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Abstract

The New-Keynesian Phillips curve has recently become an important ingredient in mon-
etary policy models. However, using limited information methods, the empirical support for
the New-Keynesian Phillips curve appear to be mixed. This paper argues, by means of Monte
Carlo simulations with a simple New-Keynesian sticky price model, that single equations
methods, e.g. GMM, are likely to produce imprecise and biased estimates. Then, it is ar-
gued that estimating the model with full information maximum likelihood (FIML) is a useful
way of obtaining better estimates. Finally, a version of the model used in the Monte Carlo
simulations is estimated on U.S. data with FIML and although the pure forward-looking
New-Keynesian Phillips curve is rejected, a version with both forward- and backward-looking
components provides a reasonable approximation of U.S. inflation dynamics.
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1 Introduction

Galí and Gertler (1999) and Galí, Gertler and López-Salido (2001) estimate a “hybrid” version

of the New-Keynesian Phillips curve, with both forward-looking and backward-looking elements

included, with Generalized Method of Moments (GMM). They find that the pure New-Keynesian

Phillips curve, where inflation is a function of expected future inflation and real marginal costs

today, is a good approximation of inflation dynamics in both the U.S. and Europe. Roberts

(2001), however, provides evidence against the New-Keynesian Phillips curve with only forward-

looking elements using GMM, although — in contrast to Fuhrer (1997) — he finds there to be a

clear role for forward-looking behavior.

As the evidence using GMM appear to be mixed, this paper first estimates a version of the

New-Keynesian Phillips curve with both forward- and backward-looking elements included on

US data by non-linear least squares (NLS). The estimate for the driving variable is found to

have the wrong sign irrespective of whether real marginal costs or the output gap are used as the

driving variable, a finding that is robust across subsamples. However, it should be emphasized

that an important requirement for the NLS estimator to be unbiased and consistent is that the

“pure-theory” version of the New-Keynesian Phillips curve holds.1

To examine the properties of single equation methods such as GMM (that have been exten-

sively used in the literature) and NLS, I construct a simple macroeconomic model — similar to

a version thoroughly studied by Clarida, Galí and Gertler (1999) — and study the properties of

single equation estimation methods by means of Monte-Carlo simulations. Two cases are con-

sidered, one with no measurement errors in the data, and another where the data are assumed

to be characterized by small measurement errors.2 Interestingly, the simulations show that very
1The “pure-theory” version is a New-Keynesian Phillips curve without a shock included, see Kurmann (2004)

for further discussion.
2As carefully explained in Section 3.2, there are both theoretical and statistical reasons to believe that the
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small measurement errors produce biased estimates and can explain the NLS estimation results

obtained on US data. The simulations also reveal two severe problems with GMM. First, even

in the absence of measurement errors, the GMM estimates are severely biased in small samples

towards finding inflation inertia, if there is inertia in aggregate demand and the interest rate,

which seems to be the case empirically, see e.g. Fuhrer and Moore (1995a).3 Interestingly, the

size of the GMM bias is such that the estimation results may support a backward-looking Phillips

curve, although the true Phillips curve is highly forward-looking, which is an opposite problem

with GMM than that suggested by Rudd and Whelan (2005).4 Second, the size of the GMM

bias varies with the conduct of monetary policy, i.e. if there is a change in monetary policy, then

the GMM estimates of the coefficients in the Phillips curve will also change in small samples,

although the true parameters remain unchanged.5 It should be stressed that these pitfalls with

GMM are the same irrespective if using a “direct” estimation approach as in e.g. Galí and

Gertler (1999) or the closed-form approach employed by Galí, Gertler and López-Salido (2005).

Consequently, it is concluded that single equation estimation methods are not very informative

when estimating the New-Keynesian Phillips curve on real-world data.

The paper proceeds to examine the properties of the Full Information Maximum Likelihood

data suffer from measurement errors.
3Note that, in the absence of measurement errors, the pitfalls discussed in this paper with GMM are small-

sample problems as in Fuhrer, Moore and Schuh (1995). However, in the presence of measurement errors, the

GMM bias persists even if the sample size is considerably increased as discussed in Section 3.3. Moreover, the

problems identified with GMM are not due to bad normalizations since the estimated model is linear.
4Rudd and Whelan (2005) argue that GMM may produce support for the pure forward-looking New-Keynesian

Phillips curve, although the true Phillips curve is completely backward-looking.
5For instance, if there is inertia in aggregate demand, an increased degree of interest rate smoothing will

increase the persistence of inflation. And if GMM is used to estimate the Phillips curve, the estimated weight

on forward-/backward-looking behavior will decrease/increase in small samples, although the true parameters

remain unchanged.
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(FIML) estimator on data with measurement errors. In contrast to the estimation results for

the single equation methods, it is found that FIML does a good job in pinning down the true

parameters on simulated data, confirming the findings by Fuhrer, Moore and Schuh (1995).

Moreover, FIML is also shown to do a better job than the limited information methods, even

if the model is severely misspecified and the measurement errors are non-normally distributed,

which are common arguments against the use of FIML (see e.g. Tauchen, 1986).

The last part of the paper estimates a version of the macroeconomic model used in the

simulations with FIML on exactly the same dataset as that used in the single equation esti-

mations. Using various measures of the driving variables and the inflation rate, the share of

forward-looking behavior is found to be about 0.30−0.50 in both the Phillips curve and the ag-

gregate demand relationship and highly significant, as opposed to the findings by Fuhrer (1997).

A positive and significant coefficient of about 0.06 is also found for the driving variable in the

Phillips curve. However, it should be acknowledged that in order to close the model with only

three equations, these estimates are obtained using standard measures of the output gap, which

is not typically the theory-consistent driving variable. Some recent studies that apply Maximum

Likelihood techniques using theory-consistent real marginal costs as a driving variable, find a

larger role for forward-looking behavior, see e.g. Adolfson et al. (2005) and Kurmann (2004),

whereas Jondeau and Le Bihan (2004) obtain results similar to the ones obtained in this paper.

