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Abstract

We introduce a framework to test for the exogeneity of a variable
in a regression based on cross-sectional data. By sorting data with
respect to a function (sorting score) of known exogenous variables
it is possible to utilize a battery of tools originally developed to de-
tecting model misspecification in a time series context. Thus, we are
able to propose graphical tools for the identification of endogeneity,
as well as formal tests, including a simple-to-use Chow test, needing
a minimum of assumptions on the alternative endogeneity hypothe-
sis. Models of endogenous treatment and selectivity are utilized to
illustrate the methods. With Monte Carlo experiments, including
continuous and discrete response cases, we compare small sample
performances with existing tests for exogeneity.
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1 Introduction

In this paper we introduce a general framework to test the exogeneity of
a variable in a cross-section regression context. The exogeneity of vari-
ables is essential for the interpretation of the parameters of interest, which
can then be called structural (or causal). Exogeneity also reduces the pa-
rameter space and, as a consequence, the computational burden. The
statistical definition of the exogeneity of a variable basically ensures that
efficient inference can be performed on the parameters of interest while
ignoring the marginal distribution of the exogenous variable (see Ericsson
and Irons, 1994, for a survey). Exogeneity is essentially a model assump-
tion and as such needs to be assessed. Tests for exogeneity are often easily
constructed (e.g., Lagrange Multiplier tests, cf. Engle, 1984), under para-
metric models of endogeneity or sample selection.! An alternative test for
exogeneity that does not, generally, need the distribution under the alter-
native hypothesis (endogeneity) is the Durbin, Wu and Hausman (DWH)
test (cf. Hausman, 1978). This test needs, however, a consistent estimator
under the alternative and another estimator that is efficient under the null
hypothesis of exogeneity and inconsistent under the alternative. In small
samples there is evidence of lack of power for this test (cf. Brénnis and
Eriksson, 1997). Furthermore, in some situations it can be difficult to ob-
tain the efficient estimator —consider, e.g., the case of heteroskedasticity
under the null hypothesis,— as well as a consistent estimator under the
alternative.

In order to avoid, a) a full parametric specification of the alternative
endogeneity hypothesis, and b) the need to have two estimators, we pro-
pose a new approach based on the sorting score —most often a function of
instruments,— whose function is to provide an ordering of the data which
highlights the miss-specification arisen from the lack of exogeneity of a
variable. The sorting score is related to the propensity score used to cor-
rect for selectivity bias (Rosenbaum and Rubin, 1983).2 Moreover, it is
common to correct for endogeneity and selectivity in econometric models
by introducing a control function in the outcome equation (e.g. Heck-
man, 1978). When this is justified, the same control function constitutes
a good sorting score. Once the observations are sorted, time series tools

'For a survey of sample selection models, see Vella (1998) and Winkelman (1998).
2The idea of constructing tests by sorting cross-sectional data is not new. For in-
stance the Goldfeld and Quandt (1965) test of homoskedasticity is one example.
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for miss-specification identification can be utilized. Thus, we propose, for
instance, a graphical analysis of recursive residuals (standardized one-step
ahead prediction errors) and a very simple-to-use Chow test. The advan-
tage over the time series setting is that the observations are independent,
thereby enhancing the constructions of tests. A drawback is that the or-
dering do not need to be a good one, in which case the corresponding tests
may have low power.

The structure of the paper is the following. In Section 2 we define
exogeneity using the conditional independence notation, and then continue
by defining the sorting score. Section 3 presents different tools which,
when associated to an ordering of the data, are helpful for diagnosing
endogeneity, either by graphical analysis or with formal tests. In Section 4
specific models relating to sample selection and endogenous treatments are
analyzed; sorting scores are displayed and examples of analysis are given
with simulated data. Section 5 extends discusses non-parametric sorting
scores. A Monte Carlo experiment, relating to the models in Section 4, is
conducted in Section 6, and Section 7 concludes.

2 Exogeneity and the sorting score

2.1 General setting

We consider an observational study where independent observations are
available for a response y together with a set of exogenous variables x and a
possibly endogenous variable z (the effect on y of z is the issue of interest,
hence in the sequel z is termed the treatment). A statistical model for
these random variables (y,x,2) € Qy x Q x Q, = Q is described by the
conditional density p(y,z|x;0), 8 € © C R’. In the sequel, densities are
denoted with p and distribution functions with P. The marginal density of
x, p(x;6), § € D C RY is not needed for inference, because x is assumed
exogenous, i.e. p(y,z|x;0) is not a function of § and p(x;8§) is not a
function of @, or in other words (y, z) 1L §|x and x 1L 6, using the Dawid
(1979) notation.® Similarly if the treatment z is exogenous, the study of
its effect may be based on the reduced form p(y|z,x;3), B € B C RP,
where p(y, z|x;0) = p(y|z,x; B)p(z|x;x), « € A CR? and © = B x A,

3The sign L reads independent of. Here (y, z) is independent of § given x, and means
that P(y, z|x) is not a function of §. Hence this notation is valid even when § is not a
random variable.
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because y 1L a|x,z and z I B3|x. However, in a typical observational
study the exogeneity of the treatment z need to be assessed. Most of the
existing tests for exogeneity in cross-sectional situations specify p(z|x; o)
and how the conditional distribution of y given (x,z) is a function of a.
The methodology proposed herein avoids such a strong specification of the
possible endogeneity of z.

