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Abstract

Conventional endogenous growth theory relies on the assumption of constant
returns to ”broad capital”. As Solow pointed out, the strength of this assump-
tion is revealed by recognizing that even the slightest touch of increasing returns
creates explosive growth: infinite output in finite time! But Solow’s observation
ignored natural resources. What happens if non-renewable resources enter the
”growth engine”? In this case (strictly) endogenous growth requires the tech-
nology to be such that there is no upper bound on the sustainable per capita
growth rate.
Keywords: Endogenous growth; semi-endogenous growth, non-renewable re-
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1 Introduction

A recurrent criticism of conventional endogenous growth theory is that it needs the

strong assumption of constant returns (at least asymptotically) to the collection of

accumulatable factors of production (”broad capital”). Slightly decreasing returns

lead to growth petering out unless some exogenous factor, e.g., population, grows. No

theoretical reasons have been given why non-diminishing returns should come true,

and it seems hard to maintain that the empirical evidence favours the presumption.

Moreover, as Solow (1994) reminds us, a kind of ”knife-edge” is involved since even

the slightest touch of increasing returns generates explosive growth: infinite output in

finite time!

The fact that this explosion occurs only a hair’s-breath from the presumed constant

returns gives occasion for scepticism towards the realism of conventional endogenous

growth theory. But Solow’s observation concerns the prototype endogenous growth

models which ignores natural resources, in particular non-renewable resources. When

such resources enter the ”growth engine” in an essential way, endogenous growth in

fact requires (in the absence of population growth) increasing returns to broad capital,

cf. Suzuki (1976) and Groth and Schou (2002).1

The present paper shows that this requirement is tantamount to there being no

upper bound on the sustainable per capita growth rate. Further, though Solow style

explosion is no longer a necessary outcome, it is still within reach. Hence, this frame-

work does not make one feel much easier with the assumption of non-diminishing

returns. This assumption still seems too-good-to-be-true.

Our result is based on the one-sector model of Stiglitz (1974a, 1974b), extended to

allow for increasing returns at the aggregate level with respect to capital, labour, and

the resource; the possibility of increasing returns to capital itself is not excluded. An

essential feature is that non-renewable resources are necessary inputs. A number of

contributions like Jones and Manuelli (1997), Aghion and Howitt (1998), and Schou

(2000) have dealt with the implications of non-renewable resources for endogenous

growth. However, in these models natural resources do not appear in the ”growth en-

gine” (not even indirectly in the sense of resources being a necessary ingredient in the

production of physical capital goods which are then used in the growth-creating sec-

tor, e.g., a research sector). This seems unrealistic. After all, most sectors, including

educational institutions and research labs, use fossil fuels for heating and transporta-

1We define the growth engine of a model as the set of capital-producing sectors or activities using
their own output as an input.
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tion purposes, or minerals and oil products for machinery, computers, etc. An early

endogenous growth model that indeed does take account of this fact is Suzuki (1976,

Section 3). But Suzuki’s focus is only on the sign of the sustainable growth rate. In

contrast, the present paper examines its size.

The organization of the paper is as follows. The next section presents the model.

In Section 3 the set of ”balanced paths” that are attainable from a mere technological

point of view is described. Section 4 establishes the unboundedness result. The final

section concludes.

2 The model

To ensure that the non-renewable resource is necessary for production, but does not

a priori rule out non-decreasing consumption in the long run, we follow Stiglitz and

assume an aggregate production function of Cobb-Douglas form:

Y (t) = AK(t)αN(t)βR(t)γ, A, α > 0, 0 < β < 1, 0 < γ < 1, (1)

where Y (t) is output, K(t) is the capital stock, N(t) is labour input, and R(t) is

input of the non-renewable resource (henceforth, simply called the resource). Stiglitz

(1974a, 1974b) and others2 focus on α + β + γ = 1. However, when K is interpreted

as ‘broad capital’ including technical knowledge and human capital or when positive

capital externalities are present, a case can be made for the parameters α, β, and γ

summing to some larger value. This is one thing − it is quite another to claim that α
itself is close to one (or larger) as conventional endogenous growth theory does. The

empirical foundation seems weak. Here we shall trace out theoretical implications of

that strong assumption.

