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In this paper we investigate the problem of selecting an optimal horizon for inflation targeting in the
United Kingdom.  Since there are two key ways of thinking about an optimal horizon, we look at
optimal horizons for both of these interpretations.  In addition, to see whether our results are robust in
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Many central banks, including those of Australia, Canada, the Eurosystem, Israel,

New Zealand, Sweden, and the United Kingdom, pursue an inflation target.  In

practice, this usually involves ‘targeting’ the conditional forecast of inflation — the

inflation rate expected to prevail in the future given presently available information —

rather than current inflation.

A crucial issue is how to choose the horizon, i.e. the appropriate value of � when the

operational target is expected inflation � periods ahead.  There are two key ways of

thinking about an optimal horizon for inflation targeting, depending on the way that

inflation targeting is modelled.

If policy is represented, for instance, by a simple feedback rule on expected future

inflation, one way is to think of it as the best horizon for which the authorities should

form a forecast for inflation to use in the rule.  If, instead, policy is represented by an

optimal rule for the instrument, the optimal horizon can be thought of as the time at

which inflation should be on target in the future when the authorities aim at

minimising its loss function, and a shock occurs today.  In what follows, we refer to

the first kind of horizon as the ‘optimal feedback horizon’ and to the second kind as

the ‘optimal policy horizon’.

This paper calculates optimal horizons for inflation targeting, using each of the two

definitions described above.  Since the results may well hinge on the features of the

model used for the calculations, the paper derives parallel results for two models: a
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vector autoregression (VAR) estimated on quarterly UK data; and a small-scale

structural open-economy model based on Ball (1999), Batini and Haldane (1999), and

McCallum and Nelson (1999a).  A key difference between the two models is the

importance that the second model assigns to forward-looking behaviour in spending

and pricing decisions.

The paper is organised as follows.  In Section 2 we discuss alternative definitions of

horizons for inflation targeting.  In Section 3 we describe the policy makers’ objective

function and the macroeconomic models that we employ.  In Section 4 we compute

optimal policy horizons for each model, and discuss the results.  In Section 5 we

consider optimal feedback horizons, and Section 6 provides a brief exploration of

sensitivity of the results to parameter uncertainty.  Concluding remarks follow in

Section 7.
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Frequently, in those countries which pursue inflation targets, the formal wording of

the mandate for the central bank provides that the inflation target be achieved each

year.1  For instance, the mandate for the European Central Bank, the most recently

established central bank, states: ‘[P]rice stability shall be defined as a year-on-year

increase in the Harmonised Index of Consumer Prices for the euro area of below

2%...’ (ECB, 1999, p. 46).

_____________________________________________________________________
1 Bernanke ����� (1999) provide a recent overview of several countries’ inflation targeting

arrangements.
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But central banks that have an inflation target need an operating strategy for achieving

it.  In practice, many do so by focussing on expected future inflation.  The main reason

for this is the existence of lags in the transmission of monetary policy to inflation.

The recognition of the existence of lags from monetary policy changes to inflation —

and attempts to quantify these lags — have a long history.  Jevons (1863), using UK

data, concluded that ‘An expansion of the currency occurs one or two years previous

to a rise in prices...’.  More recent empirical work, primarily using VAR analysis, has

employed interest rate-based monetary policy measures.  Using US data, Christiano,

Eichenbaum, and Evans (1996), for example, estimate that a monetary policy shock

affects real GDP with a two-quarter lag, and the GDP deflator with a four-quarter lag.

It is possible that in more open economies, such as those currently pursuing an

inflation target, the transmission lag is shorter because policy operates not only via the

conventional ‘output gap channel’, but also via a potentially swift ‘exchange rate

channel’.  But even in economies that are open, the exchange rate channel may not be

as effective, or as quantitatively important, as the output gap channel.  Neither the

pass-through of exchange rate changes to import prices, nor the propagation of import

price changes into aggregate price level changes, can be taken for granted.2  In the

UK, for example, the substantial exchange rate depreciations in 1982 and 1992 failed

to produce appreciable increases in the inflation rate (measured by the RPIX index).

_____________________________________________________________________
2 The estimates of our VAR for the UK (see Section 3 below) support caution about the empirical

importance of the exchange rate channel for output and inflation.
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In other words, even in economies that are more open than the US, the time it takes

for monetary policy to have its main impact on nominal demand may still be lengthy.

In the presence of transmission lags, returning inflation to target immediately after a

shock may involve considerable costs.  This is because offsetting immediately the

inflationary consequences of a shock may require large movements in the policy

instrument, with unduly large output losses as a result.  One obvious way to avoid this

is to try to anticipate inflationary events and react to them pre-emptively in a more

gradual fashion.  Acting before it is too late permits central banks to minimise those

losses by reducing the extent to which the instrument has to be moved in the short run

in order to control inflation.

In the literature on inflation targets, this forward-looking approach to policy has been

represented in two ways.

Rudebusch and Svensson (1999) argue that real-world inflation targeting can be

approximated by viewing the central bank as carrying out an optimisation exercise,

where the welfare function penalises inflation departures from a target, and policy is

thus set according to the ensuing optimal rule.3  In their words (1999, p. 204): ‘In

examining policy rules that are consistent with inflation targeting, we consider two

broad class of rules: instrument rules and targeting rules… A targeting rule may be

closer to the actual decision framework under inflation targeting.  It is represented by

the assignment of a loss function over deviations of a goal variable from a target

level…’.
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Rudebusch and Svensson’s definition has strengths and weaknesses.  One strength is

that it reflects a comprehensive approach to policy   a ‘look-at-everything’ approach.

It also implies that information is processed in the most efficient way — which is the

way central banks often visualise their policy.  However, this definition implies that

policy is set in a complex manner that the public may find difficult to understand,

particularly when there is no consensus on either the model or the objective function.