The structure of the paper is thus as follows. The next section presents some estimation

results for the New-Keynesian Phillips curve on quarterly US data using non-linear least squares.

Section 3 then presents the macroeconomic model and reports single equation estimation results

on simulated data with and without measurement errors. The properties of FIML estimation on

simulated data are studied in Section 4. In Section 5, the FIML estimation results on US data

are presented. Some concluding remarks and tentative implications are provided in Section 6.
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2 NLS estimation results on US data

Galí and Gertler (1999), Roberts (2001) and Rudd and Whelan (2005) estimate the following

version of the New-Keynesian Phillips curve

πt = ωfEtπt+1 + ωbπt−1 + γyt, (1)

with GMM using instrumental variables to compute a proxy for Etπt+1. Some authors refer to

(1) with ωf ≈ 1 and ωb = 0 as the New-Keynesian Phillips curve. In the following, (1) will be

referred to as the New-Keynesian “hybrid” Phillips curve.

Rudd andWhelan (2005) show that GMM produces biased estimates of the parameters in (1),

when instruments are used that belong to the true inflation equation. Therefore, another method

is proposed to estimate the equation. By imposing rational expectations, πt+1 =Etπt+1 + ηt+1,

we can rewrite (1) as

πt+1 =
1

ωf
πt −

ωb
ωf

πt−1 −
γ

ωf
yt + ηt+1, (2)

where ηt+1 is orthogonal to the information set in period t. Thus, it should be possible to

obtain consistent estimates of the parameters in (1) by estimating (2) with non-linear least

squares (henceforth NLS, because equation 2 is non-linear in the parameters).6 A drawback of

this estimation method, though, is that it cannot handle the case when ωf = 0, but given the

previous results in the literature, this corner solution is a very unlikely outcome.

Before turning to the estimation results of (2), note that it can be written on the following

form

πt = β1πt−1 + β2πt−2 + β3yt−1 + εt, (3)

which looks like a standard backward-looking Phillips curve. A difference between equations

(2) and (3) is that the New-Keynesian hybrid Phillips curve implies that β3 is negative whereas
6Note that this property of NLS crucially hinges on the absence of an error term in (1). Hamilton (1994)

discusses this issue (see p. 426).
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the traditional backward-looking Phillips curve, which imposes no restrictions on β1 and β2,

suggests β3 to be positive. So, if we estimate (2) and find ωf to be significantly positive, a

positive estimate of γ would then also be expected.

In Table 1, estimation results of equation (2) are reported for the period 1960Q1− 1997Q4.

To investigate parameter stability, the equation pre- and post-1980 is also estimated.7 Since

Galí and Gertler (1999) have pointed out that real marginal costs should be used as the driving

variable y rather than a measure of the output gap, both measures of yt are used in Table 1.

As is clearly seen, this is of no importance for the results: in both cases, γ is never significantly

positive. These results are in sharp contrast to the results reported by Galí and Gertler, where

the use of marginal costs instead of the output gap produced a positive and significant γ. Note

also that the sum of ωf and ωb is not restricted to equal 1 in the estimations, but imposing such

a restriction does not considerably affect the results (presumably because the estimated sum of

ωf and ωb is very close to 1). The parameter estimates reported in Table 1 also seem to be

stable over time, although the point estimates (i.e., ω̂f > 1 and ω̂b < 0) appear to be hard to

reconcile with the underlying theory of the New-Keynesian Phillips curve.

The results in this section are not supportive for the New-Keynesian Phillips curve; rather

they are more easily reconciled with the idea of a backward-looking Phillips curve. However, one

aspect of the estimation results is difficult to reconcile with this interpretation: how come that

the estimate of ωf is so high, if the backward-looking Phillips curve is a better representation

of the data? Possible explanations for this anomaly will be investigated in the next section.
7Note that the equation using non-farm business (NFB) data has also been estimated, but since the results are

very similar, they are not reported in Table 1. In addition, the regression has been computed using HP-filtered

output as the driving variable, but once more, the results were found to be very similar.
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3 Properties of single equation estimation methods

In this section, I will set up a small macroeconomic model including the New-Keynesian Phillips

curve. By estimating the New-Keynesian Phillips curve with NLS and GMM on simulated data

sets from the model, the small sample properties of the single equation methods are studied

by means of Monte Carlo simulations. Two cases will be considered: When all variables are

measured without measurement errors and when there are small measurement errors present in

the data.

3.1 The macroeconomic model

The model used consists of the following equations

πt = ωfEtπt+1 + ωbπt−1 + γyt, (4)

yt = βfEtyt+1 + βbyt−1 − βr (Rt − Etπt+1) + εy,t,

Rt = (1− ρ)
¡
γππt + γyyt

¢
+ ρRt−1 + εR,t,

where the shocks are allowed to follow univariate AR(1)-processes

εy,t = ρyεy,t−1 + uy,t, (5)

εR,t = ρRεR,t−1 + uR,t.

The first equation is the New-Keynesian hybrid Phillips curve, and the second is the aggregate

demand equation. The last equation is an interest rate rule that the central bank is assumed to

follow when deciding on the nominal interest rate. The model is very similar to that thoroughly

studied in Clarida, Galí and Gertler (1999).8

8 In the working paper version of this paper, it is shown how to solve the model given by (4) and (5) in Appendix

A.
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The following benchmark parameters are used in the model. ωf = 0.30, ωb = 0.70 and

γ = 0.13 are adapted from estimates presented in Rudebusch (2002). For simplicity, I also set

βf = 0.30 and βb = 0.70. The parameter βr is taken from Rudebusch (2002) and set equal to

0.09. To get a reasonable parameterization of the monetary policy rule, γπ = 1.50 and γy = 0.50

are chosen (see Taylor, 1993) but some interest rate smoothing is also allowed in the short-run

by setting ρ = 0.50 (see e.g. Estrella and Fuhrer 2003, and Clarida, Galí and Gertler, 2000).

