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Abstract

In this paper we develop a theory of scale-invariant endogenous growth.
By this we mean a theory capable of generating a balanced growth path where
both the growth rate and the level of GDP per capita are independent of the
size of population, where population growth is neither necessary nor conduc-
tive for economic growth, and where economic incentives and policy matter
for growth. Such a theory arises naturally when endogenous skill formation
is added to a basic R&D driven growth model featuring diminishing returns
to existing knowledge in creating new ideas.
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1 Introduction

The endogenous growth theory initiated by Romer (1986, 1990), Grossman and
Helpman (1991), and Aghion and Howitt (1992) (below referred to as R/GH/AH)
predicts a positive impact from the size of population on long-run total factor pro-
ductivity (TFP) growth and therefore on income per capita growth. This prediction
is nearly an inevitable consequence of the central assumption that the production of
ideas is linear in the existing stock of knowledge implying that an increase in pop-
ulation and thereby in the number of scientists directly translates into an increase
in TFP growth. However, as forcefully argued by Jones (1995a,b), this scale effect
is at variance with available evidence and therefore constitutes a serious problem
for the theory of endogenous growth.!

Consequently, Jones (1995b), Kortum (1997), and Segerstrom (1998) (hence-
forth J/K/S) have proposed a theory of so-called semi-endogenous growth.? This
theory builds on an assumption of diminishing returns to knowledge in creating new
ideas. Thus, to achieve a constant growth rate of knowledge one needs to allocate
an increasing number of researchers to the R&D sector. This avoids the scale effect
on long-run growth but also implies that population growth is necessary to keep
growth in momentum.? Moreover, economic growth is independent of economic
incentives and policy.? These features of the J/K/S theory are far from the spirit
of the original endogenous growth theory.

Several recent papers (e.g. Young, 1998; Dinopoulos and Thompson, 1998;
Peretto, 1998; Aghion and Howitt, 1998, ch. 12; Howitt, 1999) have therefore ex-
plored a new framework which eliminates the scale effect by combining vertical
(quality improvements) and horizontal (new product lines) innovations. In this
framework increases in population expand proportionally the number of sectors in
the economy thereby keeping the size of each sector, and more importantly, the

number of researchers per sector constant. Therefore, the scale effect is absent

because both the rate of expansion in quality and variety is independent of popula-

LA survey of the empirical evidence on scale effects is to be found in Dinopoulos and Thompsen
(1999).

2 A model exhibits semi-endogenous growth if the growth rate in per capita income is determined
by a (some) exogenous — non-technological — growth rate(s).

3In fact, this insight can already be found in Groth (1992).

41t should be noted though that policy may influence growth by affecting the elasticities of
output (Eicher and Turnovsky, 1999).



tion size. A salient feature of the approach is that the removal of the scale effect is
accomplished without eliminating the ability of economic policy to affect long-run
growth. In addition, population growth is no longer necessary for growth in per
capita income.” However, as emphasized by Jones (1999), this new approach shares
two important predictions with the J/K/S framework. First, population growth
stimulates growth in per capita income. Second, the long-run level of income per
capita is increasing in the size of the population. Thus, the scale of the economy
still matters, albeit in a more subtle fashion. Whether these two predictions can
be supported by data is at this stage unclear.® Therefore, it seems interesting to
investigate whether a theory of growth, void of scale effects on growth rates, neces-
sarily leads to the conclusion that scale matters for the long-run level of income per
capita and that population growth is conductive for economic growth. Or to put it
differently, is it possible to construct a model that generates a balanced growth path
where (7) both the growth rate and the level of GDP per capita are independent of
the size of population, (i7) population growth is neither necessary nor conductive
for economic growth, and (74) economic incentives and economic policy matter for
growth. Our analysis demonstrates that such a theory of ’scale-invariant endoge-
nous growth’ arises naturally if the level of human capital per person is endogenized
in the J/K/S framework.”

