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Abstract

The real options tradition originally predicted a decreasing relationship between

uncertainty and investment, through the positive effect of higher uncertainty on the

trigger level for revenue relative to costs. An opposing effect on the probability of

reaching the level has been identified, yielding a total effect with ambiguous sign. This

paper makes three points. The “opposing” effect is not always opposing. Systematic

risk cannot generally be assumed to increase with volatility. A probability is not the

best measure of investment. The sign of the total effect is again ambiguous. This

ambiguity is illustrated, depending on specification of model and parameters.
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1 Introduction

The theory of real options (Dixit and Pindyck 1994, Trigeorgis 1996) prescribes optimal

investment rules under uncertainty. From these follow predictions for the macroeconomic

relationship between measures of uncertainty on one hand and aggregate investment on

the other. Originally the relationship was seen as decreasing, see, e.g., Pindyck (1991, p.

1123, p. 1131). More recently this has been challenged by Sarkar (2000, 2003), who derives

a theoretical relationship which can be both increasing and decreasing.

This paper discusses the interpretation of Sarkar’s results, and takes a closer look

at the “opposing effect” he identifies. The idea that uncertainty goes up can have several

meanings. Moreover, it is not obvious how to measure the response in aggregate investment.

Anyhow, the message that the relationship is not always monotone decreasing, survives.

While Sarkar (2003) introduces a mean-reverting process for the output price, for which

there are good arguments, most of the discussion here relates to the geometric Brownian

motion (GBM) analysis in Sarkar (2000). The reason is that this is simpler and much more

well known, and that most of the arguments relate to both analyses.

2 The model

This follows Sarkar (2000), except that different values for the investment cost will be

considered. Firm i has the opportunity to invest Ki, whereby it will start a perpetual

revenue stream xt, where t denotes time. The investment can at most take place once, at

any time in the future. While Ki is known and fixed1, the stream xt is a GBM with drift,

dxt = µxtdt + σxtdzt, (1)

where the drift parameter µ and the volatility parameter σ are constants, and dzt is the

increment of a standard Wiener process, zt. Valuation follows the single-beta version of

the ICAPM of Merton (1973), so that the present value of the perpetual revenue stream,

if and when the investment is undertaken, is xt/δ, where δ ≡ r + λρσ − µ. Here, r is the

1For uncertainty in K, see McDonald and Siegel (1986).
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riskless interest rate, λ is the market price of risk, and ρ is the correlation between dzt and

the return on the market portfolio, all assumed to be constants.

The optimal time for firm i to invest is the first time xt reaches a trigger level x∗
i from

below. Defining the constant α as

α ≡ 1

2
− r − δ

σ2
+

√√√√(
1

2
− r − δ

σ2

)2

+
2r

σ2
, (2)

the optimal x∗
i is

x∗
i =

Kiαδ

α − 1
, (3)

cf. McDonald (2003, p. 393). It is assumed that the process starts out at x0 < x∗
i . Otherwise

it would be optimal to invest immediately.

The probability of xt reaching the critical x∗
i (at least once) within a time horizon T , is

Pr(invest in i) = Φ

(
νT − ln(x∗

i /x0)

σ
√

T

)
+

(
x∗

i

x0

)2ν/σ2

Φ

(−νT − ln(x∗
i /x0)

σ
√

T

)
, (4)

where ν ≡ µ − σ2/2, and Φ is the standard normal distribution function, cf. Etheridge

(2002, p. 69f).

The probability formula has three elements. Let

Q ≡ (x∗
i /x0)

2ν/σ2 ≡ (x∗
i /x0)

−1(x∗
i /x0)

2µ/σ2

, (5)

and let the two Φ expressions in (4) be Φ1 and Φ2, respectively. All probabilities to be

discussed are conditional on some x0 < x∗
i . The first of these, Φ1, is the probability that

xT (at the horizon, T ) exceeds x∗
i , cf. equation (20.12) of McDonald (2003). It follows that

the other term in (4), now called QΦ2, is the probability that xt exceeds x∗
i during some

interval(s) between 0 and T , but returns to a value below x∗
i at T .

