Söderlind, Paul; Söderström, Ulf; Vredin, Anders

Working Paper
Taylor Rules and the Predictability of Interest Rates

Sveriges Riksbank Working Paper Series, No. 147

Provided in Cooperation with:
Central Bank of Sweden, Stockholm

Suggested Citation: Söderlind, Paul; Söderström, Ulf; Vredin, Anders (2003) : Taylor Rules and the Predictability of Interest Rates, Sveriges Riksbank Working Paper Series, No. 147, Sveriges Riksbank, Stockholm

This Version is available at:
http://hdl.handle.net/10419/82436

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Taylor Rules and the Predictability of Interest Rates

Paul Söderlind, Ulf Söderström and Anders Vredin

APRIL 2003
Sveriges Riksbank • Information Riksbank • SE-103 37 Stockholm
Fax international: +46 8 787 05 26
Telephone international: +46 8 787 01 00
E-mail: info@riksbank.se

The Working Paper series presents reports on matters in the sphere of activities of the Riksbank that are considered to be of interest to a wider public. The papers are to be regarded as reports on ongoing studies and the authors will be pleased to receive comments.

The views expressed in Working Papers are solely the responsibility of the authors and should not to be interpreted as reflecting the views of the Executive Board of Sveriges Riksbank.
Taylor Rules and the Predictability of Interest Rates

Paul Söderlind Ulf Söderström Anders Vredin*

Sveriges Riksbank Working Paper Series
No. 147
April 2003

Abstract

Recent research suggests that commonly estimated dynamic Taylor rules augmented with a lagged interest rate imply too much predictability of interest rate changes compared with yield curve evidence. We show that this is not sufficient proof against the Taylor rule: the result could be driven by other equations of the model that the Taylor rule is embedded in. To disentangle the effects, we study the predictability of all variables in a simple model of monetary policy: inflation, the output gap, and the interest rate, and we compare with evidence from survey data and a VAR model. We find that the strongest evidence against the Taylor rule is that while it is easy to predict the variables that enter the rule, it is very hard to predict actual interest rate changes. This is consistent with usual Taylor-type rules if policy shocks are very large, but it is more likely that there are other aspects of monetary policy behaviour that are neglected by the Taylor rule.

Keywords: interest rate smoothing, yield curve, survey data, VAR, in-sample overfitting.

JEL Classification: E52, E58, G12.

*Paul Söderlind, SBF, University of St. Gallen, Rosenbergstrasse 52, CH-9000 St. Gallen, Switzerland; Paul.Soderlind@unisg.ch. Ulf Söderström, Sveriges Riksbank, SE-103 37 Stockholm, Sweden; ulf.soderstrom@riksbank.se. Anders Vredin, Sveriges Riksbank, SE-103 37 Stockholm, Sweden; anders.vredin@riksbank.se. We are grateful to Richard Dennis, Nils Gottfries, Eric Leeper, Glenn Rudebusch, as well as seminar participants at Sveriges Riksbank, ECB, Federal Reserve Bank of San Francisco, University of New South Wales, and Uppsala University for comments; and to Glenn Rudebusch for providing the yield curve data. The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Executive Board of Sveriges Riksbank.
1 Introduction

In theoretical analyses of monetary policy, central bank behaviour is often modeled as a Taylor (1993) rule, where the nominal interest rate is set as a linear function of current inflation and output, and typically the lagged interest rate. Empirical applications of this dynamic Taylor rule tend to find a large coefficient on the lagged interest rate, a finding that is often interpreted as deliberate interest rate smoothing by the monetary authorities (see, for instance, Clarida, Galí, and Gertler (2000)).

Recently, this finding has been challenged. Rudebusch (2002b) argues that a large coefficient on the lagged interest rate would imply that future interest rate changes are highly predictable. But yield curve evidence suggests that interest rate predictability is low, so Rudebusch concludes that the dynamic Taylor rule is a misspecified representation of monetary policy.

It is not clear, however, what drives the high predictability of interest rates in Rudebusch’s model; whether it is due only to monetary policy inertia (the lagged interest rate), or whether it comes from predictability in inflation and output (the other variables that enter the Taylor rule). This paper tries to shed some light on this issue. Using an empirical New-Keynesian model of the U.S. economy (the same model used by Rudebusch), we show that a large coefficient on the lagged interest rate does not, in itself, imply high predictability of interest rate changes. Inertial monetary policy, however, leads to prolonged movements in inflation and the output gap, which translate into predictable interest rate movements through the Taylor rule. It is therefore possible that the excess predictability in interest rate changes is driven by inertia in the aggregate demand and supply curves. To assess this possibility, we study the predictability of interest rate changes, inflation, and the output gap in survey data and VAR models. By comparing the predictability of these variables, we conclude that the Taylor rule is unlikely to be a good description of monetary policy. In particular, we find that the right hand side variables of the Taylor rule are fairly easy to predict, but it is more or less impossible to predict the interest rate changes (the left hand side variable).

The outline of the paper is as follows. Section 2 summarises the findings in Rudebusch (2002b) who shows that estimated Taylor rules with interest rate smoothing imply much higher predictability of interest rate changes than what is suggested by yield curve data. Section 3 discusses the mechanism behind the high predictability of the Taylor rule...
and finds that the direct effect of interest rate smoothing is small and that most of the predictability of interest rate changes comes from predictability of inflation and the output gap. Section 4 brings in survey data and a few VAR models. It is shown that the survey data and the VAR models support the yield curve evidence of low predictability and that there is little support for the Taylor rule. Section 5 discusses our findings and concludes.

2 The Puzzle

This section summarises the findings in Rudebusch (2002b). The main message is that estimated Taylor rules imply a much higher predictability of interest rate changes than what yield curve data suggests.

2.1 Empirical Findings from Yield Curve Data

Rudebusch (2002b) focuses on the R^2 from a prediction equation where quarterly interest rate changes, $\Delta i_{t+k} = i_{t+k} - i_{t+k-1}$, are regressed on lagged forward rates

$$\Delta i_{t+k} = a + b(f_{k,t} - f_{k-1,t}) + u_{t+k}. \tag{1}$$

In this equation, i_t is the average federal funds rate in quarter t and $f_{k,t}$ denotes the interest rate at the end of quarter t on a Eurodollar futures contract that settles k quarters ahead.\footnote{For the eurodollar rates, quarters are defined to start at the futures contract settlement dates (which occur about two weeks before the start dates of the usual quarters).}

The reason for studying the performance of this particular prediction equation is that forward rates are believed to carry a lot of information about market expectations. For instance, if risk premia are constant (the expectations hypothesis of interest rates), then this equation should give the best possible forecast (in a mean square sense), that is, it should coincide with the mathematical expectation. In this case, $f_{k,t} = E_t i_{t+k}$ plus a constant so the regressor in (1) equals $E_t \Delta i_{t+k}$.