Labour grows at a constant exogenous rate n ≥ 0, i.e., N(t) = N(0)ent, N(0) =

N0 > 0. Output is used for consumption and for investment in capital goods so that3

K̇ = Y − C − δK, δ ≥ 0, K(0) = K0 > 0, (2)

where C is total consumption. Capital cannot be ”eaten”, i.e., C ≤ Y for all t. The

resource stock S diminishes with resource extraction:

Ṡ = −R, S(0) = S0 > 0. (3)

Given K0, S0, and N0, a path (C, Y,K,R, S)∞t=0 is called feasible if: (a) K and S

are continuous functions of t; (b) C, Y, and R are piecewise continuous functions of t;

2E.g., Dasgupta and Heal (1979), and Jones (2002, Ch. 9).
3From now on we will suppress the time argument of the variables when not needed for clarity.
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(c) the path satisfies (1) for all t ≥ 0, and it satisfies (2) and (3) for all t ≥ 0, except at
points of discontinuity of C and R; and (d) the path satisfies the non-negativity con-

straints C,R,K, S ≥ 0 for all t ≥ 0. Condition (3) and the non-negativity constraint
on S imply the restriction Z ∞

0

R(t)dt ≤ S0, (4)

showing the finite upper bound on cumulative extraction of the resource over the

infinite future.

We shall be concerned with feasible paths where C, Y,K,R, and S are (strictly)

positive for all t ≥ 0 (”no collapse”). Such paths are called interior feasible paths.
Writing ga for ȧ/a, by logarithmic differentiation in (1) we get

gY = αgK + βn+ γgR. (5)

A feasible path (C, Y,K,R, S)∞t=0 is called efficient if there does not exist another fea-

sible path (Ĉ, Ŷ , K̂, R̂, Ŝ)∞t=0 with the same initial condition such that Ĉ(t) ≥ C(t) for

all t ≥ 0 and Ĉ(t) > C(t) in some open time interval. A feasible path (C, Y,K,R, S)∞t=0

is called inefficient if it is not efficient. Obviously, since ∂Y/∂R > 0, an efficient path

satisfies the condition

lim
t→∞

S = 0. (6)

Further, as is well-known4, an interior efficient path satisfies the Hotelling Rule

d(∂Y
∂R
)/dt

∂Y
∂R

=
∂Y

∂K
− δ, (7)

stating that the return (”capital gain”) on leaving the marginal unit of the resource

in the ground must equal the marginal return on the alternative asset (reproducible

capital). Using the Cobb-Douglas specification, this no-arbitrage condition gives

gY − gR = αz − δ, (8)

where z ≡ Y/K. For later use we define x ≡ C/K and u ≡ R/S.

3 Balanced paths

An interior efficient path (C, Y,K,R, S)∞t=0 is called a balanced growth path (henceforth

abbreviated BGP) if C, Y, and K change with constant relative rates (some or all of

which may be negative). The values taken by the variables along a BGP are marked

by ∗.

Lemma 1 For any BGP the following holds:
4Dasgupta and Heal, 1979, p. 214 ff.
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(i) gS = gR = −u = −u∗, where u∗ is some positive constant;

(ii) gC = gK = gY = g∗Y , some constant;

(iii) z and x are positive constants.

(iv) g∗Y and u∗ satisfy (1− α)g∗Y + γu∗ = βn.

Proof See Appendix.

Letting c denote per capita consumption, C/N, we have gc = gC − n, and along a

BGP g∗c = g∗Y − n.

It is convenient to consider a constant saving ratio, hence we introduce a parameter

s, 0 ≤ s < 1, such that Y −C = sY. This provides enough structure for a determinate

dynamics to arise. And it does not diminish the set of possible BGP’s since any BGP

has a constant saving rate (Y − C)/Y = 1 − x/z. Introducing maximization of an

intertemporal utility function would restrict the set of possible BGP’s. Stiglitz (1974a)

and Suzuki (1976) take g∗c as a parameter instead of s which is less convenient since

g∗c is not a genuine control variable.