To obtain values for ρR and σεR , the Fed Funds rate was used as a measure of Rt (yt and πt

measured as in the previous section, see notes to Table 1), and the residuals ε̂R,t were computed

for the period 1987Q3− 1999Q4 according to the interest rate rule in (4). The resulting series

for ε̂R was then used to compute σεR = 0.431 and estimate (5) with OLS to obtain

ε̂R,t = 0.806
(0.094)

ε̂R,t−1 + ûR,t, D-W = 1.60, B-G χ2 (4) = 2.87
(0.58)

,

which suggests that the residuals εR in (5) are well modeled as a univariate AR(1) process with

ρR = 0.80, since the p-value in the Breusch-Godfrey test for autocorrelation up to the 4th order

indicates no remaining autocorrelation. ρy is assigned a similar value, 0.5, and σεy is set equal to

0.333 to make the standard error of output in the model similar to the data (about 3 percent).9

3.2 Estimation without measurement errors

The results when estimating (1) with GMM and (2) with NLS on simulated data are reported in

Table 2.10 In addition to the benchmark parameterization of the Phillips curve, two alternatives
9Note that σuy and σuR are set to 0.288 and 0.252, so that the unconditional standard deviations in εy and

εR equal 0.333 and 0.431, respectively.
10 In the “direct” single equation approach adopted here, GMM is equivalent to a 2SLS estimation since the

Phillips curve is linear in the parameters and just identified, see Hamilton (1994) p. 418-21. The closed-form

solution with GMM has also been estimated (see Galí, Gertler and López-Salido, 2005 for details), but since the

results were essentially identical they are not reported below.
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are considered: one where ωf = 0.90 and ωb = 0.10, and another where ωf = 0.10 and ωb = 0.90.

Moreover, I also report results when estimating (1) when the actual data generating version of

the Phillips curve is (1) plus a shock, επ,t. Altig, Christiano, Eichenbaum and Lindé (2002)

derive such shocks to be variations in firms’ mark-ups. To be moderate, we assume these shocks

to be uncorrelated and have a standard deviation of 0.50, which is half the size of the estimate

obtained by Rudebusch (2002).

As can be seen from Table 2, both estimation methods work very well in getting the estimated

value of γ correct when there is no misspecification of the model and when ωf is low relative

to ωb. When it comes to getting the correct estimates for ωf and ωb, the GMM estimation

method produces a sizable bias on this sample size (T = 200) for high values of ωf .11 Moreover,

in the case when the New-Keynesian Phillips curve is subject to a slight misspecification (we

have added a white noise term), both NLS and GMM produce clearly upward/downward biased

estimates of ωf/ γ. I view this latter experiment as a variation of the misspecification problem

with GMM identified by Rudd and Whelan (2005).12

The GMM small-sample bias in ωf , ωb and γ for high/low values of ωf/ωb arises when

inflation is not intrinsically persistent, but inherits persistence in the model via inertia in the

aggregate demand and the policy rule. It can be shown that GMM will only produce unbiased

estimates when the intrinsic inflation persistence is about same as the persistence in the other
11 It can be shown that the sample size must be substantially increased (to about 1, 000 observations, i.e. 250

years of data) for the small-sample bias to vanish.
12 It should be noted that the size of the GMM biases reported in Table 2 for the misspecification case are

moderated by a factor 2 if only lags are used as instruments, because Rt (or any other variable dated at t) will be

correlated with the shock επ,t and thus, is not a valid instrument. The reason for including Rt as an instrument

when estimating the misspecified model in Table 2 was to provide a setting similar to that of Rudd and Whelan

(2005).
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variables.13 And since Fuhrer and Moore (1995a) have shown that output and interest rates are

typically best characterized as very persistent processes in the data, this result suggests that

one should be very cautious when estimating New-Keynesian hybrid Phillips and demand curves

using GMM, because the GMM estimation results can support a backward-looking Phillips

curve, although the true Phillips curve is highly forward-looking. Ironically, this is an “inverse

problem” with GMM to that identified by Rudd andWhelan (2005) (i.e. that GMMmay produce

estimation results that support a forward-looking specification, although the true Phillips curve

is backward-looking).

Finally, it is notable that it is very difficult to parameterize the model to generate a negative

γ and a high/low ωf/ωb when the data generating process for the inflation rate is actually the

New-Keynesian hybrid Phillips curve, and when estimating the model with NLS (see Table 2).

This implies that if the New-Keynesian Phillips curve in (1) is a good representation of the

inflation dynamics in the US economy, the empirical findings in the previous section are hard

to reconcile with the simulation results in this subsection. In the next subsection, measurement

errors will be introduced in the model to see if they can account for the contradicting results in

Tables 1 and 2.

3.3 Estimation with measurement errors

In the New-Keynesian Phillips curve (1), yt can be shown to represent deviations in actual output

from the “natural rate” of output in some models (see e.g. Rotemberg and Woodford, 1997).

This “natural rate” is the level of output that would remain under flexible prices. However,

when measuring the output gap, we typically apply an ad hoc detrending procedure — e.g. the

HP filter — and hence, introduce a measurement error. Results in Orphanides (2000) suggest

the measurement errors for the output gap to be considerable in real time, and if the Federal
13This issue is reported in detail in a working-paper version of this paper.
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Reserve acts on basis of this information, the measurement errors will be transmitted into the

real economy. Moreover, both the CPI- and GDP-deflator, which have typically been used in

the literature, are normally associated with a considerable time-varying bias, see e.g. Bryan

and Cecchetti (1993), Gordon (2000), and Gordon and Mandelkern (2001). Finally, statistical

agencies often substantially revise national accounting data over time, which is an additional

indication that measurement errors are likely to exist in practice.

Thus, it is here assumed that instead of observing the true output gap (y∗t ) and log price

level (lnP ∗t ), the statistician computes

yt = y∗t + υy,t,

lnPt = lnP ∗t + ψ + υp,t,

where ψ is the average bias and υp,t is a stochastic component of the measurement bias. The

measurement error in the price level implies that the inflation rate is measured as

πt = π∗t + υp,t − υp,t−1.