Equation (1) is estimated on quarterly U.S. data from 1987:Q4 to 1999:Q4, using a 3-month Eurodollar futures as predictor. These futures contracts are based on the 90-day London Interbank Offered Rate, and have been traded since the mid 1980s. Table 1 reiterates the findings in Rudebusch (2002b): the R^2 of (1) is very low beyond the first quarter (0.56 for $k = 1$, 0.13 for $k = 2$, and 0.04 for $k = 3$).
These results suggest that interest rate changes are not predictable beyond the first quarter. A possible counter argument is that futures rates are bad signals of expectations because of changes in risk premia. We will later study this possibility in some detail (using, among other things, survey data), and conclude that the futures data probably have the same forecasting power as market expectations.²

2.2 The Role of the Taylor Rule in a Calibrated Macro Model

The typical dynamic Taylor rule with interest rate smoothing is (constant omitted) is

\[i_{t+1} = (1 - \rho)(\gamma_{\pi} \tilde{\pi}_{t+1} + \gamma_y y_{t+1}) + \rho i_t + \xi_{t+1}, \]

where \(i_t \) is a 3-month T-bill rate (quarterly average), \(\tilde{\pi}_t \) annual (4-quarter) inflation in the GDP deflator, and \(y_t \) is the output gap (the percentage deviation of real GDP from potential GDP). The monetary policy shock is typically modelled as a white noise process, and we stick to this assumption.³

The analysis in Rudebusch (2002b) focuses on the effects of a high “interest rate smoothing” parameter (\(\rho \))—which is the typical result from most estimations of the Taylor rule. It is clear that \(\rho \) has a direct (autoregressive) effect on the predictability of the interest rate, but it is also likely to have indirect effects by affecting the predictability of

²Gürkaynak, Sack, and Swanson (2002) reach a similar conclusion based on the forecasting power of different predictors. The literature on the expectations hypothesis of interest rates (see, for instance, Shiller (1990) and Froot (1989)) deals with a different, but related topic. In terms of (1) that literature studies if \(b = 1 \) (and possibly \(a = 0 \)) without paying any particular attention to the \(R^2 \). The approach here is the converse.

³The choice of interest rate variable does not affect our results. The 3-month T-bill rate and the average federal funds rate have a correlation of 0.99 in our sample (0.93 in first differences).
Table 2: Values of model parameters.

<table>
<thead>
<tr>
<th>Inflation</th>
<th>Output gap</th>
<th>Taylor rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_π</td>
<td>0.50</td>
<td>γ_π</td>
</tr>
<tr>
<td>α_{π_1}</td>
<td>0.67</td>
<td>β_{γ_1}</td>
</tr>
<tr>
<td>α_{π_2}</td>
<td>-0.14</td>
<td>β_{γ_2}</td>
</tr>
<tr>
<td>α_{π_3}</td>
<td>0.40</td>
<td>β_{r}</td>
</tr>
<tr>
<td>α_{π_4}</td>
<td>0.07</td>
<td>Std(η_t)</td>
</tr>
<tr>
<td>α_y</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Std(ε_t)</td>
<td>1.01</td>
<td></td>
</tr>
</tbody>
</table>

inflation and the output gap. To study this, we use the Taylor rule in a New Keynesian-inspired empirical model estimated by Rudebusch (2002a). The model is specified for quarterly data and includes a Phillips-type supply equation and an IS-like demand equation

$$\pi_t = \mu_\pi E_{t-1} \bar{\pi}_{t+3} + (1 - \mu_\pi) \sum_{j=1}^{4} \alpha_{\pi j} \pi_{t-j} + \alpha_y y_{t-1} + \varepsilon_t$$

$$y_t = \mu_y E_{t-1} y_{t+1} + (1 - \mu_y) \sum_{j=1}^{2} \beta_{y j} y_{t-j} - \beta_r (i_{t-1} - E_{t-1} \bar{\pi}_{t+3}) + \eta_t,$$

where $\bar{\pi}_t = \sum_{j=0}^{3} \pi_{t-j}/4$ is annual inflation, and ε_t and η_t are cost push and demand shocks respectively.

To parameterise the model, we choose the values for the α and β parameters and the standard deviations of the shocks ε_t and η_t estimated by Rudebusch (2002a), shown in Table 2. The parameters determining the importance of forward-looking behavior (μ_π, μ_y) are difficult to establish empirically. As a benchmark case, we choose to set these to $\mu_\pi = 0.5$ and $\mu_y = 0.3$ (as in Fuhrer and Moore, 1995, and Fuhrer, 2000, respectively). The inflation and output coefficients in the Taylor rule are set to $\gamma_\pi = 1.5$, $\gamma_y = 0.8$, and the standard deviation of the policy shocks to 0.4. These coefficients are similar to those in Rudebusch (2002b) and most other applications of the Taylor rule. Our main interest concerns the parameter ρ, which is allowed to vary from 0 to 0.9.

For different values of the interest rate smoothing parameter ρ in equation (2) we solve and simulate the model (2)–(4) 2,000 times using 80 observations. In each simulation we

estimate the prediction regression

$$\Delta i_{t+k} = \alpha + \beta E_t \Delta i_{t+k} + \xi_{t+k}$$ \hspace{1cm} (5)$$

for the forecasting horizons $k = 1, 2, 3$. The regressor $E_t \Delta i_{t+k}$ is the model-consistent rational expectation of the interest rate change (calculated from the state vector of the model).

Figure 1 shows that R^2 of the regression (5) increases with ρ. For instance, for the two-quarter horizon ($k = 2$), $R^2 = 0.21$ for $\rho = 0$ but 0.55 for $\rho = 0.8$ (a common value in the empirical literature). The model results give so much higher R^2 than the yield curve evidence in Table 1 that something must be wrong (with either the model or the yield curve evidence).

3 The Forecasting Implications of the Taylor Rule

This section analyses the importance of the interest rate smoothing parameter (ρ) in the Taylor rule. The goal is to explain why and how this parameter matters for the predictability of interest rate changes and other model variables.

The first subsection demonstrates that the *direct* effect of ρ on the predictability of interest rate changes is unlikely to be large. The conclusion is that, in the model, a high ρ increases the predictability of interest rate changes by increasing the predictability of
inflation and the output gap. The second subsection uses model simulations to show how this happens. The third subsection summarises some general forecasting implications of the Taylor rule.

