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Abstract

We propose a general test for exogeneity that is robust against
distributional misspeci…cation. The test can also be used to identify
other types of misspeci…cations, such as the presence of a random
coe¢cient. The idea is to sort the data with respect to a variable
(a sorting score) and then split the sample into two parts. Using
a Chow test, it can then be tested whether estimated parameters
in the two sub-samples are di¤erent. We give conditions under
which it is possible to test for exogeneity by using the (supposedly)
endogenous variable as a sorting score. The resulting test does not
need instrumental variables. Evidence from a Monte Carlo study
and an empirical application suggests that the test can be useful for
practitioners.
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1 Introduction

1.1 Background and purpose

A challenging issue in observational studies is to assess whether causal
conclusions maybe drawn from a given analysis. The concept of exogeneity
is closely connected to this issue, see, e.g., Koopmans (1950) and Imbens
(1997).1

Engle, Hendry and Richard (1983), building on Koopmans’ work, were
probably the …rst in providing a rigorous de…nition of exogeneity within
an inferential framework: In regression models for cross-sectional data
where a dependent variable y is explained, an explanatory variable z
was de…ned as being exogenous2 for a parameter vector of interest if this
parameter could be e¢ciently estimated by basing the likelihood on the
conditional density of y given z; thereby ignoring the marginal density of
z. Observe that this de…nition rest on a well-speci…ed model and is, hence,
not meaningful under distributional misspeci…cation.

In particular situations, methods have been developed avoiding the
speci…cation of econometric regression models. For instance, if the issue of
interest is to assess the e¤ect of a treatment/program ¡ z = 1 (treatment
group) z = 0 (control group) ¡ on a given socio-economic variable y of
interest (e.g. the e¤ect of a labor program on wages), then instead of
considering a regression model, an experimental study may be mimic to
a certain point, by using matching methods (see, e.g., Rosenbaum and
Rubin, 1983; Rosenbaum, 1995; Heckman, Ichimura and Todd, 1998).
Here exogeneity is replaced with a concept of ignorability of the treatment
assignment.

However, for most economic empirical applications, regression models
remain the most useful tool in performing inference. In this paper we
propose a general test for exogeneity of a regressor under distributional
misspeci…cation by using the framework of quasi maximum likelihood
(QML) inference developed in White (1982).3 To achieve this, a de…nition

1See also Holland (1986, with discussion) for an excellent overview on di¤erent
de…nitions of causality, and their implications on causal inference. An early reference
on causal inference is Stroz and Wold (1960).

2Note that in the cross-sectional context of this paper the concepts of weak and
strong exogeneity are equivalent.

3For a related use of the QML framework see Wooldridge (1991), who suggests
extensions to conditional moment tests under distributional misspeci…cation.
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of exogeneity is proposed which is operational under distributional misspeci…-
cation.

1.2 Testing exogeneity

In order to propose a test for model misspeci…cation of a regression model
for cross-sectional data we de…ne a Kullback-Leibner (KL) (Kullback and
Leibner, 1951) invariant parameter for an explanatory variable, z; in a
parametric regression model. Loosely, a parameter vector of interest is
said to be KL-invariant for z; if it is invariant when conditioning the
inference on any value for this variable. To test the hypothesis that a
parameter is KL-invariant for z; the available sample is sorted with respect
to the variable z and divided into two parts. Using a quasi maximum
likelihood estimator (QMLE) the parameter is then estimated on the two
sub-samples. Given the conditions in White (1982), we can test whether
these two estimated parameters are equal. A Chow test statistic is used for
that purpose.4 We show that this Chow test is a test for the KL-invariance
of the parameter of interest. This test is consistent and has power against
non-invariance. Furthermore, the test is simple to carry out with any
software allowing for maximum likelihood estimation.

Given the de…nition of KL-invariance, we de…ne exogeneity under
distributional misspeci…cation. A variable is said to be exogenous for
a parameter when this parameter is KL-invariant for any existing variable
(observed or unobserved, known or unknown) which happens to be depend-
ent on the former variable. This de…nition of exogeneity is conceptually
di¤erent from the de…nition of Engle et al. (1983), although in usual
econometric models of endogeneity (non-exogeneity, see, e.g., Vella, 1992)
the two de…nitions agree. The concept of exogeneity proposed herein has,
however, the advantage of allowing for distributional misspeci…cation and
is, we believe, closer to a notion of causality.

The Chow test described above becomes a test for exogeneity in situatio-
ns where we know that the non-invariance of a parameter for a variable
can only be due to the endogeneity of this variable. In this respect,
we show that KL-invariance is guaranteed under exogeneity when the
assumed parametric model belongs to the linear exponential family (see

4 For the particular case of linear models, such sorting was used in de Luna and
Johansson (2001) to give graphical diagnostics of endogeneity based on recursive
residuals. Here, the Chow test is a more general tool.
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Gouriéroux, Monfort and Trognon, 1984), and this model is possibly
misspeci…ed except for the form of the conditional expectation.

In contrast to the Hausman test (e.g., White, 1982), the introduced
Chow test does not need a fully well-speci…ed model under the alternative
hypothesis. The latter also usually needs instruments while an instrument-
free Chow test is available if we can directly sort with respect to the
suspected endogenous variable. However, such sorting is not always imple-
mentable and, for instance, if the suspected endogenous variable is a
dummy variable, then instruments are needed to sort the data and hence
to perform the test.

Finally, other types of misspeci…cation leading to non-invariance may
also be tested, such as the presence of unobserved heterogeneity in the
form of a random coe¢cient. As usual with misspeci…cation tests, which
misspeci…cation leads to the test having power is a delicate question and
the answer should be based on available theoretical grounds. Nevertheless,
a general strategy for using theChowtest in practical situations is suggested
in Section 6.

1.3 Organization of the paper

In Section 2, the framework is described; in particular we de…ne KL-
invariance and exogeneity. In Section 3, the Chow test is described and
its consistency shown. Its power is also discussed, for instance in relation
to well-known regression speci…cations where endogeneity (or selectivity)
is modelled. Based on these models, Section 4 studies the small sample
performance through a Monte Carlo study. Section 5 gives an empirical
illustration using data on the number of days blue collar workers in Sweden
are absent from work, see Johansson and Palme (1996). In their paper,
the primary interest was to study the economic incentives on absenteeism.
The cost of being absent is expected to be endogenous, however. We
sort the data on the cost variable and form two data sets of equal size;
one with low costs and one with high costs of being absent. Binomial
regression models are estimated separately (using a QMLE) on the two
samples and, on basis of the Chow test, the exogeneity of the cost variable
is rejected.
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2 Kullback-Leibner invariance and exogeneity

Let yi and zi be two variables observed on individual i.5 It is assumed
that (yi; zi); i = 1;2; : : : ; are independently and identically distributed
random variables. We denote the joint, conditional and marginal densities
g(yi; zi); g(yijzi), g(yijzi), g(yi), g(zi), etc. Note that we use small letters,
e.g. yi, both to denote a random variable and its observed realization.