2.2 Sorting score

The methodology developed in this paper are based on an ordering of
the n independent observations, (y;,Xi,z2:),? = 1,...,n. The ordering is
defined by sorting the observations with respect to the values taken by a
function s(x,z) € Q, C R, which is such that y 1L s|x, z under Hy :“z is
ezogenous”. We call s(x, z) a sorting score.®

Under Hy, P(y|z,x;3), is well specified with 3 constant, and in par-
ticular P(y|z,x,s(x,2) < ¢ B8) = P(y|z,x;3), for all ¢ € Q,, because
y L s|x,z by the definition of s(x,z). On the other hand, when the
treatment z is not exogenous, then two types of consequence may be dis-
tinguished. Most commonly, the non-acknowledgment of the endogeneity
of z is accompanied by a structural miss-specification of P(y|z,x;3). This
situation is illustrated with a Garen model in the next section. The sec-
ond possible consequence, occurring, for instance, when all the variables
involved are jointly normal, is that P(y|z,x;3) under Hy or its alternative
differ only in the value taken by B. An illustration of this case is given in
the next section by considering the classic demand equation from a model
of market equilibrium.

2.3 Examples

In order to illustrate the above discussion we present two widely used
models.

Demand equation: Consider the classic demand equation from a
model of market equilibrium:

qi = Bx1i + ypi + €is

‘Note that any function s(x,z) of x and z only is a potential sorting score under
this definition, since then y is trivially independent of s given x and z. The condition
y L s|x,z, under Hy, is indeed not sufficient for the sorting score to be a useful one.
We will characterize later on what a good sorting score is.
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where the price p is endogenous, such that
Di = Qx9; + Vi,

with g; and v; correlated. In our previous notation the response y; is here
gi, the treatment z; is here p; and x; = (214, 22;). Assuming E(e;|v;) linear
in v; (e.g., bivariate normality), we have

E(qi|xi,pi) = Br1i +vpi + AM(pi — o), (1)

where A = 0 if and only if ¢; and v; are uncorrelated. Let us set s(xg;) =
(pi — awy;) (linear in x9;), as sorting score. This choice will be justified
in Section 4.2. We have E(q;|x14,pi, s(x2:i) < ¢) = Px1; + pi + o, where
¥ =5+ X and a. = E(—Aaxa|r1i,pi,s(r2) < ¢). Therefore, sorting
the data with respect to s(xe;) will lead to a varying coefficient a.. The
consequence is that E(q;|x14,pi, s(x2;) < ¢) is a biased predictor of ¢; for
s(xa;) > c. Finally, note that zg; = z1; would lead to the non-identifiability
of 7.

Garen model: We consider now the selectivity model given by Garen

(1984, 1988):

yi = XiB+ 26+ ziui + &,
z = f(x7)+uw,
where E(e;|x}, z,u;) = 0 and x} contains all the variables in x; and

possibly others. We have for this model
B(yilx}, zi) = xiB + 26 + 2z E(uilv;). (2)

Assuming E(u;|v;) linear in v; (e.g., bivariate normality), we have E(u;|v;)
= A(zi— f(x})). Exogeneity of z; corresponds to A = 0, i.e. uncorrelated u;
and v; variables. Here, heteroskedasticity is present even if z; is exogenous:

V(yilx, z1) = 2]V (uilvy) + o, (3)

where o7 is the variance of ¢;. In this case, neglecting the endogeneity of z;
leads to a miss-specification of the conditional expectation, by assuming it
linear while z; E'(u;|v;) is non-linear in x; and z;. We will see later (Section
4.2) that z;(2; — f(x;)) is the natural sorting score for this model.
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3 Methods

In this section we present methods often used in a time series setting,
where a natural ordering is available. These can be adapted to the cross-
section setting by using the sorting score to order the data. We start
by defining recursive residuals and then present graphical diagnostics and
formal tests for exogeneity.

3.1 Recursive residuals

In order to introduce recursive residuals formally we assume first that the
response y is continuous. For a set of independent observations (y;,x;, 2;),
i=1,...,n, generated by a model with corresponding density p(y|z,x; 3),
it is assumed that, for each k = ¢,... ,n — 1, a consistent estimate Bk of
3, based on (y;,%i,2), i = 1,...,k, is available. Recursive residuals are
then obtained by predicting y; with E(y;|z;, x;; Bj,l), j=q+1,...n. This
prediction is an estimate, based on observations (y;,%;,2;),i =1,...,7—1,
of the optimal (mean squared error sense) predictor E(y;|z;,%;;3). The
recursive residuals are then standardized prediction errors:

_ yi — E(yjlzj, %55 8;1)
Var(y; — E(y;l2j, %53 Bj—1) 125, %5)

w; , J=q+1,...n.
Under the model and assuming the involved moments exist, these recur-
sive residuals are, at least asymptotically, independent and identically dis-
tributed with mean zero and variance one. These properties would hold
exactly were 3 to be known.

Example 3.1 The linear Gaussian model, y; = Xy + ¢; with &; in-
dependently and normally distributed with mean zero and variance o2,
is an important particular case for which recursive residuals were origi-
nally studied, e.g., by Brown et al. (1975). For this model we have, for

j=q+1,...n,

we — Y5 — X}’A)’j—l
Dol (X X)) V2

where X1 = (xy,...,%;_ ;). Assuming that X}, X, 1 are invertible,
w; are homoskedastic, independent, and with standard normal distribution
(Brown et al., 1975). No asymptotic argument is needed here.