Now, x = (1− s)z, and x > 0 whenever z > 0. Condition (2) can be written

gK = sz − δ. (9)

Along a BGP we have

g∗c = sz∗ − (n+ δ), (10)

from (9) and (ii) of Lemma 1.

To find z∗ and characterize the dynamics with a constant s, we derive the differ-

ential equations of the model. First, with (5) and (9), (8) gives

gY =
(s− γ)αz + βn− (α− γ)δ

1− γ
. (11)

Inserting this and (9) into the identity ż/z = gY − gK yields

ż =

∙
(α+ γ − 1)s− αγ

1− γ
z +

βn+ (1− α)δ

1− γ

¸
z. (12)

Further, by (3), u̇/u = gR − gS = gR + u, and using (8) and (11) we get

u̇ =

∙
−1− s

1− γ
αz + u+

βn+ (1− α)δ

1− γ

¸
u. (13)

The dynamics of z and u are completely described by the triangular system (12)−(13).
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Now, suppose (α + γ − 1)s 6= αγ. Then, by Lemma 1, along a BGP the system

(12)−(13) is in steady state with

z∗ =
βn+ (1− α)δ

αγ − (α+ γ − 1)s ≡ z̄, (14)

u∗ = −1− s

1− γ
αz̄ − βn+ (1− α)δ

1− γ
= (α− s)z̄ ≡ ū, and (15)

x∗ = (1− s)z̄ ≡ x̄. (16)

The per capita growth rate is

g∗c =
s(α+ β − 1)n− (α− s)(n+ δ)γ

αγ − (α+ γ − 1)s ≡ ḡc, (17)

by (10) and (14).

Lemma 2 If and only if α ≤ 1, then α+ γ − 1 ≤ αγ.

Proof α > 1⇔ 1− γ < α(1− γ)⇔ αγ < α+ γ − 1. ¤

Lemma 3 Let 0 ≤ s < 1. A BGP exists only if s < α.

Proof For a BGP z∗ and u∗ are positive, by definition. Suppose (α + γ − 1)s 6= αγ;

then, in view of (15), s < α is required. Suppose instead (α + γ − 1)s = αγ. Then,

since 0 ≤ s < 1, α+ γ − 1 > αγ; hence, α > 1, by Lemma 2, implying s < α. ¤

As to the question of stability, notice that though z and u are ‘jump variables’, by

substituting uS for R in the production function (1) we get z = AKα−1NβuγSγ+λ,

showing that, given K,N, and S, the values of z and u are not independent. Hence,

when the two eigenvalues of the system (12)−(13) are of opposite sign, we shall say
that the system is saddle-point stable. In case the eigenvalues are positive (or have

positive real parts) we shall call the system unstable.

Proposition 1 Let s be given such that 0 ≤ s < min(α, 1). Then:

(i) If α+ γ − 1)s < αγ, there exists a BGP (g∗c , x
∗, z∗, u∗), if and only if

βn+ (1− α)δ > 0. (18)

Further, a BGP has (g∗c , x
∗, z∗, u∗) = (ḡc, x̄, z̄, ū) and is saddle-point stable.

(ii) If (α + γ − 1)s > αγ, there exists a BGP (g∗c , x
∗, z∗, u∗), if and only if the

inequality in (18) is reversed. Again (g∗c , x
∗, z∗, u∗) = (ḡc, x̄, z̄, ū), but the BGP

is unstable.

5



(iii) If (α + γ − 1)s = αγ, no BGP exists if βn + (1 − α)δ 6= 0; otherwise, there

exists a continuum of BGP’s, indexed by a constant z∗ > 0 such that with this

z∗ and s = αγ/(α + γ − 1) we have g∗c = sz∗ − (n + δ), u∗ = (α − s)z∗, and

x∗ = (1− s)z∗.

Proof See Appendix.

In view of Lemma 2, a sufficient, but not necessary, condition for case (i) to arise

is that α ≤ 1. Case (ii) can arise only if α > 1. Also the double ”knife-edge” case (iii),

where the system has hysteresis (”history matters”), requires α > 1.

4 Growth

When is it possible to maintain steady growth?