For scienti…c purposes (e.g., explaining an outcome yi of a treatment
zi), a parametrized regression model with density f(yijzi; µ), for yi and zi
is speci…ed up to the parameter vector µ taking value in a given space.
Note that we do not assume that f(yijzi;µ) = g(yijzi) for one value of µ,
i.e. the model is possibly misspeci…ed. This parameter is estimated using
a quasi maximum likelihood estimator (QMLE), i.e.,

1

n

nX

i=1

log f(yijzi; µ) (1)

is maximized with respect to µ, for the random sample, (y1; z1); : : : ; (yn; zn),
of size n. We denote this QMLE bµ. The theory associated with quasi
likelihood inference was presented in White (1982), whose results are now
brie‡y summarized.

Under assumptions A1¡A3 in White (1982), such an estimator exists
and, as n ! 1,

bµ a:s:! µ¤;

where a:s: stands for almost sure convergence. Here, µ¤ is the parameter
vector minimizing the Kullback and Leibner (1951) Information Criterion
(KLIC), i.e.,

µ¤ = arg min
µ

I(g : f; µ); (2)

where6

I(g : f;µ) = Ey;z

µ
log

�
g(yijzi)

f(yijzi;µ)

¸¶
: (3)

5 In order to enhance the presentation, we neglect observed exogenous variables xi:
6 It is equivalent to compare f(yjz; µ) to g(y; z) or g(yjz); because the former can be

factorized as g(y; z) = g(yjz)g(z), and g(z) does not depend on the parameter on which
the optimization takes place.
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The expectation operator Ey;z(¢) is de…ned with respect to the true distribu-
tion of the subscript variables, here g(yi; zi). Further, under assumptions
A1 ¡ A6 in White (1982), as n ! 1,

p
n(bµ ¡ µ¤)

d! N (0; V(µ¤));

and V(bµ)
a:s:! V(µ¤), where d stands for convergence in distribution. Here,

V(µ¤) = J¡1IJ¡1 and V(bµ) = bJ¡1bIbJ¡1; where

J = Ey;z

µ
¡@2 log f(yijzi; µ¤)

@µ@µ0

¶
;

I = Ey;z

µ
@ log f(yijzi; µ¤)

@µ

µ
@ log f(yijzi;µ¤)

@µ

¶0¶

and

bJ =
1

n

nX

i=1

¡@2 log f(yijzi; bµ)

@µ@µ0
;

bI =
1

n

nX

i=1

"
@ log f(yijzi;bµ)

@µ

Ã
@ log f(yijzi; bµ)

@µ

!0#
:

Hence, even if the model for yi is misspeci…ed (i.e. f(yijzi; µ) is di¤erent
from g(yijzi) for any µ), the QML estimator is strongly consistent (with
respect to µ¤); asymptotic normal and has an estimable covariance matrix.

However, misspeci…cation must be restricted for the …tted model f(yijzi;bµ) to have scienti…c content (other than predictive). Thus, this leads us
to consider situations where the estimated parameter is interpretable.

De…nition 2.1 Let

tz(zi) = arg min
µ

I(g : f;µjzi),

where

I(g : f; µjzi) = Eyjz

µ
log

�
g(yijzi)

f(yijzi;µ)

¸¯̄
¯̄zi

¶
(4)

is the KLIC conditional on zi. The parameter Ã = Á(µ), a function of µ
only, is said to be KL-invariant for zi if Á(tz(zi)) = Ã¤, a constant, for
any value of zi.
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Remark 2.1 A parameter which is not a function of µ only is not KL-
invariant for zi by de…nition. When Á(µ) = µ, then Ã¤ = µ¤. For
simplicity, µ will be used to denote both µ and Ã in the sequel, while
making clear from the context which is the parameter of interest.

We have chosen to call a parameter with such a property ”invariant”
because of its invariance when conditioning on the variable of interest, zi.

A trivial example where the parameter is invariant is when there is
no misspeci…cation, i.e. f(yijzi;µ) = g(yijzi) for a given value of µ. The
following de…nition and result provide another class of situations where
KL-invariance in zi is guaranteed as soon as the conditional expectation
Eyjz(yijzi) is well-speci…ed.

De…nition 2.2 The density f(yijzi;µ) belongs to the linear exponential
family (LEF) if it can be written in the form

log f(yijzi;µ) = A(m(zi; µ)) +B(yi)+ C(m(zi;µ))yi;

where m(zi;µ) is the conditional mean associated with f(yijzi;µ); and
A(m),B(yi) and C(m) are scalar functions.

Proposition 2.1 Assume that f(yijzi; µ) belongs to the LEF. Under regular-
ity assumptions (see Gouriéroux et al., 1984, Appendix 1) and if m(zi;µ)
is well speci…ed, i.e. Eyjz(yijzi) = m(zi;µ0) for µ0 a particular value of
µ,7 we have that µ is KL-invariant for zi.

Proof. The conditional KLIC (4) is minimized with respect to µ by
maximizing

Eyjz(logf(yijzi;µ)jzi) = A(m(zi; µ)) +Eyjz [B(yi)jzi] +C(m(zi; µ))m0;

where m0 = m(zi;µ0). However, this is equivalent to maximizing

A(m(zi; µ)) + C(m(zi; µ))m0

since Eyjz[B(yi)jzi] does not depend on µ: By Property 4 in Gouriéroux
et al. (1984), this expression is maximized at µ = µ0, for any zi. Thus, µ

is KL-invariant for zi.
7 By Theorem 1 in Gouriéroux et al. (1984) we know that µ¤ = µ0 in (2).
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Example 2.1 Let us consider the linear model

yi = °zi+ ºi;

where ºi is such that Eº jz(ºijzi) = ½zi; ½ 6= 0. Here µ = ° + ½ is the
parameter entering E(yijzi) = m(zi; µ): Proposition 2.1 says that when
using a QMLE for µ based on the assumption that yijzi has a distribution
from the LEF (e.g. ordinary least squares, OLS, estimator), then µ is
KL-invariant for zi. On the other hand, ° is not KL-invariant for zi if
½ 6= 0, because then ° = µ ¡½ is not a function of µ only, see Remark 2.1.

Remark 2.2 Note that the result in Proposition 2.1 does not depend
directly on the density g(yi; zi), except in that m(zi;µ) must be well speci…ed.
On the other hand, the density f(yijzi;µ) chosen to obtain a QMLE must
be from the LEF. In such cases, if µ is not KL-invariant for zi then it
implies that Eyjz(yijzi) is misspeci…ed.

Exogeneity of a variable has been de…ned for well-speci…ed models,
see Engle et al. (1983) or Gouriéroux and Monfort (1995, Def. 1.8).
In our context, if g(yi; zi) = f(yijzi;µ)f(zij®) and µ and ® vary over a
product space, then zi is said to be exogenous for µ. Mistakenly assuming
exogeneity most often leads to invariant misspeci…cation, i.e. µ is not KL-
invariant for zi if zi is endogenous, see Example 3.1 below. This prompts
us to propose a de…nition of exogeneity valid in situations where the model
is possibly misspeci…ed, although invariant.