Although it could easily be assumed that both υy,t and υp,t are serially autocorrelated, both

υy,t and υp,t will be assumed to be white noise. The reason for this is that it will turn out

that even very small measurement errors considerably affect the estimation results. Since time-

varying measurement errors in the output gap are likely to be more severe than for the inflation

rate, var(υy,t) is ad hoc set equal to 0.10 and var(υp,t) equal to 0.01.

Agents in the model are assumed to behave as if they know the true output gap and the

inflation rate, but the central bank is assumed to respond to yt and πt rather than to y∗t and

π∗t when it sets the nominal interest rate, thus transmitting the measurement errors into the

real side of the economy. Nevertheless, it is the case that the measurement errors introduced

in the model have very small implications for the time series properties of the data. Standard
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deviations and autocorrelations in individual series, and also cross correlations, are essentially

the same.14 Despite this, it appears from Table 3 that the results are very different when

executing the same regressions as in Table 2.

For the benchmark calibration of the model, it is seen that the results when estimating

(2) with NLS implies that the estimate of γ is biased downwards while ωf is biased upwards.

Interestingly, a smaller/larger value of ωf/ωb produces an even more upward/downward bias for

ωf/ωb, and enables us to generate results on simulated data closely resembling the estimates on

US data reported in Table 1. Therefore, if one believes that (small) measurement errors may

be empirically relevant, it cannot be concluded from the estimation results in Table 1 that the

New-Keynesian Phillips curve is inconsistent with the data. The only case when NLS works

satisfactorily is when ωf is near unity; but as ωf becomes lower, NLS starts producing severely

biased (and inconsistent) estimates. The GMM results are similar to those in Table 2, with

the exception that the biases have become larger for the case of high/low ωf/ωb. Moreover, the

reduction in the GMM bias is much smaller as the sample size is increased, as compared to when

there are no measurement errors.15

The question then arises why these small measurement errors have these large effects on
14For instance, in the benchmark calibration, the standard deviations for y, π and R change from

{2.946, 4.180, 6.496} to {2.964, 4.183, 6.500} percent and the autocorrelation coefficients from {.967, .980, .979}

to {.960, .980, .979}. Moreover, the contemporaneous correlations of y and R with π change from {.239, .996} to

{.238, .996}. Naturally, the importance of the measurement errors is dependent on the model parameterization,

but for the different parameterizations considered in Table 3, the measurement errors always have a small impact

on the time series properties of individual series.
15For example, if the sample size is increased to 1, 000, the GMM estimates for the case when ωf = .90/ωb = .10

are about .60 (ωf ), .40 (ωb), and .022 (γ), so the GMM bias is not much moderated. Increasing the sample size

to as much as 10, 000 observations, the mean GMM estimates are about .77 (ωf ), .23 (ωb), and .085 (γ), so that

it takes a considerable number of observations to shrink the GMM bias in case of measurement errors.
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the estimation results for NLS as ωf becomes smaller. The reason is that when estimating

(2) when ωf is close to unity, the estimated relationship has approximately a random walk

component plus the forcing variable and a shock term, which implies that the small measurement

errors have no greater impact. But as ωf becomes smaller, the second difference of inflation is

essentially being related to the forcing variable plus a shock term, and the results will be very

sensitive to measurement errors in both the driving variable and the dependent variable, since

the “dependent variable” is a very noisy process even without measurement errors.

To conclude this section, it seems very difficult to obtain reliable estimates of the parameter

in the New-Keynesian hybrid Phillips curve using single equation estimation methods. Neither

NLS estimation of (2) nor direct GMM estimation of (1) work well on sample sizes that have

typically been used in empirical studies, if very small measurement errors exist in the data.

Even in a world without measurement errors, the estimation results in Table 2 indicated severe

problems with GMM.

4 Better estimates via FIML

In this section, the Full Information Maximum Likelihood (FIML) method will be applied to

examine if this is a possible way of obtaining good estimates of the parameters in (4).

To investigate the properties of FIML through simulations, the number of shocks and vari-

ables in the model must be the same, and a shock is therefore added to the New-Keynesian

hybrid Phillips Curve in the model (4)

πt = ωfEtπt+1 + ωbπt−1 + γyt + επ,t, (6)

and allow επ,t to follow a univariate AR(1)-process,

επ,t = ρπεπ,t−1 + uπ,t

13



where we set σεπ = 1.012 (taken from Rudebusch, 2002) and ρπ = 0. Nevertheless, ρπ will be

included as a parameter in the FIML estimations.16

The FIML estimation results are presented in Table 5. As in Sections 3.2 and 3.3, results for

different values of ωf and ωb are presented to see if FIML can accurately distinguish between

a completely forward- and backward specification of the Phillips curve. Furthermore, results

are also presented when the measurement errors are non-normally distributed, and the model is

misspecified.

Interestingly, it is seen from Table 4 that FIML can discriminate between forward- and

backward-looking specifications of the Phillips curve, although there are measurement errors in

the data. Only for the case when ωf/ωb is low are the estimates somewhat biased on this sample

size.17 This is in sharp contrast to the estimation results with the single equation methods in

the previous section.

Although not reported in Table 4, the FIML estimations have also been executed using the

completely backward-looking Phillips curve in (3) instead of (6) as part of the data generating

process, to see if the conclusion that FIML can distinguish between forward- and backward-

looking specifications of the Phillips curve holds in a more general setting. After estimating (3)

on quarterly US data, β1 = 0.75, β2 = 0.25 and β3 = 0.13 were used when generating data. In

this case, the FIML estimation results (with measurement errors) of the hybrid New-Keynesian

Phillips are ωf = 0.039
(0.102)

, ωb = 0.961
(0.102)

and γ = 0.106
(0.029)

. Once more, the FIML procedure will tend

to accurately accept the backward-looking specification and reject forward-looking behavior in
16 In Appendix B, which is available in a working paper version of this paper, it is outlined how the FIML

estimations have been carried out.
17This finding is very interesting because once a shock in the New-Keynesian hybrid Phillips curve (the error

term επ in equation 6) is allowed for, which is the case here, neither NLS nor GMM can distinguish between the

two specifications (see the “misspecification” results in Section 3.2).
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the Phillips curve, and the estimated parameters in the other equations were not heavily biased

from the true parameters, with the exception of βr which was, on average, found to be lower

(0.017) than the true value (0.09).