For this analysis, it is useful to rewrite the Taylor rule (2) as

$$\Delta i_{t+1} = (1 - \rho)[\gamma_{\pi} \tilde{\pi}_{t+1} + \gamma_y y_{t+1} - i_t] + \zeta_{t+1}. \quad (6)$$

The interest rate is changed for two reasons: the policy shock and the partial adjustment towards the “target” interest rate ($\gamma_{\pi} \tilde{\pi}_{t+1} + \gamma_y y_{t+1}$). The latter is the preferred interest rate in absence of inertia and policy shocks—and corresponds to Taylor’s original rule. The important forecasting implication of (6) is that forecasting the interest rate change is the same as forecasting the difference between the target interest rate and the lagged interest rate (the term in square brackets). For notational convenience, we will refer to this deviation as the “target gap.”

3.1 Two Simple Analytical Cases

This section uses two stylized cases to argue that smoothing of the interest level does not necessarily imply predictability of interest changes: smoothing gives predictability of the interest rate level, not the changes.

We first consider the simplest case when inflation and the output gap in the Taylor rule (6) are white noise processes so all predictability in the interest rate change is due to the lagged interest rate—and therefore the ρ parameter. This case is easy to analyse since i_t becomes an AR(1) process: the R^2 for the regression (5) is asymptotically given by $(1 - \rho)/2$ for the one-period horizon (see Appendix A for a derivation). This shows that the interest rate change becomes less predictable as smoothing (ρ) increases. In the limit (at $\rho = 1$) the interest rate level is a random walk with unpredictable changes.

In our second simple case, we let inflation and the output gap be predictable. To focus on the direct effect of ρ, we assume that inflation and the output gap are uncorrelated with lagged interest rates and the current policy shock. This eliminates the possibility that changing ρ affects their predictability. For the one-period horizon, we then have the R^2 for the regression (5) (see Appendix A)

$$R^2 = \left[1 + R^2_{\pi y} \frac{\text{Var}(\gamma_{\pi} \tilde{\pi}_{t+1} + \gamma_y y_{t+1})}{\text{Var}(i_t)}\right] \frac{(1 - \rho)}{2}, \quad (7)$$

7
where $R^2_{\pi y}$ measures the coefficient of determination from predicting $\gamma_{\pi}\bar{\pi}_{t+1} + y_{y}y_{t+1}$ with its rational expectation. Note that (7) simplifies to the previous expression ($R^2 = (1 - \rho) / 2$) if inflation and the output gap are unpredictable. Otherwise, predictable inflation and output will help to make interest rate changes predictable—especially if the monetary policy shocks are small (which increases the ratio of variances in (7)). However, the effect of increasing ρ is as before: a higher ρ reduces the predictability of interest rate changes.

In these examples, ρ has a negative effect on R^2. Although the examples are highly stylised, they suggest that the direct (pure autoregressive) effect of ρ is unlikely to explain the higher R^2 found in the model simulations. In the next section we show that the basic mechanism is instead that a high ρ makes inflation and the output gap more predictable. In terms of (7), this would mean that a higher ρ also gives a higher $R^2_{\pi y}$.

3.2 Model Results

The previous section suggested that the direct autoregressive effect is probably not able to explain the model results. We therefore take a second look at the model to see what happens as ρ increases. In particular, we use model simulations to find the R^2 for prediction equations of the following type

$$x_{t+k} = \alpha + \beta E_t x_{t+k} + \xi_{t+k},$$

where x_{t+k} is either annual inflation $\bar{\pi}_{t+k}$, the output gap y_{t+k}, or the target gap ($\gamma_{\pi}\bar{\pi}_{t+k} + y_{y}y_{t+k} - i_{t+k-1}$). The predictor, $E_t x_{t+k}$, is the model-consistent rational expectation of the dependent variable.

Figures 2.a-b show the R^2 from (8) for the 2-quarter horizon. Figure 2.b shows that the predictability of inflation is high (above 0.8) for all values of ρ, but becomes very high (0.9 or higher) at typical empirical values of ρ. The same figure also shows that the predictability of the output gap increases quite rapidly as ρ increases: R^2 is 0.4 at $\rho = 0.5$ but 0.68 at $\rho = 0.85$.

As a consequence, the target interest rate ($\gamma_{\pi}\bar{\pi}_{t+1} + y_{y}y_{t+1}$) becomes highly predictable at high values of ρ, which carries over to the target gap—see Figure 2.a. The increase in predictability is so rapid that it more than compensates for the fact that the target gap gets a lower weight ($1 - \rho$) in the Taylor rule (6) as ρ increases—and the
unpredictable policy shock gets a relatively higher weight. This explains the high predictability of the interest rate changes in the same figure.

The reason for why a high ρ makes inflation and the output gap predictable is that monetary policy becomes fairly passive (in the short run) as the central bank smooths interest rate movements. For instance, a positive output shock is not met by a quick and large increase of the interest rate. Instead, the interest rate is increased slowly: the shock is allowed to affect the output gap. Since the output gap is partly autoregressive, this generates predictable movements. A similar story holds for the inflation shock/Phillips curve.

Compared with yield curve evidence, the model indeed implies too much predictability of interest rate changes—and this problem is larger for high values of ρ as pointed out by Rudebusch (2002b). This section has, however, shown that the effect of a high ρ is indirect, that is, it works through the predictability of inflation and the output gap. It is therefore hard to say where the problem with the model lies. It could be the Taylor rule, but it could equally well be that the Phillips curve or the aggregate demand equation are misspecified. The natural way of disentangling these effects is to bring in more direct evidence on the predictability of inflation and the output gap, which we do in Section 4 below. Before we do that, we take a careful look at the Taylor rule to point out some further implications for forecasting.

\section*{Figure 2: R^2 from using optimal predictor (E$_t x_{t+k}$) in model simulations, 2-quarter horizon, 2000 simulations of 80 quarters.}

The model indeed implies too much predictability of interest rate changes—and this problem is larger for high values of ρ as pointed out by Rudebusch (2002b). This section has, however, shown that the effect of a high ρ is indirect, that is, it works through the predictability of inflation and the output gap. It is therefore hard to say where the problem with the model lies. It could be the Taylor rule, but it could equally well be that the Phillips curve or the aggregate demand equation are misspecified. The natural way of disentangling these effects is to bring in more direct evidence on the predictability of inflation and the output gap, which we do in Section 4 below. Before we do that, we take a careful look at the Taylor rule to point out some further implications for forecasting.
3.3 Forecasting Interest Rate Changes and the Target Gap

According to the Taylor rule (6), predicting interest rate changes is the same thing as predicting the target gap ($\gamma_{\pi} \bar{\pi}_{t+1} + \gamma_{y} y_{t+1} - \bar{i}_t$). This section outlines the forecasting implications—which are studied on survey data and a VAR model in Section 4 below.

