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Abstract
This paper analyzes the forecasting performance of an open economy DSGE model, estimated
with Bayesian methods, for the Euro area during 1994Q1-2002Q4. We compare the DSGE
model and a few variants of this model to various reduced form forecasting models such as
vector autoregressions (VAR) and vector error correction models (VECM), estimated both
by maximum likelihood and two different Bayesian approaches, and traditional benchmark
models, e.g. the random walk. The accuracy of point forecasts, interval forecasts and the
predictive distribution as a whole are assessed in an out-of-sample rolling event evaluation
using several univariate and multivariate measures. The results show that the open economy
DSGE model compares well with more empirical models and thus that the tension between
rigor and fit in older generations of DSGE models is no longer present. We also critically
examine the role of Bayesian model probabilities and other frequently used low-dimensional
summaries, e.g. the log determinant statistic, as measures of overall forecasting performance.
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1. Introduction

One of the objectives behind the formation of dynamic stochastic general equilibrium
(DSGE) models is to explain and understand macroeconomic fluctuations using a coherent
theoretical framework. The use of DSGE models in policy analysis, however, has been crit-
icized by both academics and practitioners. The main argument has been the inability of
DSGE models to - loosely speaking - fit the data. For instance, Pagan (2003) retains that
there is a trade-off between theoretical and empirical coherence in DSGE models and VARs,
the latter being more empirically than theoretically coherent relative to the former.
The new generation of DSGE models developed by Christiano, Eichenbaum and Evans

(2005) among others, have shown great promise of improving the empirical properties by
introducing nominal and real frictions into the model economy. Of course, the evaluation
of fit can be assessed in various ways. For policy makers, the comparison of out-of-sample
forecasting properties is of particular interest, as policy actions typically rely upon accurate
assessments of the future development of the economy. Results in Smets and Wouters (2004)
suggest that the new generation of closed economy DSGE models compare very well with
vector autoregressive (VAR) models in terms of forecasting accuracy.
This paper evaluates the forecasting accuracy of an open economy DSGE model for the

Euro area. This model enables us to predict several so called open economy variables such
as, for example, the exchange rate, imports and exports. Evaluating the DSGE model for the
latter variables are of particular interest, because previous research have demonstrated the
difficulties to project these variables accurately. By opening up the model economy we hope
to better capture the workings of the real world economy, but it could very well be that the
added complexity by itself deteriorates the forecasting performance of the model. It is not
uncommon to find that very small models are able to beat larger ones in forecasting. This
motivates a thorough investigation of the model’s forecasting performance with regard to both
domestic and open economy macroeconomic variables.
A major difference between our analysis and Smets and Wouters’ (2004), apart from the

extension to the open economy setting, is that we include a unit-root stochastic technology
shock, following Altig, Christiano, Eichenbaum and Lindé (2003). This induces a common
stochastic trend in the variables and makes it possible to jointly model economic growth and
business cycle fluctuations. In the empirical estimation and forecast evaluation we are hence
not forced to detrend the data.
The DSGE model’s forecasting properties are evaluated against a wide range of less theoret-

ically oriented forecasting tools such as VARs, Bayesian VARs (BVARs), and naïve forecasts
based on univariate random walks as well as on the simple means of the most recent data ob-
servations. Several authors have recently noted the theoretical connection between Bayesian
model posterior probabilities and out-of-sample forecasting performance, e.g. Geweke (1999)
and Del Negro, Schorfheide, Smets and Wouters (2004). Adding three alternative specifica-
tions of the benchmark DSGE model to the model set, allows us to study this link in some
detail.
The forecasting performance of the models will be assessed in a rolling event forecast evalua-

tion. We use the observations in 1994Q1−2002Q4 to evaluate the forecasts. Several univariate
and multivariate measures are employed to determine the accuracy of the point forecasts. Point
forecasts are naturally the main concern of policy makers and has typically been the interest
in the forecasting literature, see e.g. the M-competition in Makridakis et al. (1982). Recently,
there has also been a growing interest in forecast uncertainty. The so called fan charts used
by Bank of England and Sveriges Riksbank (the central bank of Sweden) to communicate
the uncertainty in the inflation forecasts is one example. Using a Bayesian methodology we



can derive the exact finite sample joint forecast distribution of all the endogenous variables
in the system. We therefore also move beyond the evaluation of point forecasts to assess the
reasonableness of, for example, predictive intervals.
The results indicate that the forecasting performance of the open economy DSGE model

compares well with reduced form forecasting models such as VARs and BVARs. This holds
true both in terms of the point forecast accuracy and when evaluating the accuracy of the
whole forecast distribution. An empirical result with more of a methodological flavor is that
frequently used measures of multivariate forecasting performance, such as the marginal likeli-
hood and the log determinant MSE statistic, can be very sensitive to the choice of variables
used in the forecast evaluation. We also show that such measures may be completely domi-
nated by the forecasting accuracy of variables that the end user of the model cares very little
about. Also, the often stated result that marginal likelihoods measure out-of-sample forecast-
ing performance is shown to be a lot more problematic than is typically acknowledged among
DSGE model developers.
The rest of the paper is organized as follows. Section 2 presents the theoretical DSGE model.

The following section discusses inference and forecasting in DSGE models, and reports the
estimation results of four different specifications of the DSGE model. In Section 4 we briefly
discuss the alternative models used for forecasting such as vector autoregressive models and
a couple of naïve setups. Section 5 reports the results from the forecast evaluation on Euro
area data. Lastly, Section 6 summarizes and provides some conclusions.

2. The DSGE model

2.1. Model. This section gives an overview of the model economy and presents the key equa-
tions in the theoretical model. The model is an open economy version of the DSGE model
in Christiano et al. (2005) and Altig et al. (2003), developed in Adolfson, Laséen, Lindé and
Villani (2005) who we refer to for a more detailed description.
The final domestic good is a composite of a continuum of i differentiated goods, each

supplied by a different firm, which follows the constant elasticity of substitution (CES) function

(2.1) Yt =

⎡⎣ 1Z
0

(Yi,t)
1

λdt di

⎤⎦λ
d
t

, 1 ≤ λdt <∞,

where λdt is the time-varying markup in the domestic goods market. The production function
for intermediate good i is given by

(2.2) Yi,t = z1−αt �tK
α
i,tH

1−α
i,t − ztφ,

where zt is a unit-root technology shock, �t is a covariance stationary technology shock, and
Hi,t denotes homogeneous labor hired by the ith firm. Ki,t denotes capital services which differ
from the physical capital stock since we allow for variable capital utilization in the model. A
fixed cost ztφ is included in the production function and following Christiano et al. (2005) we
set φ so that profits are zero in steady state.
We allow for working capital by assuming that a fraction ν of the intermediate firms’

wage bill has to be financed in advance through loans from a financial intermediary. Cost
minimization yields the following nominal marginal cost for intermediate firm i:

(2.3) MCd
t =

1

(1− α)1−α
1

αα
(Rk

t )
α [Wt(1 + ν(Rt−1 − 1))]1−α

1

(zt)1−α
1

�t
,



where Rk
t is the gross nominal rental rate per unit of capital services, Rt−1 the gross nominal

(economy wide) interest rate, and Wt the nominal wage rate per unit of aggregate, homoge-
neous, labor Hi,t.
Each of the domestic goods firms is subject to price stickiness through an indexation variant

of the Calvo (1983) model. Thus, each intermediate firm faces in any period a probability
1 − ξd that it can reoptimize its price.