Proposition 2 By appropriate choice of s in the interval 0 < s < min(α, 1) there

exists a BGP with g∗c > 0 if and only if

(α+ β − 1)n > 0 or α > 1. (19)

Proof See Appendix.

Thus for the technology to allow steady positive per capita growth (with an indis-

pensable resource and without exogenous technical progress), either increasing returns

to the capital-cum-labour input combined with population growth or increasing re-

turns to capital itself is needed. At least one of these conditions is required in order

that capital accumulation can offset the effects of the inevitable decline in resource

use over time5. More astonishing perhaps is:

Corollary Stability of a BGP with positive per capita growth requires population

growth.

Proof Consider a BGP. If n = 0, then, by (19), g∗c > 0 requires α > 1, and (18) is

invalidated. ¤

The result that population growth is required for stability of positive per capita

growth holds also in a Ramsey-type optimal growth setting with non-renewable re-

sources entering the growth engine in an essential way (Groth and Schou 2002).

5Of course this presupposes an elasticity of substitution between the resource and the other inputs
not larger than one as implied by the Cobb-Douglas specification (1). Historical evidence for the US
may indicate otherwise (Nordhaus 1992). In any event, it is difficult to predict the technological
substitution possibilities one century ahead, say.
Essentially, Proposition 2 was proved for the case δ = 0 in Suzuki (1976, Section 3).
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Define strictly endogenous growth to occur if per capita consumption grows at a

constant positive rate in the long run even in the absence of any exogenously growing

factor.6 The numerator of (17) gives a hint that if there is strictly endogenous growth

(α > 1), then g∗c can be made arbitrarily high by choosing s close to the number

s̃ ≡ αγ/(α+ γ − 1). Indeed we have the slightly stronger result:

Proposition 3 Assume that either α > 1 or (α = 1 and n > 0). For a given g∗c >

−(n+ δ) define

ŝ ≡ αγ(g∗c + n+ δ)

(α+ γ − 1)(g∗c + n+ δ + βn+(1−α)δ
α+γ−1 )

. (20)

(i) If βn + (1 − α)δ ≥ 0, then any g∗c ∈ (0,∞) in a BGP can be supported by
choosing s = ŝ ∈ (0, 1).

(ii) If βn+ (1− α)δ < 0, then there exists a number g0, possibly positive, such that

any g∗c ∈ (g0,∞) in a BGP can be supported by choosing s = ŝ ∈ (0, 1).

Proof See Appendix.

Remark 1 Lemma 2 and the formula (17) make it clear that α ≥ 1 is necessary for
unbounded growth. If α < 1, then α + γ − 1 < αγ, implying, for all s ∈ (0, 1),
αγ − (α + γ − 1)s > αγ− (α + γ − 1) > 0. Hence, the numerator of (17) is bounded
away from zero.

Remark 2 The case considered by Solow (1994) is without non-renewable resources

and corresponds to γ = n = δ = 0. In this case (12) reduces to ż = (α− 1)sz2, from
which follows the ”explosion” result − infinite output in finite time − whenever α > 1

and s > 0. With α = 1.05, s = 0.1, z(0) = 1, and one year as the time unit (Solow’s

example), the Big Bang is only 200 years ahead. With ”capital” being interpreted as

”broad capital”, an initial output-capital ratio lower than one might be more realistic.

But this line of thought justifies a larger s as well, and it is the product of z(0) and s

which matters for the date (from ”now”) of the Big Bang.

Since, by definition, strictly endogenous growth obtains only when g∗c > 0 is pos-

sible for n = 0, it follows from Proposition 2 that strictly endogenous growth requires

α > 1. Hence, we have from Proposition 3:

6In contrast, semi-endogenous growth is said to occur when sustained per capita growth is driven
by some internal mechanism, but requires exogenous growth in some variable, typically the labour
force. By relying on less demanding parameter values a model featuring semi-endogenous growth
may be an attractive alternative to one featuring strictly endogenous growth.
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Corollary Strictly endogenous growth (with non-renewable resources entering the

growth engine in an essential way) implies that, technologically, any growth rate is

sustainable.