First, if it is possible to predict the target gap, then the Taylor rule implies that it is possible to predict interest rate changes too. To verify that this indeed holds in the macro model discussed before, we compute the R^2 of the prediction equation (8). The first three columns of Table 3 show that the target gap is highly predictable in the model. The interest rate changes are somewhat less predictable because they are hit by the unpredictable policy shocks—but the difference will not be large unless the policy shocks are really volatile (discussed in some detail later).

Second, the Taylor rule implies that the best predictor of the interest rate change, $E_t \Delta i_{t+k}$, should predict interest rate changes and the target gap equally well. To study this, we compute the R^2 from the following prediction equation

$$x_{t+k} = \alpha + \beta E_t \Delta i_{t+k} + \xi_{t+k}. \tag{9}$$

The last three columns in Table 3 show that this is indeed the case for the model.

<table>
<thead>
<tr>
<th>Horizon:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest rate change</td>
<td>0.69</td>
<td>0.61</td>
<td>0.55</td>
<td>0.69</td>
<td>0.61</td>
<td>0.55</td>
</tr>
<tr>
<td>Target gap</td>
<td>0.93</td>
<td>0.83</td>
<td>0.75</td>
<td>0.93</td>
<td>0.83</td>
<td>0.75</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.97</td>
<td>0.90</td>
<td>0.81</td>
<td>0.30</td>
<td>0.27</td>
<td>0.23</td>
</tr>
<tr>
<td>Output gap</td>
<td>0.85</td>
<td>0.68</td>
<td>0.59</td>
<td>0.69</td>
<td>0.59</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Table 3: R^2 in model simulations, $\rho = 0.85$, 2000 simulations of 80 quarters. The expectations are generated from the model.

Third, the Taylor rule also implies that the best predictor of interest rate changes, $E_t \Delta i_{t+k}$, should be close to an optimal predictor of the target gap. To study this we compare the R^2 of (9) and (8). The second line in Table 3 shows that $E_t \Delta i_{t+k}$ is indeed a very good predictor of the target gap in the model.

In Section 4 we study if these implications are verified by survey data and a VAR model. This will hopefully reveal whether the predictability (if any) in interest rate changes.
changes is actually generated by the mechanism in the Taylor rule. Note that these implications follow directly from the Taylor rule—and do not depend on the rest of the model.

4 Other Evidence on Predictability

This section studies what survey data and a VAR model can tell us about the predictability of interest rate changes, inflation, the output gap, and the target gap. This can help to assess the yield curve evidence and Taylor rule in at least two ways. First, it gives new measures of the predictability of interest rate changes, which can help us to decide which is closer to the truth: the yield curve evidence (low predictability) or the results from the estimated/calibrated model (high predictability). Second, it gives direct evidence on the forecasting implications of the Taylor rule. In particular, it can tell us if forecasting the interest rate change is indeed the same as forecasting the target gap.

As a background, Figure 3 shows the ex post data we use. Our sample period starts in 1987Q4 and ends in 1999Q4. The interest rate is the average of daily interest rates (in percent, annual basis) on a 3-month Treasury bill, the annual inflation rate is the 4-quarter change (in percent) in the GDP deflator (seasonally adjusted), and the output gap is the deviation (in percent) of real GDP (chained 1996 dollars, seasonally adjusted) from potential GDP as estimated by the Congressional Budget Office (see Congressional Budget Office (1995)). The target gap is calculated from these series as \(1.5\pi_{t+1} + 0.8y_{t+1} - i_t\).

Data sources: Bureau of Economic Analysis (inflation), Federal Reserve Bank of St. Louis (GDP and interest rate), Congressional Budget Office (potential GDP), and Federal Reserve Bank of Philadelphia (survey data, see below).
(using the parameters in Table 2). The interest rate changes and the target gap look fairly similar for the first half of the sample, but quite different for the second half. Both have jagged patterns, whereas inflation and the output gap are smoother.

4.1 Survey Data

This section shows that survey data suggests little predictability of interest rate changes—and that the implications of the Taylor rule are not supported.

The survey data is from the Survey of Professional Forecasters (SPF), which is a quarterly survey of some 30 forecasters’ views on key economic variables. The respondents, who supply anonymous answers, are professional forecasters from the business and financial community. See Croushore (1993) for further details.

It is well established, both in theory and practice, that some kind of combination (mean or median) of several different methods/forecasters typically increases the forecast precision—and that such combined forecasts are hard to beat with any method (see, for instance, Granger and Ramanathan (1984)). We use the median (since it is less sensitive to outliers than the mean) of the individual forecasts of the 3-month T-bill rate, quarterly GDP deflator inflation, and real GDP (GNP before 1992). From this data we calculate the implied forecasts of the variables that enter the Taylor rule: interest rates changes, annual (4-quarter) inflation, and the output gap (assuming that potential output over the next four quarters is known).

\[
\begin{array}{cccccccc}
\text{Horizon:} & 1 & 2 & 3 & 1 & 2 & 3 \\
\text{Interest rate change} & 0.33 & 0.05 & 0.01 & 0.33 & 0.05 & 0.01 \\
\text{Target gap} & 0.78 & 0.56 & 0.37 & 0.05 & 0.01 & 0.01 \\
\text{Inflation} & 0.97 & 0.93 & 0.89 & 0.06 & 0.11 & 0.02 \\
\text{Output gap} & 0.92 & 0.83 & 0.69 & 0.04 & 0.06 & 0.16 \\
\end{array}
\]

Table 4: R^2 for Survey of Professional Forecasters, 1987Q4–1999Q4. The expectations are the survey forecasts.

The results for the survey data are summarised in Table 4. The first three columns show results from regressions of the same type as (8), that is, with the survey forecast of the same variable (“$E_t x_{t+k}$”) as predictor. For the interest rate changes, the results are
very similar to the yield curve evidence in Table 1: some predictability at the one-quarter horizon, but none for longer horizons. If anything, the survey data suggests even less predictability than the yield curve data. It therefore seems relatively safe to conclude that market expectations of interest rate changes have had low predictive power—in contrast to the model results.

The survey data therefore suggests that something is wrong with the model. But what? With the information we have so far, we cannot really be sure that the Taylor rule is at fault—it could equally well be that the Phillips curve and the aggregate demand curve generate too much predictability.