1 Since we have a time-varying inflation target in the
model we allow for partial indexation to the current inflation target, but also to last period’s
inflation rate in order to allow for a lagged pricing term in the Phillips curve. The first order
condition of the profit maximization problem yields the following log-linearized Phillips curve:³bπdt − b̄πct´ =

β

1 + κdβ

³
Etbπdt+1 − ρπ b̄πct´+ κd

1 + κdβ

³bπdt−1 − b̄πct´(2.4)

−κdβ (1− ρπ)

1 + κdβ
b̄πct + (1− ξd)(1− βξd)

ξd (1 + κdβ)

³cmcdt +
bλdt´ ,

where a hat denotes log-linearized variables (i.e., X̂t = dXt/X), bπdt denotes the inflation rate
in the domestic sector, b̄πct the time-varying inflation target of the central bank and cmcdt the
real marginal cost.
We now turn to the import and export sectors. There is a continuum of importing con-

sumption and investment firms that buy a homogenous good at price P ∗t in the world market,
and converts it into a differentiated good through a brand naming technology. The exporting
firms buy the (homogenous) domestic final good at price P d

t and turn this into a differentiated
export good through the same type of brand naming technology. The nominal marginal cost of
the importing and exporting firms are thus StP ∗t and P

d
t /St, respectively, where St is the nom-

inal exchange rate (domestic currency per unit of foreign currency). The differentiated import
and export goods are subsequently aggregated by an import consumption, import investment
and export packer, respectively, so that the final import consumption, import investment, and
export good is each a CES composite according to the following:
(2.5)

Cm
t =

⎡⎣ 1Z
0

¡
Cm
i,t

¢ 1
λmc
t di

⎤⎦λ
mc
t

, Imt =

⎡⎣ 1Z
0

¡
Imi,t
¢ 1

λmi
t di

⎤⎦λ
mi
t

, Xt =

⎡⎣ 1Z
0

(Xi,t)
1
λxt di

⎤⎦λ
x
t

,

where 1 ≤ λjt < ∞ for j = {mc,mi, x} is the time-varying markup in the import consump-
tion (mc), import investment (mi) and export (x) sector. By assumption the importers and
exporters invoice in local currency. In order to allow for short-run incomplete exchange rate
pass-through to import and export prices we introduce nominal rigidities in the local currency
price, following for example Smets and Wouters (2002).2 This is modeled through the same
type of Calvo setup as described above. The price setting problems of the importing and
exporting firms are completely analogous to that of the domestic firms. In total there are thus
four specific Phillips curve relations determining inflation in the domestic, import consump-
tion, import investment and export sectors, all having the same structure as equation (2.4).
To allow for temporary different degrees of technological progress domestically and abroad,

1For the firms that are not allowed to reoptimize their price, we adopt the indexation scheme P d
t+1 =

πdt
κd (π̄ct+1)

1−κd P d
t where P

d
t is the domestic price, κd is an indexation parameter, and πdt = P d

t /P
d
t−1 is

gross domestic inflation. The process for the inflation target (π̄ct+1) is defined in equation (2.11)
2Since there are neither any distribution costs in the import and export sectors nor an endogenous pricing to

market behaviour among the firms, there would be complete pass-through in the absence of nominal rigidities.



we introduce a stationary asymmetric technology shock z̃∗t = z∗t /zt, where z
∗
t is the perma-

nent technology level abroad, when defining the aggregate demand for export goods. Foreign
demand in turn follows a CES aggregate with elasticity ηf .
In the model economy there is a continuum of households which maximize utility subject

to a standard budget constraint. The preferences of household j are given by

(2.6) Ej0

∞X
t=0

βt

⎡⎢⎣ζct ln (Cj,t − bCj,t−1)− ζhtAL
(hj,t)

1+σL

1 + σL
+Aq

³
Qj,t

ztP d
t

´
1− σq

1−σq⎤⎥⎦ ,
where Cj,t, hj,t and Qj,t/P

d
t denote the j

th household’s levels of aggregate consumption, la-
bor supply and real cash holdings, respectively. Consumption is subject to habit formation
through bCj,t−1, such that the household’s marginal utility of consumption today is affected
by the quantity of goods consumed last period. ζct and ζht are persistent preference shocks
to consumption and labor supply, respectively. To make real cash balances stationary when
the economy is growing these are scaled by the unit root technology shock zt. Aggregate
consumption is assumed to be given by a CES function consisting of domestically produced
goods and imported products:

(2.7) Ct =

∙
(1− ωc)

1/ηc
³
Cd
t

´(ηc−1)/ηc
+ ω

1/ηc
c (Cm

t )
(ηc−1)/ηc

¸ηc/(ηc−1)
,

where Cd
t and C

m
t are consumption of the domestic and imported good, respectively. ωc is the

share of imports in consumption, and ηc is the elasticity of substitution across consumption
goods.
The households can increase their capital services (Kt) by investing (It) in additional phys-

ical capital (K̄t), taking one period to come in action, or by directly increasing the utilization
rate of the physical capital stock at hand (Kt = utK̄t). Both operations undertake a cost.
We also allow for a stationary investment-specific technology shock (Υt). Total investment is
assumed to be given by a CES aggregate of domestic and imported investment goods (Idt and
Imt , respectively) according to

(2.8) It =

∙
(1− ωi)

1/ηi
³
Idt

´(ηi−1)/ηi
+ ω

1/ηi
i (Imt )

(ηi−1)/ηi
¸ηi/(ηi−1)

,

where ωi is the share of imports in investment, and ηi is the elasticity of substitution across
investment goods.
In addition to accumulating physical capital and holding cash, the households can save in

domestic and foreign bonds. The choice between domestic and foreign bond holdings balances
into an arbitrage condition pinning down expected exchange rate changes (i.e., an uncovered
interest rate parity condition). To ensure a well-defined steady-state in the model, we assume
that there is a premium on the foreign bond holdings which depends on the aggregate net
foreign asset position of the domestic households, following, e.g., Lundvik (1992), and Schmitt-
Grohé and Uribe (2001):

(2.9) Φ(at, φ̃t) = exp(−φ̃a(at − ā) + φ̃t),

where At ≡ (StB
∗
t )/(Ptzt) is the net foreign asset position, and φ̃t is a shock to the risk

premium. Note also that Φ(at, φ̃t) is not a ‘traditional’ risk premium associated with variances
and covariances in a stochastic environment.
Further, along the lines of Erceg, Henderson and Levin (2000), each household is a monopoly

supplier of a differentiated labor service which implies that they can set their own wage. Wage



stickiness is introduced through the Calvo (1983) setup, with partial indexation to last period’s
CPI inflation rate, the current inflation target and the current permanent technology growth
rate.3

Following Smets and Wouters (2003), monetary policy is approximated with the following
instrument rule (expressed in log-linearized terms)bRt = ρR bRt−1 + (1− ρR)

£b̄πct + rπ
¡
π̂ct−1 − b̄πct¢+ ryŷt−1 + rxx̂t−1

¤
(2.10)

+r∆π

¡
π̂ct − π̂ct−1

¢
+ r∆y∆ŷt + εR,t,

where εR,t is an uncorrelated monetary policy shock. Thus, the central bank is assumed to
adjust the short term interest rate in response to the CPI inflation rate π̂ct , the time-varying
inflation target b̄πct , the output gap (ŷt, measured as actual minus trend output)4, the real
exchange rate

³
x̂t ≡ Ŝt + P̂ ∗t − P̂ c

t

´
, and the lagged interest rate.

