter space of � under the restrictions. The uniform prior on
' over the two-dimensional unit sphere implies that � � Unif [��; �) a priori (Mardia and
Jupp, 2000). The implied prior on �11 and �13 (remember �12 = ��11 so there is no need to
plot all three dimensions) is displayed in Figure 1 (right subgraph).
It is interesting to compare the uniform prior to a normal prior in the commonly used linear

normalization of �, where one of the elements of � is normalized to unity. Let � = (1;�1; b)0
denote the restricted cointegration vector in this normalization and assume that b � N(0; �2)
a priori. Figure 1 depicts the implied prior on � (left) and �11 and �13 (right) for � = 2 and
� = 10. To aid in the comparison, we have have mirrored the priors in the linear normalization
to the opposite side of the ellipse in right hand graph in Figure 1. It is clear that the normal
priors in the linear normalization are very informative with respect to the one feature of �
which is identi�ed, namely the direction of the cointegration vector. In fact, no prior variance
�2 produces the uniform distribution on the restricted cointegration space spH. As shown

2The exception here is when the restrictions are of the form � = (��; H'), where �� is a p �m matrix of
fully speci�ed cointegration vectors, H is a p�s restriction matrix for the remaining r�m cointegration vectors
and ' is s� (r �m). Under such restrictions, the parameter space has the same structure as the unrestricted
case (but with smaller dimension) and the invariant prior may be derived as in Strachan and van Dijk (2003).
One could of course use a mixed approach where Strachan and van Dijk�s (2003) prior is used on those sets of
restrictions where it is applicable and use the prior in (3.2) on all other restriction sets.
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Figure 1. Prior distributions on the cointegration vector viewed in �-space
(left) and over the unit circle (right).

in Villani (2005a), a standard Cauchy prior on b implies a uniform distribution over the
cointegration spaces.
The prior on the adjustment coe¢ cients in � is an extension of the prior used in Strachan

and Inder (2004) and Villani (2005a) to the just-identi�ed case

(3.4) vec�j� � Np(0; V 
 �);

where V = diag(�21; :::; �
2
r). The prior in (3.4) implies that the vector of adjustment coe¢ cients

for di¤erent cointegrating relations are independent conditional on �, more precisely �ij� �
Np(0; �

2
i�) independent of �j , j 6= i. The possibly di¤ering scales of the time series are taken

into account by the use of � in the conditional variance of �i. The conditional prior is thus of
shrinkage type, depending only on a small set of hyperparameters. In many cases it is su¢ cient
to use �1 = ::: = � r = � , and the posterior probabilities of the restrictions on the cointegration
space may be plotted as a function of � , which is an e¤ective way to communicate the results;
an example of this procedure is given in Section 6. As explained in the next section, it is even
possible to use � i =1, for all i, i.e. to assign a �at and improper prior to �, and still obtain
a well de�ned posterior distribution over the set of cointegration restrictions.
In summary, the overall prior for all parameters of the EC model takes the form

(3.5) p(�; ';	;�) / j�j�(p+r+v+1)=2 etr[��1(A+ �V �1�0)]
rY
i=1

�( si2 )

2�si=2
;

where etr(X) = exp[�(1=2) trX], for any square matrix X.
There is an implicit assumption of independence of � and � in (3.5), which may considered

odd at �rst sight given that the elements of � are the coe¢ cients in the regression of �xt on
�0xt�1. The magnitude (scale) of � is therefore inversely related to the magnitude of �, and
the prior distribution of � should therefore be modelled conditional on � (see Villani (2005a)
for such a construction). The non-identi�cation of � opens up a possibility to avoid this prior
dependence, however. Since the length of the cointegration vectors are arbitrary, we may use
a unit length normalization of �, thereby pinning down its scale, and we may realistically
assume prior independence between � and �.
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To aid in the speci�cation of the prior hyperparameters �1; :::; � r in V it is helpful to derive
the marginal posterior distribution of �. This marginal prior of � is obtained by integrating
out �, using properties of the inverted Wishart distribution, and reads