De…nition 2.3 For a random variable ui, let

tu(ui) = arg min
µ

I(g : f; µjui);

where

I(g : f;µjui) = Ey;zju

µ
log

�
g(yijzi)

f(yijzi; µ)

¯̧̄
¯̄ ui

¶
:

Then, the variable zi is said to be exogenous for Ã = Á(µ), a function of µ
only, if this parameter is KL-invariant for zi; and for any other random
variable ui (observed or not observed, known or not known) dependent on
zi; we have Á(tu(ui)) = Á(tz(zi)) = Ã¤. That is Ã is also KL-invariant
for any ui dependent on zi.
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These two de…nitions of exogeneity are conceptually di¤erent as the
two following examples illustrate.

Example 2.2 Consider the model for yi and zi:

yi = ± +°zi+ "i

zi = ° + ´i;

where E"("i) = E´(´i) = 0; and "i and ´i are independent and jointly
normal random variables. Here zi is not exogenous for ° by the Engle
et al. (1983) de…nition. Indeed, one cannot neglect the second equation
without loosing information on °. By De…nition 2.3, zi is exogenous for °
in the …rst equation, since ´i is the only random variable dependent on zi;
and clearly the maximum likelihood estimator of ° based on f(yijzi; ±;°);
here a normal density, is consistent independently on the values taken by
´i.

The model in this example, although peculiar, shows that the Engle
et al. (1983) de…nition of exogeneity for well speci…ed models is not a
special case of De…nition 2.3. The former is also concerned with e¢ciency
of estimation, an important but not essential issue.

Example 2.3 Consider again the model in Example 2.1, completed as
follows:

yi = x0i¯ + °zi +ui+ "i

zi = x¤0i ± + ´i (5)
ui = ¸´i +!i; (6)

where E(!ij´i) = E(´ijx¤i ) = E("ijxi; zi;ui) = 0 and xi and x¤i are vectors
of exogenous variables. This is a standard model of endogeneity for zi.
Assuming further that all variables in the model are jointly normal, we
can write

Eyjx;z(yijxi; zi) = x0i¯ + (° + ½)zi;

where ½ is a function of ¸ and ±; and the conditional density f(yijxi; zi;µ)
is a normal density with location parameter µ = (¯0; µ2)

0; where µ2 = °+½.
The interest in such a model lies typically in °. However, the latter is a

10 Testing exogeneity under distributional misspeci…cation



function of ±, since ° = µ2¡ ½, and therefore is not a function of µ only.
The consequence is that zi is not exogenous for ° neither in the Engle et
al. (1983) sense nor in the sense of De…nition 2.3. Let us now assume
that the interest lies in parameter µ2. Then, zi is exogenous for µ2 in the
Engle et al. (1983) sense. However, it is not exogenous in the sense of
De…nition 2.3, although as we saw in Example 2.1, µ2 is KL-invariant for
zi. To see this, consider the sub-population de…ned by ´i < c, where c is a
given constant within the sample space of ´i. Then

Eyjx;z(yijxi; zi; ´i < c) = x0i¯ + (° + ½c)zi (7)

where j½cj < j½j. For the sub-population of interest the maximum likelihood
estimator is consistent for µc = (¯0; °+ ½c)

0. This dependence of ½c on ´i,
a random variable dependent on zi, implies that zi is not exogenous for µ2
and thereby µ.

This example shows that exogeneity in the Engle et al. (1983) sense
does not imply exogeneity as de…ned in De…nition 2.3. The meaning
of the latter de…nition is that although µ is estimated consistently and
e¢ciently (in particular µ is KL-invariant for zi); zi is not exogenous
for µ. Of course, µ is typically not the parameter of interest, and when
° is the focus both de…nitions imply non-exogeneity of zi. These two
examples are given here to emphasize the conceptual di¤erences between
the two exogeneity de…nitions. These are thus not equivalent in general,
but will be in agreement (assuming well speci…ed distributions) in typical
econometric models of endogeneity such as those treated in the following
sections. An advantage of De…nition 2.3 is that it is operational under
distributional misspeci…cation. In the sequel we refer to this de…nition
whenever mentioning exogeneity.

Note that when a variable is exogenous for a parameter (in particular,
this parameter is KL-invariant for the variable), then we may say that
the QML estimator converges to a value with a causal interpretation.

3 A Wald-Chow test

Assume that we have a random sample of n individuals for which a scalar
variable si has been observed. The data set can then be sorted with respect
to s (in ascending or descending order for si, called a sorting score). Based

Testing exogeneity under distributional misspeci…cation 11



on this sorting, the sample is separated into two parts, one with si < c and
one with si > c, where c is a …xed truncation point. Then, the parameter
µ in f(yijzi;µ) is estimated separately for each sub-sample using a QMLE,
yielding bµj and V(bµj); j = 1 (si < c) and j = 2 (si > c). Then, we can
use the Wald statistic

W = (bµ1 ¡bµ2)0
³
V(bµ1) +V(bµ2)

´¡1
(bµ1¡ bµ2) (8)

to test H0 : ”µ is KL-invariant for si:” This is justi…ed within the next
two sections.

3.1 Size of the test

The proposition below shows that, under H0, the above Wald test statistic
is asymptotically Chi-squared distributed with p (dimension of µ) degrees
of freedom. We call the resulting test a Chow test, in reference to Chow
(1960).

Proposition 3.1 Let A1¡A6 in White (1982) hold (also when conditioning
with respect to si). Then, under H0 : "µ is KL-invariant for si"; the Wald
statistic W is asymptotically Â2(p) distributed. Moreover, as n ! 1,

bµ1 ¡bµ2 a:s:! 0 (9)

and

V(bµ1) + V(bµ2) a:s:! V(µ¤1) +V(µ¤2): (10)

Proof. Let µ¤1 = arg maxµ Ey;z [log f(yijzi; µ)jsi < c].8 By the invariance
of µ for si, we have that

µ¤1 = argmax
µ

Ey;z[log f(yijzi;µ)jsi < c]

= argmax
µ

Ey;z[log f(yijzi;µ)] = µ¤:

Then,
p

n(bµ1 ¡ µ¤) d! N (0;V(µ¤1)); bµ1 a:s:! µ¤ and V(bµ1) a:s:! V(µ¤1)
(White’s (1982) results summarized above). Note that, although µ¤1 = µ¤,
V(µ¤1) and V(µ¤) may di¤er.

8 Note that this is equivalent to minimizing (3), where the expectation is conditional
on si < c.
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Let µ¤2 = arg maxµ Ey;z [log f(yijzi; µ)jsi > c]. Then, similarly
p

n(bµ2¡
µ¤) d! N(0;V(µ¤2)); bµ2 a:s:! µ¤ and V(bµ2) a:s:! V(µ¤2): Therefore, under H0,

(9) and (10) hold, and
p

n(bµ1¡bµ2) d! N(0; V(µ¤1)+V(µ¤2)); implying the
asymptotic chi-square distribution of the quadratic form W .