The structural shock processes in the model is given in log-linearized form by the univariate
representation

(2.11) x̂t = ρxx̂t−1 + εx,t, εx,t
iid∼ N

¡
0, σ2x

¢
where x = { μz,t, �t, λ

j
t , ζ

c
t , ζ

h
t , Υt, φ̃t, εR,t, π̄

c
t , z̃

∗
t } and j = {d,mc,mi, x} .

Lastly, to simplify the analysis we adopt the assumption that the foreign prices, output
(HP-detrended) and interest rate are exogenously given by an identified VAR(4) model.5 The
fiscal policy variables - taxes on capital income, labour income, consumption, and the pay-roll,
together with (HP-detrended) government expenditures - are assumed to follow an identified
VAR(2) model.6

3. Bayesian Inference and Forecasting with DSGE Models

3.1. The likelihood function. Bayesian inference combines a prior distribution with a like-
lihood function to arrive at the posterior distribution of the structural parameters conditional
on the available data. In order to efficiently compute the likelihood function, the DSGE model
is log-linearized and the reduced form of the model is obtained by the AIM algorithm (An-
derson and Moore, 1985). As a first step, we cast the log-linearized model on matrix form
as

(3.1) Et {α0z̃t+1 + α1z̃t + α2z̃t−1 + β0θt+1 + β1θt} = 0,
where z̃t is a vector with log-linearized endogenous variables and θt contains the exogenous
variables which follows the process

(3.2) θt = ρθt−1 + εt, εt ∼ N(0,Σ).

Note that since some of the processes for the exogenous variables are given by more than one
lag, we expand θt with lags of the relevant exogenous variable.

31 − ξw is the probability that a household is allowed to reoptimize its wage. For the households that are
not allowed to reoptimize, the indexation scheme is Wj,t+1 = (π

c
t)
κw (π̄ct+1)

(1−κw) μz,t+1W
new
j,t , where κw is the

indexation parameter, and μz,t = zt/zt−1 is the growth rate of the technology level.
4This measure has an empirical advantage over the more theoretically consistent flexible-price output gap,

see Adolfson et al. (2005) for further details.
5The reason why we include foreign output HP-detrended in the VAR is that the (stationarized) level of

foreign output enters the model.
6It should be noted that Adolfson et al. (2005) report that the fiscal shocks have small dynamic effects in

the model. This is because households are Ricardian and infinitely lived. Moreover, these shocks are transitory
and thus do not generate any permanent wealth effects.



The solution of the fundamental difference equation in (3.1) can then be written as

(3.3) z̃t = Az̃t−1 +Bθt

where A and B are the so called feedback and feed-forward matrices, respectively.
The solution of the model given by (3.3) and (3.2) can compactly be written as

(3.4) ξt = Fξξt−1 + vt,

where ξt = (zt, θt)
0 and vt

iid∼ N(0, Q), and Q is a singular covariance matrix. The states in ξt
are then connected to a vector of observed variables yt via a set of measurement equations of
the form

(3.5) yt = C 0xt +H 0ξt + ζt,

where xt a vector with exogenous variables (e.g., a constant) and ζt
iid∼ N(0, R) are measure-

ment errors. Equations (3.4) and (3.5) constitute a linear state-space model and the likelihood
function is then easily evaluated by the Kalman filter (see e.g. Hamilton, 1994). We assume
for simplicity that R is a diagonal matrix with 0.1 on the diagonal, with the exception of the
three foreign variables which are assumed to be measured without errors.
In order to facilitate identification of the various shocks and parameters that we estimate

(we estimate 11 shocks that follow AR(1) processes, and 2 shocks that are assumed to be i.i.d.
The three foreign and the five fiscal shocks are estimated prior to the analysis), we include
the following set of 15 observable variables in yt: the domestic inflation rate, the short-run
interest rate, employment, consumption, investment, GDP, the real wage, exports, imports,
the consumption deflator and the investment deflator, the real exchange rate, foreign inflation,
the foreign interest rate, and foreign output.7 Despite the fact that the foreign variables
are exogenous, we still include them as observable variables as they enable identification of
the asymmetric technology shock and are informative about the parameters governing the
transmission of foreign impulses to the domestic economy.
To make the data stationary we experiment with two different strategies. In the first

strategy, all real variables enter yt in first differences. It is important to note that the unit
root technology shock in the theoretical model induces a common stochastic trend in the levels
of the real variables. In the second strategy, we therefore exploit the cointegration structure of
the theoretical model and all real variables except GDP enter yt as deviations from the GDP
level, while GDP itself enters in first difference form. In Figure 1 the data series are depicted
with real variables in yearly growth rates. Note that employment and the real exchange rate
are measured as percentage deviations around the mean.

3.2. Bayesian Inference. Prior to the Bayesian estimation of the model, we calibrate a
subset of parameters which are likely to be weakly identified by the variables that we include
in yt. These parameters are mostly related to the steady-state values of the variables (i.e.,
the great ratios) and are therefore relatively easy to calibrate (see Adolfson et al. (2005)
for details). The remaining 51 model parameters are estimated. The estimated parameters
pertain mostly to the nominal and real frictions in the model as well as to the exogenous shock
processes described above.

7The data set employed here was first constructed by Fagan et al. (2001). The Fagan data set includes
foreign (i.e., rest of the world) output and inflation, but not a foreign interest rate. We therefore use the Fed
funds rate as a proxy for this series. Note also that there is no (official) data on aggregate hours worked, Ĥt,
available for the euro area. Therefore, we use employment in our estimations. Since employment is likely to
respond more slowly to shocks than hours worked, we model employment using Calvo-rigidity (following Smets
and Wouters, 2003). For reasons discussed in greater detail in Adolfson et al. (2005), we take out a linear trend
in employment and the excess trend in imports and exports relative to the trend in GDP prior to estimation.
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Figure 1. Euro area data 1980Q1-2002Q4, yearly growth rates.

Table 1 shows the assumptions for the prior distribution of the estimated parameters. The
location of the prior distribution of the 51 estimated parameters corresponds to a large extent
to those in Smets and Wouters (2003) and the findings in Altig et al. (2003) on U.S. data. See
Adolfson et al. (2005) for a more detailed discussion about our choice of prior distributions.
We use the first 10 years of the full sample 1970Q1−2002Q4 to obtain a prior on the unobserved
state variables in 1979Q4, and use the subsample 1980Q1− 2002Q4 for inference.
The joint posterior distribution of all estimated parameters is obtained in two steps. First,

the posterior mode and Hessian matrix evaluated at the mode is computed by standard nu-
merical optimization routines. Second, draws from the joint posterior are generated using the
random walk Metropolis algorithm (see Schorfheide (2000) for details).8 In Table 1 we report
the posterior mode estimates of the parameters.
Table 1 also report estimation results for the following alternative specifications of the

benchmark model: i) with variable capital utilization, ii) with persistent domestic markup
shocks, and iii) with IID markup shocks. We have chosen these specifications since a high or
a low cost of varying the capital utilization has rather large effects on the impulse response

8A posterior sample of 500, 000 post burn-in draws was generated. Convergence was checked using standard
diagnostics such as CUSUM and potential scale reduction factors (PSRF) on parallel simulation sequences.