Since x∗
i is increasing in σ, the original point of view was that investment is decreasing

in σ: Some projects which would have been undertaken in the near future2 for a low value

of σ, will be postponed when it is realized that a higher σ applies. Metcalf and Hassett

(1995) and Sarkar (2000) suggest an opposing effect: The probability of an increase in xt

up to a given trigger level x∗
i within some given time horizon, T , is higher, the higher is

σ. This supposedly goes in the direction of an increasing relationship between uncertainty

2But see the discussion in section 7 below.
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and investment, and Sarkar (2000) indeed demonstrates in a numerical example that the

effect of σ on the probability has an ambiguous sign.

3 The probability of exceeding a trigger level

More can be said about the “opposing effect.” This is really the effect of σ on the probability

in (4) when x∗
i is held constant (but ν = µ − σ2/2 is allowed to vary with σ). Holding x∗

i

constant simplifies the partial derivative sufficiently to get an idea of its sign. This turns

out to be ambiguous, not always positive, as the suggestion of an “opposing” effect seems

to be based on.

A higher σ gives a higher probability both for higher and lower outcomes, while reducing

the probability for outcomes close to the expected path. The effects at T (on Φ1) are easiest

to grasp. Intuitively one would believe that the effect of σ on the probability that xT > x∗
i

depends on whether x∗
i > E(xT ). To develop this idea, start with the normal distribution

and consider the probability of ln(xT ) exceeding ln(x∗
i ) in a case when E[ln(xT )] does not

depends on σ (contrary to the present model, which has E[ln(xT )] = ln(x0)+T (µ−σ2/2)).

It can be shown that this probability is increasing in σ if and only if

ln(x∗
i ) ≥ E[ln(xT )] ⇔ ln

(
x∗

i

x0

)
− T

(
µ − σ2

2

)
≥ 0. (6)

But consider now the present model. The partial derivative ∂Φ1/∂σ|x∗
i

is positive if

and only if

ln
(

x∗
i

x0

)
− T

(
µ +

σ2

2

)
≥ 0. (7)

This does not always hold, but depends on parameter values. For given values of the

other parameters, the expression can be made negative either by a sufficiently high µ, by

a sufficiently high σ, or (except if µ is far below zero) by a sufficiently high T . For the

“opposing effect” this means3 that a higher σ can easily lead to a lower probability of

exceeding a given trigger level, x∗
i .

3So far only the distribution at T has been considered. The effect via QΦ2 is also ambiguous, and is

considered below.
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The condition x∗
i > E(xT ) is equivalent to

ln
(

x∗
i

x0

)
− Tµ > 0, (8)

which is implied by (7). However, there is no implication in the opposite direction, from

(8) to (7). We may well have (as long as σ > 0) that E(xT ) is somewhat less than x∗
i , but

at the same time Φ1 is decreasing4 in σ for a given x∗
i . This shows that the reversal of the

“opposing” effect should not be ignored (or ascribed to an unreasonably high E(xT )) as

far as Φ1 is concerned. The effect of σ on Φ1 for a given x∗
i may be negative even when

E(xT ) is less than the trigger level.

The differences between the three inequalities, (8), (7), and (6), are due to the facts

that the ln function is non-linear (which explains the difference between (6) and (8)) and

that E[ln(xT )] depends on σ by assumption (which determines (7)).

What about the other term in (4)? An increase in σ seems to have an ambiguous effect

on QΦ2. This depends on

∂(QΦ2)

∂σ

∣∣∣∣∣
x∗

i

=
Q

σ2

{
ϕ2 ·

[
ln(x∗

i /x0)√
T

+
√

T

(
µ +

σ2

2

)]
− 4Φ2 ln

(
x∗

i

x0

)
µ

σ

}
, (9)

where ϕ2 is the normal density corresponding to Φ2. No detailed discussion is offered here,

whereas the total effects show up in the numerical analysis in section 6.

4 What does it mean to increase uncertainty?

Increased uncertainty in this model is obviously taken to mean a higher σ. There is a

conceptual problem in analyzing the response to this, namely whether this increase is seen

as a one-time, unexpected increase to a new, constant σ value, or something else. Taken

literally the model does not allow for changes in σ. But the usual comparative statics

analysis considers a starting situation in which some parameters are given, and makes the

experiment of changing one parameter, regarding the others as fixed. Perhaps a model

with stochastic volatility and optimal response to this would have been better suited to

make predictions about the effects of changing volatility.