A potential major disadvantage of FIML is the assumption of normally distributed residuals,

whereas a single equation method such as GMM does not require this assumption. In Table 4, the

quantitative impact on the estimation results of non-normally distributed measurement errors

is explored.18 As can be seen from the Table, the estimation results for both the Phillips curve

and the aggregate demand equations are still close to their true values, although the effective

variances in the measurement errors are much higher in this case. The estimation results for the

policy rule are somewhat inaccurate, however, because of the assumption that monetary policy

responds to the observed inflation and output gap rather than to their true values.

Finally, it should be emphasized that FIML works well even if the rest of the model is

severely misspecified. This was examined in the following way. Data were generated using the

benchmark parameters in the model, and then the model (incorrectly) was estimated, assuming

that the shocks are white noise and that there is no smoothing in the monetary policy rule (i.e.

ρ, ρy, and ρR were constrained to be 0, although they equal .50, .50, and .80, respectively, in the

data generating process). The estimation results of this experiment are reported last in Table 4.

In comparison with the benchmark estimates, the estimation results for aggregate demand and

the monetary policy rule are clearly distorted, because those equations are heavily misspecified.
18Specifically, I use a uniform distribution random number generator (fat tails) where the lower and upper

bounds are approximated with the lowest and highest value generated by simulating a normal distribution

2, 000, 000 times. Then, the resulting distribution is scaled with the assumed variance for the measurement

errors. Through this procedure, the effective variance for the measurement errors in πt and yt becomes 0.91

and 2.89, respectively, which is substantially higher than in the benchmark case (0.01 and 0.10, respectively, see

Section 3.3).
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In comparison with the results in Table 3, the estimation results for the Phillips curve are still

clearly superior to the NLS estimates. And since Tables 2 and 3 revealed that GMM has serious

drawbacks in other respects, the results in Table 4 also suggest that FIML outperforms GMM.

Therefore, it can be concluded that applying FIML on real world data appears to be a good

strategy in empirical work.

5 Estimation on US data with FIML

In this section, the following model is estimated

πt = ωfEtπt+1 + (1− ωf )πt−1 + γyt + επ,t, (7)

yt = βfEtyt+1 +
¡
1− βf

¢
Σ4i=1βy,iyt−i − βr (Rt − Etπt+1) + εy,t,

Rt =
¡
1− Σ3i=1ρi

¢ ¡
γππt + γyyt

¢
+Σ3i=1ρiRt−i + εR,t

with FIML on quarterly US data 1960Q1 − 1997Q4.19 The additional lags in the aggregate

demand equation and the monetary policy rule are required to make εy and εR white noise. In

Table 5, the estimation results are reported using both GDP and NFB data.20

19As driving variable in the FIML estimations, the output-gap is used as a proxy for real marginal costs in the

Phillips curve, since I want to close the model with only three equations (interest rate rule, aggregate demand

and the pricing equation). Looking at the single equation estimation results in Table 1, my choice of using the

output gap as a proxy for real marginal costs in the FIML estimations does not seem critical, given the similarity

of the estimation results when either the output gap or the real marginal costs are used as driving variables. All

variables are demeaned prior to estimation.
20As starting values in the estimations, the benchmark parameters adapted in Sections 3 and 4 for the Phillips

curve and the aggregate demand equation are used, whereas the starting values for the policy rule parameters are

obtained by a simple OLS regression for the relevant sample period. It should be noted that depending on the

starting values, FIML can converge to local equilibria with more or less plausible parameters. Finally, as in the

previous subsection, σ2uy , σ
2
uπ and σ2uR are not included in the FIML maximization procedure, but the implied

estimates (see Appendix B) are reported in Table 5.
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From Table 5, it can be seen that the estimation results are similar regardless of whether

GDP or NFB data are used, except for the estimates of ωf . The mean log-likelihood function

is somewhat higher when GDP data are used. The estimated standard deviations σ2uπ , σ
2
uy and

σ2uR , suggest that the model’s fit for π and y is somewhat better using GDP rather than NFB

data.

Regarding the parameter estimates, it is now seen that backward-looking behavior seems

more important than forward-looking behavior, and that γ is now positive and highly significant,

in contrast to the estimation results in Table 1. But if acknowledging the existence of (small)

measurement errors, the differences in the estimates of ωf reported in Tables 1 and 5 were to

be expected, according to the analysis in Section 3.3 (see Table 3). So unlike the findings by

Galí and Gertler (1999), the FIML estimation results suggest that the pure forward-looking

New-Keynesian Phillips curve is not an acceptable approximation of US inflation dynamics.

This difference is completely consistent with the findings by Rudd and Whelan (2005) and the

simple misspecification problem discussed in Section 3.2. In accordance with Fuhrer and Moore

(1995b), inflation inertia seems important, a result which is independent of whether GDP or

NFB data are considered. Interestingly, the estimate of ωf on GDP data is very similar to that

obtained by Rudebusch (2002) using a survey measure of Etπt+1.

The estimate for ωf on GDP data is also similar to the benchmark estimate obtained by

Fuhrer (1997) (0.20), but unlike Fuhrer’s, the estimate here is highly significant, implying that

forward-looking behavior is important for price setting behavior.21 The estimated degree of
21 It should, however, be noted that the log-likelihood is very flat around the optimum. Using a Likelihood

Ratio (LR-) test as in Fuhrer (1997), it is then not possible to reject the joint null hypotheses that ωb = 1 and

ωf = 0. But using other tests, e.g. the Wald-test, the null hypothesis that ωb = 1 and ωf = 0 is firmly rejected.

In fact, the likelihood function is so flat around the optimum that it turns out that according to the LR-test, the

null hypothesis that all variables are univariate AR(1)-processes cannot be rejected. But since the model (see
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forward-looking in the aggregate demand equation is roughly of the same size as in the Phillips

curve. The estimates of the real interest rate elasticity in the aggregate demand equation are

very similar to that reported in Rudebusch (2002).