Exogeneity and sorting score 7



Recursive residuals can be generalized by considering predictive dis-
tributions instead of pointwise predictions: define r; = <I>’1(uj), with
uj = P(yj|zj,xj;aj,1), j=gq+1,...n, where ®(-) and P(y|z,x;3) are the
distribution functions corresponding to the standard normal density, ¢(-),
and p(y|z,x; 3), respectively. Such generalized recursive residuals are pre-
diction errors in the sense that P(y;|z;,x;; Bj_l) is the estimated predic-
tive distribution of y evaluated at y; when only (v;,%;,2;),i=1,...,j—1,
have been observed. When p(y|z,x; 3) is well specified, u;’s are asymptot-
ically independent and identically distributed uniform on (0,1) (Dawid,
1984). Thus, r;’s are independent and with standard normal distribution.
These properties hold exactly when 3 is known.

When the response is continuous, it is advisable to use w;’s instead of
r;’s because the former are only sensitive to the modelling of the condi-
tional mean and variance. In the sequel we have therefore used w;’s when
dealing with continuous responses.

For a discrete valued response ¥, recursive residuals w;’s are recursive
counterparts of ordinary Pearson residuals. Recursive Pearson residuals
are highly non-normal if the response y takes only a very limited number of
values, e.g., binary variable, with as consequence that much larger samples
are needed to obtain reliable diagnostics. Generalized recursive residuals,
r;’s, are still asymptotically independent although neither identically nor
uniformly distributed. These properties can, however, be recovered by ran-
domization as was proposed in Smith (1985): Generate &; independently
uniform on (0, 1) and compute u; = &;7;+(1—E&;)P(y; — 1|25, x5 ijl), for
j=q+1,...n. The resulting randomized generalized recursive residuals
r; = (I>_1(ﬂj) are asymptotically independent and with standard normal
distribution.

Although recursive residuals are often associated to time series ap-
plications and more particularly to the detection of structural changes
(e.g., Brown et al., 1975, Tsay, 1998), they have also been found use-
ful in model validation of cross-section regression models (see Kianifard
and Swallow, 1996, for a review concerning the linear Gaussian model).
Their use for non-linear and/or non-Gaussian models has been discussed
by Dawid (1984), Smith (1985), and Harvey (1989). Their advantage
over ordinary least squares residuals is that they are homoskedastic and
independent (at least asymptotically) under the model assumptions, facil-
itating the developments of test statistics. On the other hand, they are
not uniquely defined for cross-section data, depending as they are on the

8 Exogeneity and sorting score



ordering of the data set.

3.2 Graphical diagnostics and formal tests

Two forms of diagnostic tools associated to the recursive residuals are
available. The first is obtained by graphically displaying recursive resid-
uals. Their cumulative sum (CUSUM) is most useful. At this stage a
useful family of sorting score may be characterized. We have seen that
recursive residuals have mean zero for a well-specified model. When miss-
specification arises, in our case when exogeneity of the treatment does
not hold, the recursive residuals will typically have non-zero mean. In
this situation we say that s(x, z) is a monotone sorting score if through-
out the recursion the residuals have all positive (respectively negative)
mean. A monotone sorting score is not always trivial to obtain, since we
would need knowledge on p(y, z|x, ). In the time series context, the aim
when inspecting cumulative sums is to detect a change over time of the
parameter values. Most often this change is believed to be an abrupt struc-
tural change at a given time point. The endogeneity miss-specification is
translated instead by small but systematic biases in predictions. Thus, a
monotone sorting score is used in order for these biases to have the same
sign. This guarantee the best visual effect when plotting the cumulative
sum of the recursive residuals. These issues are clarified in the examples
given in Section 4. The constancy of the bias sign is also important for
the formal tests presented below to have power.

Three types of tests are proposed all using the sorted data set. Harvey
and Collier (1979) proposed a simple test based on the sum of the recursive
residuals to identify structural time changes. In our context, write

1 n
@:n_q Z w;

i=q+1

the average of the recursive residuals. Then, under Hy, asymptotically
(exactly under the normal model), W is normally distributed with mean
zero and variance 1/(n — q). Thus, Hy may be tested by testing the
population mean of w; to be zero. The result remains valid when w;’s
are replaced by r;’s or 7;’s. Recursive residuals may be computationally
costly to obtain and/or very sensitive to modelling assumptions, mainly
if the generalized versions are used. Both problems are avoided by using

Chow’s (1960) test.

Exogeneity and sorting score 9



To introduce Chow-type tests let us start by considering the following
linear regression model

yi=x6+zy+e, i=1,..,n, (4)

and split the sample into n; and no observations based on the sorting
score. The Chow (1960) test is then given as

o1 _ leheo—elfp

e'e/(n—p)
where eq is the n x 1 vector of ordinary least square (OLS) residuals, p is
the number of parameters in the equation (4) and €'e = €} e + ehea, where
e1 and ey are the nq x 1 and ny x 1 vectors of OLS residuals from the two
OLS estimates. If ¢; is N(0,02) the C* test is distributed as F(p,n — p).
Assume the more general model

?

The parameters o and awg for the two samples are estimated using a
pseudo maximum likelihood (PML) estimator (cf. Gouriéroux, Montfort
and Trognon, 1984). The covariance matrices of the PML estimator is
given by

vV =J7LI0 j=1,2 (6)

X, oty (06 .
JJ—E( —aagaa) v-e (5 () ) e

¢; is the log-likelihood function from a member of the linear exponential

where

family and expectations are taken over the distribution of y and the ex-
planatory variables.® The covariance matrices can be estimated by insert-
ing the estimated parameters &; and @ into the corresponding empirical
expressions i.e.