The conclusion is that when non-renewable resources enter the picture in an es-

sential way, assuming strictly endogenous growth is tantamount to assuming that the

Land of Cockaigne, though not just round the corner, may not be far away, if the

appropriate saving is made. Albeit the one-sector structure of the model makes cal-

ibration difficult, let us take as a reference point: α = 0.90, β = 0.50, γ = 0.02,

s = 0.28, n = 0.01, and δ = 0.05. Then z∗ = 0.25, u∗ = 0.04, and g∗c = 0.01. If α is

increased to 1.025 and β decreased to 0.375 (leaving the elasticity of scale unchanged

at 1.42), then z∗ = 0.32, u∗ = 0.07, and g∗c = 0.03. But if also s is increased, say to

0.42, then z∗ = 1.56, u∗ = 0.27, and g∗c = 0.60. The adjustment speed of (z − z∗)/z

is, by (12), [βn+ (1− α)δ] /(1− γ) = 0.0026 in this case, implying a half-life equal to

272 years.

Alternatively, if we do not aim at balanced growth, notice that (5) and (9) imply

ż = [(α− 1)sz + βn+ (1− α)δ − γu] z.

Hence, whenever α > 1, βn + (1 − α)δ > 0, and s > 0, infinite output in finite time

can be obtained by keeping the extraction rate u constant at a level not larger than

[βn+ (1− α)δ] /γ.

5 Concluding remarks

As Solow (1994) pointed out, the strength of the constant-returns-to-capital assump-

tion is revealed by recognizing that even the slightest touch of increasing returns

generates explosive growth. This paper has examined what happens if non-renewable

resources are necessary inputs in the ”growth engine” so that (strictly) endogenous

growth requires increasing returns to broad capital. Then (a) any positive per capita

growth rate is sustainable, and (b) Solow style explosion is still a possibility. Hence,

it seems fair to conclude that endogenous growth is still very demanding as to its

technology assumption. This underlines Solow’s scepticism towards believing in con-

tinuing exponential growth in the long run if there is neither increasing population or

some irreducible, exogenous element in the process of technical progress.
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6 Appendix

Proof of Lemma 1. Consider a BGP (C, Y,K,R, S)∞t=0.By definition, C, Y,K,R, S >

0 for all t ≥ 0, hence, z, x and u > 0 for all t ≥ 0. Further, gC , gY , and gK are constant.
(i) By constancy of gY and gK, in view of (5), gR is a constant. Now, R(t) = R(0)egRt,

and in view of R(0) > 0, gR < 0 since otherwise (4) would be violated. Integrating (3)

gives S(t) = S(0) − R(0)
R t
0
egRτdτ = S(0)− R(0)

gR
(egRt − 1) → S(0) + R(0)

gR
for t → ∞

since gR < 0. Hence, by (6), S(0) + R(0)
gR

= 0, implying S(t) = −R(0)
gR

egRt = S(0)egRt,

so that, by (3), −u = gS = gR < 0. The implied constant value of u is called u∗ and is

positive. (ii) and (iii) By constancy of gY , gR, and u, by (8) also z ≡ Y/K is constant,

implying gY = gK . By constancy of gK and z, also x is constant, in view of (2). Hence,

gC = gK = gY ≡ g∗Y . (iv) Insert gR = gS = −u∗ and gK = gY ≡ g∗Y into (5). ¤

Proof of Proposition 1. Let 0 ≤ s < min(α, 1). (i) Assume (α + γ − 1)s < αγ.

Then, (14) and (17) are valid, and we have z̄ > 0, if and only if (18) holds. Assume

(18) holds. Then, by (15), since s < α we have ū > 0, and since s < 1 we have

x̄ > 0, in view of (16). Further, the eigenvalues of the triangular system (12)−(13) are
(α+γ−1)s−αγ