Finally, it should be emphasized that the main features of the estimation results are not

sensitive to the used measure of the output gap. If HP-filtered GDP/NFB data are instead used

(smoothness coefficient λ set to 1600), the main differences are that γ̂ increases to about 0.12

for both GDP and NFB data, and that ω̂f for NFB data falls to about 0.30.

6 Concluding remarks

Based on Monte-Carlo simulations with a standard New-Keynesian sticky price model, it is

argued in this paper that it is very difficult to obtain reliable estimates of the parameters in

the New-Keynesian hybrid Phillips curve using single equation methods. In contrast to limited

information methods, the FIML estimator can accurately distinguish between a forward- or

backward-looking specification of the Phillips curve. Even in the presence of severe measurement

errors and model misspecification, FIML still seems superior to single equation methods.

To demonstrate the usefulness of the FIML approach, the simple New-Keynesian sticky price

model is estimated on quarterly US postwar data with both FIML and a limited information

method. In contrast to estimation results using limited information methods, the FIML results

suggest a “hybrid” version of the New-Keynesian Phillips curve where backward-looking behavior

footnote 13) implies that each variable is highly autocorrelated for a parameterization similar to the estimation

results in Table 5, and thus well statistically described as univariate AR(1) processes, it is the case that the power

of the LR-test used by Fuhrer is most likely very low, whereas other tests (such as the Wald-test) ought to have

higher power. Therefore, I draw the conclusion that the Wald-test ought to be more informative that the LR-test

used by Fuhrer.
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is about equally or more important than forward-looking behavior in order to fit the data well.22

Given the problems with single equation methods identified in this paper, this difference is not

surprising. At the same time, it should be acknowledged that the estimates are obtained using a

standard measure of the output gap, which is typically not the theory-consistent driving variable.

In contrast to the results reported by Fuhrer (1997), I find forward-looking behavior to be

significant, but this conclusion rests upon which test is used. If a Likelihood Ratio (LR-) test

is used (as Fuhrer did), then the null hypothesis of no forward-looking behavior in the Phillips

curve cannot be rejected. Using another test — the Wald-test — the null of no forward-looking

behavior is, in contrast, rejected. Since the New-Keynesian Phillips curve including a substantial

degree of forward-looking behavior implies a very persistent process for the inflation rate as long

as the driving variable is persistent, the LR-test will presumably have low power to distinguish

between the null and the alternative in comparison to the Wald-test. Empirically, it seems to

be the case that the labor share and the output gap are highly persistent processes. Therefore,

it is argued that we should trust the results of the Wald-test which suggest a clear role for both

forward- and backward-looking behavior in U.S. inflation dynamics.

22The estimation results are well in line with the version of the New-Keynesian with dynamic indexation shown

by Altig et al. (2002) to fit the impulse response functions to monetary policy and permanent technology shocks

well.
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Table 1: NLS estimation results of the New-Keynesian Phillips curve (2).

yt = output gap yt = real marginal costs

ω̂f ω̂b γ̂ R2 D-W ω̂f ω̂b γ̂ R2 D-W

Whole sample 1.433
(0.164)

−0.280
(0.142)

−0.036
(0.012)

0.83 2.11 1.341
(0.147)

−0.212
(0.129)

−0.015
(0.017)

0.82 2.05

pre−1980 1.397
(0.216)

−0.220
(0.183)

−0.042
(0.018)

0.82 2.07 1.285
(0.188)

−0.175
(0.169)

0.004
(0.027)

0.80 2.04

post−1980 1.543
(0.278)

−0.401
(0.245)

−0.024
(0.019)

0.84 2.20 1.544
(0.278)

−0.297
(0.226)

−0.036
(0.028)

0.84 2.12

Notes: Standard errors in parentheses. Whole sample estimation period is 1960Q1− 1997Q4, which implies that

T = 152 observations are used. D-W denotes the Durbin-Watson statistic. Data have been demeaned prior

to estimation. πt is measured as ln (Pt/Pt−1) where Pt is the GDP-deflator. The output gap is defined as the

quadratically detrended log of GDP, ln(GDPt)− c0− c1Trendt− c2Trend2t , and real marginal costs are measured

as the percentage deviations from the sample mean of the labor income share of output
¡
S̄
¢
, that is (St − S̄)/S̄,

as in Galí and Gertler (1999).
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Table 2: Estimation results of the New-Keynesian Phillips curve in (4).a

Estimation method

Model

parameterization NLS GMM

ω̂f ω̂b γ̂ ω̂f ω̂b γ̂

Benchmark 0.301
(0.008)

0.699
(0.008)

0.130
(0.005)

0.300
(0.008)

0.700
(0.008)

0.131
(0.005)

ωf = 0.90,ωb = 0.10 0.902
(0.055)

0.098
(0.055)

0.144
(0.034)

0.638
(0.377)

0.362
(0.377)

0.056
(0.134)

ωf = 0.10,ωb = 0.90 0.100
(0.007)

0.900
(0.007)

0.130
(0.002)

0.098
(0.007)

0.902
(0.007)

0.131
(0.002)

Misspecificationb 0.889
(0.084)

0.111
(0.084)

−0.223
(0.051)

0.594
(0.099)

0.406
(0.099)

−0.040
(0.056)

Notes: The estimates are based on simulated data generated with the model given by equations (4) and (5) , where

ωf = 0.30, ωb = 0.70 and γ = 0.13 in the benchmark and misspecification cases. The numbers in parentheses

are the standard errors of the simulated distribution of 10, 000 estimates. T = 200 observations are used in each

estimation. Each simulated sample is initiated with 100 additional observations to get a stochastic initial state,

and are then discarded. The NLS estimation results are based on estimating (2) and the GMM/2SLS results on

estimating (1) using πt−1, yt−1 and Rt−1 as instruments. a In the estimations ω̂f + ω̂b = 1 is restricted. b In this

case, an error term επ,t has been added in the Phillips curve, which is assumed to be i.i.d. N (0,σεπ ) where σεπ

equals 0.50, and the GMM instruments are Rt, πt−1, yt−1 and Rt−1.
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Table 3: Estimation results of the New-Keynesian Phillips curve

in (4) on simulated data with small measurement errors.a

Estimation method

Model

parameterization NLS GMM

ω̂f ω̂b γ̂ ω̂f ω̂b γ̂

Benchmark 0.691
(0.144)