In Section 3.3 we noted that the Taylor rule implies that forecasting Δi_{r+k} is pretty much the same thing as forecasting the target gap $(1.5\bar{\pi}_{t+1} + 0.8y_{t+1} - i_t)$. This should hold irrespective of what the rest of the model looks like and is therefore a way of assessing the Taylor rule directly. From Table 4 we conclude the following.

First, the survey is pretty good at forecasting the target gap (by using the implied survey forecast of the target gap itself), but bad at forecasting interest rate changes. As mentioned earlier, this could possibly be explained by unpredictable policy shocks (see (2)). However, the difference in R^2 is so large (for instance, 0.56 versus 0.05 on the 2-quarter horizon) that this would require implausibly large policy shocks. For instance, the policy shocks in the model would have to be ten times more volatile (in terms of the standard deviation) in order to push down the R^2 of the interest rate changes to something like 0.20. It can also be noted that the result is not sensitive to the relative weights in inflation and the output gap in the Taylor rule (we use the traditional values, $1.5\bar{\pi}_{t+k} + 0.8y_{t+k}$) since both inflation and the output gap are quite predictable over the next few quarters.

Second, it could actually be argued that “$E_t \Delta i_{r+k}$” (the forecast of the interest rate change) does predict interest rate changes and the target gap equally well. That is, equally poorly: the R^2 is very low (with the possible exception of interest rate changes at the 1-quarter horizon).

Third, the interest rate forecasts are far from being an optimal predictor of the target gap. For instance, at the 2-quarter horizon, using “$E_t x_{t+k}$” as the predictor gives an R^2 of 0.56, but using “$E_t \Delta i_{r+k}$” as the predictor gives an R^2 of 0.01.

The results in Table 4 are very hard to reconcile with a Taylor rule. In short, it seems as the predictability of actual interest rate changes is more or less unrelated to the pre-
dictability of what the interest rate changes should be according to the Taylor rule. This is not too surprising since the data in Figure 3.a showed large and persistent differences between the interest rate change and the target gap.

It could also be noted that the reason for why the model generates too much predictability of interest rate changes is not that it generates too much predictability in inflation and the output gap—because survey data strongly suggests that these variables are quite predictable—see Table 4. The reason is instead that the model uses a Taylor rule. But, couldn’t the model be saved by assuming a much lower interest rate smoothing parameter, ρ? Well, that would give a more plausible predictability of interest rate changes, but also too little predictability in the output gap (and therefore the target gap).

4.2 VAR Model

This section repeats the steps in the survey data section, but with forecasts from a VAR model instead.

Table 5 shows the R^2 from forecasts made by a VAR(3) model of interest rates, inflation, and the output gap. The VAR model is estimated on first differences and then transformed to fit our data definitions (quarterly interest rate changes, annual inflation, and output gap). To approximate the information set available to the futures market and the survey respondents, the VAR is estimated on a moving data window of 40 quarters. For instance, the forecasts made in 1987Q4 use a VAR model estimated on 1978Q1–1987Q4, while the forecasts made in 1988Q1 use a VAR model estimated on 1978Q2–1988Q1, and so forth.

The VAR results confirm most of the findings from survey data: interest rate changes are not predictable, it is possible to forecast the target gap but not interest rate changes, and the forecast of interest rate changes is far from an optimal predictor of the target gap.

It may seem surprising that the VAR results are so different from the model simulations. After all, the model (2)–(4) is a dynamic system with a few lags, so its reduced form is essentially a low-order VAR system. It is then a bit strange that an estimated VAR produces so much less predictability than an estimated/calibrated model (especially for interest rate changes). There may be several explanations for this, but we believe that the tendency for OLS to overfit in small samples plays an important role.

To illustrate this, we reestimated the VAR on a fixed sample (1987Q4–1999Q4). The results are shown in Table 6. The most striking result is that the interest rate changes
Table 5: R^2 in VAR(3) model on a moving data window of 40 quarters (see text). The expectations (forecasts) are generated from the VAR estimates. Forecasts are generated for every quarter 1987Q4–1999Q4.

<table>
<thead>
<tr>
<th>Horizon</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest rate change</td>
<td>0.17</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Target gap</td>
<td>0.72</td>
<td>0.52</td>
<td>0.47</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.96</td>
<td>0.89</td>
<td>0.81</td>
</tr>
<tr>
<td>Output gap</td>
<td>0.90</td>
<td>0.75</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Table 6: R^2 in VAR(3) model on fixed sample, 1987Q4–1999Q4. The expectations are generated from the VAR estimates.

<table>
<thead>
<tr>
<th>Horizon</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest rate change</td>
<td>0.47</td>
<td>0.26</td>
<td>0.19</td>
</tr>
<tr>
<td>Target gap</td>
<td>0.78</td>
<td>0.63</td>
<td>0.46</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.97</td>
<td>0.92</td>
<td>0.85</td>
</tr>
<tr>
<td>Output gap</td>
<td>0.92</td>
<td>0.81</td>
<td>0.65</td>
</tr>
</tbody>
</table>

appear to be much more predictable than in the VAR estimated on a moving data window (see Table 5). The intuition for this result is that the VAR is estimated with OLS which always tries to maximise the in-sample R^2 of the one-step ahead forecasts. With many coefficients to pick, OLS can typically create a good fit in small samples. Since the macro model (2)–(4) is estimated in a fairly similar way, we believe that part of the high predictability in the model is caused by similar in-sample overfitting.

5 Discussion

Taylor (1993) argued that the Federal Reserve should, and indeed had (during 1987–1992), set the federal funds rate as a simple linear function of the current levels of inflation and the output gap. It was clear already from Taylor’s analysis, however, that there had been persistent deviations between actual monetary policy and the interest rate implied by the simple Taylor rule. For the main arguments Taylor wanted to make, the deviations
are not very important. In empirical estimates of reaction functions of the Taylor type, the deviations result in a high coefficient on the lagged interest rate. It has been debated whether this reflects deliberate interest rate smoothing or misspecification of the policy rule.

Rudebusch (2002b) argues that empirical Taylor rules are misspecified. One argument that he uses to support this claim is that typical estimates of the coefficient on the lagged interest rate imply that interest changes should be much more predictable than they seem to be. Rudebusch derives the theoretical predictability from a New-Keynesian model augmented by a Taylor rule and compares the result with the predictability of forward interest rates. In principle, however, the discrepancies between the theoretical implications and the yield curve evidence could be due to other mechanisms than the Taylor rule. The New-Keynesian model could be a misspecification of the processes driving inflation and output, or forward rates could be biased because of, for instance, time-varying risk premia.