4This possibility vanishes if ν = µ−σ2 is held constant when σ is varied, instead of holding µ constant.
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But even within the standard comparative statics of the present model, there is the

question of which parameters are seen as fixed when σ is increased. Two alternatives to

Sarkar’s assumptions are given below. The first of these (δ fixed) has a clear economic

interpretation, while the second (ν fixed) is more speculative.

4.1 Keeping δ fixed

Equations (2) and (3) above conceal the relationship δ = r + λρσ − µ. Sarkar (2000)

regards r, λ, ρ, and µ as constants when analyzing changes in σ. This is in line with the

comparative statics analysis in Dixit and Pindyck (1994, p. 179). However, McDonald and

Siegel (1986) choose another assumption, and point out (their footnote 14) that there may

be two interpretations of increased σ: One which is uncorrelated with the market portfolio

and one which is not.

One great achievement of financial option theory, starting with Black and Scholes

(1973), is that its results do not depend on systematic risk. When there is a rate-of-

return shortfall (McDonald and Siegel, 1984), δ, it is possible that systematic risk plays

a role through the term λρσ. But consider what happens if uncertainty is increased by

addition or multiplication of a random variable which is stochastically independent of the

other variables.

Let dzm be the increment of the market portfolio, while dz is introduced above. For

clarity, use now the notation dzx and σx for what have been dz and σ above. For this dis-

cussion dzm and dzx are treated as any random variables, disregarding their infinitesimal

dimension. Their covariance is σxm, and their correlation is ρ = σxm/σxσm. Let super-

script o denote values at the outset, and superscript a denote values after an increase in

uncertainty. Two specifications of this increase will be considered.

First, let ε be a random variable (with strictly positive variance) which is stochastically

independent of (dzm, dzx), with E(ε) = 0. Let dza
x ≡ dzo

x + ε. Then σa
xm = cov(dzo

x +

ε, dzm) = cov(dzo
x, dzm) = σo

xm, while σa
x =

√
var(dzo

x + ε) >
√

var(dzo
x) = σo

x. Thus, if an

increase in σx takes the form of adding a random variable which is independent like this,

then the covariance and the well-known β (from the ICAPM) are unaffected. This means

that the correlation is reduced, and that λρσ, and thus δ, are unaffected.
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A similar effect follows from multiplicative uncertainty. Let ψ be a random vari-

able (with strictly positive variance) which is stochastically independent of (dzm, dzx),

with E(ψ) = 1. In this case, redefine dza
x ≡ ψdzo

x. Then σa
xm = cov(ψdzo

x, dzm) =

cov(dzo
x, dzm) = σo

xm, while σa
x =

√
var(ψdzo

x) >
√

var(dzo
x) = σo

x. Thus, if an increase in

σx takes the form of multiplication with a random variable which is independent like this,

then the covariance is unaffected. Again the correlation is reduced, and β, λρσ, and thus

δ, are unaffected.

These two examples show that there may be good reasons to consider the kind of

increase in σ which does not affect δ: This is what happens if the increase is independent

of the other random variables. It should be noted, however, that it is impossible to maintain

a fixed covariance if σx is reduced to zero. In order for the similar type of independence to

work when σx is reduced, it is a condition that dzx, before the reduction, can be written

as a sum of two stochastic variables, one of which is independent of the vector of the other

and dzm.

4.2 Keeping ν fixed

Equation (4) conceals the relationship ν = µ−σ2/2. The parameter µ relates to xt through

E(xt) = x0e
µt. But this is really the expectation of xt = x0e

νt+σzt , where ν ≡ µ − σ2/2.

Instead of holding µ fixed, one could hold ν, the drift of ln x constant. The process yt ≡ ln xt

is a Brownian motion with drift, dyt = νdt + σdzt. The parameter ν relates to yt through

E(yt) = y0 + νt. To treat ν as a basic parameter of the model instead of µ follows rather

naturally from equation (4). The reason is, of course, that the derivation of this probability

uses the normal distribution of y. With ν fixed, the dependence on σ in (4) is simplified.

Unfortunately (for the purpose of simplicity), there is not a very good justification why

one would want to hold ν fixed instead of µ. After all, xt is supposed to be the directly

observable variable. On the other hand, researchers are well acquainted with lnxt, as most

financial research is done on logarithmic data. If the expected drift is estimated on these,

it may be more consistent to keep that parameter fixed.
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5 How to measure the effect on investment?