0.309
(0.144)

−0.103
(0.083)

0.300
(0.010)

0.700
(0.010)

0.131
(0.006)

ωf = 0.90,ωb = 0.10 0.972
(0.067)

0.028
(0.067)

0.148
(0.035)

0.562
(0.215)

0.438
(0.215)

0.016
(0.086)

ωf = 0.10,ωb = 0.90 2.397
(0.313)

−1.397
(0.313)

−0.594
(0.099)

0.123
(0.068)

0.877
(0.068)

0.123
(0.021)

Notes: The estimates are based on simulated data generated with the model given by (4) and (5) where ωf = 0.30,

ωb = 0.70 and γ = 0.13 in the benchmark case. The numbers in parentheses are the standard errors of the

simulated distribution of 10, 000 estimates. T = 200 observations are used in each estimation. Each simulated

sample is initiated with 100 additional observations to get a stochastic initial state, and these are then discarded.

The NLS estimation results are based on estimating (2) and the GMM/2SLS results on estimating (1) directly

using πt−3, yt−2, yt−3, and Rt−3 as instruments. a In the estimations, ω̂f + ω̂b = 1 is restricted.
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Table 4: Full information Maximum Likelihood estimation

results on simulated data with measurement errors.

FIML estimates of parameter

ωf ωb γ βf βb βr γπ γy ρ ρy ρπ ρR

0.305
(0.062)

0.695
(0.062)

0.128
(0.038)

0.252
(0.086)

0.748
(0.086)

0.109
(0.036)

1.508
(0.044)

0.454
(0.246)

0.449
(0.138)

0.483
(0.068)

−0.01
(0.072)

0.768
(0.060)

True values in model

0.30 0.70 0.13 0.30 0.70 0.09 1.50 0.50 0.50 0.50 0.00 0.80

Sensitivity analysis: ωf = 0.90, ωb = 0.10 in model, FIML estimates

0.892
(0.103)

0.108
(0.103)

0.148
(0.077)

0.190
(0.179)

0.810
(0.179)

0.133
(0.092)

1.449
(0.323)

0.394
(0.506)

0.482
(0.059)

0.505
(0.097)

−0.037
(0.129)

0.777
(0.053)

Sensitivity analysis: ωf = 0.10, ωb = 0.90 in model, FIML estimates

0.208
(0.173)

0.792
(0.173)

0.099
(0.057)

0.157
(0.151)

0.843
(0.151)

0.148
(0.066)

1.545
(0.129)

0.449
(0.153)

0.386
(0.181)

0.486
(0.071)

−0.003
(0.072)

0.759
(0.067)

Non-normally distributed measurement errors, FIML estimates

0.351
(0.100)

0.649
(0.100)

0.100
(0.056)

0.340
(0.219)

0.660
(0.219)

0.074
(0.172)

1.603
(0.115)

0.195
(0.209)

0.100
(0.179)

0.483
(0.068)

−0.009
(0.072)

0.768
(0.060)

Model misspecification: ρ, ρy, and ρR constrained to 0, FIML estimates

0.417
(0.053)

0.583
(0.053)

0.102
(0.022)

0.543
(0.049)

0.457
(0.049)

0.018
(0.007)

1.185
(0.083)

−0.312
(0.144)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

Notes: The estimates are based on simulated data generated with the aggregate demand equation and interest

rate rule in (4) and (5), and the New-Keynesian Phillips given by equation (6). The numbers in parentheses

are the standard errors of the simulated distribution of 10, 000 estimates. T = 200 observations is used in each

estimation. Each simulated sample is initiated with 100 additional observations to get a stochastic initial state,

and these are then discarded. In the estimations, I restrict ω̂f + ω̂b = 1 and β̂f + β̂b = 1. True parameters are

used as starting values in the estimations.
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Table 5: Full Information Maximum Likelihood estimation

results for the model in (7) on US data 1960Q1-1997Q4.

Parameter

Data ωf γ βf βr βy,1 βy,2 βy,3 γπ γy ρ1 ρ2 ρ3

GDP 0.282
(0.057)

0.048
(0.005)

0.430
(0.017)

0.087
(0.083)

1.275
(0.069)

−0.253
(0.072)

0.012
(0.056)

0.895
(0.126)

0.995
(0.526)

1.046
(0.078)

−0.457
(0.123)

0.330
(0.087)

NFB 0.457
(0.065)

0.048
(0.007)

0.425
(0.027)

0.156
(0.016)

1.310
(0.174)

−0.229
(0.279)

−0.011
(0.037)

0.893
(0.364)

1.037
(0.170)

1.079
(0.210)

−0.445
(0.124)

0.307
(0.159)

Notes: Standard errors in parentheses. Inflation is measured as 4 ln
³

Pt
Pt−1

´
. The sample period implies that

T = 152 observations are used in the estimations. In the estimations, Σ4i=1βy,i in the aggregate demand equation

is restricted to unity. The mean log-likelihood function, ln `, is 9.9968 and 9.3903 for GDP and NFB data. The

computed standard deviations (in percent) for the innovations σ2uπ , σ
2
uy and σ2uR are {0.79570.4006 0.7724} and

{1.0591 0.6925 0.7652} for GDP and NFB data, respectively.
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Appendix A Solving the model

Consider the model

πt = ωfEtπt+1 + ωbπt−1 + γyt + επ,t, (A.1)

yt = βfEtyt+1 + βbyt−1 − βr (Rt − Etπt+1) + εy,t,

Rt = (1− ρ)
¡
γππt + γyyt

¢
+ ρRt−1 + εR,t

where

επ,t = ρπεπ,t−1 + uπ,t, (A.2)

εy,t = ρyεy,t−1 + uy,t,

εR,t = ρRεR,t−1 + uR,t.