In this paper we show that a high coefficient on the lagged interest rate is not sufficient to create high predictability of future interest rate changes. Instead, it is the fact that inertial monetary policy makes inflation and the output gap very predictable that drives the predictability of interest rate changes, given the Taylor rule and the New-Keynesian setup. By comparing model results with yield curve evidence and evidence on the predictability from survey data and a VAR model, we nevertheless support Rudebusch’s critique of the Taylor rule. Interest rate changes are not predictable according to survey data and the VAR model, which is consistent with yield curve evidence. Inflation and the output gap, on the other hand, are quite predictable, which is consistent with the New-Keynesian model (and other models, of course). The fact that the right hand side of the Taylor rule is quite predictable, while interest changes are not, shows that the problem pointed out by Rudebusch does have to do with the Taylor rule, although the high coefficient on the lagged interest rate does not seem to be the main problem in itself.

What does this tell us about monetary policy? It is nowadays generally agreed that monetary policy should be predictable and therefore based on some fairly easily understood rules. Yet, interest rate changes are largely unpredictable. One possibility is that the low predictability of interest rate changes is due to monetary policy being entirely unsystematic, i.e., interest rate changes are largely driven by monetary policy shocks. This does not seem very likely. Another possibility is that monetary policy responds systematically to other kinds of shocks than those considered in the Taylor rule (as assumed,
for instance, in analyses of monetary policy using identified VARs). The nature of those shocks remains to be investigated.

It should be stressed that the fact that interest rate changes are unpredictable does not imply that monetary policy is erratic. It is highly unlikely that the policy instrument follows a random walk, but the fact that a random walk is a good approximation reflects the fact that the interest rate level is very persistent. It remains to be shown under what circumstances this would be an optimal monetary policy.

An alternative to the Taylor rule formulation of monetary policy is the targeting rule approach advocated by, for instance, Svensson (2002). In another paper (Söderström, Söderlind, and Vredin, 2002), we show that the Rudebusch model with optimal discretionary monetary policy can be made to match some stylized facts of the U.S. economy, assuming that the central bank has a large preference for interest rate smoothing, but virtually no preference for stability of the output gap. Interestingly, preliminary results suggest that the calibrated model implies fairly low predictability of interest rate changes, while inflation and output are very predictable, in line with the empirical results in this paper. These results indicate an interesting avenue for future research.

A Appendix

A.1 R^2 when i_t is an AR(1) Process

The R^2 of $\Delta i_t = a + b E_{t-k} \Delta i_t + u_t$ is the explained variation divided by the total variation, that is, $R^2_k = \text{Var}(E_{t-k} \Delta i_t)/\text{Var}(\Delta i_t)$.

Write (2) as $i_{t+1} = \rho i_t + \varepsilon_{t+1}$ where ε_{t+1} is iid with variance σ^2. It follows that

$$\Delta i_t = \varepsilon_t + (\rho - 1)(\varepsilon_{t-1} + \rho \varepsilon_{t-2} + \rho^2 \varepsilon_{t-3} + \cdots),$$

and

$$E_{t-k} \Delta i_t = (\rho - 1)\rho^{k-1}(\varepsilon_{t-k} + \rho \varepsilon_{t-k-1} + \rho^2 \varepsilon_{t-k-2} + \cdots),$$

for $k \geq 1$.

Direct calculations then give

$$\text{Var}(\Delta i_t) = 2 \frac{1}{1 + \rho} \sigma^2,$$

and

$$\text{Var}(E_{t-k} \Delta i_t) = \rho^{2k-2} \frac{1 - \rho}{1 + \rho} \sigma^2.$$
Dividing gives
\[R^2_k = \rho^{2(k-1)} (1 - \rho) / 2, \]
where \(k = 1, 2, \ldots \) is the forecasting horizon. Note that this holds even if \(\sigma^2 \) depends on \(\rho \) as it does if we think of \(\epsilon_{t+1} \) in the AR(1) as representing \((1 - \rho) (\gamma_\pi \bar{\pi}_{t+1} + \gamma_y y_{t+1}) + \zeta_{t+1} \) from (2).

A.2 Derivation of (7)

Write (6) as
\[\Delta i_{t+1} = (1 - \rho) (z_{t+1} - i_t) + \zeta_{t+1}, \]
where \(z_{t+1} = \gamma_\pi \bar{\pi}_{t+1} + \gamma_y y_{t+1} \).

The \(R^2 \) for the one-period horizon is
\[
R^2 = \frac{\text{Var}(E_t \Delta i_{t+1})}{\text{Var}(\Delta i_{t+1})} = \frac{(1 - \rho)^2 \text{Var}(E_t z_{t+1} - i_t)}{\text{Var}[(1 - \rho)(z_{t+1} - i_t) + \zeta_{t+1}]}.
\]

Assume that inflation and the output gap are uncorrelated with the current policy shock and with the lagged interest rate. This implies that \(z_{t+1} \) is uncorrelated with \(i_t \), and this carries over to the expectation \(E_t z_{t+1} \) as well.

We can then use the Taylor rule, \(i_{t+1} = (1 - \rho) z_{t+1} + \rho i_t + \zeta_{t+1} \), to find the variance of the interest rate as
\[
(1 - \rho^2) \text{Var}(i_t) = (1 - \rho)^2 \text{Var}(z_{t+1}) + \text{Var}(\zeta_{t+1}).
\]

We can also rewrite the \(R^2 \) as
\[
R^2 = \frac{(1 - \rho)^2 \text{Var}(E_t z_{t+1}) + (1 - \rho)^2 \text{Var}(i_t)}{(1 - \rho)^2 \text{Var}(z_{t+1}) + (1 - \rho)^2 \text{Var}(i_t) + \text{Var}(\zeta_{t+1})}.
\]
Use the expression for $\text{Var}(i_t)$ to simplify this as

\[
R^2 = \frac{(1 - \rho)^2 \text{Var}(E_t z_{t+1}) + (1 - \rho)^2 \text{Var}(i_t)}{2(1 - \rho) \text{Var}(i_t)}
\]

\[
= \frac{1 - \rho}{2} \left[\frac{\text{Var}(E_t z_{t+1})}{\text{Var}(i_t)} + 1 \right]
\]

\[
= \frac{1 - \rho}{2} \left[\frac{\text{Var}(E_t z_{t+1}) \text{Var}(z_{t+1})}{\text{Var}(i_t)} + 1 \right],
\]

which is (7).

References

Congressional Budget Office, 1995, CBO’s method for estimating potential output, memorandum Congressional Budget Office.