A second definition of inflation targeting is used in work by Batini and Haldane

(1999), McCallum and Nelson (1999b), and others.  This views targeting expected

future inflation simply as setting the policy instrument in response to deviations of

future inflation from target.  In other words, it defines targeting as the use of a policy

rule such as:

�W = constant + ψS [EWπW+N − π*] �� 

where �W is the short term nominal interest rate, EWπW+N� is the period � forecast of

inflation in �+�, π* is the inflation target, and ψS > 1.

Strengths of this approach are that it does not necessarily require agreement on every

aspect of model specification other than in the construction of the forecast (for which

there is no need for a full model).  This is because rule ��  has the property that it will

rein in deviations of inflation from target in a variety of models, subject to weak

                                                                                                                                           
3 See also Svensson (1997, 1999).
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conditions which will be met by most standard model specifications.4  Consequently,

��  is a rule that policy makers could agree would control inflation, even if the same

policy makers had no consensus on the appropriate objective function or model of the

economy.  Furthermore, Eq. ��  is consistent, for � > 0, with the inflation forecast at

some specific horizon being a key input into policy makers’ decisions.  By contrast, in

most cases a standard optimisation exercise would not give special weight to the

inflation forecast at a particular horizon, especially as that forecast may not even

appear in the first order conditions for optimality.

The principal weakness of this approach is that it assumes a simple rule that uses

information in a manner that is less efficient than is the case for an optimal rule.

The above considerations suggest that inflation-targeting central banks need to decide

how forward-looking they should be in order to bypass the transmission lags. That is,

when setting policy, they must choose an ‘optimal horizon’ over which to pursue the

goal of price stability.  Since the concept of horizon means different things under the

two previous interpretations, to investigate this issue we provide two operational

definitions of ‘optimal horizon:’ the ‘optimal policy horizon’ and the ‘optimal

feedback horizon’.

We define the ���
�������
������
��� (hereafter, ‘OPH’) as the number of periods it

takes for inflation to settle on target after a shock, under the optimal rule for the

instrument.  This is in line with Rudebusch and Svensson’s interpretation of inflation

_____________________________________________________________________
4 The condition is that the long-run response of the inflation rate to monetary tightenings is negative.
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targeting — an optimisation exercise that penalises deviations of inflation from target

and of output from potential.  (More specifically, this corresponds to what Svensson

(1997, 1999) terms ‘flexible inflation targeting’.)  We call this horizon the optimal

���
�� horizon because of its intimate connection with the optimal policy rule; but an

equally valid, and perhaps more descriptive, label would be the optimal�����
�
���
��

horizon.

There are two things to note about this definition.  First, we treat the underlying

optimisation exercise undertaken by the central bank as one subject to commitment.

Svensson (e.g., 1999) instead generally views it as optimisation subject to discretion,

but Woodford (1999) demonstrates that discretion has drawbacks when (as in one of

our models below) the model’s structural equations contain forward-looking

components.5  More recently, Svensson and Woodford (1999) have proposed several

candidate modifications to standard discretionary optimisation, which — by

connecting current and past policy actions — reduce the problems associated with

discretionary behaviour.  Future work could compare our results using commitment to

results based on Svensson and Woodford’s modified discretionary framework.

Second, the optimal policy horizon in our definition is an ������ of the optimisation

exercise, rather than a literal constraint on the optimisation problem.  See Smets

(1999) for an alternative approach, in which the requirement that EWπW+k = 0 (for a

specified � ≥ 0) is a constraint on the policy maker’s optimisation problem (i.e., an


���� in the optimisation process).

_____________________________________________________________________
5 These problems arise from the fact that discretionary optimization generally leads to predictable future

deviations by policy makers from their presently announced plans.
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Turning to our second concept of horizon, we define the ���
����������������
���

(‘OFH’ hereafter) as the best point in the future for which the authorities should form

the inflation forecast that enters their policy rule.  The OFH is an optimal ��������

horizon, i.e. the best horizon to focus on when designing a simple, inflation forecast-

based rule.  Therefore, the OFH is the ��associated with the minimisation of the policy

makers’ loss function, when policy follows a simple rule such as �� .

In the next Section, we define the policy makers’ preferences and describe the models

that we use to derive optimal horizons under each of the above definitions.

%! ��&�"�������
"��

��
���
����

������
 �������
��: We assume that policy makers wish to prevent deviations of

inflation from target and departures of output from potential.  We also assume that

policy makers dislike instrument volatility.  For computational convenience, these

preferences are represented by a quadratic loss function.  In the optimisation exercises

used to derive optimal policy horizons, this is the function that is being minimised.

And when we derive optimal feedback horizons by comparing the performance of

rules like ��  for various �s, this loss function is used to compute welfare losses in all

experiments.  Formally, the loss function is given by:

����������� ∞

W = EW Σ β M [λπ�(4*πW�M − 4*πW�M


)2 + λ\(�W�M − �W�M7)
2 + λ∆5�(4*∆�W�M)

2]
������������M= 0

�� 
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where β is the discount factor, 4*πW is annualised quarterly inflation, πW* is the inflation

target, �W�is log output, ��W7 is log capacity output, and�where λπ�, λ� and λ∆5
�
�denote the

weights assigned to inflation deviations from target, output deviations from potential,

and volatility in the first difference of the nominal interest rate, respectively.

We set β = 0.99, λπ�= 1, λ� = 1 and λ∆5�= 0.5, so that inflation and gap variability are

penalised equally.  The interest rate volatility term, which rules out extremely large

movements of the instrument in response to shocks, receives a penalty half that of the

other terms. These weights are similar to those used in Rudebusch and Svensson

(1999).

!�����: To explore the optimal horizon issue, we look at two models: a vector

autoregression (VAR) estimated on quarterly UK data; and a calibrated, forward-

looking small structural model.  These models are described below.