functions. For example, with variable capital utilization, marginal cost is smoother after a
monetary policy shock which in turn also makes the response of inflation more smooth. For
case ii) we find that allowing for persistent domestic markup shocks implies that the domestic
price stickiness is estimated to a much lower number, see Table 1. Similarly, if all markup
shocks are assumed to be independently distributed, the source of variation as well as the
price stickiness parameters (ξ:s) are completely different. We interpret this as that the model
needs either a high degree of price stickiness or highly correlated markup shocks to explain
the high inflation inertia seen in the data. We also find a larger role for indexation to past
inflation in this case, so that when less of the persistence is generated by correlated shocks
there must be a larger role for intrinsic persistence (i.e. lagged inflation) to account for the
inflation dynamics. Note that these alternative specifications are estimated using the data in
first differences.
Figures 2 and 3 show the sequential estimates (posterior mode) of the different DSGE mod-

els’ parameters when extending the data set year-by-year from 1994 and onwards. For each
specification of the model most of the parameters appear to be relatively stable over time
(scales considered) which is encouraging given that the parameters are updated according
to this scheme in the subsequent rolling forecast evaluation. However, the model estimated
with cointegration constraints shows somewhat less stability. First of all, there is negative
correlation between the habit formation parameter (b) and the persistence of the consumption
preference shock (ρζc). Second, the parameters related to investment (investment adjustment
costs (SS00) and the persistence (ρΥ) and standard deviation (σΥ) of the investment-specific
technology shock) are correlated over time and unstable. It should be noted that these pa-
rameters tend to have bimodal posteriors and the large changes in posterior mode estimates
from time to time simply reflect that sometimes one of the two local modes happens to be
slightly larger than the other. In other words, the instability in the posterior mode estimates
are more dramatic than the instability in the posterior distribution as a whole. Nevertheless,
the instability is larger in the model with cointegration imposed in the estimation. This is
probably an effect of the rather large persistent movements in the cointegrating relations, in
combination with a relatively short sample period (the shortest is 1980Q1-1993Q4 and the
longest 1980Q1-2001Q4). All in all, it seems reasonable to start the evaluation of the forecasts
as early as 1994, which leaves us with a relatively large sample to evaluate the forecasts.

3.3. Forecasting with DSGE models. Standing at time T , the predictive distribution of
the next h observations can be expressed as

(3.6) pT (yT+1, ..., yT+h) =

Z
p(yT+1, ..., yT+h|θ)pT (θ)dθ,

where θ is a vector of structural parameters in the DSGE model and pT (θ) is the posterior
distribution of θ based on all available information at time T . The multi-dimensional integral
in (3.6) cannot be evaluated analytically. The following algorithm uses the state space form of
the model in (3.4) and (3.5) to simulate N = N1 ·N2 future paths for the observed variables
and the unobserved states from the joint predictive distribution.

(1) Simulate a parameter vector θ from the posterior distribution.
(2) Simulate the current state vector from ξT ∼ N(ξ̂T |T , PT |T ), where the posterior mean

vector ξ̂T |T = ET (ξT ) and the posterior covariance matrix PT |T = CovT (ξT ) are
obtained in the final step of the Kalman filter.

(3) Simulate a sequence of future state vectors ξT+1, ..., ξT+h from the transition equation
(3.4) using the ξT generated in step 2 and an iid sequence of future shocks vT+1, ..., vT+h
from N(0, Q).
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ters using a year-by-year extended data set. DSGE diff. (–), DSGE coint.
(· · ·), Corr. mkup. (- - -), Var. cap. util. (— · —) and IID Markup (—+—).
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(4) Simulate an iid sequence of measurement errors ζT+1, ..., ζT+h from N(0, R) and com-
pute the observed variables from the measurement equation (3.5).

(5) Repeat steps 2-4 N1 times for the same θ.
(6) Repeat steps 1-5 N2 times.
The above algorithm makes it clear that the uncertainty in the forecasts comes from four

sources: parameter uncertainty (θ), uncertainty about the current state (ξT ), uncertainty
about future shocks (v), and measurement errors (ζ). One way to quantify the size of these
four sources is by decomposing the h-step ahead forecast covariance matrix Cov(yT+h|y(T )).
To this end, we write

(3.7) Cov(yT+h|y(T )) = ET [Cov(yT+h|θ, y(T ))] +CovT [E(yT+h|θ, y(T ))],
where ET and CovT denotes the expectation and covariance with respect to the posterior of θ at
time T , pT (θ). The first term ET [Cov(yT+h|θ, y(T ))] represents the average uncertainty in the
forecast when parameters are assumed to be known. The second term CovT [E(yT+h|θ, y(T ))]
therefore represents the additional uncertainty that comes from parameter uncertainty. It is
straightforward to show that

(3.8) E(yT+h|θ, y(T )) = H 0Fhξ̂T |T + C 0xT+h.

We now decompose the first term of (3.7) further as

(3.9) Cov(yT+h|θ, y(T )) = H 0FhPT |T (F
h)0H +H 0[

Ph
i=1 F

i−1Q(F i−1)0]H +R.

The first term of Cov(yT+h|θ, y(T )) comes from not knowing the current state ξT at time T .
The second term of represents shock uncertainty and the last term is the covariance matrix
of the measurement errors. Inserting (3.8) and (3.9) in (3.7) thus gives us the following
decomposition of the h-step ahead prediction covariance matrix

Cov(yT+h|y(T ))
= ET [H

0FhPT |T (F
h)0H] +ET

n
H 0[
Ph

i=1 F
i−1Q(F i−1)0]H

o
+R+ CovT (H

0Fhξ̂T |T + C 0xT+h)

= ξT -uncertainty + v-uncertainty + ζ-uncertainty + θ-uncertainty.

These four components of Cov(yT+h|y(T )) may be estimated by averaging over the posterior
draws in the usual simulation consistent way. Figure 4 displays the relative contribution to
the observed variables’ predictive variance (diagonal elements of Cov(yT+h|y(T ))) from the
four different sources in the benchmark DSGE model. It is apparent from Figure 4 that
v-uncertainty dominates, especially at longer forecast horizons, but for some variables the
ξT -uncertainty is substantial at shorter horizons. It is also seen that parameter uncertainty
contributes only a tiny part of the total forecast uncertainty.

4. Alternative forecasting models

The DSGE model is compared to several vector autoregressive (VAR) models, using both
maximum likelihood estimates of the parameters and Bayesian posterior distributions. In
addition, naïve forecasts based on univariate random walks as well as the means of the most
recent data observations are calculated.
The VAR systems consist of either seven or thirteen variables, with trending variables mod-

elled in first differences. The first is a closed economy specification composed of the seven
domestic variables: the domestic inflation rate, the short-run interest rate, employment, con-
sumption, investment, GDP, and the real wage. The second is an open economy specification
which additionally includes exports, imports, the real exchange rate, foreign inflation, the
foreign interest rate, and foreign output. Note that the consumption and investment deflators
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have been excluded in the VARs for reasons of parsimony. We will consider both VAR models
where the trending variables are modelled in first differences and VECM models with the
DSGE model’s cointegration restrictions imposed on the cointegrating space. Estimating the
VARs in first differences may suffer from misspecification since we do not allow for any coin-
tegration vectors. However, if the cointegrating relations are not stable over time, differencing
may play a robustifying role, see e.g. Clements and Hendry (1998).
The usual parametrization of the VAR model reads

(4.1) Π(L)yt = Φdt + εt,

where yt is a p-dimensional vector of time series, Π(L) = Ip − Π1L − ... − ΠkLk, and L the
usual back-shift operator with the property Lyt = yt−1. The disturbances εt ∼ Np(0,Σ),
t = 1, ..., T , are assumed to be independent across time. dt = (1, dMP,t)

0 is a vector of
deterministic variables. As noted in Section 2, the DSGE model embodies a time-varying
inflation target which enables it to capture the downward shift in the nominal variables over
the sample period. In the VAR, we approximate this by including the following dummy
variable in the model

dMP,t =

½
1 if t ≤ t∗

0 if t > t∗
,

where t∗ is set to 1992Q4 based on the posterior distribution of t∗ presented in Villani (2005).