(3.6) � � tp�r(0; A; V; v � p+ 1);

where tp�r denotes the matrix t distribution (Box and Tiao, 1973 and Zellner, 1971). From
Box and Tiao (1973, p. 446-447) we have E(�) = 0 and Cov(vec�) = 1

v�p�1V 
A. Thus, in
order to specify �1; :::; � r one should �rst specify A = (v � p� 1)E(�). It is often su¢ ciently
accurate, compared to the data information, to assume a diagonal A, whose p elements may
reasonably be speci�ed by the user. If one is unwilling to specify A altogether, then a data
based prior may be used, as suggested in Villani (2005a), with v = p+ 2 and A = E(�) = �̂,
the maximum likelihood estimate of �. The choice of v = p + 2 makes the prior on � the
least informative prior in the inverted Wishart family subject to a �nite expectation, which
mitigates the e¤ect of the slightly unorthodox use of sample data in the prior. Yet another
approach would be to use A = 0, v = 0 (which corresponds to the well-known j�j�(p+1)=2 prior
for �).

4. The posterior probability of over-identifying restrictions on the
cointegration space

Suppose that we havem di¤erent theories/hypotheses on the cointegration space, h1; :::; hm,
which are represented by di¤erent (linear) over-identifying restrictions on � and let '(i) denote
the remaining free parameters in � after the restrictions given by hi have been imposed. See
Johansen (1995a) for a discussion of possible types of restrictions and their interpretation.
A Bayesian comparison of these hypotheses is very simple in principle: simply compute the
posterior probabilities of the hypotheses under consideration

(4.1) p(hijx(T )) =
p(hi)mi(x

(T ))Pm
j=1 p(hj)mj(x(T ))

;

where x(T ) denotes the data up to time T , p(hi) is the prior probability of hi,

mi(x
(T )) =

Z
'(i)

Z
�

Z
	

Z
�
p(x(T )j�; '(i);	;�; hi)p(�; '(i);	;�jhi)d�d	d�d'(i)

is the marginal likelihood of the data under the ith hypothesis, p(x(T )j�; '(i);	;�; hi) is the
usual (conditional) likelihood function and p(�; '(i);	;�jhi) is the prior distribution of the
unrestricted parameters under hi. Note that mi(x

(T )) is the actual probability of observing
x(T ) if hi is true and the prior is p(�; '(i);	;�jhi). The posterior probabilities in (4.1) can be
used in a multitude of ways, e.g. to weigh the predictions (and their uncertainty) from the m
di¤erent models (hypotheses), see Villani (2001) and Strachan and van Dijk (2004).
Since the uniform prior on the cointegration space is proper, the posterior probabilities

p(hijx(T )) are well de�ned even when the prior distribution of �;	 and � is improper as their
normalizing constants (which only exist in a limiting sense, see O�Hagan (1995)) cancel out in
(4.1), if the prior on these parameters is the same across all hi. Thus, contrary to what might
be expected prima facie, Bayesian inference on the restrictions on the cointegration space is
still well de�ned when the prior with �1 = ::: = � r = 1 (constant prior on � over Rp�r) is
used. Note that this analysis does not require the user to specify any prior hyperparameters
at all and may therefore be part of the default statistics reported by software packages.
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Suppressing the subscript which denotes a particular model, the marginal likelihood of
model (2.1) is proportional to

m(x(T )) =

Z
'

Z
�

Z
	

Z
�
j�j�(T+p+r+v+1)=2 etr

"
��1

 
A+ �V �1�0 +

TX
t=1

"t"
0
t

!#
p(')d�d	d�d';

where "t = �xt � ��0xt�1 �
Pk�1
i=1 �i�xt�i � �dt.

Using �rst properties of the inverted Wishart distribution to handle the integral with respect
to � and then properties of the matrix t distribution for the integral with respect to � and 	
(Zellner, 1971), we obtain

(4.2) m(x(T )) =

Z
'