Thus, the Chow test associated with an adequate sorting score is
consistent, i.e. has the correct size asymptotically. Note that the choice
of c is irrelevant for consistency. We now give a result useful in the sequel.

Proposition 3.2 If µ is KL-invariant for zi, and yi and ui are two
random variables which are independent conditional on zi, then µ is also
KL-invariant for ui.

Proof. We have

Ey;zju[log f(yijzi; µ)jui] = EzjufEyjz;u[log f(yijzi; µ)jzi; ui]juig
= EzjufEyjz[logf(yijzi;µ)jzi]juig
= Ezjufh(zi; µ)juig:

The second equality is a consequence of yi and ui being independent,
conditional on zi under H0.

By the KL-invariance of µ for zi;

I(g : f;µjzi) = Eyjz

µ
log

�
g(yijzi)

f(yijzi;µ)

¸¯̄
¯̄zi

¶

is minimized for µ = µ¤ for any zi. Hence, arg maxµ h(zi; µ) = µ¤ for any
zi. Therefore, we have, that h(zi;µ) � h(zi; µ

¤) for all zi, which implies
Z

h(zi;µ)g(zijui)dzi �
Z

h(zi;µ
¤)g(zijui)dzi for all values for ui.

Hence,

arg max
µ

Ezjufh(zi; µ)juig = µ¤:

Thus, µ is also KL-invariant for ui.

Remark 3.1 By Proposition 3.2, zi is exogenous for µ as soon as there
is no random variable ui which is both dependent on zi; and dependent on
yi conditionally on zi.
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3.2 Power of the test

When H0 in Proposition 3.1 does not hold, then in general µ¤1 6= µ¤2; see e.g.
Example 2.3. The above Chow test will then have power depending on the
actual di¤erence µ¤1¡µ¤2, which depends on the cut point c. The choice of c

also a¤ects the power through its in‡uence on V(bµ¤1) and V(bµ¤2), e.g., the
value of c determines the number of observations available in the two sub-
samples. In both cases, the in‡uence of c on the power is case dependent
and as a general rule, c may be chosen as the median of the observed
values for the sorting score, in order to have 50% of the observations in
each sub-sample.

Two main situations can be distinguished: (i) µ is KL-invariant for zi
even when the latter variable is endogenous and (ii) µ is KL-invariant for
zi only if zi is exogenous.

Under the …rst situation (see e.g. Example 2.3) Proposition 3.2 suggests
sorting scores guaranteeing the size of the test of exogeneity, i.e. choose si
such that under H0; ”zi is exogenous for µ” then yi and si are independent
conditional on zi: When H0 does not hold, then there exists, by de…nition,
an unobserved variable ui dependent on zi, such that µ is not KL-invariant
for ui. To obtain power for the test an obvious choice is si = ui: The latter
is, however, typically unobserved. Instead assume that we have a sorting
score si which is dependent on ui (and therefore on zi) and such that yi
and si are independent, conditional on ui and zi.9;10 Then, we can write

Ey;z[log f(yijzi; µ)jsi < c] = Eu;zfEyju;z[logf(yijzi;µ)jui; zi; si < c]jsi < cg
= Eu;zfEyju;z[log f(yijzi;µ)jui; zi]jsi < cg
= Eu;zfh(ui; zi; µ)jsi < cg:

Because µ is not KL-invariant for ui; arg maxµ h(ui; zi; µ) = µ(ui). Thus,
in general,

arg max
µ2£

Eu;zfh(ui; zi; µ)jsi < cg 6= arg max
µ

Eu;zfh(ui; zi;µ)g;

thereby implying that µ¤1 6= µ¤2:

9 This latter condition is not restrictive, and means that si would not need to be
introduced in the model to explain yi; were zi and ui both available.

10 In practice, such a sorting score is obtained with the help of instrumental variables,
see Example 3.1.
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For the second situation when the model is speci…ed such that µ is
KL-invariant for zi only if zi is exogenous for µ it is possible to test H0:
”zi is exogenous” by using si = zi. This is a test for exogeneity without
instruments and it will have power since, in general, arg maxµ Ey[log f(yij
zi; µ)jzi < c] 6= argmaxµ Ey[log f(yijzi; µ)jzi > c]:

Example 3.1 We conclude this section by revisiting Example 2.3, without
making any distributional assumption. We have

Eyjx;z;u(yijxi; zi;ui) = ® +x0i¯ +°zi + ui: (11)

If Eujz(uijzi) = 0; i.e. ¸ = 0 in (6); then zi is exogenous for °. On
the other hand, if Eujz(uijzi) = f(zi) then zi is endogenous for °, see
Example 2.3. Two cases are distinguished: (i) Eujz(uijzi) is non-linear
and (ii) Eujz(uijzi) is linear in zi: Under (i) µ = (®; ¯0; (°+½))0 is not KL-
invariant for zi and, hence, the Chow test associated with the sorting score
si = zi has power to identify the endogeneity. On the other hand, under
(ii) the same parameter µ is KL-invariant for zi; and another sorting score
than zi needs to be used to detect the endogeneity. Thus, we need to …nd
another variable for which µ is not KL-invariant under endogeneity. The
error term ´i is here a natural choice, see (5) in Example 2.3. Because
´i is not observed, the estimate si = b́i, i.e. the residuals from …tting (5),
may be used. This is a sorting score based on instruments, here x¤i .

3.3 Models for endogeneity

We now discuss the Chow test and its power when associated with commo-
nly used models of endogeneity (see, e.g., Vella, 1992). In these models,
endogeneity is most often introduced through an unobserved variable, ui,
in the mean function, i.e.

Eyjx;z;u(yijxi; zi; ui) = h(x0i¯ + °zi +ui); (12)

or with a random coe¢cient speci…cation

Eyjx;z;u(yijxi; zi; ui) = h(x0i¯ +°zi +uizi); (13)

see, e.g., Garen (1984). Such speci…cations may be completed with a
model for zi;

z¤i = x¤0i ± + ´i; (14)
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with either zi = z¤i (continuous treatment case) or z¤i is a latent variable
and zi = I(z¤i > 0), where I(¢) is the indicator function, and zi = 1

corresponds to treated individuals. Here, E´jx¤ (´ijx¤i ) = 0: Then, a
standard assumption for introducing endogeneity is

Euj´(uij´i) = Á + ¸´i; (15)

where Á is an intercept.

3.3.1 The random intercept model

If ui and zi are independent, then ignoring ui can lead to a parameter
µ = (¯ 0; °)0 which is either KL-invariant for zi (i) or not (ii). This independ-
ence assumption is stronger than ¸ = 0, and by Proposition 3.2 zi is
exogenous for µ as soon as (i) holds.