��"��������: Our first model is a one-lag VAR with a linear trend, estimated over

1981Q1 − 1998Q1.6  There are four endogenous variables in the VAR: log output (�W);

the deviation of annual RPIX inflation from the inflation target (πW
'(9); the log-change

in the nominal exchange rate (∆�W); and the nominal interest rate (interbank lending

rate), measured as an annualised fraction (4*�W).
7

_____________________________________________________________________
6 The linear trend is included to detrend the output variable.

7 The Data Appendix provides a detailed description of these series and their time series properties.  In

our work in Sections 4 and 5 with this VAR, the estimated �W equation will serve as the output gap

equation, and the πW
'(9�equation, converted to quarterly units, will be used as the inflation equation.
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As Rudebusch (1998) observes, the interest rate equation in a VAR has a structural

interpretation as a monetary policy reaction function.  As he also notes, however, there

is a danger that policy regime shifts may produce nonconstant parameter estimates.  In

our sample period, there have been two major breaks in the UK’s monetary policy

regime: the UK’s membership of the Exchange Rate Mechanism (ERM) from 1990 to

1992; and, following its exit from the ERM, its adoption of an inflation targeting

regime from 1992Q4.  If we allow both the slopes and the intercepts of the interest

rate equation in our VAR to vary across these regimes, the restriction of no structural

change is rejected (#(12,51) = 2.51 [� value = 0.01]).  However, the convenient

restriction that the parameter non-constancy is isolated to the equation’s intercepts is

not rejected (#(10,51) = 1.69 [� value = 0.11]).  Hence, we proceed under that

assumption, augmenting each equation of the VAR with two regime-shift intercept

dummies, $	�!W and $%&'W.
8

Estimates of this system are reported in Table 1. The lag length of one quarter is not

rejected by a χ2 test against the alternative of a two-lag VAR (�−value = 0.10).9

Several features of the dynamic properties of the system emerge.  First, consider the

output equation.  Although the estimated coefficient on 4*�W−1 in the �W regression is

quite small (−0.0908), suggesting a minor initial impact of monetary policy on real

demand, the estimated coefficient on lagged �W in the equation is large, implying that

_____________________________________________________________________
8 These variables take the value 1.0 for 1990Q4-1992Q3 and 1992Q4 onwards, respectively.

9 Due to the large lagged dependent variable coefficients, the one-lag specification is consistent with a

long lag between monetary policy changes and their peak effect on output or inflation.
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the ���()��� response to 4*�W is much greater (−1.3373 percent).  The exchange rate

term in the �W equation, on the other hand, is small and insignificant.

Second, in line with economic intuition, output has a significant positive coefficient in

the inflation equation; and so interest rates have a negative effect on inflation,

apparently via a conventional output gap channel.

Finally, the estimated equation for 4*�W looks like a Taylor (1993)-type policy rule,

with the interest rate responding positively both to lagged output (long-run coefficient

= 0.10) and to inflation (long-run coefficient = 0.91, not significantly below unity).10

In addition, the coefficient on the lagged dependent variable (0.58) suggests a strong

tendency by policy makers to smooth interest rates; and the coefficient on the

exchange rate change (equal to −0.042) suggests that the interest rate responds

positively to exchange rate depreciations, as one would expect.11

In this paper, we subject the VAR to hypothetical policy rules different from the

estimated one.  This requires us to identify the VAR model’s responses to shocks.  We

do this by means of a Cholesky decomposition, where the equation disturbances are

assumed to follow the causal ordering (output innovation→ inflation innovation→

exchange rate innovation→ interest rate innovation).  Under this identification

_____________________________________________________________________
10 Estimating UK policy rules over subsamples of the 1972-1997 period, Nelson (1999) finds point

estimates of the long-run response to inflation below unity, with the exception of the post-1992 period.

Nelson also finds output gap responses of the same magnitude as that estimated in Table 1.

11 Note that no variables enter the exchange rate equation itself significantly, indicating that a random

walk model for �W is not rejected.
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scheme, no variable beside the interest rate responds contemporaneously to the

monetary policy shock.

��#������)
���
�(�*����������!����:  The second model that we consider is a small-

scale, forward-looking open-economy model that incorporates elements of Ball

(1999), Batini and Haldane (1999), and McCallum and Nelson (1999a).  The

structural equations of the model are:

�W = EW�W+1 – σ(�W – EWπW+1) + δ+� W−1 + �\W �% 

πW = απW−1 + (1 – α)EWπW+1 + φ\�W−1 + φT∆+� W−1 + �πW �' 

EW+W+1 = +W + �W – EWπW+1 + κW , �( 

where �W is log output, �W is the nominal interest rate (again, a quarterly fraction), πW is

quarterly inflation, +W is the log real exchange rate (measured so that a rise is a

depreciation), and +� W = �ΣM=0
3+W−M is a four-quarter moving average of +W.  These

variables are all expressed relative to steady-state values.  �\W, �πW, and κW are exogenous

IS, Phillips curve, and uncovered interest parity (UIP) shocks, respectively.

Eq. �%  is the model’s IS equation, giving �W as a function of its expected future value,

the real interest rate, and lags of the real exchange rate.  Apart from the term in +� W,

this equation corresponds to the optimisation-based IS function in McCallum and

Nelson (1999a), and we choose parameter values based on their estimates: σ = 0.2 and

an AR��  process for �\W with coefficient 0.3 and 1% innovation standard deviation.
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Our choice of δ = 0.05 then produces the same ratio of interest rate to exchange rate

coefficients in the IS curve as is used in Batini and Haldane (1999).

Eq. �'  is a quarterly version of Ball’s (1999) open-economy Phillips curve, modified

to allow for some forward-looking behaviour.  While Ball has lagged inflation

appearing on the right-hand-side of �'  with coefficient 1.0, we replace this with the

mixed backward-forward looking term απW−1 + (1 – α)EWπW+1, and calibrate α to 0.8,

close to estimates in Fuhrer (1997) and Rudebusch (1999).  We calibrate the

coefficient φ\ to 0.1, the quarterly counterpart of Ball’s choice.  We choose φT = 0.025;

this is considerably lower than Ball’s 0.10, but a relatively conservative value of φT

seems prudent in light of the failure of the VAR to pick up ��� effect of depreciation

on inflation.  We assume �πW is white noise with standard deviation 1%.