R ~ o0, o ,
(Z a0 ) and I; = <Z (8_ajj> (aaj’)) J=12
o =x =1 J Oéj:aj

JToy

Note that the covariance matrix in (6) is the Eicker-White heteroskedasticity con-
sistent covariance matrix estimator (cf. White, 1980). The robust covariance matrix
can also be used in a quasi-LM test (cf. Engle, 1984).

10 Exogeneity and sorting score



The following Wald test
C? = (a1 — @) (V1 + Vo) Yay — &)

is asymptotically x?(p) distributed.® The advantage with this test is that
it asymptotically yields the correct size under a general miss-specification
of the probability distribution. The condition for unbiased estimates of
a; is a correct specification of the conditional mean (Gouriéroux et al.,

1984).

Finally, we consider the test of Nyblom (1989) and Hansen (1994).7
Define the first order conditions for the k:th parameter as fy; = 8¢;/0ay,
and let fz == (fli; . fKZ)I then Z:'Lzl fZ = 0. Let

g
Skg = _ fris
i-1

and further define S; = (Sig, .., Skg)" and f; = (fig, ..., fig)’ then a joint
statistic for the stability of the parameters are

1 n
Le=~— > sv's,, (7)
g=1

where V = > f,f7. This statistic has a non-standard distribution and

asymptotic critical values are taken from Hansen (1994). Since V! is
the Eicker-White heteroskedastic consistent covariance matrix we should
expect this test to perform well under heteroskedasticity..

4 The sorting score for common models of endo-
geneity

The endogeneity of the treatment z; may often be understood as an omit-
ted variable problem. In such cases, the sorting score should provide an

%In a time series regression model with normally distributed errors, see Ohtani and
Toyoda (1985) for a study of small sample performances.

"This test is for parameter constancy with the alternative specifying the parameter
process as a martingale.
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approximate ordering of the omitted variable in order to diagnose the
miss-specification. We start by discussing the omitted variable issue, be-
cause it helps us latter to clarify the discussion on particular models of
endogeneity.

4.1 Omitted variable

Assume that y; = z;y7+u;+¢&; where u; is unobserved (for simplicity we do
not include extra exogenous variables, x;, in the model), and that F(u;|z;)
is linear in z;. Then E(y;|z;) is also linear in z; and least squares estimation
is consistent for E(y;|z;) = z;7, where in general 7 # . Ordinary residuals
(associated to least squares) are not able to diagnose the missing variable
because the conditional expectation is well specified (linear function of z;),
unless the data can be sorted with respect to the ordering of w, in which
case an index plot of the residuals may reveal the dependence, because
E(y; — zi¥|zi,u;) # 0. Similarly, the recursive residuals corresponding to
the ordering of the variable u will uncover the missing variable because
E(yi|zi,ui < ¢) # E(yi|zi). However, if u; = 2,6, § a constant, then ordi-
nary and recursive residuals do not reveal any miss-specification because
v and 6& are not discernible (non-identifiable parameters).

When E(u;|2;) is not linear in z;, E(y;|2;) is not either, and a linear
regression model will be miss-specified. This should be apparent in the
ordinary residuals plotted against z. However, recursive residuals with
respect to a monotone sorting score, when one is available, are more ap-
propriate. Indeed, the accumulation of the bias in the CUSUM of the
residuals is then systematic in one direction, making visual identification
of the problem easy. Moreover, the formal tests described in Section 3.2
can be used.

Of course, to use recursive residuals diagnostics we need an ordering (at
least approximate) of the unobserved variable w. This is typically what
the sorting score provides, when the confounder w is not observed, but
some information on its distribution given observed exogenous variables is
available. The following subsections illustrate this essential point.

4.2 Continuous response and treatment

Following the above discussion, the choice of sorting scores in the two
examples in Section 2.3 are discussed and the potentials of a graphical
analysis is illustrated.

12 Exogeneity and sorting score



Garen model: In this example, not taking into account the endo-
geneity of z; corresponds to omitting the variable z;(z; — f(x;)) in (2), i.e.
setting A = 0. The omitted variable is here non-linear in x; and z;. This
non-linearity of E(y;|x;,z) may often be hidden by the heteroskedastic
noise when examining conventional residuals. On the other hand, recursive
residuals are able to identify the systematic bias in predictions obtained
with a monotone sorting score as is illustrated with the example below.
The natural sorting score is here the omitted variable s(x;) = z;(z;— f(x:)).
It ensures indeed monotonicity of the ordering.® Because f is unknown, an
approximate sorting score must be used by estimating this function, yield-
ing z;(z — f(x:)). Notice that this framework allows us to proceed without
specifying f but using instead a non-parametric estimate (see Section 5).

Example 4.1 The Garen model is considered, and we simulate 100 ob-
servations with the following specifications: fori=1,...,100,

yi = 142215 + vizi + &4,
Y = 1+ ug,

Z2; = Ty — X2 T Vi,

with x1; ~ U(0,1),29; ~ U(0,1),&; ~ N(0,1) and w; and v; bivariate
normal with expectations zero, variances 0.36 and 1 respectively, and cor-
relation —0.5. Assuming exogeneity E(y;|x1;,2:) = x1:.0+ 27y is estimated
with OLS. Several types of residual analyses are presented in Figures 1

and 2.