Under (ii), the Chow test associated with zi as the sorting score has
power against the presence of the heterogeneity ui, while under (i), the
Chow test associated with zi as a sorting score has the right size under
exogeneity. By Proposition 2.1 (i) occurs, for instance, with distributions
from the LEF with a well-speci…ed conditional expectation Eyjz(yijzi).
Examples where discarding an independent heterogeneity ui in (12) does
not lead to a misspeci…cation of Eyjz(yijzi) includes the linear regression
model but also the Poisson model with a canonical link (see Section 4.2
below), and the Bernoulli model with a probit link and normal ui (this
case is further discussed in Sections 4.3 and 5).

When ui and zi are dependent, e.g. ¸ 6= 0, then parameter µ is in
general not KL-invariant for zi, in which case the Chow test has power
when the data is sorted with respect to zi. However, there are particular
situations, as illustrated in Example 2.3, where ¸ 6= 0 and the parameter
µ is KL-invariant for zi: Then, instruments are needed to perform a Chow
test of exogeneity.

3.3.2 The random coe¢cient model

For the random coe¢cient model (13), ignoring the presence of ui generally
leads to a non KL-invariant parameter µ for zi; even when ui and zi are
independent. The only exception of which we are aware is the linear
regression case. Except such cases, using the Chow test associated with
zi as a sorting score is a test with power for the mere presence of a

16 Testing exogeneity under distributional misspeci…cation



random coe¢cient. To obtain a test using zi as a sorting score only with
power against endogeneity, the random coe¢cient speci…cation must be
taken into account. This implies that assumptions on the distribution of
ui are needed (rendering the Chow test sensitive to such assumptions).
In such cases, a closed form for the likelihood is generally not available,
but simulated maximum likelihood techniques can be used to estimate the
parameters (see Gouriéroux and Monfort, 1996).

3.3.3 Dichotomous zi

In the above discussion, we have assumed that the sorting with respect
to zi provides two samples where µ is estimable. This is not always the
case, however, an example of which arises when zi is a dummy variable;
then a Chow test based on zi ? 0:5 is not possible since ° cannot be
estimated. We will need to include a few individuals with zi = 1 in the
zi = 0 group and vice versa. This is not a very e¢cient solution and a
better sorting is obtained with the propensity score Pr(zi = 1jx¤i ); see de
Luna and Johansson (2000) and de Luna and Johansson (2001).

4 Monte Carlo study

In this section, we consider the case where the endogenous variable zi
is continuous and study the small sample performance of the Chow test
(8) based on the setting described in (12)-(15), with the sorting scores
si = zi; ´i; b́i; zi´i and zib́i; where b́i is the OLS estimated residual.11

More precisely, six setups are used: One model where yi is continuous;
one where yi is a count and one where yi is dichotomous. For those,
we consider (i) a random intercept speci…cation (12) where the possibly
endogenous variable zi is log-normal, i.e.,

zi = exp(±0+ ±1x
¤
i + ´i); (16)

and (ii) a random coe¢cient setup (13) where the possibly endogenous
variable zi is generated as

zi = ±0+ ±1x
¤
i + ´i: (17)

11The results of a simulation study where zi is a dummy variable were reported in de
Luna and Johansson (2000).
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In both setups, ´i » N (0;0:52); x¤i = U [0; 1]; ±0 = 1; ±1 = ¡1: Further,
ui = ¸´i + ºi; ºi » N(0;0:32) in (12) and (13) and ° = 0:5. Parameter
¸ varies within the interval [¡0:75; 0:75] with increment 0:25: We set ¯ =
¡0:3 and ¯ = ¡° exp(0:5+0:52=2) for (12) and (13) setups, respectively.12

The number of observations is …xed at n = 200; 400 and 600: To perform
the Chow test, we split the sample into two halves, i.e. c is the median of
the respective sorting scores. Throughout, the number of replications is
1000.

The random intercept setup in (12) and (16) can be considered as an
inclusion of a log-normal wage or income in the mean function and this
can be suspected to be correlated with unobservables. For this setup, the
parameters are KL-invariant for zi if ¸ = 0 while non-invariant for ¸ 6= 0:

For the random coe¢cient model where the link function h(¢) is the
identity; then again ¸ = 0 provides the size of the test against endogeneity.
On the other hand, for the non-linear models (non-linear link), ignoring the
random coe¢cient leads to a misspeci…cation of Eyjz(yijzi) and, therefore,
the parameters are not KL-invariant even when ¸ = 0. In these cases, the
size of the tests against endogeneity is obtained with ui ´ 0:

Vella (1992, 1993) gives conditions (e.g., ui and ´i bivariate normal)
for asymptotic optimallity of a t-test of ½ = 0; based on the estimation of
the model

Eyjz;u(yijzi;ui) = h(¯ + °zi + ½b́i); (18)

with maximum likelihood. Here, b́i are the residuals from …tting either
(16) or (17) with OLS. This test corresponds to the familiar Hausman
(1978) test where h is the identity function, and the test by Smith and
Blundell (1986) for the Tobit model. For comparison, we include this t-
test in the simulation study, although using the QMLE covariance matrix
described in Section 2. To our knowledge, a similar Hausman test for
non-linear link models with random coe¢cients is not available. However,
we use a t-test of ½ = 0 based on an estimation of the model

Eyjz;u(yijzi;ui) = h(¯ +°zi + ½b́izi); (19)

with maximum likelihood, to have a ground for comparison for the Chow
test. Garen (1984) shows the OLS estimator of ½ to be consistent. The

12 This choice of intercept is such that for the count data regression model,
Eyjz;u(yijzi; ui) ¼ exp(0) under H0.
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proposed t-test is, hence, consistent for the linear model. Including b́izi
in the mean leads to heteroscedastic errors, however.

4.1 Linear model

In this …rst situation, the data are generated using

yi = ¯ +°zi + !i + "i; (20)

where "i is N (0;0:32); !i = ui and !i = uizi correspond to the random
intercept and random coe¢cient models, respectively.

Parameters ¯ and ° are estimated with OLS and neglecting !i, i.e. a
QMLE is utilized. The results from the Monte Carlo study are given in
Table 1.13

Let us …rst comment on the random intercept model. Here, zi is
endogenous for ° if ¸ 6= 0: We can see that the only time we obtain a
size signi…cantly14 di¤erent from the nominal size 5% for the Chow test is
with n = 200 and si = zi: The t-test is most powerful in this case. The
power of the Chow test obtained with si = b́i and si = ´i is similar. As
might have been expected, the power is also higher with si = b́i than with
si = zi. Notice that (as discussed in Example 3.1) there is power with
si = zi because Eujz(uijzi) is non linear in zi.

For the random coe¢cient setup, we can …rst observe that the sizes of
the di¤erent Chow tests are slightly too large, however and decrease with
n: The t-test is too large for all experiments.15 The Chow test using zi as
a sorting score displays the best power.

4.2 Count data model

We let the response variable yi be a count, and yijzi; !i be Poisson distribu-
ted with the expectation and variance equal to

Eyjz;!(yijzi;!i) = exp(¯ + °zi +!i); (21)

13For both model setups, the bias and power of the test are, as expected, symmetric
with respect to ¸ and, therefore, only results for ¸¸ 0 are presented.