A problem with the standard VAR representation in (4.1) is that the unconditional mean,
μy = E(yt), of the process is given by a non-linear function of the model’s parameters. This
makes it difficult to specify a prior on the VAR-coefficients which implies a reasonable prior
distribution on μy. This has in turn consequences for the forecasting performance since the
long run forecasts from a stationary process converge to μy. Moreover, the lack of a decent
prior on the unconditional mean in the VAR makes the comparison with the DSGE model
unbalanced as the DSGE model enjoys the benefit of having a well defined prior on its steady
state. We will therefore also consider an alternative parametrization of the VAR model of the
form

(4.2) Π(L)(yt −Ψdt) = εt.

This somewhat non-standard parametrization of the VAR model in (4.2) is non-linear in its
parameters, but has the advantage that the unconditional mean, or steady state, of the process
is directly specified by Ψ as μy =E0(yt) = Ψdt. This allows us to put the BVAR and DSGE
models more on par by using a prior on the steady state of the BVAR which is comparable
to the steady state prior used in the DSGE models. To formulate a prior on Ψ, note that the
specification of dt implies the following parametrization of the unconditional mean

E0(yt) =
½

ψ1 + ψ2 if t ≤ 1992Q4
ψ1 if t > 1992Q4

,

where ψi is the ith column of Ψ. The prior on ψ1 thus determines the steady state in the
second regime. The elements in Ψ are assumed to be independent and normally distributed
a priori. The 95% prior probability intervals for the yearly steady state growth rates are
given in Table 2. We will refer to specifications (4.1) and (4.2) as the BVAR and MBVAR
(mean-adjusted Bayesian VAR), respectively.
The prior proposed by Litterman (1986) will be used on the dynamic coefficients in Π,

with the following default values on the hyperparameters: overall tightness is set to 0.3, cross-
equation tightness to 0.2 and a harmonic lag decay with a hyperparameter equal to one. See
Litterman (1986) and Doan (1992) for details. Litterman’s prior was designed for data in
levels and has the effect of shrinking the process towards the univariate random walk model.
We therefore modify the original Litterman prior by setting the prior mean on the first own
lag to zero for all variables in growth rates. The two interest rates, employment and the real
exchange rate are assigned a prior which centers on the AR(1) process with a coefficient on
the first lag equal to 0.9. In all VAR models we impose the small open economy restriction
that the foreign variables are exogenously given, i.e., block exogenity of (π∗t , y

∗
t , R

∗
t ). Finally,

the usual non-informative prior |Σ|−(p+1)/2 is used for Σ.



Table 2: 95% prior probability intervals of Ψ

π 4w 4c 4i R
ψ1 (1.54, 2.33) (2.02, 2.83) (2.02, 2.83) (2.02, 2.83) (4.93, 6.39)
ψ2 (4, 7) (−0.05, 0.05) (−0.05, 0.05) (−0.05, 0.05) (3, 5)

bE ∆y x ∆ eX ∆fM
ψ1 (−10, 10) (2.02, 2.83) (−10, 10) (2.02, 2.83) (2.02, 2.83)
ψ2 (−0.05, 0.05) (−0.05, 0.05) (−0.05, 0.05) (−0.05, 0.05) (−0.05, 0.05)

∆y∗ π∗ R∗

ψ1 (2.02, 2.83) (1.54, 2.33) (4.93, 6.39)
ψ2 (−0.05, 0.05) (4, 7) (3, 5)

Note: The prior on the steady state is specified in terms of yearly rates for the domestic and foreign inflation
and interest rates (π, R, π∗, R∗) and in yearly growth rates for all real variables except employment and the
real exchange rate (i.e., ∆w, ∆c, ∆i, ∆y, ∆ eX , ∆fM , and ∆y∗).

The posterior distribution of the model parameters and the forecast distribution of the en-
dogenous variables are computed numerically using the Gibbs sampling algorithm in Kadiyala
and Karlsson (1997) for the parameterization in (4.1) and the Gibbs sampler in Villani (2005)
for the specification in (4.2).
To sum up, we analyze two different VAR-systems (7 and 13 variables) with 1 to 4 lags.

Both VAR systems are analyzed in first differences for the real variables as well as using a
VECM representation with the cointegration vectors taken from the DSGE model. For each
of these models, we employ two different specifications of the deterministic part of the process,
given by eq. (4.1) and eq. (4.2), respectively. In addition to this we also estimate the 7- and
13-variables system with maximum likelihood. To save space we choose only to report the
results from models with four lags in the 7-variable systems and, for reasons of parsimony,
with two lags in the 13-variable models. However, the forecasting results are similar across
lag lengths. All VAR systems are estimated on data beginning in 1980Q1.

5. Evaluating Forecast Accuracy on Euro Area Data 1994Q1-2002Q4

5.1. The rolling forecast evaluation scheme. The performance of the forecasting models
will be assessed using a standard rolling forecast procedure where the models’ parameters are
estimated using data up to a specified time period T where the dynamic forecast distribution of
xT+1, ..., xT+h is computed. The estimation sample is then extended to include the observed
data at time T + 1 and the dynamic forecast distribution of xT+2, ..., xT+h+1 is computed.
This is prolonged until no data are longer available to evaluate the one-step ahead forecast.
Notice that the VARs are re-estimated at a quarterly frequency while the DSGE models are
re-estimated only yearly. We start the rolling forecasts in 1993Q4, with the first out-of-sample
forecast produced for 1994Q1. The final estimation period is 2002Q3 which provides one 1-
step ahead forecast to be evaluated against the final data point in our sample which is dated
2002Q4. We consider the forecast horizons 1 to 8 quarters ahead. This gives us 36 hold-out
observations for the 1-step ahead forecast and 28 observations on the longest horizon.

5.2. Point forecasts - a univariate view. Figure 5 shows the root mean squared forecast
errors (RMSE) in yearly percentage terms at 1 to 8 quarters horizon from the baseline DSGE



model, two VAR systems (open and closed economy specifications), and two naïve setups
(univariate random walk and the mean of the eight most recent data observations). The mean
absolute forecast errors (MAE) give similar results and to save space we have chosen only to
report the RMSEs. We see from the figure that the DSGE model does very well in terms of
forecasts on the real exchange rate, exports and imports, at both short and long horizons,
suggesting that the open-economy aspects of the DSGE model are satisfactory modeled. The
DSGE model also seems to project consumption, employment, and the consumption deflator
inflation very well. For output and domestic inflation the DSGE model does slightly better
forecasts than the MBVARs at shorter horizons (1 and 2 quarters) but looses somewhat in the
medium run. Note also that the one- and two-step-ahead forecasts from the DSGE model beat
the random walk for most variables with the exception of the real wage, the interest rate and
the investment deflator inflation. In addition, the DSGE model’s forecasts outperform those
of the MLVAR model on most variables and horizons. However, at the eight quarter horizon
the baseline DSGE model’s forecast error for domestic inflation is a lot larger compared to
the ones for the two Bayesian VAR systems. The DSGE model misses with about 1.25% on
average while the forecast errors for domestic inflation in the MBVARs stay around 0.65%.
It should be noted that the long-run properties of the DSGE and MBVARs are similar since
the latter has a prior on the unconditional mean that is comparable to the steady state prior
in the DSGE model. It is thus not obvious that the DSGE model’s theoretical structure
should matter more in the long run, and therefore has an advantage over the MBVARs in the
forecasting performance at those particular horizons.
Figure 6 depicts the RMSEs for the four different specifications of the DSGE model esti-

mated with data in first differences, together with the benchmark specification estimated with
the DSGE model’s cointegration restrictions imposed. The figure shows that the accuracy of
the domestic inflation forecasts from the baseline DSGE model is a lot worse than the ones
generated by the DSGE model with correlated markup shocks, which in turn is more in line
with the MBVAR evidence. The problem is that the baseline model on average overpredicts
both inflation and the real wage more often at longer horizons than the model with correlated
markup shocks (not shown). By way of some simple experiments, we found that the main
reason for this is the higher price stickiness parameter in the baseline DSGE which induces
more inflation inertia than the model with correlated markup shocks. The baseline DSGE
model consequently has more difficulties capturing upturns and downturns in the inflation
series than, for example, the model with correlated markup shocks.9