��V �1 + �0C1���l1��V �1 + �0C2���l2 p(')d';
where C1 = X 0Q1X, Q1 = I � Z(Z 0Z)�1Z 0, C2 = X 0Q2[IT � Z(Z 0Q2Z)�1Z 0Q2]X, Q2 =
IT �Y (A+Y 0Y )�1Y 0; l1 = (T +v�pk�q)=2 and l2 = (T +v�p(k�1)�q)=2. Note that � is
a function of '. An unimportant multiplicative factor, common to all hypotheses, which will
cancel out in all model comparisons, has been left out in (4.2). Expression (4.2) is as far as
we get analytically, the integral with respect to ' must be computed numerically, see Section
5.
From (4.2) it is seen that the marginal likelihood for A = 0, v = 0 (which corresponds to the

well-known j�j�(p+1)=2 prior) and �1 = ::: = � r =1 is very close to the a priori expected value
of the likelihood ratio in Johansen (1995a). The only discrepancy is in the powers of the two
determinants in (4.2); in the likelihood ratio we have l2 = l1 = T=2. This di¤erence in �degrees
of freedom�(which diminishes in importance as the length of the time series increases since
both l1 and l2 grow with T ) comes from the treatment of the nuisance parameters (i.e. �;	
and �), which are integrated out by their priors in the Bayesian approach but concentrated
out with their ML estimates in the likelihood approach (Bauwens and Lubrano, 1996).

5. Numerical evaluation of the marginal likelihood

5.1. Monte Carlo integration. An obvious suggestion for a numerical evaluation of the
integral in (4.2) follows immediately from the observation that m(x(T )) is the expectation of

Q(') =

��V �1 + �0C1���l1��V �1 + �0C2���l2 ;
with respect to the prior p('). A simple numerical approach is therefore to generate samples
from p(') and then estimate m(x(T )) with an arithmetic average of the computed Q('). A
draw from the prior of 'i is easily performed using the result that n= knk, where n is a si-
dimensional vector of independent normal variates, follows the uniform distribution on Ssi
(see, e.g. Muirhead, 1982).

5.2. Importance sampling. Importance sampling, introduced to econometricians by Kloek
and van Dijk (1978) and further developed by Geweke (1989), is a re�nement of simple Monte
Carlo integration. Let g(') be an arbitrary density for ', usually called the importance
density. The marginal likelihood can then be written

m(x(T )) =

Z
'
Q(')

p(')

g(')
g(')d'
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and m(x(T )) is therefore the expectation of Q(')p(')=g(') with respect to g('), which may
be estimated by an arithmetic average of Q(')p(')=g(') computed from the ' sampled from
g('). Note that by using an importance density which is approximately proportional to the
marginal posterior of ' (which is Q(')p(')), we are e¤ectively estimating m(x(T )) with an
average of terms with small variability, with a resulting precise estimate of m(x(T )).
Importance densities are naturally based on the most widely used distribution on Sp: the

von Mises distribution (Mardia and Jupp, 2000). The density of the von Mises distribution is
of the form

p(x) = cp(�) exp(�x
0�)dSp;

where x and � are vectors on Sp, � is a positive scalar and dSp denotes the probability element
on Sp. � is the mean direction of x and � determines the degree of concentration around the
mean. The normalizing constant is

c�1p (�) = (2�)
p=2��(p�1)=2I(p�1)=2(�);

where Iq(�) is the modi�ed Bessel function of the �rst kind. Ulrich (1984) describes an e¢ cient
algorithm for generating variates from the von Mises distribution. The von Mises distribution
is not antipodally symmetric (i.e. p(x) 6= p(�x)), however. As discussed in Section 2, this
property is necessary here as the unit length cointegration vectors are only unique up to sign
switches. The von Mises density is easily modi�ed to be antipodally symmetric by a simple
re�ection to the opposite side of the sphere, giving the density

(5.1) p(x) =
cp(�)

2
[exp(�x0�) + exp(��x0�)]dSp:

We will for simplicity refer to (5.1) as the von Mises density, and denote it by Mp(�; �), with
the implicit understanding that we are referring to its modi�ed form.
We propose the following importance density based on the von Mises distribution

g('1; :::; 'r) = g1('1)g2('2j'1) � � � gr('rj'1; :::; 'r�1);
where

'ij'1; :::; 'i�1 �Msi('̂i; �i)

and '̂i is the maximum likelihood estimate of 'i conditional on a cointegration rank equal
to i and the coe¢ cients in the other i � 1 cointegration vectors being '1; :::; 'i�1 (obtained
from e.g. the switching algorithm in Johansen (1995a)). Thus, the mean vector in the von
Mises distribution of '1 is the ML estimate in the model with a single cointegration vector
and restrictions given by H1, the mean vector in the von Mises distribution of '2 is the ML
estimate in the model with a two cointegration vectors where the �rst vector is �xed to the
previously generated '1 and second vector is restricted by H2 and so on. The ��s may be used
to �ne tune the importance function to the problem at hand; the estimated standard errors
from the ML estimator of ' may be used as a guide. Note that the concentration of g(')
around its modal axis (given by ��) increases with �i.