The suggestion in Sarkar (2000) is to measure the effect on investment by the effect on

the probability of investment during some time interval. This measure has the advantage

of simplicity, i.e., one does not have to specify too many parameters in order to arrive at

a number. The disadvantage is that it is not necessarily proportional to what one wants

to measure, investment. Figure 1 in Sarkar (2000) shows that the probability is a concave

function of σ, first increasing, then decreasing. Whether this carries over to investment is

not so clear.

An alternative measure could be based on heterogeneity of investment projects. The

simplest extension seems to be to assume that the investment cost varies across projects.

The distribution of these costs will obviously be important. For some applications there

may be reasons to introduce a particular distribution. For the present discussion a discrete

approximation to a uniform distribution will be used. This allows a calculation of expected

investment over some time horizon. If the projects are indexed by i, and the costs are

K1, . . . , Kn, then the expected investment over a horizon of length T is

E(aggregate investment) =
n∑

i=1

E(inv. in project i) =
n∑

i=1

Pr(inv. in project i)Ki. (10)

The introduction of Ki gives an additional non-linearity in the expression.

6 Consequences for numerical results

As pointed out by Sarkar (2000), the sign of the effect on investment is ambiguous. While

this was true when ρ was assumed fixed, it is still true when δ and/or ν are assumed fixed.

Figures 1–5 show the probability of investment within 5 years as functions of the volatility,

σ, and reproduce the numerical example in Sarkar (2000) with some modifications. In these

calculations5 there is only one potential project with K1 = 1. Figures 6–8 show expected

investment with a distribution of project costs. The parameter values are identical to

those in Sarkar (2000) except where noted. In particular, r = 0.1 and x0 = 0.1 are used

throughout.

5The computer programs used are available at http://folk.uio.no/dilund/realopt.
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Figure 1 reproduces Sarkar (2000) exactly, with µ = 0, ρ = 0.7, λ = 0.4, which implies

that δ increases as σ is increased. The solid curve reproduces (and verifies) Sarkar’s Figure

1. The dashed curve shows δ/10, scaled down to fit in the diagram. δ is increasing from 10

percent to more than 26 percent. These are high numbers, and although δ can vary a lot

empirically, most observations seem to be below 10 percent, cf. Milonas and Henker (2001)

for crude oil and Heaney (2002) for copper, lead and zinc. x∗
i is increasing monotonically

from 0.1041 to 0.485 as σ goes from 0.01 to 0.6.

Figure 2 makes only one change compared with Figure 1, by setting µ = 0.01. (The

scale on the vertical axis has changed, and δ is now shown unscaled.) This minor increase

from µ = 0 changes the probability curve dramatically, and it is now strictly decreasing. At

low values of σ, the probability of investing is much higher, cf. the discussion in section 3.

x∗
i is increasing from 0.1006 to 0.476.

Figure 3 is based on calculations where again µ = 0, but this time without any effect of

µ on x∗
i , as δ is held fixed6 at 0.05. ν is not held fixed, but varies according to ν = µ−σ2/2.

ν is thus negative, and increasingly so as σ increases. The effect of keeping δ fixed (and

lower) is to increase the probability of investing. x∗
i is increasing from 0.1001 to 0.308.

Figure 4 makes the additional change that ν is now also kept fixed, at zero. This means

that µ = ν + σ2/2 is positive and increasing. This, of course, increases the probability of

investing as compared with Figure 3, but the curve is still strictly decreasing as function

of σ. x∗
i is increasing exactly as in the calculations underlying Figure 3.

Figure 5 has the same parameter values as Figure 3, except that Ki is now increased

from 1 to 2. This gives a dramatically different curve, increasing with an inflection point.

Notice that the scale on the vertical axis is different from that of Figure 3. x∗
i is increasing

from 0.2002 to 0.616, exactly twice those values relating to Figure 3, cf. equation (3). This

makes the probability of reaching the trigger level extremely low for low σ, and low even

for higher σ values.