Note also that imposing the model’s cointegration restrictions in the estimation on the base-
line specification leads to inferior forecasting performance on almost all variables and horizons
(see Figure 6). One explanation for this behavior is that the cointegrating relations implied
by the DSGE model display a large degree of persistence during the sample period. In order
to capture this feature of the data, the cointegration model is estimated to have both more
intrinsic persistence (i.e., larger nominal frictions) and a higher correlation in the exogenous
shock processes, compared to the baseline model estimated on data in first differences (see
Table 1). This in turn causes the cointegration model to generate more persistent forecasts,
which are generally not a feature of the actual outcome in the forecasting evaluation period
where, for example, inflation is consistently low and less persistent than in the earlier part
of the sample. A similar, but not as dramatic, deterioration in forecasting performance is
obtained also in the VARs when the DSGE’s cointegrating relations are included in the model
(compare the RMSE from the BVAR and the BVECM in Figure 7). Including highly persistent

9However, also other parameters contribute to the inflation persistence, such as a higher wage indexation
and larger responses to the output gap in the monetary policy rule (cf. Table 1).
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Figure 5. Root mean squared forecast errors for a subset of the models.

cointegrating restrictions in a first difference VAR is expected to be less problematic than
imposing cointegration in the DSGE estimation as the VAR model always has the possibility
to exclude a possibly inappropriate (non-stationary) cointegrating relation by estimating the
adjustment coefficients to be close to zero.
In Figure 7 we display the RMSEs for the various VAR systems. We see that the MBVARs

with a prior on the steady state seems to do better in terms of the forecasts on inflation at
longer horizons. On the other hand, the MBVAR models seem instead to perform worse on
some of the real variables such as e.g. the real wage. The difference between the Bayesian
VARs at longer horizons is to a large extent explained by the MBVARs’ prior on the steady
state in Table 2. The average inflation rate during the evaluation period turned out to be
near the center of the steady state prior which explains the good long run forecasts of inflation
from the MBVAR models. Likewise, the poor real wage forecasts are explained by the lack of
correspondence between the realized real wage growth in the evaluation period and the steady
state prior (compare Figure 1 and Table 2).
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Figure 6. Root mean squared forecast errors for the DSGE models.

5.3. Point forecasts - a multivariate view. We also consider two multivariate measures of
point forecast accuracy based on the scaled h-step-ahead Mean Squared Error (MSE) matrix

(5.1) ΩM(h) = N−1
h

T+Nh−1X
t=T

ẽt(h)ẽ
0
t(h),

where ẽt(h) = M−1/2et(h), et(h) is the h-step-ahead forecast error vector from the forecast
produced at time t, M is a positive definite scaling matrix, and Nh is the number of evaluated
h-step-ahead forecasts. Commonly used scalar valued multivariate measures of point forecast
accuracy are the log determinant statistic ln |ΩM(h)| and the trace statistic tr[ΩM(h)]. Note
the relations ln |ΩM(h)| = ln |ΩI(h)|− ln |M | and tr[ΩM(h)] = tr[M−1ΩI(h)], so that the log
determinant statistic is invariant to the choice of scaling matrix, whereas the trace statistic
is not. Because of this, and to simplify the interpretation of the trace statistic, we set M
equal to a diagonal matrix with the sample variances of the time series based on data from
1993Q1−2002Q4 as diagonal elements. WithM equal to a diagonal matrix, the trace statistic
reduces to a simple weighted average of the MSEs of the individual series.
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Figure 7. Root mean squared forecast errors for the VAR models.

Table 3 shows the log determinant and the trace of the MSE matrix (the log predictive score
statistic will be discussed in Section 5.5). In order to be able to compare the multivariate mea-
sures across the different models, we have in the first set chosen to include only the variables
that are common to all models. The first set of multivariate measures are therefore based on
the matrix of forecast errors from domestic inflation, the real wage, consumption, investment,
employment, the interest rate and output. According to both the log determinant and the
trace statistics, the Bayesian VAR models appear overall to have better accuracy on the one
and four quarter ahead forecasts than the ones generated from the different DSGE specifi-
cations. However, at the 8 quarter horizon the forecasts from the DSGE model outperforms
those of the BVARs, at least judging from the log determinant statistic.
The RMSE results in Figures 5-7 appear incompatible with the multivariate measures in

Table 3. As an example, the substantially worse multivariate performance of the DSGE mod-
els at the one quarter horizon is hard to understand simply by looking at the univariate
RMSEs. To investigate the multivariate measures in more detail we perform a singular value
decomposition of Ω (M and h is dropped here for notational convenience): Ω = V ΛV 0,where
V = (v1, ..., vk), V 0V = Ik, is the matrix of eigenvectors, Λ=diag(λ1, λ2, ..., λk) is the diag-
onal matrix with eigenvalues in descending order. The eigenvalues are the variances of the
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Figure 8. Eigenvalues (left column) and log of eigenvalues (right column) of
the MSE matrix at different horizons.

principal components yi,t = v0iẽt. λ1 (λk) is thus the variance of the least (most) predictable
linear combination of the time series. Since ln |Ω| =

Pk
i=1 lnλi and tr(Ω) =

Pk
i=1 λi, it is clear

that tr(Ω) will to a large extent be determined by the forecasting performance of the least
predictable dimensions (largest eigenvalues), whereas ln |Ω| =

Pk
i=1 lnλi also takes into ac-

count the most predictable dimensions (smallest eigenvalues), sometimes to the extent of being
dominated by them. To see the latter point, note that as λk → 0 we have tr(Ω) →

Pk−1
i=1 λi,

but ln |Ω|→ −∞, for any values of λi, i = 1, ..., k − 1.
Figure 8 displays the eigenvalues of the MSE matrix, both on original and log scale, at the

1, 4 and 8 quarter horizons for four of the models. The log determinant statistic equals the
sum of the log eigenvalues of the MSE matrix. It is therefore clear from the right column of
Figure 8 that the large difference in forecasting performance between the DGSEs and BVARs
captured by this statistic at the first quarter horizon is driven by the smallest eigenvalue. The
DSGE models inferior forecast performance at the one quarter horizon therefore comes from
their inability to predict those variables which account for the major part of the last principal
component at the shortest horizon. Looking at the subgraphs in the right column of Figure 9,
which depicts the relative weight on the variables in the eigenvector with smallest eigenvalue
(v2jk for the jth variable), it is clear that this principal component at the shorter horizons is
essentially the forecast errors of the employment series. The one-quarter ahead RMSEs of the
employment series in Figure 5 are small for all models, but the relative difference between the
DSGE models and the BVARs are substantial: the RMSE of employment at the first horizon
in the benchmark DSGE is almost twice those of the two BVARs. Since the log determinant
measure is very sensitive to the performance on the most predictable dimensions, this minor
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Figure 9. Relative contribution to the smallest and largest eigenvalue of the
MSE matrix (square of the elements in the eigenvector). The superimposed
dashed line depicts the percentage of total variation explained by the eigenvec-
tor, λi/