The exchange rate enters both the IS and Phillips curve relationships in a backward-

looking manner, as a lagged four-period average.  A more forward-looking

specification of the model’s open-economy elements would put ∆+W and EW∆+W+1 in

�' .12  We found, however, that this scheme produced an implausibly tight and

mechanical relationship between exchange rate change and inflation.13 Thus we have

followed Ball (1999) by only allowing +W to enter with lags; this might be rationalised

by ‘gradual pass-through’ of exchange rate changes to export and import prices, which

_____________________________________________________________________
12 Such a setup might also put +W and EW+W+1 in Eq. �% .

13 In Bank of England (1999), it is shown that the inclusion of ∆+W and EW∆+W+1 in Batini and Haldane’s

(1999) Phillips curve makes exchange rate movements the dominant determinant of inflation, and

virtually removes any inflation persistence from the model.
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might be realistic for the UK (Bank of England, 1999).14  While +W enters Eqs. �%  and

�'  only in a backward-looking manner, this is compensated by the fact that the

exchange rate itself is a highly forward-looking variable, as Eq. �(  indicates.  The

shock term κW that produces deviations from strict UIP in �(  is assumed to be AR�� 

with coefficient 0.753 and innovation standard deviation 0.92%; these choices are

based on our estimates of this process using quarterly UK data.  The shocks in �% -�( 

are assumed to be mutually uncorrelated.

Note that in this model – hereafter referred to as the FLSM (forward-looking

structural model) – monetary policy has some effect on contemporaneous inflation

due to the fact that πW responds to EW πW+1�in Eq. �' .  This effect may be small in relation

to the long-run effect of policy on inflation, but the presence of at least ���� effect

means that the model does not have the same property as that in Svensson (1997),

where there is no scope for current policy changes to affect inflation today.

'!������������
��"��)
���

����*	� 

In line with our discussion in Section 2, we define the ���
�������
������
��� (OPH)

as the time at which it is least costly, for a given loss function, to bring inflation back

to target after a shock.  More intuitively, the OPH is the horizon-analogue of the

optimal speed of disinflation, i.e. the optimal time required for the dissipation of a

_____________________________________________________________________
14 In his annual model, Ball specifies ∆+W as entering the inflation equation with a one-period lag; in our

quarterly model, we approximate this by having the prior year’s average of ∆+W entering Eq. �' .
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shock.  Operationally, the OPH is given by the number of periods after a shock when

inflation is back on target under an optimal rule.

Below, we derive OPHs for both models.  In this respect, an important question is

how to interpret the idea of being ‘on target’.  Since, in these models, inflation tends

to fluctuate around target before settling definitely on a particular number in the wake

of a shock, a point target (e.g. 2 � %) is not very meaningful.  Instead, we consider

OPHs as referring to target ���(�� — so the OPH is the time when inflation returns to

a specified band around the target.  This is not an argument for target ranges rather

than point targets, but a device to make model experiments useful.

We use two operational definitions of an OPH: an absolute and a relative horizon

concept. The first definition interprets an OPH as the number of periods ahead, �, at

which inflation has returned permanently to within a target range of ± 0.1 percentage

points, following a shock today.  The second definition is based on what fraction of a

shock’s effect policy has succeeded in eliminating.  Specifically, it interprets the

optimal policy horizon as the number of periods ahead, �, at which 90% of the peak

effect of the shock on inflation has been extinguished.  We denote OPHs under the

absolute criterion by ‘�$*’, and OPHs under the relative criterion by ‘�5*’.  Since,

typically, both �$* and �5* will vary according to the nature of the economic shock, we

compute OPHs under the two criteria for different kinds of shocks.  In our discussion,

we focus primarily on �5*.  This is because, in these two linear models, the �$* value

depends on the size of the initial shock, but �5*   defined in terms of a percentage of

the effect of the shock     does not.
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After solving each model of Section 3 under its optimal rule, we computed impulse

responses for inflation.15  Figs. 1(a) to 1(c) show the optimal paths of inflation

associated with each model in the face of 1% shocks to aggregate demand, aggregate

supply and the exchange rate, respectively.

Table 2 gives OPHs for each model under the two definitions (�$* and �5*).  We

discuss these results in turn as we comment on the impulse response function of

inflation for each shock.16

�((��(����������������: Fig. 1(a) (with units on the ,)axis in quarters, and those on

the �)axis in percentage point deviations from base) shows the impulse response

functions of inflation for the two models described in Section 3, in the wake of a

temporary positive 1% shock to aggregate demand.

In the VAR (the dashed line in Figs. 1(a)-1(c)), an AD shock has no effect on inflation

until period �+1; and by that time the policy maker (whose actions in�� affect inflation

in �+1) is in a position to provide offsetting pressure on inflation through interest rates.

Consequently, the initial net response of inflation to the positive demand shock is

_____________________________________________________________________
15 We follow King and Wolman (1999) by augmenting the model’s structural equations with the policy

maker’s first order conditions for optimality, and solving the resulting system of expectational

difference equations.  The Lagrange multipliers for the policy maker’s problem form part of the state

vector in this commitment solution.  The Technical Appendix provides details.

16 Since the OPHs are obtained from impulse response functions, the OPHs for models in previous

papers, Rudebusch and Svensson (1999) for example, can be deduced provided the papers include plots

of impulse responses under optimal policy (e.g. Rudebusch and Svensson’s Figs. 5.3 and 5.4).
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negative in Fig. 1(a).  Within a couple of periods, inflation has returned to zero, but

inflation then overshoots for several periods — leading to a long OPH (defined by

�5*) of 17 quarters. This is partly due to the presence in the loss function of a penalty

for volatility in the policy instrument.  If this were absent, the interest rate would be

raised much more sharply in response to the shock, restraining the response of

inflation, and leading to a lower OPH (�5 = 9).