14Values which are not signi…cantly di¤erent of the nominal size of 5% are those
within the interval [3:6%; 6:4%]: This is valid for all tables in this article.

15However, in non-reported experiments with larger sample sizes (n =
800;1200;1600), the nominal size was obtained.
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Table 1: Linear model (20) with random intercept or random coe¢cient:
power and size of the Chow test (three di¤erent sorting scores) and a t-
test. The percentage bias of the OLS estimator of ° is also presented.

Random intercept Random coe¢cient
¸ 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

n = 200
zi 7 c 7.20 22.10 61.50 88.90 7.00 67.30 99.50 100.00

´i 7 c and zi´i 7 c 5.90 34.90 86.10 99.20 6.20 50.10 97.30 99.90
b́i 7 c and zib́i 7 c 5.50 34.30 85.60 99.20 5.50 51.30 98.10 99.90

t 5.40 72.00 99.70 100.00 9.20 83.10 99.90 100.00
BIAS 0.09 -16.68 -33.46 -50.23 -0.15 -17.99 -35.83 -53.67

n = 400
zi 7 ci 5.60 36.00 85.60 99.50 6.40 93.00 100.00 100.00

´i 7 c and zi´i 7 c 5.60 61.70 99.40 100.00 6.60 82.40 100.00 100.00
b́i 7 c and zib́i 7 c 5.40 61.60 99.10 100.00 6.60 82.20 100.00 100.00

t 5.40 95.00 100.00 100.00 6.60 97.40 100.00 100.00
BIAS 0.01 -16.44 -32.88 -49.33 -0.01 -18.30 -36.58 -54.86

n = 600
zi 7 c 5.20 48.60 96.90 100.00 5.80 98.60 100.00 100.00

´i 7 c and zi´i 7 c 5.90 77.20 99.90 100.00 5.70 96.10 100.00 100.00
b́i 7 c and zib́i 7 c 6.00 77.50 99.90 100.00 5.20 95.50 100.00 100.00

t 5.30 98.90 100.00 100.00 7.20 99.80 100.00 100.00
BIAS 0.04 -16.33 -32.71 -49.09 0.18 -18.54 -37.25 -55.97
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where !i = ui and uizi in the random intercept and random coe¢cient
models, respectively.

The model is estimated ignoring !i and using a QMLE under the
assumption that yi is Poisson distributed. The results from the simulations
are given in Tables 2 and 3.

For the random intercept setup, we can see from Table 2 that the power
of the tests and the bias of the Poisson maximum likelihood estimator are
almost symmetric with respect to ¸: We can also see that the sizes of the
t-test and the Chow test using either ´i or b́i as sorting scores are of the
same magnitude and slightly too large. Nonreported results with sample
sizes n = 800 and 1000, gave correct sizes however. The t-test has the best
power. The Chow test with either ´i or b́i displays similar power, while it
yields the lowest power when using si = zi.

In the random coe¢cient model (Table 3), the bias of the Poisson
maximum likelihood estimator and the power of the test is larger for ¸
positive than for ¸ negative. We can also see that the size of the tests
against endogeneity (more precisely ui ´ 0) is at the nominal level, except
for the t-test. However, with n = 800; 1000;1200 and 1400; the t-test
yielded sizes 6.3, 6.8, 5.1 and 5.8 percent, respectively. The t-test (which
uses instruments) was most powerful and the Chow test has the largest
power when using zi as a sorting score, i.e. without instruments.

4.3 Discrete choice model

The data is here generated as

yi = I(¯ + °zi +!i + "i > 0); (22)

where "i is N(0;0:32) and !i = ui and uizi in the random intercept and
random coe¢cient models, respectively. The parameters are estimated
with a probit maximum likelihood, ignoring !i, i.e. a QMLE is used.

The results from the simulations are provided in Tables 4 and 5. We
note that the bias (here de…ned as BIAS = b°=b̄ ¡ °=¯)16 from the
misspeci…ed (endogeneity ignored) probit maximum likelihood estimator
is generally small. For the random coe¢cient speci…cation (Table 5), the

16Since we can only estimate the parameters up to scale (i.e. ¯=¾ and °=¾ where
¾ =

p
(¾2" + ¾2!), ¾2" and ¾2! are the variances of "i and !i, conditional on zi) in the

discrete choice model.
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Table 2: Count data random intercept model (21): power and size of the
Chow test (three di¤erent sorting scores) and the t-test. The percentage
bias of the Poisson ML estimator is also presented.

¸ -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
n = 200

zi 7 c 37.60 21.30 8.70 6.50 10.60 20.20 36.80
´i 7 c 51.90 31.60 13.60 7.80 13.90 32.30 57.80
b́i 7 c 52.70 31.00 12.10 7.50 13.40 31.00 57.60
t 89.10 60.90 21.90 6.00 26.30 66.10 92.20

BIAS 41.12 26.47 13.38 0.22 -10.91 -21.57 -32.01
n = 400

zi 7 c 63.20 36.00 12.80 5.10 14.60 35.10 63.80
´i 7 c 82.90 51.00 17.50 6.00 20.20 55.30 83.00
b́i 7 c 83.30 51.60 17.70 6.20 20.30 54.90 83.20
t 99.40 86.70 35.10 6.50 38.70 88.20 98.90

BIAS 38.62 24.52 12.18 0.43 -10.23 -20.70 -30.26
n = 600

zi 7 c 81.50 51.30 17.50 5.50 19.80 50.30 80.40
´i 7 c 95.70 70.10 24.90 6.30 27.00 70.90 94.70
b́i 7 c 96.00 70.20 24.50 6.40 28.40 71.10 94.50
t 100.00 97.00 52.90 6.80 54.30 94.80 99.80

BIAS 37.38 23.96 11.68 0.59 -10.11 -19.90 -29.21
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Table 3: Count data random coe¢cent model (21): power and size of the
Chow test (three di¤erent sorting scores) and the t-test. The percentage
bias of the Poisson ML estimator is also presented.

¸ -0.75 -0.50 -0.25 0.00 ui ´ 0 0.25 0.50 0.75
n = 200

zi 7 c 57.80 32.50 12.40 7.70 7.50 25.50 65.40 92.60
zi´i 7 c 41.10 22.10 9.70 6.30 5.90 13.50 32.70 60.80
zi b́i 7 c 40.40 22.50 10.40 6.60 5.70 12.70 31.20 59.70

t 84.40 56.80 21.60 7.70 5.90 39.10 85.60 98.40
BIAS 45.55 27.86 5.94 -21.62 -3.27 -59.02 -106.35 -166.65

n = 400
zi 7 c 86.90 57.30 18.20 7.00 5.00 41.70 90.10 99.60
zi´i 7 c 69.10 38.40 12.80 6.70 6.50 18.10 52.50 88.90
zi b́i 7 c 68.60 39.40 12.80 6.80 6.80 18.20 53.00 88.20

t 99.20 83.30 36.40 8.80 6.60 59.50 97.30 100.00
BIAS 45.98 28.19 5.75 -22.52 -3.35 -61.00 -112.02 -177.59

n = 600
zi 7 c 97.20 74.60 24.60 7.70 6.10 56.60 98.10 99.90
zi´i 7 c 85.30 52.90 17.90 6.80 5.20 23.30 71.10 97.40
zi b́i 7 c 84.60 53.50 18.80 7.10 6.60 23.50 71.50 97.10

t 99.90 95.10 47.40 9.20 7.40 73.90 99.80 100.00
BIAS 48.09 29.88 6.96 -21.74 -2.64 -60.77 -113.28 -180.87
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bias is not a monotonous function of ¸; when ¸ > 0; the bias is small and
negative; for ¸ < 0 the bias is positive and quite large.