5.3. Methods based on posterior sampling. Several methods approximate the marginal
likelihoodm(x(T )) using a sample from the posterior distribution of the model parameters. Di-
rect sampling from the marginal posterior of ' is not feasible. An alternative is to employ the
Gibbs sampler to generate variates iteratively from the full conditional posteriors p('ij'�i;D),
where '�i equals ' with the elements in 'i excluded, always conditioning on the most recently
updated '�i. Since the full conditional posteriors are non-standard distributions on the unit
sphere, this procedure is likely to be time-consuming. A preferable approach is to use the
Metropolis-Hastings (H-M) algorithm (Metropolis et al, 1953; Hastings, 1970) to sample each
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full conditional posterior, i.e. sampling from p('jD) is done by the so calledMetropolis-within-
Gibbs algorithm. The M-H algorithm draws (proposals) from a distribution which roughly
approximates the target distribution and accepts the draws with a certain probability. Let
q('

(j+1)
i j'(j)i ; '

(j)
�i ) denote the distribution used to generate a candidate draw of 'i in the (j+

1)th iteration of the algorithm and let

a('
(j)
i ; '

(j+1)
i ; '

(j)
�i ) = min

"
q('

(j+1)
i j'(j)i ; '

(j)
�i )p('

(j+1)
i j'(j)�i ;D)

q('
(j)
i j'

(j+1)
i ; '

(j)
�i )p('

(j)
i j'

(j)
�i ;D)

; 1

#
;

be the acceptance probability of the transition '(j)i ! '
(j+1)
i , where p('(j)i j'

(j)
�i ;D) is the full

conditional posterior density kernel of 'i. The generated sequence of draws are dependent
but can be shown to converge in distribution to p('jD) as j ! 1 (Tierney, 1994). Several
proposal distributions are possible, e.g.

'
(j+1)
i j'(j)i ; '

(j)
�i �Msi('

(j)
i ; �i):

Since the von Mises distribution is symmetric in its argument and mean vector, for this speci�c
proposal distribution we have q('(j+1)i j'(j)i ; '

(j)
�i ) = q('

(j)
i j'

(j+1)
i ; '

(j)
�i ) and the acceptance

probability simpli�es to

a('
(j)
i ; '

(j+1)
i ; '

(j)
�i ) = min

 
p('

(j+1)
i j'(j)�i ;D)

p('
(j)
i j'

(j)
�i ;D)

!
:

Another proposal distribution is

'
(j+1)
i j'(j)i ; '

(j)
�i �Msi(~'i; �i)

where ~'i is either the unconditional ML estimate of 'i in the model with r cointegration
relations (independence sampler) or the ML estimate of 'i conditional on the most recent
draw of '�i.
Once a posterior sample is available, several methods may be used to compute the marginal

likelihoodm(x(T )). Importance sampling with the posterior distribution as importance density
may be used. The resulting estimator is the harmonic mean of the likelihoods of the poste-
rior draws; Geweke (1999) describes a modi�ed harmonic estimator along the lines initially
suggested by Gelfand and Dey (1994). Yet another use of posterior samples for computing
marginal likelihoods has recently been proposed by Chib and Jeliazkov (2001). Their work
extends Chib�s earlier procedure for computing marginal likelihoods from the Gibbs poste-
rior sample (Chib, 1995) to the Metropolis-Hastings setting. The Chib (1995) procedure was
used in Villani (2005a) for computing the posterior distribution of the cointegration rank with
encouraging results.