From the residuals plots of Figure 1 there seems to be no severe het-
eroskedasticity. The miss-specification of the conditional mean is not
straightforward to identify with these residual plots, although a trained
eye may see some structure in the OLS residuals when sorted with respect
to the omitted variable, graph (b), and in the recursive residuals obtained
with this same sorting score, graph (d). The CUSUM plots in Figure 2 are
more interesting. We note that the recursive residuals obtained with the
monotone sorting score provides a clear sign of the miss-specification of
the conditional mean of the model (endogenous treatment) by displaying

*Indeed, the non-linearity is either concave (A > 0) or convex (A < 0) in 2; (the
omitted variable is independent of x;), thereby implying recursive residuals with, re-
spectively, negative or positive mean.

Exogeneity and sorting score 13
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Figure™1: Residuals from the Garen model of Example 2: (a) OLS residu-
als sorted w.r.t. the variable x; (b) OLS residuals obtained with the order-
ing of the omitted variable (optimal sorting score); (¢) Recursive residuals
obtained with a random ordering; (d) Recursive residuals obtained with
the optimal sorting score.

14 Exogeneity and sorting score



(a) (b)

10 15
2 46 8

5

CUSUM of OLS resid

-2

CUSUM of recursive residuals

0 20 40 60 80 100 0 20 40 60 80 100

sorted w.r.t. the sorting score random order

(c) (d)

CUSUM of recursive residuals
CUSUM of recursive residuals
15

n
i
Te]
& o
o
0 20 40 60 80 100 0 20 40 60 80 100
sorted w.r.t. the sorting score sorted w.r.t. the estimated
sorting score
0 (e) K% (f)
< <
=] =
k=] S o
0 0
Q (ol
[ 2
¢ e
2 [N
=] 3 '
53 =3
2 S
— O “—
o m o Q
s s 7
=) =)
%) %]
3 o 20 40 60 80 100 3 O 20 40 60 80 100
sorted w.r.t. to variable z sorted w.r.t. residuals from regress.

of z against x

Figure™2: CUSUM plots of various residuals from the Garen model of
Example 2: (a) OLS residuals sorted w.r.t. the omitted variable (optimal
sorting score) —HC(w; = 0) = 0.00; (b) Recursive residuals obtained with
a random ordering —HC(w; = 0) = 0.40; (c) Recursive residuals obtained
with the optimal sorting score —HC(u; = 0) = —2.53; (d) ditto but with
an estimate of the previous sorting score —HC(u; = 0) = —2.83; (e) ditto
but with the sorting score s(z,z2) = 2 —HC(w; = 0) = —3.75; (f) ditto
but with the OLS residuals from the regression of z on x as sorting score

—HC(u; = 0) = —4.74.
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a systematic departure from zero of the CUSUM trajectory. This neat
visual effect is due to the monotonicity of the sorting score. The values
of the HC test (for Hy : u; = 0) given in the caption of the figure confirm
the visual impression. This sorting score cannot be used in practice be-
cause it is not observed, but graph (d) shows that the estimated sorting
score gives a similar result. In this particular simulated example, simpler
sorting scores also perform well, graph (e) and (f).

Demand equation: From (1) we note that s(xzy;) = (p; — axy;) plays
the role of an omitted variable and is therefore the natural sorting score.
It is, moreover, easily checked that this sorting score is monotone, be-
cause the predictor E(q;|x1i, pi, s(z2;) < ¢) is always either positively or
negatively biased when predicting ¢; for s(x2;) > ¢ (ae is an increasing
or decreasing value of ¢). The sorting score is unobserved, but a good
approximation is (p; — ax;), where @ is a consistent estimate.

Example 4.2 We use data on U.S. consumption expenditures (c;) dispos-
able income (y;) and government expenditure(g,) for the years 1955-1986
in billions of 1982 dollars.® We assume:

¢t = Nyt t &,
where y; is endogenous and such that

Yt = Qo + 1Gt + Vt. (8)
Since there is a structural break at 1975 we use data for the period 1955 -

197519 Figure 3 shows how the endogeneity of y; is revealed by using the
residuals from 8 as sorting score.

"This data is described in Hill, Griffiths and Judge (1997) and obtained from
http:\\www.wiley.com.

10Using the data for the whole period the same pattern as in Figure 3 appears when
the sorting score is used. Using the time ordering there is a visible structural break
at 1975 since after that time the CUSUM of the recursive residuals starts to increase.
However, the Harvey-Collier test statistics is significant (HC = 6.57) only when the
sorting score is used, pointing out that the endogeneity problem is more serious than
the structural break.
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4.3 Sample selection and binary treatment

The Heckman (1979) sample selection model is a classical specification of
the selection problem in econometrics:

2 = xMa+ey

zi = I(zf >0) 9)
and

yi = z(x;3 + €21), (10)

where 2} is an unobserved latent variable and sample selection arises when
e1; and e9; are correlated. Assuming joint normality of 1; and e9;, and
denoting 03 = 1, 03, p, their respective variances and correlation, we have

E(yilxf,zi = 1) = X8+ poy '\ (11)

where \; = ¢(x7a)/(1 — ®(x'a)) can be thought of as a missing vari-
able. Although ); is a non-linear function of x e, it may be close enough
to linearity to make the identification of the miss-specification difficult.
Hence it is customary to assume that, at least, one variable in x} is not
included in x; (see Section 4.1 and the discussion in Vella (1998, p. 135)).

Here the missing variable is not observed but can be estimated by
evaluating \; at a consistent estimator & of a, yielding Xz The ordering
of A; and of ®(x}'ax) = Pr(z; = 1|x;), the propensity score, are equivalent.
Thus, sorting with respect to XZ is equivalent to sorting with respect to the
estimated propensity score. Further, because \; enters linearly in (11), it
is a monotone score.