In Table 4, the sizes of the tests are at the nominal level. The t-test
is as expected (Vella, 1992) the one with the best power. Furthermore,
sorting with respect to ´i or b́i makes little di¤erence. The power of
the test when sorting with respect to z is quite low, especially when the
correlation is positive.

In Table 5 (random coe¢cient model), the size of the tests against
endogeneity (ui ´ 0) is at the nominal level, except for the t-test. When
n = 800;1000; 1200 and 1400 we obtain the sizes 7.7, 6.4, 6.5 and 6.4
percent, respectively. Hence, the t-test does not seem to be consistent
in this setting. Among the Chow tests, sorting with respect to zi yields
the best power. The power against the presence of a random coe¢cient
(¸ = 0) is largest with the Chow test together with zi as the sorting
score.17

4.4 Discussion

In practice, it is typically unknown if a random intercept or a random
coe¢cient is closest to reality. Ideally, we want a test for the exogeneity of a
treatment ziwhich is as robust to various misspeci…cations as possible. For
instance, t-tests (Hausman type) are sensitive to distributional speci…cations
as shown in de Luna and Johansson (2000)18 and they need instrumental
variables. In the above Monte Carlo study, we have further noticed that
the size of the t-test (by including zib́i) may be too large when individual
heterogeneity enters as a random coe¢cient.19

When using a Chow test, the presence of a random coe¢cient should,
in most situations, be accounted for, since ignoring it most often leads to
non KL-invariant parameters. If the random coe¢cient can be integrated

17 Since ui and "i are independent normal with expectations 0 and variances ¾2u and
¾2" ; respectively, we have that Eyjz(yijzi ) = ©

³
(¯ + °zi)=

p
¾2uz2i + ¾

2
"

´
and hence, the

Chow test based on any sorting will have power.
18 In this paper, simulation results show that the t-test can have empirical sizes not

equal to the nominal level, for instance when the errors in the selection equation are
skewed (e.g. Â2 distributed).

19 In unreported experiments for the random coe¢cient setup, a Hausman test for the
presence of b́i yielded correct sizes, although with much lower power than for the Chow
tests.
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Table 4: Discrete choice random intercept model (22): power and size of
the Chow test (three di¤erent sorting scores) and the t-test.The percentage
bias of the ratio estimate (b°=b̄) of the probit ML estimator is also
presented.

¸ -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
n = 200

zi 7 c 51.20 21.90 8.80 6.50 7.30 9.60 10.90
´i 7 c 86.40 48.10 15.60 6.20 13.00 38.60 66.20
b́i 7 c 86.40 47.20 14.20 5.80 12.70 37.90 65.50

t 100.00 93.00 37.20 6.20 28.60 73.30 94.40
BIAS -0.68 -1.65 -0.90 0.51 2.03 3.38 4.58

n = 400
zi 7 c 74.40 35.60 9.80 6.00 7.80 11.70 13.90
´i 7 c 99.10 81.10 24.80 7.10 23.70 69.50 93.50
b́i 7 c 99.50 79.30 23.60 6.10 23.40 69.10 93.50

t 100.00 99.90 65.10 6.10 51.10 95.20 99.90
BIAS 1.55 -0.57 -0.70 0.24 1.37 2.51 3.50

n = 600
zi 7 c 90.10 49.20 11.10 4.70 7.20 12.00 17.20
´i 7 c 99.90 93.10 34.90 5.10 34.20 84.00 98.80
b́i 7 c 99.90 93.00 33.90 5.60 31.80 83.70 98.70

t 100.00 100.00 79.70 5.40 67.20 99.80 100.00
BIAS 2.44 -0.19 -0.55 0.09 1.17 2.18 3.08
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Table 5: Discrete choice random coe¢cent model (22): power and size
of the Chow test (three di¤erent sorting scores) and the t-test. The
percentage bias of the ratio estimate (b°=b̄) of the probit ML estimator
is also presented.

¸ -0.75 -0.50 -0.25 0.00 ui ´ 0 0.25 0.50 0.75
n = 200

zi 7 c 98.50 89.40 52.70 15.40 6.20 12.40 44.80 80.80
zi´i 7 c 92.20 69.10 28.00 9.30 5.80 18.40 60.00 91.00
zib́i 7 c 92.00 67.60 28.00 9.00 6.00 20.10 58.10 91.10

t 100.00 98.50 75.80 16.20 8.10 26.50 78.20 98.20
BIAS 60.46 28.46 13.13 4.36 -0.03 -0.77 -4.39 -7.37

n = 400
zi 7 c 100.00 99.60 84.90 24.10 4.80 18.00 70.90 97.60
zi´i 7 c 99.90 96.00 57.30 13.00 5.30 29.40 85.90 99.90
zib́i 7 c 99.90 95.20 56.70 13.40 5.70 30.00 86.10 99.70

t 100.00 100.00 94.80 23.40 6.60 37.70 96.10 100.00
BIAS 50.48 27.18 12.75 4.40 0.06 -0.58 -4.11 -6.99

n = 600
zi 7 c 100.00 100.00 94.90 36.50 5.40 24.10 86.60 99.50
zi´i 7 c 100.00 99.90 74.70 17.70 6.20 43.70 95.90 100.00
zib́i 7 c 100.00 99.60 73.80 17.00 6.20 43.70 95.70 100.00

t 100.00 100.00 99.10 29.70 7.50 46.90 99.50 100.00
BIAS 49.90 27.18 12.86 4.44 0.06 -0.48 -3.92 -6.83
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out (typically distributional assumptions on ui must be made) then a
Chow test against endogeneity may be performed without instruments,
by sorting with respect to zi.

5 Empirical illustration

Johansson and Palme (1996) examine the e¤ect of economic incentives on
absenteeism. Implications of compensating wage di¤erentials and e¢ciency
wage hypotheses are discussed. The data set is a sample of 1,967 blue
collar workers (1,045 women and 922 men) obtained from the 1981 Swedish
Level of Living Survey. The dependent variable is the number of days each
individual is absent per year.