6. Empirical illustration

The long-run relationship between consumers�expenditure and income in the US over the
time period 1956-1991 is analyzed in Holden and Perman (1994). A VAR model was used
with quarterly observations on three variables: real consumers�expenditure, real disposable
income and real personal wealth. Three dummy variables and an unrestricted constant are
also added to the model. All variables are seasonally adjusted and in natural logarithms. All
three series seem to be I(1), with the exception of the wealth variable which may well be I(0).
Holden and Perman (1994) conditions the analysis on k = 2 and r = 1, which we will also use
here for comparison. A Bayesian analysis of the cointegration rank may be obtained using the
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� �̂ �2 lnL As. p-value Boot. p-value � =1 SBC
(1;�1; 0)0 (1;�1; 0)0 1174:57 0:103 0:241 0:950 0:693
(1;�1; a)0 (1;�1;�0:01)0 1174:60 0:034 0:210 0:020 0:071
(0; 0; 1)0 (0; 0; 1)0 1167:13 0:000 0:014 0:000 0:000
(1; b; c)0 (1;�0:94;�0:04)0 1176:85 � � 0:002 0:071
(1; d; 0)0 (1;�0:96; 0)0 1175:43 0:092 0:192 0:028 0:172

Table 1. Restrictions on the cointegration vector in the Holden-Perman data.
�̂ is the ML estimate of � under the restrictions, 2 lnL is�2 times the maximum
log-likelihood and the p-value refers to the LRT of the restriction against the
unrestricted alternative. � = 1 is the posterior probability of the restriction
using the prior with A = �̂, v = p+ 2 and � =1 and SBC is the asymptotic
SBC approximation of the same.

� �̂1 �̂2 �̂3
(1;�1; 0)0 0:183 0:399 0:078
(1;�1; a)0 0:184 0:414 0:077
(0; 0; 1)0 0:008 0:006 0:013
(1; b; c)0 0:237 0:593 0:304
(1; d; 0)0 0:205 0:424 0:167

Table 2. Maximum likelihood estimates of � under the di¤erent restrictions
on the cointegration space.

methods suggested by e.g. Kleibergen and Paap (2002), Strachan and Inder (2004) or Villani
(2005a). We use the prior with A = �̂ and v = p+ 2:
Holden and Perman test several restrictions on � against the unrestricted alternative, using

the likelihood ratio test (LRT) in Johansen (1995a). These restrictions and the restriction that
wealth is I(0) (i.e. � = (0; 0; 1)0) are displayed in the �rst column of Table 1. Note that the
�rst and third restrictions fully specify � and no prior needs to be speci�ed on '. The second
column shows the ML estimates under the restrictions and the remaining columns contains
(�2 times) the maximum log-likelihood under the hypotheses, the asymptotic p-value of the
LRT, the bootstrapped p-value of the LRT, the posterior probability of the restrictions for
� =1 (�at prior on �) and the last column contains the �rst order SBC approximation of the
posterior probabilities (Schwarz, 1978). There are several interesting comparisons that may
be made from Table 1, but two general remarks are: i) although the four methods all favor
the restriction � = (1;�1; 0)0, there is a substantial disagreement regarding the relative weight
of evidence of the hypotheses and ii) there seems to be more to the inferences than merely
comparing the maximum likelihood to the number of imposed restrictions (as is done by the
two large sample methods: the asymptotic LRT and SBC); a possible explanation is that
although the parameter space is Euclidean asymptotically (locally), it is a curved manifold in
�nite samples (Villani, 2005b).

The posterior probabilities of the �ve hypotheses on the cointegration space are plotted
in Figure 2 as a function of the prior hyperparameter � . The �rst impression from Figure
2 is that the restriction inference varies considerably with respect to � and that this prior
hyperparameter must therefore be exactly pinned down by the user. A closer look reveals that
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Figure 2. Posterior probability of the hypotheses on � in the Holden-Perman
data as a function of the prior hyperparameter � .

this is not the case and that a very rough choice of � is actually su¢ cient. To see this, note
that the inferences are essentially the same for all � > 10. Note also that diag(A) = diag(�̂) =
(0:0102; 0:0152; 0:0412) and the marginal posterior standard deviation of the elements of � are
therefore 0:010� , 0:015� and 0:041� , respectively (see the discussion of the marginal prior of �
in (3.6)). A comparison with the conditional ML estimates of � in Table 2 makes it clear that
priors with � < 10 are extremely tightly located around the point � = 0 and grossly in con�ict
with data. The exception is the restriction � = (0; 0; 1)0, where �̂ is close to the zero vector;
this explains the high posterior support of this restriction for the smallest ��s. If it is agreed
that a reasonable prior has � > 10, then we may conclude that the data information is so
over-whelming that the conclusions do not depend the choice of � and a subjective consensus
has thus been reached.