In the FLSM (the solid line), the presence of forward-looking elements, together with

a contemporaneous effect of the real interest rate on output, reduces the length of the

policy transmission lag and increases the capacity of policy to offset shocks.  The

OPH under the relative criterion is less than that for the VAR, and suggests that it is

optimal to carry out disinflation within fourteen quarters of the�shock�(Table 3).17

�((��(����������������� Fig. 1(b) shows the impulse responses of inflation for the

two models, in the wake of a temporary positive 1% shock to aggregate supply.  For

this disturbance, both models display quite smooth inflation dynamics.  In the VAR

case, monetary policy cannot affect inflation in the period of the shock, so the 1%

supply shock raises inflation by a full one percent in the first period.  Strong inflation

persistence inhibits policy makers’ ability to remove the effect of the shock without

unduly large output costs; it takes two and a half years for this shock to be reversed

under the optimal rule (�5* =�10).

_____________________________________________________________________
17 If the IS shock were white noise in this model, the OPH would be five quarters shorter (�5  = 9).
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For the FLSM, the response of inflation to the supply shock is visually close to that in

the VAR.  This reflects some similarities between the Phillips curve in this model and

the VAR’s inflation equation, notably the fact that lagged inflation enters with a

sizeable coefficient.  As with the AD shock, the OPH is shorter in the FLSM than in

the VAR (�5* = 8 instead of 10) – partly due to forward-looking dynamics in the IS

curve �� , which make a more rapid disinflation optimal in this case.

	,����(������������-�Fig. 1(c) shows the impulse responses of inflation, in the face of

a temporary positive 1% shock to the exchange rate equation of each model —

constructed such that it would lead to a 1% appreciation in both cases, �����
�����
���.

The estimated VAR contains an exchange rate equation that is essentially detached

from the rest of the model, in the sense that there is virtually no feedback to other

variables from the exchange rate.  This explains the very flat response of inflation to

such a shock in Fig. 1(c).  Under the relative criterion, the OPH is long (�5* = 16)

because it demands that 90% of an already negligible inflation response be eroded.  In

this case, the OPH as measured by the absolute criterion (�$*) provides useful

auxiliary information: it is zero quarters, and would be zero even if the initial shock

were 10% or larger, rather than 1%.

The appearance of the exchange rate in both the IS and the AS functions implies that

the exchange rate has an important role in the FLSM.  In response to the UIP shock,

the exchange rate appreciates on impact and (partly because of the shock’s

persistence) this appreciation is not completely reversed for over a year.  The response

of inflation is also protracted, as inflation depends on long lags of the exchange rate
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(both via the output gap�channel and via the ‘direct’�exchange rate channel).  The

optimal policy response is to cut interest rates, which reduces the extent of the

appreciation.  This also stimulates demand, offsetting some of the contractionary

effects of the appreciation, at the cost of creating a positive output gap and a rise in

inflation above target for a few quarters.  Overall, the combined effect on inflation of

the UIP shock and the policy reaction is quite small — inflation is never more than

0.05 percentage points from target.  This turns the optimal horizon measured by �5*

almost into a point target, so the OPH (at 19 quarters) exceeds the OPHs for the other

two shocks.

(! ��������������"+�)
���

�����	� 

The previous Section obtained optimal horizons assuming that the policy makers

followed a complex optimal rule — a function of the entire state vector.  Suppose

instead that the policy makers operate via a simple rule that involves changing the

policy instrument in response to deviations of expected inflation from its target value,

as in Eq. �� .

By suitable choice of the feedback horizon, this rule can be designed so as to

incorporate monetary transmission lags.  In particular, in the case where lags hinder

control of current inflation, the date of the inflation forecast in the rule can be chosen

so that inflation at that date is indeed affected by monetary policy.

When inflation targeting is implemented through rules like �� , the best �-period-

ahead forecast of inflation will be the one that minimises the costs of inflation control
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according to loss function �� .  As explained in Section 2 above, we define this

horizon as the ���
����������������
����(OFH).  Two things are worth noting here.

First, we consider the OFH to be the � that minimises ��  when the feedback

coefficient in Eq. ��  is itself optimally chosen.  That is, the choice of the optimal � is

conditioned on ψS�(and possibly an interest rate smoothing coefficient) being optimal.

Second, in contrast with the previous Section, the optimal horizon is not a concept

that can be bracketed by a range.  Rather, it can only be a discrete point (i.e., the best �

at which to form the forecast of inflation that enters the rule).  The OPHs and OFHs

are thus very distinct concepts: the first is a metric associated with an optimal rule, the

second is an optimised parameter of a simple rule.

In this Section we derive OFHs for our two models.  We generalise rule ��  by

including an interest rate smoothing term (a coefficient on the lag of the nominal

interest rate).  This gives Eq. �,  below, where the degree of interest rate smoothing is

governed by the parameter ρ5 ∈  [0,1).

�W  = ρ5��W-1 + ψS (EW πW�N − π/) + constant �, 

Table 3 summarises the results on OFHs.  To obtain them, we closed the models with

rule �, , where the parameters (ψS , ρ5, and �)�were chosen optimally by minimising

loss function �� , evaluated using analytical formulae for the model moments.  We

contemplated values of�� of 0, 1, ..., 15 — that is, up to four years ahead.

Table 3 indicates that both the VAR and the FLSM favour a positive feedback

horizon.  This is in line with Batini and Haldane (1999), who find that responding to
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expected future rather than current inflation is beneficial when there are lags in the

effect of monetary policy.  Comparing results on OFH for our two models, it appears

as if forward-looking behaviour ‘brings forward’ the optimal feedback horizon;

forward-looking agents take into account current and prospective interest rate

decisions in their spending and pricing decisions, which reduces the transmission lag

(but does not eliminate it, since inflation still has an inert component).  Specifically,

the OFH is � = 2 for the FLSM, compared to 15 for the VAR.