The standard endogenous treatment model (cf. Heckman, 1978) is
such that the choice is described by (9) and the outcome equation is:

UY; = X;,B + 26 + €9. (12)
If €1, and e9; are bivariate normal and correlated we have that F(eg;|x;, 2;)

= poyt( Nz — MNi(1 = 2)) where \; = ¢(xa)/®(xFa). As above the
missing variable can be estimated by replacing « by a consistent estimator.
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4.4 Discrete response and binary treatment

All the examples considered above have in common that the response
is continuous. The framework proposed in this paper is, however, also
applicable to discrete responses. As an example consider the case where
the response variable y is a count, and y;|x;, z;,u; is Poisson distributed
with expectation and variance

E(yi|xi, zi,ui) = V(Ya| i, 20, wi) = exp(xi8 + 260 + u;),

and the treatment endogeneity is modelled by (9). If u; and ; are inde-
pendent z; is exogenous, and we have a over-dispersed Poisson regression
model. Estimation with an endogenous treatment has been discussed, e.g.,
by Windmeijer and Santos Silva (1997) and Terza (1998).

5 Non-parametric sorting score

All the examples presented so far have in common that they specify a
parametric distribution for z|x; as well as how the endogeneity arises.
Such a full specification of the endogeneity alternative is often necessary to
apply existing tests, the DWH test excepted. A non-parametric approach
may be envisaged by fitting F(z;|x;) = f(x;) non-parametrically, and then
making use of the corresponding residuals, or the propensity score if the
treatment is binary valued, as a sorting score.

For the binary treatment case the propensity score provides the same
ordering as the control function A;. It can also be noted (cf. Ameimiya,
1981) that the estimated parameters in a linear probability model (for z;)
is proportional to the parameters estimated with the probit or logit esti-
mator. Hence, different distributional assumptions for the selection equa-
tions are likely to create approximately the same ordering and the sort-
ing score based on estimates from a linear ("non-parametric”) estimator
will yield approximately the same ordering as when using probit or logit
estimators. Consequently, the additive model for the propensity score,
E(zi|x;) = >_; fi(xji), can be expected to perform well, as well as the
generalization (Hastie and Tibshirani, 1990): g(E(zi(x:)) = >_; fi(zj:).
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6 Monte Carlo study

6.1 Experiments

In order to study the small sample performances of the exogeneity tests
proposed in this paper, three types of experiments are conducted. In
all three experiments we test for an exogenous treatment. In the first
experiment we use the setup of Example 2 with a continuous response and
continuous treatment. In the second experiment we have a continuous
response and a discrete treatment and the third experiment is concerned
with a discrete response (count) and a discrete treatment. In all tree
experiments we study the power and size of the tests. We also give as
reference alternative tests for exogeneity proposed earlier in the literature.
In all three experiments we choose the sample size n = 200, 400 the number
of replications N is 1000 and the exogenous variables are fixed within
repeated samples. In all simulations we have two exogenous variables x1;
and xg; which are uniform|0,1] variates. When calculating the recursive
residuals ¢ was set to 10. In the Chow tests C! and C? we split the sample
in the to two equal parts, hence n; = ne = 100 and 200, respectively
for n = 200 and 400.!! The power of the test is calculated using the
correlation p = —0.75, —0.5, —0.25,0.25,0.5 and 0.75. The sizes are given
for p = 0. In both the Garen model (selection) and the count data model
the model we estimate under Hy is miss-specified and we therefore also
calculate the size of the test under the assumption of correct marginal
distribution under Hy.
The first experiment is the Example 2 in Section 4.2 hence

Zi = X1 — T TV, (13)
Yy, = 142w + 2 + zu; + &5 (14)

Here, ¢; ~ N(0,1) and u; and v; are bivariate normal with expectations
zero and variances o2 = 0.36 and 02 = 1. We also perform the test where
w;, v; and g; are all x2(1) (centered to have expectation zero). It is essential
to note that heteroskedasticity is present even when p = 0. For that reason
we also perform an experiment with u; = 0 for all .

The second experiment is the conventional endogenous treatment model

' The small sample performance under normal errors and heteroskedasticity in a time
series setting is studied in Ohtani and Toyoda (1985).
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(See Section 4.3). Here we have the following setup.

zi = I((x1 —x2u +vi) >0),
yi = 1422+ 2 +w, (15)

where u; and v; are bivariate normal with expectations zero and variances
02 =0.36,02 = 1. We also perform the test where u; and v; are each x?(1)
(centered to have expectation zero).

In the final experiment the response variable is a count and we generate
the data such that y;|1,, 2;, u; is Poisson distributed with expectation and
variance

E(yi|$1ia Ziy UZ) = V(yi|$1ia Ziy UZ) = exp(ln(?)mu + Z; -+ ul) (16)

The same setup as in the endogenous treatment model above is used.
It should be observed that even when p = 0, the marginal distribution
of the response is not Poisson. We thus perform an experiment under a
Poisson marginal distribution, i.e. when w; = 0 for all <. When u; is not
constant the marginal distribution has no closed form (cf. Terza, 1998),
although when p = 0 we know the first two unconditional expectations:
E(yi|x1i, 2zi) = i = exp(Bo+1In(2)x;+2;) and V (y;|x14, 2i) = pi(140.36 144 ),
where 3y = —0.36/2, such that E(exp(u;)) = 1.1

Garen suggests a two step method (TSM) to correct for selection: first
estimate (13) with OLS and then estimate

yi = Po + Brxi +vzi + 7(2i0;) + €5, (17)

where 7; is the residuals from the first step OLS estimator.!* Thus, a
t—test, using the heteroskedastic consistent covariance matrix (6), of 7 =0
is a test for exogeneity of z. In our tests the sorting score s(x;, z;) = v; and
s(x;, z;) = U;2; were used.