Figures 6, 7, and 8 reproduce the parameter vectors and the solid curves of Figures 1,

3, and 4, respectively. But now two additional potential projects are added, with K2 = 2

and K3 = 3. The dashed curves show expected aggregate investment within 5 years when

6For Figures 3–5 and 7–8, λ and ρ are not relevant for the calculations.
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only firms 1 and 2 exist, while the dotted curves show expected aggregate investment when

all three firms exist. To understand this in more detail, consider Figure 7. The difference

between the dashed and the solid curve is the second term in the sum in (4). This is a

probability multiplied by K2 = 2. This particular probability is already shown in Figure 5.

For σ = 0.6 it takes the value 0.06, and the difference between these two curves in Figure

7 is thus equal to 0.12 = 2 · 0.06 at σ = 0.6.

Since the probabilities are generally increasing functions of σ for higher values of Ki,

like in Figure 5, the differences between the curves are increasing in σ, and in Figure 8 the

expected aggregate investment becomes non-monotone even if the probability for K1 = 1

is monotone decreasing.

Hopefully a numerical exercise like this can shed some light on the mechanisms relating

uncertainty to these measures of investment. It is quite clear that the relationship is neither

straightforward to define nor (for many interpretations) strictly decreasing.

7 Discussion

There will, with probability one, be long periods of time during which xt is less than its

previous maximum value. This is particularly pronounced under GBM, even with some

positive drift. If all potential projects are known from many years back, there will be

long periods without any investment at all in the model presented, cf. Lund (1993). This

means that aggregate investment in xt-yielding projects will be erratic. Perhaps a smoother

aggregate investment can be obtained if there are many different revenue processes, not

perfectly correlated, or if there is a stream of new potential investment projects.

The unreasonable features of GBM is one reason why Sarkar (2003) and other re-

searchers have considered alternative stochastic processes. This paper will not discuss

those in any detail. However, Sarkar (2003), after mentioning in the abstract the two

opposing effects of uncertainty on investment, proposes “incorporating a third factor, the

effect of mean-reversion on systematic risk.”

While there may well be a link between mean reversion and systematic risk, it is not

clear that this influences the relationship between σ and investment. One should again take

10



care to specify what parameters are kept constant in the comparative statics. Changing σ

is in itself not necessarily an argument for a change in systematic risk.

8 Conclusion

In the analysis of the effect of uncertainty on investment, there may or may not be an

opposing effect to the traditionally observed negative effect. Furthermore, one must be

careful in the definition of a change in uncertainty, even in comparative statics of a real

options model based on GBM with constant volatility. It is not obvious that systematic risk

is affected. One should also consider carefully what is a meaningful measure of investment

in the model. The probability of a particular investment being undertaken within some

time horizon is not proportional to expected aggregate investment, which is a possible

measure of investment.

The numerical exercise undertaken here clearly show that depending on the specification

of the model and its parameters and the measure of investment, the relationship between

investment and uncertainty can be either strictly increasing, strictly decreasing, or non-

monotone. This confirms the qualitative conclusion of Sarkar (2003).
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Figure 1: Probability of investment in 5 years; µ = 0, r = 0.1, ρ = 0.7, λ =
0.4, x0 = 0.1,K = 1; dashed curve shows δ/10
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Figure 2: Probability of investment in 5 years; µ = 0.01, r = 0.1, ρ =
0.7, λ = 0.4, x0 = 0.1,K = 1; dashed curve shows δ
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Figure 3: Probability of investment in 5 years; µ = 0, r = 0.1, x0 =
0.1,K = 1; δ fixed at 0.05
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Figure 4: Probability of investment in 5 years; r = 0.1, x0 = 0.1,K = 1;
δ fixed at 0.05; ν fixed at 0
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Figure 5: Probability of investment in 5 years; µ = 0, r = 0.1, x0 =
0.1,K = 2; δ fixed at 0.05
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Figure 6: Expected investment in 5 years; µ = 0, r = 0.1, ρ = 0.7, λ =
0.4, x0 = 0.1; curves show 1, 2, and 3 projects (cumulatively), with Ki = i
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Figure 7: Expected investment in 5 years; µ = 0, r = 0.1, x0 = 0.1; δ
fixed at 0.05; curves show 1, 2, and 3 projects (cumulatively), with Ki = i
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Figure 8: Expected investment in 5 years; r = 0.1, x0 = 0.1; δ fixed at
0.05; ν fixed at 0; curves show 1, 2, and 3 projects (cumulatively), with
Ki = i
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