Pk
j=1 λj where λi is the ith largest eigenvalue.

difference between the models receives a very large weight in the log determinant measure.
Note also that the forecast errors of employment is still the driving force of the smallest
eigenvalue at horizon 4 (see Figure 9), but here the difference in log determinant statistic across
models is no longer dominated by this eigenvalue (see Figure 8). At the four quarter horizon it
is mainly the largest eigenvalue which is dominating the comparison. The determinants of this
eigenvector are given in the left hand column of Figure 9. The relatively good multivariate
performance of the DSGE model with correlated markup shocks and the seven variable BVAR
is in part explained by the fairly large weight on real wage, a variable which these two models
predict more accurately than the benchmark DSGE. Finally, on the eight quarter horizon the
picture is more complicated, but the poor performance of the benchmark DSGE on the long
run forecasts of the real wage (which drives the largest eigenvalue, see Figure 9) is more than
compensated by its good forecasts of the variables contributing to the smallest eigenvalues.
Since the multivariate measures run the risk of being dominated by a specific variable

which may be of minor interest (e.g., employment), Table 3 also shows the log determinant
and trace of the MSE matrix from two other sets of variables. One is based on the forecast
errors of domestic inflation, output and the interest rate, and another on these three variables
together with the real exchange rate, exports and imports. Looking only at the three domestic
variables it appears as if the DSGE models have a better chance of replicating the forecasting
performance of the BVARs also at shorter horizons. The same holds true when adding the
performance in terms of the open economy variables (i.e., the real exchange rate, exports and



Figure 10. Empirical coverage probability, DSGE and BVARs, 1 quarter horizon.

imports) to these three variables. Both the log determinant and the trace statistic indicate
that the DSGE models have better forecast accuracy for this set of variables on the 1, 4 and
8 quarter horizons.

5.4. Interval forecasts. A forecast interval10 is said to be well calibrated if the long run
relative frequency of realized observations included in the forecast interval equals the pre-
specified coverage probability of the interval (Dawid, 1982). Formally, define the sequence of
hit indicators of an h-step-ahead forecast interval with coverage probability as

Iαt (h) =

½
1 if xt ∈ [Lα

t (h),H
α
t (h)]

0 if xt /∈ [Lα
t (h),H

α
t (h)]

where Lα
t (h),H

α
t (h) are the lower and upper limits of the interval at time t. The relative

frequency of interval hits in the evaluation sample, α̂h = N−1
h

PT+Nh−1
t=T Iαt (h), may then be

compared to the pre-specified coverage rate α.
Figure 10 shows the accuracy of the one quarter ahead forecast intervals in terms of the

empirical coverage probabilities for the baseline DSGE model and three BVAR specifications.
The horizontal axis depicts the (intended) coverage probability of the interval and the vertical
axis the empirical coverage rate obtained in the hold-out sample. The ideal forecasting model

10There are many ways to construct a forecast interval with predetermined coverage probability, e.g. high-
est posterior density (HPD) intervals. We shall here restrict attention to forecast intervals with equal tail
probabilities.



Figure 11. Empirical coverage probability, DSGE , 1 quarter horizon.

should thus have an empirical coverage rate which is located on the 45 degree line.11 The
empirical coverage probabilities of the forecast intervals for the DSGE model and the BVAR
model are rather equal across variables, with a few exceptions. The MBVARs tend to deliver
too wide forecast intervals for most variables.
A more formal analysis of the accuracy of forecast intervals may be based on the observation

that the hit sequence from a correct one step-ahead forecast interval follows an iid Bernoulli
process with success probability. Christoffersen (1998) suggests using asymptotic likelihood
ratio tests to test the Bernoulli hypothesis against several alternatives. As a Bayesian alter-
native to these tests we compute posterior probabilities of the following three hypotheses

H0 : {Iαt (1)}T+N1t=T+1
iid∼ Bern(α)

H1 : {Iαt (1)}T+N1t=T+1
iid∼ Bern(π)(5.2)

H2 : {Iαt (1)}T+N1t=T+1 ∼Markov(π01, π11),

where π in H1 and π01, π11 in H2 are estimated freely. The notationMarkov(π01, π11) is here
used to denote a general two-state Markov chain with transition probabilities π01 = Pr(0→ 1)
and π11 = Pr(1 → 1). If H0 is supported, the forecast intervals are correct, both in terms

11The one-step ahead empirical coverage probabilities are based on 36 hit indicators. The uncertainty
in estimating percentiles of the predictive density is expected to be fairly large, especially in the tail of the
distribution, and the exact numbers in Figure 10 should therefore not be over-emphasized.



of coverage and independence of interval hits. If data supports H1, the hit indicators are
independent, but do not generate the intended coverage α. A large posterior probability of H2

suggests a violation of the independence property of the interval. Note that even if H2 receives
the largest posterior probability, the coverage of the interval may still be correct. Whether or
not the interval has the correct coverage when the evidence is in favor of H2 is indicated by
the relative distribution of the remaining probability mass on H0 and H1.12

Table 4 shows the posterior probabilities of the three hypotheses in equation (5.2) for the
70% forecast interval. From the table follows that the baseline DSGE model has most proba-
bility mass on H0. From Table 4 also follows that the benchmark DSGE model has somewhat
better calibrated forecast intervals than the other DSGE specifications. As mentioned above,
the model with correlated markup shocks does a lot better in terms of the point forecast
accuracy of domestic inflation at longer horizons but on 1 and 2 quarters ahead the inflation
forecast accuracy in the different DSGE specifications are about the same. However, from
Figure 11 follows that the inflation forecast intervals are a lot wider in the model with cor-
related markups than in the baseline DSGE model. The empirical coverage rate is hence too
large.
Turning to the four quarter horizon we see from Figure 12 that the forecast interval accuracy

of the DSGE seems to deteriorate in comparison to the BVARs. A reason for the worse
properties of the DSGE model could be the internal propagation of the disturbances hitting
the economy. The processes for the disturbances are generally highly correlated, which implies
that the uncertainty induced by these shocks amplify over the horizon and generate wider
uncertainty bands.

5.5. Density forecasts and marginal likelihood. In this section we move beyond the
evaluation of point and interval forecast to evaluate the predictive density as a whole. A
natural measure of density forecast performance is the log predictive density score (LPDS) of
the h-step-ahead predictive density in the evaluation sample

Sh =
PT+Nh−1

t=T log pt(yt+h).

Note that
(5.3)
S1 = log[pT (yT+1) · · · pT+N1−1(yT+N1)] = log[pT (yT+1, ..., yT+N1)] = logm(T+N1)−logm(T ),
where

m(t) = p0(y1, ..., yt) =

Z
p(y1, ..., yt|θ)p0(θ)dθ,

is the marginal likelihood of the observed data up to time t, and p0(θ) is the prior density. It
is important to note that no data are consumed to estimate the parameters of the model when

12The posterior probabilities of H0,H1 and H2 are computed as follows. Let n0 and n1 denote the number
of zeros and ones, respectively, in the hit sequence. Let further nij denote the number of transitions from state
i to state j in the Markov chain under hypothesis H2, so that for example n01 is the number of zeros in the
sequence which are followed by ones. Assuming independent priors π ∼ Beta(γ, δ) in H1, π01 ∼ Beta(γ01, δ01)
and π11 ∼ Beta(γ11, δ11) in H2, the marginal likelihoods of the three hypotheses are easily shown to be

m0 = αn0(1− α)n1

m1 =
B(n0 + γ, n1 + δ)

B(γ, δ)

m2 =
B(n01 + γ01, n00 + δ01)B(n11 + γ11, n10 + δ11)

B(γ01, δ01)B(γ11, δ11)
,

where B(·, ·) is the Beta function. We will present results for uniform priors on π, π01 and π11, i.e. we set
γ = δ = γ01 = δ01 = γ11 = δ11 = 1.