In their model, the demand for absent time of person i, tai = ®+°ci+
±¹i+x0i¯ +"i, is a latent variable that is not directly observable, where ci
is the cost of being absent, ¹i is virtual income and xi are socioeconomic
variables. In Johansson and Palme (1996), an individual is assumed to be
absent, Ii = 1; if tai > 0 and at work, Ii = 0; if tai � 0: Then, yi is de…ned
as the number of days person i is absent during a year and the parameter
µ = (®; °;±; ¯0)0 is estimated with QMLE under the assumption that yi is
binomial with parameters N = 365 and

¼i = ©(®+ °ci + ±¹i + x0i¯); (23)

where ©(¢) is the normal distribution function, i.e.

ln L =
nX

i=1

yi ln ¼i +(N ¡ yi) ln(1 ¡¼i); (24)

is maximized with respect to µ: In the case of unobserved heterogeneity (in
the form of a normally distributed random intercept, independent of the
regressors) (23) corresponds to the conditional expectation E(yijci;¹i; xi),
and, hence, the QMLE is consistent.

The cost of being absent is ci = (1 ¡ r)wi; where wi is the net wage
and r is the share of the income the worker receives when absent. Since
the cost partly depends on the income, we can expect it to be endogenous.
There are at least four reasons why unobserved preference heterogeneity
may be correlated with the individual’s wage rate. First, a worker with
strong preferences for work absence may choose a job allowing her to be
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absent from work at the cost of, ceteris paribus, a lower wage rate (see e.g.
Allen, 1981). Second, since jobs di¤er in the cost of absenteeism for the
employer, it may be pro…table for the employer to pay some employees
more, i.e. an e¢ciency wage, in order to elicit them to have low work
absence rates (see, e.g., Shapiro and Stiglitz, 1984; Weiss, 1985). Third,
when there are economic returns to on-the-job training, then individuals
with strong preferences for work absence will, everything else equal, earn
less. Finally, it is a well known empirical fact that, on average, workers
with bad health have a higher work absence rate than workers without
health problems (see, e.g., Broström, Johansson and Palme, 1998). For
some jobs, it is reasonable to assume that workers with bad health are
less productive and, therefore, earn less than workers with a good health
status.20

From the above discussion, it is reasonable to assume that ° may be
individual speci…c and negatively correlated with the cost of being absent,
hence ¼i = ©(®+°ici+±¹i+x0i¯): We sort the data with respect to ci and
estimate model (23) on two subsets such that each subset has an equal
number of observations. The result from the exercise is given in Table
6. We note that the parameter estimates from the two samples are quite
di¤erent, especially for variables correlated with ci and the parameter for
ci itself. The Chow test is signi…cant at the …ve percent level. Therefore,
we can reject KL-invariance of µ for ci in this case. This lack of invariance
may be due to the fact that the variable ci should be included non-linearly
in (23), or due to a random coe¢cient for ci (either correlated with ci or
not). In order to test for selectivity (i.e. that individuals with low °i
are the ones with the highest cost) we expand (23) to account for the
possibility of an independent and normally distributed random coe¢cient
with mean zero and variance ¾2u, i.e. we use

¼i = ©

µ
(®+ °ci + ±¹i+ xi¯)=

q
¾2uc

2
i +1

¶
;

together with the log-likelihood function (24). With a t-test, we cannot
reject that ¾u = 0.21 A Chow test based on the same sub-samples as
previously yields W = 33:14 (p-value = 0:060), i.e. the test does not
clearly reject the hypothesis of nonselectivity. The empirical evidence,

20 The relation between wages and absenteeism has been studied in several theoretical
as well as empirical studies (see Brown and Sessions, 1996, for an overview).

21 This result might be due to the random coe¢cient being correlated with ci:
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therefore, is here slightly ambiguous if no distributional assumptions are
made. However, if distributional assumptions are made, i.e. the inverse
of the Hessian is used for the covariance matrix instead of the QMLE
covariance matrix, then we obtain W = 3100:5 (in the random coe¢cient
setup), i.e. strong evidence against nonselectivity of ci.

From Table 6, we can see that the parameter estimates for ¹i and
ci have the correct sign for the sample with larger costs and the wrong
sign for the sample with lower costs. Hence, neglecting the presence of
endogeneity/selectivity would (as expected) reduce the estimated e¤ect of
economic incentives on work absence.

6 Conclusion

We have proposed a general test of exogeneity which, in some cases,
is robust against distributio-nal misspeci…cation. Indeed, by de…ning
the concept of KL-invariance of a parameter, we give conditions under
which the exogeneity hypothesis can be tested without making strong
distributional assumptions. A test against endogeneity can be carried
out without instrumental variables, by using the (supposedly) endogenous
variable as a sorting score.

Based on the results of this paper, we propose the following two strate-
gies for the practitioner, depending on whether (i) we know that the
parameters of the model are KL-invariant for zi only if the variable zi
is exogenous or (ii) the model might be KL-invariant in zi; even under
endogeneity (see Example 2.3).

In both situations we suggest to start by performing a Chow test by
sorting with respect to zi: If the KL-invariance in zi is not rejected, then:
if (i) holds, proceed as if zi were exogenous, while if (ii) holds, proceed
with a sorting based on instruments and perform another Chow test. If,
on the other hand, the former Chow test rejected KL-invariance, then zi
is not exogenous and measures for dealing with this must be taken. The
lack of KL-invariance for zi indicates a misspeci…cation of the conditional
expectation (see Remark 2.2): for instance, this non-invariance may be due
to the presence of a random coe¢cient. Thus, if the model is expanded
to include an independent random coe¢cient, then this independence (no
selectivity) can also be tested with a Chow test by sorting the data with
respect to zi.
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Table 6: Parameter estimates of the binomial regression model, for the two
samples sorted with respect to c. The QML covariance matrix is being
used to estimate standard errors (s.e.) and to calculate the Chow test
statistic W .

ci 0:40 ¡ 1:28 1:28 ¡ 25:03
Parameters Est. Est./s.e. Est. Est./s.e.

CONST -3.82 -6.44 -2.63 -7.82
Contracted working time 0.19 2.91 0.02 0.62
¹i -0.00 -1.41 0.00 0.60
ci 0.10 0.41 -0.03 -1.42
Local unemployment rate -0.07 -1.52 -0.08 -2.04
FEMALE 0.21 2.28 0.27 2.22
SINGLE 0.02 0.16 0.17 1.33
DIVORCED -0.09 -0.87 0.35 2.45
DISABLED 0.47 5.31 0.44 4.86
AGE 0.01 3.91 0.01 2.57
Important to be on time 0.15 1.85 -0.01 -0.12
Punch clock 0.14 1.75 0.05 0.54
Risk at the workplace 0.05 1.63 0.03 1.05

Number of children
< 6 years -0.10 -1.26 -0.03 -0.54

7 years¡16 years -0.09 -1.62 -0.02 -0.32
Principal components: working conditions
1:st 0.14 2.46 0.13 2.38
2:nd -0.15 -2.17 -0.12 -1.48
3:rd 0.01 0.14 0.03 0.19
Principal components: health conditions
1:st 0.12 1.21 -0.28 -3.13
2:nd -0.31 -2.25 -0.19 -1.62
3:rd 0.21 1.90 0.11 0.82
W 33.02 (p-value 0.045)
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