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forecasting Swedish Inflation with a Markov Switching VAR</td>
<td>Märten Blix</td>
<td>1999:76</td>
</tr>
<tr>
<td>A VAR Model for Monetary Policy Analysis in a Small Open Economy</td>
<td>Tor Jacobsson, Per Jansson, Anders Vredin and</td>
<td>1999:77</td>
</tr>
<tr>
<td>Why Central Banks Announce their Objectives: Monetary Policy with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discretionary Signalling by Stefan Palmqvist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agency Costs, Credit Constraints and Corporate Investment</td>
<td>Sten Hansen</td>
<td>1999:79</td>
</tr>
<tr>
<td>A Parametric Approach for Estimating Core Inflation and Interpreting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the Inflation Process by Mikael Apel and Per Jansson</td>
<td></td>
<td>1999:80</td>
</tr>
<tr>
<td>Exchange Rate Exposure, Foreign Involvement and Currency Hedging</td>
<td>Marcus Asplund and Richard Friberg</td>
<td>1999:87</td>
</tr>
<tr>
<td>of firms – some Swedish evidence by Stefan Nydahl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are There Price Bubbles in the Swedish Equity Market</td>
<td>Stefan Nydahl and Peter Sellin</td>
<td>1999:82</td>
</tr>
<tr>
<td>Monetary policy with uncertain parameters by Ulf Söderström</td>
<td></td>
<td>1999:83</td>
</tr>
<tr>
<td>Should central banks be more aggressive? by Ulf Söderström</td>
<td></td>
<td>1999:84</td>
</tr>
<tr>
<td>Predicting monetary policy using federal funds futures prices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Ulf Söderström</td>
<td></td>
<td>1999:85</td>
</tr>
<tr>
<td>The Informational Advantage of Foreign Investors: An Empirical Study</td>
<td>Patrik Sävenblad</td>
<td>1999:86</td>
</tr>
<tr>
<td>of the Swedish Bond Market</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail price levels and concentration of wholesalers, retailers and</td>
<td>Marcus Asplund and Richard Friberg</td>
<td>1999:87</td>
</tr>
<tr>
<td>hypermarkets by Marcus Asplund and Richard Friberg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GARCH, Imply Volatilities and Imply Distributions:</td>
<td>Javiera Aguilar</td>
<td>1999:88</td>
</tr>
<tr>
<td>An Evaluation for Forecasting Purposes by Javiera Aguilar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Economies at the Firm Level: Evidence from</td>
<td>Tomas Lindström</td>
<td>1999:89</td>
</tr>
<tr>
<td>Swedish Manufacturing by Tomas Lindström</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sources of Real Exchange Rate Fluctuations in the Nordic Countries</td>
<td>Annika Alexius</td>
<td>1999:90</td>
</tr>
<tr>
<td>Price Stability as a Target for Monetary Policy: Defining and Maintaining</td>
<td>Lars E.O. Svensson</td>
<td>1999:91</td>
</tr>
<tr>
<td>Price Stability by Lars E.O. Svensson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Quest for Prosperity Without Inflation by Athanasios Orphanides</td>
<td></td>
<td>1999:93</td>
</tr>
<tr>
<td>Uncertainty about the Length of the Monetary Policy Transmission Lag:</td>
<td>Yung Ha</td>
<td>1999:94</td>
</tr>
<tr>
<td>Implications for Monetary Policy by Yung Ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investment in Swedish Manufacturing: Analysis and Forecasts</td>
<td>Bengt Assarsson, Claes Berg and Per Jansson</td>
<td>1999:95</td>
</tr>
<tr>
<td>Bayesian Prediction with a Cointegrated Vector Autoregression</td>
<td>Mattias Villani</td>
<td></td>
</tr>
<tr>
<td>Targeting inflation over the short, medium and long term</td>
<td>Marianne Nessén</td>
<td>1999:98</td>
</tr>
<tr>
<td>Medium-Term Forecasts of Potential GDP and Inflation Using</td>
<td>Thomas Lindh</td>
<td></td>
</tr>
<tr>
<td>Age Structure Information by Thomas Lindh</td>
<td></td>
<td>1999:99</td>
</tr>
<tr>
<td>Inflations Forecast Targeting: the Swedish Experience by Claes Berg</td>
<td></td>
<td>2000:100</td>
</tr>
<tr>
<td>Wage Effects of Mobility, Unemployment Benefits and Benefit Financing</td>
<td>Hans Lindblad</td>
<td>2000:101</td>
</tr>
<tr>
<td>A Bivariate Distribution for Inflation and Output Forecasts</td>
<td>Märten Blix and Peter Sellin</td>
<td>2000:102</td>
</tr>
<tr>
<td>Optimal Horizons for Inflation Targeting</td>
<td>Nicoletta Batini and Edward Nelson</td>
<td>2000:103</td>
</tr>
<tr>
<td>An Example Focusing on the External Sector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduction Monetary Policy with a Collegial Bord:</td>
<td>Claes Berg and HansLindberg</td>
<td>2000:105</td>
</tr>
<tr>
<td>The New Swedish Legislation One Year On by Claes Berg and HansLindberg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price-level targeting versus inflation targeting in a forward-looking model</td>
<td>David Vestin</td>
<td>2000:106</td>
</tr>
<tr>
<td>Unemployment and Inflation Regimes by Anders Vredin and Anders Warne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An Expectations-Augmented Phillips Curve in an Open Economy</td>
<td>Kerstin Hallsten</td>
<td>2000:107</td>
</tr>
<tr>
<td>Sources of Real Exchange Rate Fluctuations in the Nordic Countries</td>
<td>Anika Alexius</td>
<td>1999:90</td>
</tr>
<tr>
<td>Price Stability as a Target for Monetary Policy: Defining and Maintaining</td>
<td>Lars E.O. Svensson</td>
<td>1999:91</td>
</tr>
<tr>
<td>Price Stability by Lars E.O. Svensson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Quest for Prosperity Without Inflation by Athanasios Orphanides</td>
<td></td>
<td>1999:93</td>
</tr>
<tr>
<td>Uncertainty about the Length of the Monetary Policy Transmission Lag:</td>
<td>Yung Ha</td>
<td>1999:94</td>
</tr>
<tr>
<td>Implications for Monetary Policy by Yung Ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investment in Swedish Manufacturing: Analysis and Forecasts</td>
<td>Bengt Assarsson, Claes Berg and Per Jansson</td>
<td>1999:95</td>