The optimal value of ψS�is very large in the case of the VAR, whose backward-

looking, data-based nature might instead have led us to expect instrument instability

when policy becomes too aggressive.  Such a large feedback parameter is consistent

with relatively low interest rate variability because, in equilibrium, the standard

deviation of the variable in the rule (EWπW+15) is very low (0.02% annualised).18  The

short-run feedback parameter is much smaller for the FLSM.  In a forward-looking

model, agents’ actions take the expected ���()��� policy response into account.  An

integral component of policy in the FLSM is therefore high interest rate smoothing,

which, for reasons discussed in Rotemberg and Woodford (1999), exerts a restraining

effect on inflation via the forward-looking IS function.

To get an impression of the inflation cost of responding to the ‘wrong’ horizon, Fig. 2

plots (for both models) the standard deviation of inflation against the horizon included

_____________________________________________________________________
18 Evaluating the VAR model’s properties where the feedback parameter takes such large values may

take the model into ranges where it ceases to be a useful approximation for policy analysis. This is a

caution when interpreting our results.
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in rule �, .19  For the VAR, the inflation outcome seems equally good for all

reasonably long horizons (six quarters or longer); � = 15 is optimal in Table 3 largely

because of the lower interest rate and gap volatility associated with that long horizon.

By contrast, for the FLSM, there is a much sharper increase in inflation volatility from

using horizons other than the OFH (both shorter and longer).  The common message

from both models is that inflation control is sacrificed if the chosen horizon is too

short.

The optimised simple rules in Table 3 go a long way in approaching the minimum of

the loss function achieved by the optimal rules.  For the VAR, the optimal-rule loss

function value is 0.0220 compared with a loss function value of 0.0224 for the OFH

rule, a difference of only 1.8%.  Similarly, for the FLSM the loss from optimal policy

is 0.5945, vs. 0.6080 for the optimised simple rule, a difference of 2.2%.

For this reason, we found little welfare gain from amending rule �,  to respond to

����
��� horizons.  We undertook two experiments in this regard.  First, we examined

optimised simple rules that responded to annual inflation 1, 2, 3, or 4 years out (e.g.

responding to a moving average of πW, EWπW+1, EWπW+2, and EWπW+3, in the case of the 1-

year rule).  But we found no welfare improvement for either model from any of these

annual horizons, relative to the optimised simple rules in Table 3.

Second, we looked at simple rules that responded to two distinct horizons.

Specifically, for the FLSM with its low OFH, we examined rules that responded to

horizon 3, 4, 5, or 6 in addition to horizon 2; and for the VAR, we examined rules that

_____________________________________________________________________
19 In each case, the coefficients in �,  were re-optimised for the fixed �.
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responded to horizon 11, 12, 13 or 14 in addition to horizon 15.  Response

coefficients were re-optimised, but again we found no significant gain.  For the

FLSM, responding to 2 and 3 quarter ahead inflation gave a welfare improvement

relative to the rule that responded to 2 quarters alone, but the gain was less than

0.05%.  For the VAR, we found a single horizon dominated all the multiple-horizon

alternatives.

,!� ��*���������-
"�����
��

As our comparison of results from the VAR and FLSM shows, the specification of

model structure is an important factor determining the OFH.  Another issue is how

sensitive the OFH is to the choice of parameter values for a (
 �� model structure.  In

this Section we briefly explore this issue for the FLSM.

We focus on the most contentious parameter in the FLSM — namely, σ in Eq. �� .20

In a closed-economy model, σ can be interpreted as the intertemporal elasticity of

substitution for consumption.  Values of σ in policy rule studies vary drastically. For

example, the studies of Estrella and Fuhrer (1998) and McCallum and Nelson (1999a)

(the source for our calibration) suggest quite low values — σ = 0.2 in the latter —

while at the opposite extreme, Rotemberg and Woodford (1999) find σ = 6.0.

How then does the OFH change if we adopt a higher value of σ?  Table 4 examines

this issue by presenting OFHs for a version of the FLSM that uses a value of σ = 1.0

— popular in the literature because it is associated with logarithmic preferences.

_____________________________________________________________________
20 Of course, the parameter α in �'  varies across studies but (unlike σ) it is at least bounded in [0,1].
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Intuitively, a higher value of σ could shorten the OFH by making spending more

sensitive to current monetary policy changes.  In practice, raising σ to 1.0 lengthens

the OFH from 2 to 8.  The reason is that a longer horizon means responding to a lower

variance variable — a far-ahead forecast of inflation.  The resulting rule features low

interest rate volatility and consequent low output gap volatility, producing welfare

gains. 21  When σ is 0.2 (our baseline parameterisation), a given amount of interest

rate volatility has less of an effect on gap volatility, than when σ = 1.0.  Responding to

inflation 8 periods ahead reduces interest rate volatility, but the gains in terms of

reduced gap volatility are not as substantial, and policy sacrifices too much control

over inflation.  A shorter horizon then becomes optimal.

Thus, a policy maker that used the baseline version of our model, but was uncertain

about the true value of σ (aware that it could be too low in the baseline version),

might want to respond to a longer inflation horizon than it would if it knew that σ =

0.2 with certainty.

.!�/

"����

�

_____________________________________________________________________
21 The standard deviations of 4*∆�W and the output gap in the σ = 1.0 model are 0.8% and 3.2% when

the optimized rule in Table 4 is used.  If, on the other hand, the coefficients in that rule were used but a

horizon of 2 were put in the rule instead of 8, the standard deviations of 4*∆�W and the gap would rise to

8.8% and 3.9% respectively.
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In this paper we investigated the problem of selecting an optimal horizon for inflation

targeting.  For this purpose, we provided two operational definitions of  ‘optimal

horizon’, corresponding to two different interpretations of how inflation targeting

works in practice.  Results were obtained from two small-scale models with divergent

dynamic properties: a VAR and a forward-looking structural model.