In the two final experiments the sorting score is the predicted prob-
abilities from a probit maximum likelihood estimator, i.e. s(x;,z) =

12The calculation of the recursive residuals are quite time consuming, that is why we

only performed the Monte Carlo experiments under the (bivariate) normal error setup.
Y1f uy ~ N(u,0?) and p = —02/2 then E(exp(u;)) = exp(p +02/2) = 1.
""Since Garen also assumes that the error terms in the two equations are correlated, he
suggests the following model to be estimated y;: = ao+1 2 +aozi+as(2:0;) +av;+€5 .
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(A + @1x1; + Aawy;).t? In the second experiment with a dummy treat-
ment model a standard test of selection is a t-test of 7 = 0 in

Yi = Bo + Bz + vz +Te; + €,

where ¢; = Xzzl + 3\2(1 — z;) and /):Z and \; are obtained from an initial
probit ML estimator. Since ¢} is heteroskedastic the covariance estimator
(6) is used. For this model a DWH test is easy to perform since under
Hj the OLS estimator is efficient while under the TSM presented above is
consistent under both hypothesis.

Terza (1998) suggests a TSM (similar to the Heckman correction in the
Gaussian model) to correct for selection in the model (16): First estimate

yi = h(xi, 2,0, a)+n; (18)

with non-linear least squares (NLS). Here h(x;, 2,0, o) = ¢¥(0, ) exp(x;8%),
where 8* = (35, 51,6) and 8 = p/o,. The estimate & is from an initial
probit ML estimator, and

o - [t o[22

Let by = (8%,0) then the NLS estimator b, is asymptotically normal

with expectation by and covariance matrix D. A consistent estimator is
D= (G/G)) ' (GIUG, + G}GaVGLGY) (G1Gy) ', (19)

where G1 and Gy are, respectively, the n x 4 and n x 3 matrices with
typical row gi; = [0h;/Ob1] [by and go; = [Ohi/al] |&, ¥ = diag(7?) and
V is the covariance matrix of &. A more efficient procedure also suggested
by Terza is to estimate

yi = h(xq, 2,0, 0)+n;,

with nonlinear weighted least square, using the notion that V(n;|x;,2;) =
h(X’i7 Zi, 07 a)+exp(2xiﬁ*)(exp{ag—292 }wQ —¢(97 04)2), where ¢2 = exp(292)
¥(20,«). Test for endogeneity of z; is then performed as a t-test of 6 =0
denoted t (TSM) and ¢t (NLWLS) in the sequel.

'“Note that the predictions from a linear probability model or a logit (cf. Ameimiya,
1981) would give approximately the same ordering as using a probit estimator.
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Table 1: Size of the test for exogeneity under the model by Garen (1984)
and endogenous treatment model. (nominal level 5 percent).

g,u and v, x> (1) N(0,1)
n 200 400 200 400
p 0 u; =0 0 u; =0 0 u; =0 0 u; =0
Model Yi = 1 -+ 2%11' + zi + ziu; + €54 and Z; = T1i — To; + Vs
t 0.300 0.095 0.288 0.093  0.092 0.072 0.074 0.063
S(Xi, ZZ) = 61
HC 0.380 0.069 0.439 0.063 0.128 0.043 0.154 0.045
ct 0.082 0.053 0.108 0.061 0.074 0.044 0.072 0.045
Cc? 0.078 0.068  0.089 0.065 0.073 0.063 0.061 0.061
L. 0.344 0.098 0.569 0.085 0.086 0.023 0.176 0.022
S(Xi, Zl) = va\l
HC 0.039 0.050 0.035 0.049 0.042 0.048 0.037 0.036
ct 0.040 0.049 0.056 0.046 0.043 0.051 0.030 0.037
Cc? 0.068 0.052 0.064 0.057  0.066 0.063 0.050 0.048
L. 0.487 0.049 0.767 0.046 0.535 0.022  0.873 0.023
Model Yyi =1+ 2x15 + 2: + u; and 2z = I((z15 — 220 +v;) > 0)
t 0.065 0.057 0.053 0.060
DWH 0.000 0.000 0.000 0.001
HC 0.045 0.051 0.056 0.047
o 0.042 0.048 0.046 0.064
Cc? 0.049 0.053 0.081 0.076
L. 0.013 0.020 0.030 0.019
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Figure™4: Power and size of the test for the Garen model and using sorting
score §(X;,2;) = v;. Here D =1t, O = HC, A = C1,+ = Cy, X = L,
and nominal level (5 %) indicated by horizontal line. Left panels x?(1)
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Table 2: Power and size of the test for exogeneity of a treatment variable

in a count data regression model (nominal level 5 percent).

p -0.75 -0.5  -0.25 0 u; =0  0.25 0.50 0.75

n
t (TSM) 0.135 0.072 0.034 0.014 0.015 0.009 0.010 0.015
t (NLWLS) 0.114 0.065 0.030 0.015 0.007 0.019 0.038 0.066
HC 0.264 0.166 0.217 0.272  0.072 0.377 0.468 0.577
C? 0.142 0.098 0.094 0.076  0.071 0.087 0.087 0.130
L. 0.028 0.012 0.011 0.006  0.007 0.009 0.012 0.021

n
t (TSM) 0.406 0.169 0.075 0.021  0.023 0.016 0.032 0.095
t (NLWLS) 0.424 0.176 0.081 0.029  0.020 0.062 118 275
HC 0.323 0.182 0.210 0.368  0.044 0.557 0.745 0.819
C? 0.235 0.147 0.078 0.087  0.039 0.056 0.120 0.185
L. 0.054 0.016 0.007 0.005  0.002 0.009 0.016 0.044