Figure 12. Empirical coverage probability, DSGE and BVARs, 4 quarter horizon.

computing the marginal likelihood (i.e. the prior density is used to average the likelihood
values). This makes it possible to interpret the marginal likelihood as a measure of out-of-
sample predictive density performance, rather than in-sample fit.
Equation (5.3) thus establishes an intimate connection between the marginal likelihood and

the LPDS for the one-step-ahead forecasts. This connection breaks down for h > 1, however.
While it is possible to decompose the marginal likelihood into terms which evaluate the LPDS
for intermediate non-overlapping h-steps forecasts paths, i.e. a decomposition in terms of the
form pt(yt+1, ..., yt+h) (Geweke, 1999), it is not possible to decompose it in terms of the h-step-
ahead forecasts densities, i.e pt(yt+h). This means that the marginal likelihood cannot detect
that some models perform well on certain forecast horizons while other models do better on
other horizons.
Computing Sh for h > 1 is not an easy task since pt(yt+h) does not have a closed form

expression. One approach is to estimate pt(yt+h) from the predictive draws using e.g. a kernel
density estimator. This is not practical unless the dimension of yt is small, however. We shall
instead assume that pt(yt+h) is a multivariate normal density, and estimate the mean vector
and covariance matrix from the predictive sample. Sh will here be computed on yearly growth
rates of the variables (with the exception of the real exchange rate and employment), as in all
previously reported measures of forecasting accuracy.
The second column of Table 5 displays the marginal likelihood of the four DSGE models for

the full sample 1980Q1−2002Q4. This is the measure usually reported in DSGE applications.



According to this measure, the benchmark model is substantially better than the models with
variable capital utilization and correlated markup shocks. The model where all markup shocks
are iid has a dramatically lower marginal likelihood than the other models.13 It is well-known
that the marginal likelihood can be sensitive to the choice of prior distribution. One way
around this is to use the first part of the sample to update the prior into a posterior which
is subsequently used to compute the marginal likelihood of the second part of the data. The
third column of Table 5 therefore presents the marginal likelihoods for the evaluation sample
1994Q1− 2002Q4 conditional on data up to 1993Q4. Here the ranking of the four models has
changed: the benchmark model and the model with variable capital utilization are essentially
equally good, the model with correlated markup shocks is roughly two units worse on the log
scale, while the model with iid markup shocks is still clearly the most inferior model.14

The last three columns of Table 5 show the LPDS of the four models at the 1, 4 and 8
quarter horizons. The ranking of the four models is exactly the same for all three considered
forecast horizons. The model with correlated markup shocks outperforms its competitors and
the LPDS is much smaller for the model with iid markup shocks than for the other models,
a results which holds for all forecast horizons. The relative differences between the LPDS of
the first three models is much smaller at the 8 quarter horizon than at the 1 and 4 quarter
horizons. Note that the marginal likelihood measures (column 2 and 3 in Table 5) are based on
the data transformation which is used in the estimation of the model (first differences), whereas
the LPDS measures use the same data transformation as in the other forecast performance
measures (fourth differences). The choice of data transformation is clearly important even for
the relative ranking of the model, as judged by the differences between log(m02:4/m93:4) and
S1 in Table 5.15

Table 5: Evaluating predictive densities
logm(02Q4) log[m(02:4)/m(93:4)] S1 S4 S8

DSGE, Benchmark -1909.34 -802.06 -634.09 -963.75 -943.05
DSGE, var. cap. util. -1917.39 -801.93 -624.73 -958.04 -940.06
DSGE, corr. markup -1915.53 -804.11 -619.11 -945.65 -935.54
DSGE, iid markup -1975.50 -816.88 -681.32 -1061.28 -1014.30

Note: Numbers in bold indicate the best model for each measure.

The LPDS reported in Table 5 is based on the full set of 15 variables. Reducing this high-
dimensional set to a scalar clearly runs the risk of being dominated by (linear combinations
of) variables which the end user of the forecast cares very little about (cf. the discussion of the
multivariate measures of point forecast accuracy in Section 5.3). Table 3 therefore reports the
LPDS for certain subsets of variables. Here the picture is less clear-cut. In the case with the
three and six variable subsets, the model with correlated markup shocks is inferior to the other
DSGE models at all horizons, the exception being the 1 quarter horizon for the six-variable
subset. The performance of the model with iid markup shocks, which was clearly inferior

13The posterior probabilities on the four DSGE models are 0.9975, 0.0003, 0.002 and 0.
14The posterior probabilities of the four DSGE models based on the subsample 1994Q1-2002Q4 are 0.441,

0.502, 0.057 and 0.
15There are also two other reasons for the discrepancy between the marginal likelihood (1994Q1-2002Q4) and

S1. First, S1 is in Table 5 computed using a normal approximation of the predictive distribution. Second, S1
is based on a posterior sample which is updated only once a year. Given the fairly good normal approximation
(not shown) and the stability of the posterior distribution over the evaluation sample (see Figure 2 and 3), it
is expected that these two sources account for a smaller part of the discrepancy.



to the other models when all 15 variables were evaluated, is from Table 3 seen to be more
in line with the other models when it comes to predicting smaller subsets of the variables.
The performance of the iid markup shock model is particularly good on the important subset
containing domestic inflation, the interest rate and output growth. Moreover, the previously
reported measures of forecasting performance (e.g. RMSE) do not single out the iid markup
model as dramatically worse than the other DSGE models.

6. Conclusions

This paper has evaluated the forecasting performance of an open economy dynamic sto-
chastic general equilibrium model for the Euro area against a wide range of reduced form
forecasting models such as VARs, BVARs, univariate random walks and naïve forecasts based
on the means of the most recent data observations.
The DSGE model performs very well in terms of univariate point forecasts on the open

economy variables such as the real exchange rate, exports and imports. The RMSEs speak
in favour of the DSGE model for these variables at both long and short horizons, suggesting
that the open economy aspects are reasonably modeled. In terms of the domestic variables,
the DSGE model also seems to forecast output, consumption and employment very well, but
has some difficulty with the long run projections of domestic inflation and the real wage.
The multivariate point forecast accuracy measures, which take the joint forecasting per-

formance of the domestic variables into account, indicate that the DSGE models give more
accurate forecasts than the BVARs at the medium- to long-term horizons (4 - 8 quarters
ahead).
Turning to the overall density forecast accuracy, the differences between the models appear

to be relatively small. Again, the baseline DSGE model seems to produce a somewhat better
multivariate forecast density at longer horizons, while the BVARs have an overall forecasting
advantage predominately at shorter horizons.
A caveat with the analysis in this paper is that we are using ex post data and not real-time

data. The latter could perhaps change the ranking of the models, even if the same data are
used in both the DSGE and the BVAR models. Another important issue for future work is to
include more shocks with permanent effects in the model. The poor forecasting performance
of the DSGE when imposing the model-implied cointegration properties suggests that it would
be fruitful to incorporate more shocks with long-run effects than just the unit-root shock in
total factor productivity considered here.
Future work may also want to consider an even broader set of competing forecasting models,

e.g. the DSGE-VARs in Del Negro and Schorfheide (2004) or the large scale dynamic factor
models in Stock and Watson (1999), and Giannone, Reichlin and Sala (2004).
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