1−γ z̄ < 0 and ū > 0; hence, the system is saddle-point stable. (ii) The proof

for the case (α + γ − 1)s > αγ is similar, but now (α+γ−1)s−αγ
1−γ z̄ > 0, and therefore

a BGP, when it exists, is unstable. (iii) Assume (α + γ − 1)s = αγ. Then, by (12)

and (13), a BGP exists if and only if βn + (1 − α)δ = 0; when this condition holds,

any positive constant z∗ is consistent with a BGP with g∗c determined by (10) and u∗

determined by (8), (9), and (i) and (ii) of Lemma 1. ¤

Proof of Proposition 2. ”if”: First, consider the case α > 1. Here, by Lemma 2,

s̃ ≡ αγ/(α+ γ − 1) ∈ (0, 1). If βn+ (1− α)δ > 0, choose s in the open interval (0, s̃),

but close enough to s̃ to make z̄ > (n+ δ)/s, i.e., g∗c > 0 by (10). In view of (14) and

α+γ > 1, this can always be done. If βn+(1−α)δ < 0, choose s in the open interval

(s̃, 1), but again close enough to s̃ to make z̄ > (n+ δ)/s, i.e., g∗c > 0, by (10). Finally,

if βn+ (1− α)δ = 0, choose s = s̃ and an arbitrary z∗ > (n+ δ)/s̃. Then g∗c > 0, by

(iii) of Proposition 1. Now, consider the case α ≤ 1. Assume (α+ β − 1)n > 0. Then

n > 0, and therefore βn+ (1− α)δ > 0. From 0 < α ≤ 1 follows αγ ≥ α+ γ − 1, by
Lemma 2. Choose s in the open interval (0, α); then αγ > (α+ γ − 1)s. By choosing
s close enough to α, g∗c > 0, from (17).

”only if”: Consider a BGP. Then, by Lemma 1, u∗ > 0. Hence, by (iv) of Lemma

1, (1−α)(g∗c + n) < βn⇔ (1−α)g∗c < (α+ β − 1)n. Now, if g∗c > 0, α ≤ 1 is seen to
imply (α+ β − 1)n > 0. ¤
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Proof of Proposition 3. Let α > 1 or (α = 1 and n > 0). Define s̃ ≡ αγ/(α+γ−1).
Then 0 < s̃ ≤ 1, by Lemma 2. (i) Let g∗c be an arbitrary positive number and consider,
first, the case βn + (1 − α)δ > 0. Here, for ŝ given in (20), 0 < ŝ < αγ/(α + γ − 1)
≡ s̃ ≤ 1. By (17), to obtain growth at the rate g∗c ,

s =
αγ(g∗c + n+ δ)

(α+ γ − 1)g∗c + γ(n+ δ) + (α+ β − 1)n (21)

is required. After reordering of the numerator this s is seen to be identical to ŝ in

(20), as was to be shown. Now, consider instead the case βn + (1 − α)δ = 0. Here,

by (20), ŝ = s̃ > 0, and, since (α = 1 and n > 0) is excluded, α > 1. Therefore, by

Lemma 2, s̃ < 1. Choose s = ŝ = s̃ and z = z∗ = (g∗c + n + δ)/s̃. Then, by (iii) of

Proposition 1, the desired g∗c is realized.

(ii) Assume βn+(1−α)δ < 0. Then α > 1, and 0 < s̃ < 1, by Lemma 2. Now, by

(20), ŝ > s̃. Let s be such that s̃ < s < 1 always. If s→ 1, then, by (17), g∗c decreases

towards
(α+ β − 1)n− (α− 1)(n+ δ)γ

αγ − (α+ γ − 1) ≡ g0, (22)

and if s → s̃, then g∗c increases towards ∞. Hence, any g∗c ∈ (g0,∞) can be realized
by choosing s = ŝ ∈ (0, 1). Since αγ < α + γ − 1, g0 is a positive number if and only
if n < (α− 1)γδ/ [β + (α− 1)(1− γ)] . ¤

Remark A peculiar feature is that in case βn + (1 − α)δ < 0, i.e., when existence

of a BGP requires, by Proposition 1, that s > s̃, then g∗c is a decreasing function

of s. The explanation is that in this case not only is α above 1 (implying a growth

potential without bound), but the BGP is unstable. It is well-known that when there is

instability, comparative statics give ”paradoxical” results. To put it differently, in this

case, when s increases, the output-capital ratio required to maintain balanced growth

(avoid explosive growth) decreases proportionately more, so that g∗c (= sz∗ − (n+ δ))

declines.
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