6.2 Results

First we discuss the result from the Garen model, thereafter we discuss the
result from the endogenous treatment model and lastly the results from
the count data model.

e Figures 3 and 4 display the power and size for the model of Garen
with the two different sorting scores v; and z;U;. The null hypothesis
of exogeneity generally corresponds to p = 0. However, some of the
tests implemented do not take into account the heteroskedasticity
intrinsic to the Garen model and are therefore actually testing u; =
0: These are the Harvey-Collier'® test and the C! test. For these
the nominal size of 5 percent can only be expected under u; = 0
while for the other the nominal size is expected under both p = 0
and u; = 0. To support the evidence from the figures the size when
p =0 as well as when u; = 0 is presented in Table 1.

— With Gaussian errors and u; = 0, the expected nominal size is
obtained,'” for all test statistics and both sorting scores except
for the L, test which yield too small a size.

16The HC test could have been adapted to take into account the heteroskedasticity
by using (3) instead of assuming a constant variance (u; = 0).
17A 95% confidence interval for the empirical sizes is approximatively +1.4%.
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— With centered x?(1) errors and u; = 0 most statistics give too
large sizes. The exceptions are the HC, C? and C?! tests under
both sorting scores z;v; and ;.

— When p = 0 and Gaussian errors we have heteroskedasticity
and most tests have too large sizes. The C?-test has the correct
size irrespective of the sorting score, while the HC and C' have
correct size only when we have the sorting score s(x;, z;) = 2;V;.

— For p = 0 and centered x?(1) errors the heteroskedasticity is
more severe than under the Gaussian errors and, as can be
expected, the size of the tests are generally too large. The HC|
C*' and C? with s(x, 2) = z0; have the correct size and the C?
using s(x, z) = v; is not far from being of the correct size.

— Comparing empirical powers, we can see from Figure 3 and 4
that the C? test is not significantly worse than the Wald test
(t) under normality while not being sensitive to the non-normal
error terms considered.

With the estimated sorting score z;U;, the performances of all the
tests improve with respect to size except for L. that is still sensitive
to heteroskedasticity. Most notable is the much better size of HC
for p = 0. This is most surely due to a smoothly varying variance
through the ordering obtained with this sorting score, rending the
naive HC less sensitive to the heteroskedasticity.

e Figure 5 displays the result from the endogenous treatment model.
The size of the test can also be studied in Table 1.

— We see that the Wald test (), the HC and C! tests always
have the correct size. The L. is conservative under the normal
distribution but gives too large a size under the centered y?(1)
error distributions. The opposite is observed for the C? test.

— Looking at Figure 5 we can see that the DW H test has, as
expected, very low power: no power at all when n = 200. When
the error are normally distributed the Wald test is uniformly
best, while when the errors follow the x?(1) distribution either
the HC or the Wald test perform best.

e The results from the count data regression are displayed in Table 2.
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— We can see that the Wald test (t) using the TSM and NLWLS
both yields too small sizes, although this improves when the
sample size increases. The HC and C? tests have correct size
when there is no over-dispersion. When the marginal is miss-
specified'® the size is, as expected, much too large for HC.
The C?-test has a slightly too large size when over-dispersion
is present, while when the marginal is Poisson distributed the
size is correct for n = 400. The L. test is always conservative
and with almost no power at all.

— The power of the tests are generally low. The power is generally
higher when p < 0 than when p > 0. The one exception is the
HC test where the power is higher for the opposite situation,
i.e. when p > 0.

The test with the best performance is, as expected, the Wald test
using the NLWLS estimator. The C? test and Wald test using the
TSM have comparable power.

7 Conclusion

We have introduced a new concept of testing an exogeneity assumption
in cross-section regression by first sorting data and then using time series
tests for miss-specification. This concept has allowed us to put forward two
main diagnostic tools. First, what we believe is the first convincing graph-
ical display allowing to detect endogeneity of a variable: the CUSUM of
the recursive residuals obtained with a relevant sorting score. The second
main contribution is a Chow test (C?) which is simple to compute with
ordinary econometrics packages and which has shown not to be sensitive
to distributional assumptions in the experiments conducted.

By considering specific parametric models for endogeneity we have
aimed at illustrating the usefulness of our framework. In particular, the
conducted Monte Carlo experiments have allowed us to show that the
proposed tests, including the Chow-type ones, have similar performances
to tests making use of the parametric and distributional assumptions.

18Practically, a preliminary data analysis should be used to identify the over-
dispersion issue. Recursive residuals calculated under e.g., a negative binomial regres-
sion model instead of Poisson are likely then to be less sensitive to the miss-specification
of the marginal distribution.
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Moreover, because we do not make strong assumptions on the endogeneity
alternative hypothesis, the proposed tests, and most obviously the simple-
to-use Chow test, are robust to the alternative distributional assumptions
considered, both at the structural equation level and at the endogeneity
modelling level.

We believe that the use of the sorting score is open to further poten-
tial applications than those highlighted in this article. For instance, the
construction of non-parametric sorting scores as outlined in Section 5 but
not further studied herein, seems to us to have promising prospects for
successful applications.
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