</tr>
<tr>
<td>Bayesian Prediction with a Cointegrated Vector Autoregression</td>
<td>Mattias Villani</td>
<td></td>
</tr>
<tr>
<td>Targeting inflation over the short, medium and long term</td>
<td>Marianne Nessén</td>
<td>1999:98</td>
</tr>
<tr>
<td>Medium-Term Forecasts of Potential GDP and Inflation Using</td>
<td>Thomas Lindh</td>
<td></td>
</tr>
<tr>
<td>Age Structure Information by Thomas Lindh</td>
<td></td>
<td>1999:99</td>
</tr>
<tr>
<td>Inflations Forecast Targeting: the Swedish Experience by Claes Berg</td>
<td></td>
<td>2000:100</td>
</tr>
<tr>
<td>Wage Effects of Mobility, Unemployment Benefits and Benefit Financing</td>
<td>Hans Lindblad</td>
<td>2000:101</td>
</tr>
<tr>
<td>A Bivariate Distribution for Inflation and Output Forecasts</td>
<td>Märten Blix and Peter Sellin</td>
<td>2000:102</td>
</tr>
<tr>
<td>Optimal Horizons for Inflation Targeting</td>
<td>Nicoletta Batini and Edward Nelson</td>
<td>2000:103</td>
</tr>
<tr>
<td>An Example Focusing on the External Sector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduction Monetary Policy with a Collegial Bord:</td>
<td>Claes Berg and HansLindberg</td>
<td>2000:105</td>
</tr>
<tr>
<td>The New Swedish Legislation One Year On by Claes Berg and HansLindberg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price-level targeting versus inflation targeting in a forward-looking model</td>
<td>David Vestin</td>
<td>2000:106</td>
</tr>
<tr>
<td>Unemployment and Inflation Regimes by Anders Vredin and Anders Warne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An Expectations-Augmented Phillips Curve in an Open Economy</td>
<td>Kerstin Hallsten</td>
<td>2000:107</td>
</tr>
</tbody>
</table>
Core inflation and monetary policy by Marianne Nessén and Ulf Söderström .. 2000:110
Estimating the Implied Distribution of the Future Short-Term Interest Rate
Using the Longstaff-Schwartz Model by Peter Hördahl ... 2000:111
Financial Variables and the Conduct of Monetary Policy
by Charles Goodhart and Boris Hofmann ... 2000:112
Testing for the Lucas Critique: A Quantitative Investigation by Jesper Lindé ... 2000:113
Monetary Policy Analysis in Backward-Looking Models by Jesper Lindé ... 2000:114
UIP for short investments in long-term bonds by Annika Alexius ... 2000:115
Qualitative Survey Responses and Production over the Business Cycle
by Tomas Lindström ... 2000:116
Supply stocks and real exchange rates by Annika Alexius ... 2000:117
Casualty and Regime Inference in a Markov Switching VAR by Anders Warne ... 2000:118
Average Inflation Targeting by Marianne Nessén and David Vestin ... 2000:119
by Per Jansson and Anders Vredin ... 2000:120
What have we learned from empirical tests of the monetary transmission effect?
by Stefan Norbin ... 2000:121
Simple monetary policy rules and exchange rate uncertainty
by Kai Leitemo and Ulf Söderström ... 2001:122
Targeting inflation with a prominent role for money
by Ulf Söderström .. 2001:123
Is the Short-run Phillips Curve Nonlinear? Empirical Evidence for Australia, Sweden
and the United States by Ann-Charlotte Eliasson ... 2001:124
An Alternative Explanation of the Price Puzzle by Paolo Giordani .. 2001:125
Interoperability and Network Externalities in Electronic Payments by Gabriela Guibourg 2001:126
Monetary Policy with Incomplete Exchange Rate Pass-Through by Malin Adolfson 2001:127
Micro Foundations of Macroeconomic Price Adjustment: Survey Evidence from
Swedish Firms by Mikael Apel, Richard Friberg and Kerstin Hallsten ... 2001:128
Estimating New-Keynesian Phillips Curves on Data with Measurement Errors:
A Full Information Maximum Likelihood Approach by Jesper Lindé .. 2001:129
The Empirical Relevance of Simple Forward- and Backward-looking Models:
A View from a Dynamic General Equilibrium Model by Jesper Lindé .. 2001:130
Diversification and Delegation in Firms by Vittoria Cerasi and Sonja Daltung .. 2001:131
Monetary Policy Signaling and Movements in the Swedish Term Structure of Interest Rates
by Malin Andersson, Hans Dillén and Peter Sellin ... 2001:132
Evaluation of exchange rate forecasts for the krona’s nominal effective exchange rate
by Henrik Degrér, Jan Hansen and Peter Sellin ... 2001:133
Identifying the Effects of Monetary Policy Shocks in an Open Economy
by Tor Jacobsson, Per Jansson, Anders Vredin and Anders Warne ... 2002:134
Implications of Exchange
Rate Objectives under Incomplete Exchange Rate Pass-Through
by Malin Adolfson ... 2002:135
Incomplete Exchange Pass-Through and Simple Monetary Policy Rules
by Malin Adolfson ... 2002:136
Financial Instability and Monetary Policy: The Swedish Evidence
by U. Michael Bergman and Jan Hansen .. 2002:137
Finding Good Predictors for Inflation: A Bayesian Model Averaging Approach
by Tor Jacobson and Sune Karlsson ... 2002:138
How Important Is Precommitment for Monetary Policy?
by Richard Dennis and Ulf Söderström .. 2002:139
Can a Calibrated New-Keynesian Model of Monetary Policy Fit the Facts?
by Ulf Söderström, Paul Söderlind and Anders Vredin ... 2002:140
Inflation Targeting and the Dynamics of the Transmission Mechanism
by Hans Dillén .. 2002:141
Capital Charges under Basel II: Corporate Credit Risk Modelling and the Macro Economy
by Kenneth Carlng, Tor Jacobson, Jesper Lindé and Kasper Roszbach .. 2002:142
Capital Adjustment Patterns in Swedish Manufacturing Firms: What Model Do They Suggest?
by Mikael Carlsson and Stefan Laséen ... 2002:143
Bank Lending, Geographical Distance, and Credit risk: An Empirical Assessment
of the Church Tower Principle by Kenneth Carlng and Sofia Lundberg .. 2002:144
Inflation, Exchange Rates and PPP in a Multivariate Panel Cointegration Model
by Tor Jacobson, Johan Lyhagen, Rolf Larsson and Marianne Nessén .. 2002:145
Evaluating Implied RNDs by some New Confidence Interval Estimation Techniques
Magnus Andersson and Magnus Lomakka ... 2003:146