For the ���
�������
������
���, a definition based on the assumption that inflation

targeting involves an optimal policy (obtained in a ‘flexible inflation targeting’

framework that penalises inflation, interest rate, and output gap volatility), we found

that it is optimal to remove the effects of the various shocks considered here over a

period of 8 to 19 quarters.  For the ���
����������������
���, a definition based on the

view that inflation targeting is well approximated by a simple forward-looking policy

rule, we found that the best horizon to focus on depends crucially upon the degree of

forward-looking behaviour in the economy.  With no forward-looking behaviour (the

VAR), long feedback horizons — responding to forecasts of far-ahead inflation — are

desirable.  With at least some forward-looking behaviour (the FLSM), the appropriate

feedback horizon is much shorter.  Even in this case, however, it appears suboptimal

to feed back on current or next-quarter inflation.

To summarise, our analysis supports the view that inflation targeting in practice

should be designed so that the target is achieved over the medium term. In other

words, central banks wishing to act optimally should not attempt to neutralise

inflationary shocks immediately, but instead should respond gradually to those shocks.

This becomes particularly important when the economy adjusts sluggishly to
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economic shocks.  Further research on optimal horizons could investigate the

robustness of our results to different models.
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Table 1: VAR estimates
Sample period:  1981Q1−1998Q1

�W π'(9

W ∆�W 4*�W

�W-1 0.9321
          (0.0464)

0.1250
(0.0575)

−0.1583
  (0.3273)

0.0444
(0.0782)

π'(9

W-1 −0.0926
  (0.0731)

0.8559
(0.0905)

 0.3544
(0.5150)

 0.3867
 (0.1231)

∆�W-1 −0.0029
  (0.0175)

−0.0023
  (0.0217)

 0.1526
(0.1234)

−0.0416
   (0.0295)

4*�W-1 −0.0908
  (0.0529)

0.0336
(0.0655)

−0.0438
  (0.3731)

0.5759
(0.0892)

Constant  0.7821
(0.5177)

−1.4072
  (0.6409)

1.7167
(3.6487)

−0.4786
  (0.8722)

Time
trend

 0.00046
(0.00040)

−0.00091
  (0.00049)

  0.002477
(0.00280)

0.000287
(0.00067)

$	�!W −0.00891
  (0.00563)

0.0091
(0.0070)

−0.0509
  (0.0397)

−0.0300
  (0.0095)

$%&'W −0.0091
  (0.0073)

0.0108
(0.0090)

−0.0573
  (0.0515)

−0.0422
  (0.0123)

R2  0.9984 0.8880 0.1017 0.9259

S.E.E. 0.0052  0.0064 0.0364  0.0087

S.D. dep.
var.

 0.1212  0.0181 0.0364 0.0303

Note: Standard errors in parentheses
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Table 2: Optimal Policy Horizons (OPHs)

�$
 �5


*���� VAR FLSM VAR FLSM

AD 14 9 17 14

AS 18 16 10 8

Exchange rate 0 5 16 19

Table 3:�Optimal Feedback Horizons (OFHs)

    !���� ψS/ ρ5/ �* (OFH)

VAR 35 0.85 15

FLSM 1.24 0.98 2

Table 4:�OFHs under different assumptions about σ

ψS/ ρ5/ �* (OFH)

FLSM, σ = 0.2 1.24 0.98 2

FLSM, σ = 1.0 5.02 0.00 8
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The variables we use in the VAR are:

�W : log of real GDP (quarterly, seasonally adjusted).

πW

'(9: πW − πW7$5, where:

πW�:  log (�028W�/ �028W-4), where��028W is the RPIX deflator in quarter �.  Our use of

the four-quarter inflation rate rather than the quarterly change is motivated by the fact

that, historically, targets for UK inflation or other nominal aggregates have been

expressed in terms of annual changes rather than quarter-to-quarter movements.  It is

also conceivable that a four-quarter inflation rate may be a better empirical measure of

underlying quarterly inflation than actual quarterly inflation.

πW

7$5 :  Target (annualised) inflation rate, calculated as follows:

• 1976 Q3-1985 Q1: The implicit inflation target was the one implied by the monetary

aggregate (Sterling M3) targets.  Using the assumption about trend velocity growth of

+1.25% per annum stated by the Treasury in 198022, we backed out the nominal

income growth targets implicit in the 1976-1980 £M3 targets and in the targets for

_____________________________________________________________________
22 The Treasury, in its submission to the Treasury and Civil Service Committee (1980), estimated trend
£M3 velocity growth at 1.0 to 1.5% per annum.
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1980-1984 announced in the Medium Term Financial Strategy (MTFS) in 1980.  To

obtain the implied inflation target, we subtracted 2½ percent (to allow for output

growth) from each nominal income growth target.

A new set of £M3 targets for 1982-1985 was announced in March 1982; for the years

also covered by the 1980 MTFS, the £M3 growth targets now had a 3 percentage point

higher midpoint, which we take as a change in the annual trend velocity growth

assumption from +1.25% to −1.75% rather than changed targets for nominal income

growth.  Subsequent revisions to the 1982 MTFS are again assumed to represent

changed assumptions about velocity rather than changed targets for nominal income

growth.

From 1985 to 1990, we use the announced nominal income growth target, then

subtract 2.5 percent for real growth.

• 1990 Q4-1992 Q3: given the ERM agreement, the implicit inflation target coincided

with the German 2% inflation target;

• 1992 Q4 onwards: 2½% (explicit inflation target).

∆�W : Nominal exchange rate change, log(	�2W�/ 	�2W-1), where 	�2 is the Exchange

Rate Index.  This variable is measured such that an observation of −0.10 indicates a

depreciation of sterling of 10%.
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�W�: Quarterly average of the annualised nominal interbank lending rate, measured as a

fraction.

3
���*��
���0������
����������$���

We now show that all of the variables in our VAR are adequately described as

stationary (I(0)) or trend-stationary processes, and hence, a Johansen-style

cointegration approach to our VAR is not appropriate.