7. Simulation experiments

A small simulation study was conducted to compare the Bayesian procedure to established
methods of analyzing restrictions on �. To keep things simple, we restrict attention to the
bivariate VAR(1) process with no deterministic variables and one cointegration relation, i.e.
p = 2 and k = r = 1. Johansen (2000) uses the invariance of the likelihood ratio test (LRT)
under linear transformation of the time series to �nd a canonical form of this process suitable
for simulation studies. The canonical process has the following parameter values

� = (1; 0)0

� = (�; �)0, � � 0
� = I2,

which in turn depend on only two parameters, � and �. The canonical form generates I(1)
variables with one cointegrating vector if �2 < � < 0. � = � = 0 results in an I(1) process
with no cointegration relationship (i.e. r = 0) whereas � = 0 and � 6= 0 determine a I(2)
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�n� �0:1 �0:2 �0:5
0:0 1 5 9

�0:1 2 6 10
�0:2 3 7 11
�0:5 4 8 12

Table 3. The 12 pairs of � and � used in the simulations together with their
speci�cation numbers used in Figure 2 and 3.

process. Thus, � close to zero generates processes where it should be di¢ cult to �nd support for
� = (1; 0)0 and the di¢ culty increases as � also approaches zero. Johansen (2000) investigates
� ranging from �1 to �0:1 and, since the LRT is also invariant to the sign of �, � ranging from
�1 to 0. It will become evident, however, that values of � and � smaller than �0:5 generate
data which are too informative to be interesting. The 12 pairs of � and � considered here are
given in Table 3.
Two scenarios for � are considered in the simulation study. In Scenario I, the following four

hypotheses are used:

h1 : � = (1; 0)0;

h2 : � = (0; 1)0;

h3 : � = (1;�1)0;
h4 : � is exactly identi�ed but otherwise unrestricted.

Thus, the true � is one of the hypotheses and the data should provide support for h1. Scenario
II is the same as the �rst scenario, with the exception that � = (1; 0)0 is replaced by � = (1; 1)0

under h1 and the true � is therefore no longer one of the hypotheses. A good procedure should
therefore support h4 strongly.
To be able to compare with other model selection procedures, such as selection rules based

on the LRT, the SBC criterion (Schwarz, 1978) and the AIC criterion (Akaike, 1974), we
focus on the frequency of choice of hypothesis. The Bayes procedure used in the simulations
assigns equal prior probability to all hypotheses and then chooses the hypothesis with highest
posterior probability. The �at prior on � (i.e. � = 1), along with A = 0 and v = 0, is used
for all hypotheses. The following decision rule based on the LRT is used:

Let h� denote the hi (i = 1; 2; 3) with largest likelihood. Test h� against h4
with the LRT at signi�cance level �. If h� is rejected, choose h4. If h� cannot
be rejected, choose h�.

The signi�cance level, �, (which of course is not the signi�cance level of the overall proce-
dure) must be decided upon in the simulation study. A small � will obviously work well in
Scenario I while a large � will be better if Scenario II is at hand. � equal to 0:025, 0:05 and
0:1 were used in the simulations, but the results are only presented for � = 0:05, which gave
the best performance of the LRT judged over both scenarios. This search for an �optimal��
biases the presented results in favor of the LRT.
The test statistic of the LRT is asymptotically distributed as a �2 variate, but is well known

(Gredenho¤ and Jacobson, 2001) to be severely oversized even for moderately large sample
sizes. To remedy this, Johansen (2000) derived a Bartlett correction to the LRT statistic, see
his Corollary 9 for the correction in the special case k = r = 1.
In each scenario, 10; 000 processes were generated for each (�; �)-pair and for each simulated

process a choice of hypothesis was made by all selection procedures. In addition, two di¤erent
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Figure 3. Scenario I. Frequency of choice of the four hypotheses for � in
10:000 bivariate processes with T = 50, r = k = 1, � = (1; 0)0, � = I2. 12
di¤erent � = (�; �)0 are used, where the di¤erent pairs of � and � are given in
Table 3 with their speci�cation number.