We want to rewrite the model given by (A.1) and (A.2) on the form

A0

∙
x1,t+1
Etx2,t+1

¸
= A1

∙
x1,t
x2,t

¸
+B1Rt +

∙
ut+1
0

¸
(A.3)

where x1,t is vector of predetermined variables, x2,t is a vector of forward-looking variables, Rt

is the control variable, and ut is a vector with shocks. Note that the AS and AD curves can be

rewritten as

ωfEtπt+1 = πt − ωbπt−1 − γyt − επ,t,

βrEtπt+1 + βfEtyt+1 = yt − βbyt−1 + βrRt − εy,t.

By defining x1t+1 = [ επ,t+1 εy,t+1 εR,t+1 πt yt Rt ]
0, Etx2t+1 = [ Etπt+1 Etyt+1 ]

0,

and ut+1 = [ uπ,t+1 uy,t+1 uR,t+1 ]
0, we have⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 ωf 0
0 0 0 0 0 0 βr βf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
| {z }

≡A0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

επ,t+1
εy,t+1
εR,t+1
πt
yt
Rt
Etπt+1
Etyt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρπ 0 0 0 0 0 0 0
0 ρy 0 0 0 0 0 0
0 0 ρR 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
−1 0 0 −ωb 0 0 1 −γ
0 −1 0 0 −βb 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
| {z }

≡A1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

επ,t
εy,t
εR,t
πt−1
yt−1
Rt−1
πt
yt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1
0
βr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
| {z }
≡B1

Rt +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

uπ,t+1
uy,t+1
uR,t+1
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦



which - using that the policy rule in (A.1) has the form Rt = −Fxt where xt = [x1,t x2,t]0 - can
be rewritten as

A0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

επ,t+1
εy,t+1
εR,t+1
πt
yt
Rt
Etπt+1
Etyt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= A1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

επ,t
εy,t
εR,t
πt−1
yt−1
Rt−1
πt
yt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+B1 (−F )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

επ,t
εy,t
εR,t
πt−1
yt−1
Rt−1
πt
yt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

uπ,t+1
uy,t+1
uR,t+1
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.4)

where

−F =
£
0 0 1 0 0 ρ (1− ρ) γπ (1− ρ) γy

¤
.

Finally, we may rewrite (A.4) as∙
x1,t+1
Etx2,t+1

¸
= A−10 (A1 −B1F )

∙
x1,t
x2,t

¸
+

∙
ut
0

¸
≡ A

∙
x1,t
x2,t

¸
+

∙
ut
0

¸
.

To solve the model, we then apply the solution algorithm described in Söderlind (1999).

The solution of the model can be written on the form

Yt = CXt. (A.5)

where Yt ≡ [yt πt Rt Etyt+1 Etπt+1]
0
, Xt ≡ [yt−1 πt−1 Rt−1 εy,t επ,t εR,t]

0
, and C is a 5 × 6

matrix.

Appendix B Estimating the model with FIML

To estimate the model with FIML, we partition the models analytical solution given by (A.5)

as

Zt = CZZt−1 +Cεεt (B.6)

where Zt ≡ [yt πt Rt]
0
, εt ≡ [εy,t επ,t εR,t]

0
,

CZ ≡
"
c11 c12 c13
c21 c22 c23
c31 c32 c33

#
and

Cε ≡
"
c14 c15 c16
c24 c25 c26
c34 c35 c36

#
where cij denotes the ith row and the jth column in the C matrix in (A.5). By defining

ρ ≡
"
ρy 0 0
0 ρπ 0
0 0 ρR

#



we may rewrite (A.2) as

εt = ρεt−1 + ut (B.7)

where ut ≡ [uy,t uπ,t uR,t]
0
and u ∼ i.i.d. N(0,D). By using (B.7) in (B.6), we obtain

Zt = CZZt−1 +CερC
−1
ε (Zt−1 −CZZt−2) +Cεut (B.8)

≡
¡
CZ +CερC

−1
ε

¢
Zt−1 −CερC

−1
ε CZZt−2 + vt.

Equation (B.8) forms the basis for the computation of the log-likelihood function. From (B.8),

it follows that vt is distributed as N (0,Σv) where Σv ≡ CεDC
0
ε and that

Zt|Zt−1, Zt−2 ∼ N
¡¡¡
CZ +CερC

−1
ε

¢
Zt−1 −CερC

−1
ε CZZt−2

¢
,Σv

¢
. (B.9)

Using (B.8) and (B.9), we can then form the conditional log-likelihood function ln ` (CZ ,Cε,ρ)

as (see Hamilton, 1994, Chapter 9)

ln ` (CZ ,Cε,ρ) = − (Tn/2) ln (2π)− (T/2) ln |Σv|− (1/2)
TX
t=1

v
0
tΣvvt (B.10)

where vt is computed using (B.8). Note that the conditional log-likelihood function in (B.10)

does not impose any restrictions on the covariance matrix Σv. Maximization of (B.10) is done

with respect to a subset of the parameters in (A.1) and (A.2), i.e. the parameters σ2uy , σ
2
uπ and

σ2uR in D are not included in the maximization. Instead, they are computed using the FIML

estimates as D̂ =
³
Ĉε

´−1
Σ̂v

³
Ĉ−1ε

´0
.

If it is desirable to maximize the likelihood function also with respect to the parameters

in D, the covariance restrictions are imposed directly in the conditional log-likelihood function

which then becomes

ln ` (CZ ,Cε,ρ,D) = − (Tn/2) ln (2π)−(T/2) ln
³
det

¡
C−1ε

¢2´
+(T/2) ln (det (D))−(1/2)

TX
t=1

u
0
tDut

(B.11)

where ut is computed using (B.8) as

ut = C
−1
ε

¡
Zt −

¡
CZ +CερC

−1
ε

¢
Zt−1 +CερC

−1
ε CZZt−2

¢
.