We model log output (�W) as trend-stationary, with πW

'(9 and ∆�W�treated as I(0) series,

and �W as an I(0) series after controlling for key shifts in monetary policy regime.  As

evidence, in Table A1 we present Augmented Dickey Fuller (ADF) statistics that test

the null of a unit root for the variables in our model.  Since our contention is that

output can satisfactorily be modelled as trend-stationary, Table A1 actually gives a

test for a unit root in ��������� output.23  Two ADF test statistics are calculated for

the nominal interest rate, �W�:  the first includes only a constant in the ADF regression,

whereas the second includes a constant, $	�!W�, and $%&'W�  Excluding these dummy

variables may bias the test toward suggesting a unit root in �W.

������6������ADF Tests for VAR

"��
���� ADF statistic

_____________________________________________________________________
23 Detrended output is the residual from a prior regression of �W�on a constant and linear trend over
1980Q3-1998Q1.  No constant is included in the regression used in calculating the ADF test for the
stationarity of detrended output because the dependent variable is mean zero by construction.
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Detrended �W   −2.427

πW

'(9   −3.297*

∆�W     −3.817**

�W (no shifts)  −1.984

�W (shifts included)    −3.675*

Note: A lag length of four is used in the ADF regressions for each variable except �W

(one lag).  A * denotes significance at 0.05 level according to the Dickey-Fuller

distribution’s critical values; a ** significance at the 0.01 level according to these

values.

The tests generally reject the null of a unit root in favour of the alternative of

stationarity (or, in the case of �W�, an I(0) series with structural breaks).  Thus, we

believe it is satisfactory to treat the elements of our VAR are all I(0), and therefore do

not apply cointegration analysis..24

_____________________________________________________________________
24 There is also an economic reason for not favouring a cointegration-based approach to this VAR.  The
only real variable in the VAR is �W and we do not want to explain the trend in �W with nominal variables.
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To demonstrate how we solve for the optimal rule, consider the policy maker’s

problem for determining optimal policy when the economy’s structure is described by

the forward-looking structural model (FLSM).  The optimal-policy exercise for this

model is not a standard optimal control problem because the model’s equations, and

therefore the policy maker’s constraints, contain forward-looking elements.  A similar

problem is faced by King and Wolman (1999), who assume certainty equivalence and

then follow the standard Lagrangean optimisation approach.  We follow King and

Wolman’s procedure here.

For convenience, we restate the equations of the FLSM here.

�W = EW�W+1 – σ(�W – EWπW+1) + δ+� W−1 + �\W �6� 

πW = απW−1 + (1 – α)EWπW+1 + φ\�W−1 + φT∆+� W−1 + �πW �6� 

EW+W+1 = +W + �W – EWπW+1 + κW . �6% 

If we let ΛW, φW , and ΩW denote the Lagrange multipliers on �6� -�6%  respectively, the

policy maker’s first-order conditions (with respect to �W, πW, +W, and �W) for minimising

the loss function ��  are:
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βφ\�EW�ΓW+1 =  2�2�W + λ W –(1/β)λ W−1.. �6' 

αβEW�ΓW+1 = 2�1πW + ΓW�–((1−α)/β)ΓW−1 –(σ/β)λ W−1. + (1/β)�ΩW−1. �6( 

  β4(δ/4)EW�λ W+4 + β3(δ/4)EW�λ W+3 + β2(δ/4)EW�λ W+2 + β(δ/4)EW�λ W+1

−β5(φT/4) EW ΓW+5 + β(φT/4)EW�ΓW+1 = −ΩW� + (1/β)ΩW−1.

�6, 

2β�3�EW��W+1  = σλW −ΩW + (2�3 + 2β�3)�W –2�3�W−1 . �6. 

In deriving these first order conditions, we have suppressed the shocks to equations

�6� -�6% , in effect exploiting certainty equivalence.  The FLSM equations �6� -

�6% , combined with the policy maker’s first-order conditions �6' -�6.  for optimal

policy, can be cast in the vector form:

��EW��W+1 = ���W  + ���W . �6; 

where �W is the vector of endogenous variables and �W is the vector of exogenous

shocks.  Once this system of expectational difference equations has been solved, we

restore the shocks to �6� -�6% , and can calculate impulse responses and analytical

variances under the optimal rule.  In the model’s solution, the state vector consists of

the exogenous shocks in �6� -�6% ; the lagged endogenous variables �W−1, πt−1, +W−1,

+W−2, +W−3, +W−4, and +W−5 that appear in eqs!��� ,��6� ,�and��6� ; and the lagged Lagrange

multipliers ΓW−1, λ W−1 and ΩW−1 that appear in the policy maker’s first-order conditions

�6' -�6, .
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For the optimal �������� rules, we simply supplemented equations �6� -�6%  with

rule �, , and optimised over the parameters (ψS, ρ5, and �), with the criterion being

minimisation of loss function �� .  In conducting this search over parameter values,

whenever we found multiple solutions to the model, we used the minimal state

variable criterion to pick the bubble-free solution.  An alternative approach, used is

Levin, Wieland, and Williams (1999), is to exclude from consideration those regions

of the parameter space that are associated with multiple solutions.



40

-0.1

-0.05

0

0.05

0.1

0.15

1 3 5 7 9 11 13 15 17 19 21

���������� ���6$��)
"+��A�B 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 3 5 7 9 11 13 15 17 19 21

���������� ���69��)
"+��A�B 

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

���������" ���4@")�
���������)
"+��A�B 



41

6 .3

6 .4

6 .5

6 .6

6 .7

6 .8

6 .9

7

7 .1

1 3 5 7 9 1 1 1 3 1 5

1 .0 5

1 .1

1 .1 5

1 .2

1 .2 5

1 .3

  (
%

),
 F

L
SM

 Feedback  H o rizo n

  (%
), V

A
R

�������� ����
�����

�9$��� !���	

FL SM

VA R