sample sizes were used: T = 50 and T = 100. The posterior probabilities were calculated
by Monte Carlo integration (see Section 5.1) with 5; 000 draws from the prior, which gave a
su¢ ciently small simulation error.
Consider �rst the results of Scenario I, where h1 is the true hypothesis. Figure 3 shows

the frequency of choice between the four hypotheses (one in each subgraph), for sample size
T = 50 and di¤erent values of � and � (see Table 3 for the speci�cation numbers of �). For
example, the upper left subgraph of Figure 3 shows that the Bartlett-corrected LRT chose
the true hypothesis (� = (1; 0)0) in nearly 8; 500 of the 10; 000 simulated processes for the
parameter setting � = �0:1 and � = 0:0 (�-speci�cation number 1).
From Figure 3 it is seen that the Bayes procedure is on average more correct than any

other procedure, the exception being the parameter setting � = �0:1 and � = 0:0, where it is
slightly beaten by the Bartlett corrected LRT. The asymptotic LRT is so close to SBC that
the two lines are sometimes completely overlapping.
Not only does Bayes choose the true hypothesis most frequently, but it is also most restrictive

in choosing the false hypotheses, h2 and h3. This is important since the consequences of
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Figure 4. Scenario II. Frequency of choice of the four hypotheses for � in
10:000 bivariate processes with T = 50, r = k = 1, � = (1; 0)0, � = I2. 12
di¤erent � = (�; �)0 are used, where the di¤erent pairs of � and � are given in
Table 3 with their speci�cation number.

choosing a false null hypothesis are more severe than choosing h4. Note also that all procedures
prefer h3 over h2, which is sensible since (1;�1)0 is closer than (0; 1)0 to the true �. We do
not report detailed results for the sample size T = 100 and simply note that the relative
performance of the �ve estimators remain about the same. The exception is SBC, which has
improved relative to the other procedures and is now uniformly better than asymptotic LRT.
Figure 4 summarizes the results for Scenario II, where the true � is not one of the hypotheses.

The Bayes procedure chooses h4 more often and any of the other hypotheses less often than
any other procedure for all parameter settings. It is even better than AIC, which is facing its
ideal situation here (the largest model is the right choice). SBC and both LRT procedures
very often (in fact, even more often than not for some parameter settings) choose one of the
false hypotheses (i.e. one of h1; h2 and h3) instead of choosing the unrestricted alternative, an
error which should be considered especially grave. This situation improves for T = 100 (not
shown here), but for processes close to I(1) without cointegration (i.e. for small � and �) SBC
and the LR procedures are still too reluctant to choose h4. For T = 100, the Bayes procedure
still dominates all other procedures for all parameter settings.
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8. Concluding remarks

We have presented a Bayesian analysis of restrictions on the cointegration space where the
restrictions may di¤er across cointegration vectors. The prior distribution is motivated by the
so called cointegration space approach (see Koop et al. (2005) for a discussion), utilizing the
fact that the parameter space of the cointegration vectors is compact and therefore admits
a proper uniform distribution. Several numerical algorithms for computing the posterior
probabilities of the restrictions were proposed. The prior on the adjustment coe¢ cients and
its e¤ect on the posterior probabilities of restrictions on the cointegration space were discussed
and illustrated in an empirical example. Finally, a simulation study was conducted where the
Bayesian approach proved to have remarkably good properties compared to its competitors.
The only drawback of the Bayesian procedure seems to be the need to partly rely on

numerical computations. This is an obstacle which should be immaterial in the near future
given the current speed of development in computing technology, and already today should
not discourage practitioners from using the procedure. The drastic di¤erences between the
asymptotic distribution of the LRT and the one obtained with the bootstrap in Section 6
reveals that the use of the LRT is not so straight-forward as is often believed. If the use of the
LRT necessitates a resort to bootstrap methods, then computing time is no longer an item in
favor of the LRT compared to the Bayesian procedure proposed here.
The focus in the paper was on the development of a prior which can be a convenient

vehicle in inference reporting. It should be clear that the procedure is easily extended to an
informative prior on the unrestricted coe¢ cients in the cointegration vectors. A particularly
attractive distribution in the unit length normalization is the von Mises distribution on the
unit sphere. The non-identi�cation of the cointegration vectors may give the unrestricted
coe¢ cients in the cointegration vectors complicated interpretations and such a prior should
therefore be very carefully elicitated.
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