One might conjecture that adding accumulation of human capital would aggra-
vate the scale problems since a larger population allows for more teachers thereby
speeding up human capital formation. While this is true, human capital formation
also introduces an important congestion effect: more students for a given level of

expenditures on education reduces the human capital acquired by the average stu-

dent. Thus, if both R&D and human capital accumulation are necessary for growth

5This is not a general feature of all the aforementioned papers. For example, population growth
is still necessary for perpetual growth in e.g. Howitt (1999).

¢Kremer (1993) does give some indication of a beneficial effect of population growth on long-run
growth in income per capita in the pre-industrial era. Yet, many empirical studies following Barro
(1991) have documented a negative effect using post-world war II data. It is, however, unclear
whether this negative effect is temporary, as predicted by standard neoclassical growth theory, or
permanent as it can be in our model. Hall and Jones (1999) studies the relationship between the
long-run level of income and the size of the population. Their analysis reveal no significant effect
of population size on the level of income per worker.

"Groth (1997) also explores the consequences of the interaction between endogenous R&D and
human capital accumulation, complementary to each other. Groth shows — in a model without
population growth — that the scale effect on the growth rate is dampened considerably.



then from a modelling perspective it is important to remember that human capital,
contrary to ideas created by R&D, is a rival input which is linked to the human
body.

Our model suggests that it is not the quantity of citizens but solely the knowl-
edge of the average citizen that matter for the long-run level of per capita income.
The knowledge of the average individual rises over time but, as a consequence of
the congestion effect, at a slower pace than the aggregate stock of scientific knowl-
edge. Thus, the average individual tends to become relatively more ignorant over
time. In a world featuring increased specialization this implication seems eminently
reasonable; contrary to, say, the last century, most people today certainly cannot
make, and probably do not know the functioning of, the simple equipment they use
daily, for example calculators, washing machines, cars, and so on.

Like in the R/GH/AH frameworks our model features constant returns to repro-
ducible factors of production. Therefore, our model shares the property (iiz) with
these models; for instance, the share of resources used on R&D appears in the equa-
tion governing long-run growth. However, in our model the share of resources used
on human capital accumulation also affects the growth rate. Moreover, the analy-
sis shows that an increase in the share of resources used on R&D at the expense
of resources for human capital formation may be detrimental to growth.® Hence,
focusing entirely on either R&D or human capital in isolation may be misleading.

The remainder of the paper is organized as follows. The next section uses a
very simple framework to discuss which of the properties (i) to (iii) are compatible
with the R/GH/AH frameworks and the J/K/S frameworks, respectively. The third
section shows how the simple framework can be augmented with endogenous human
capital formation which leads to a balanced growth path with the properties (1), (i),
and (7i). The fourth section demonstrates that the 'toy’ model in the third section
can be microfounded in a Romer (1990) type model. The last section contains

concluding remarks.

8 A similar effect can be found in the model of secondary innovations discussed in Aghion and
Howitt (1998, ch. 6).



2 Growth Models with Scale Effects

We start by developing a very simple framework which enables us to illustrate some
of the main features of both the endogenous and semi-endogenous growth models.
Time, ¢, is continuous. Final output, Y, is produced using human capital augmented
labor input, H;, ideas, A;, and some fixed factor of production, say, land, denoted
by Z. Below we abstract from this latter factor of production in the analysis by
normalizing it to one.” Whereas A, is assumed non-rival, H; (and Z) is conceived
to be rival, since it is inevitably linked to the human body. The production function
allows for constant returns to rival inputs but increasing returns to rival and non-

rival inputs taken together. Formally, we assume that
Y, = HeAPZV e Z=1,0<a<1, 0<f<1, (1)

where H; = hyL;. L; is "raw” labor (for example equal to the total number of work
hours) whereas h; is the quality of labor. Next, we assume that ideas are produced

using units of final output,'’ that is
At = O'A}/;j, (2)

where Ag is given and where o4 is the share of total output allocated to R&D.
The remaining part of output, 1 — o4, is consumed. For simplicity, we assume
that o, is exogenous and constant. R/GH/AH assume that the production of
knowledge is linear in existing knowledge, 3 = 1, and that human capital is constant,
H, = H = hL. Therefore, the productivity of workers grows at the same pace as
knowledge. Using equations (1) and (2) it is easy to show that the balanced growth

rate in per capita income, y = Y/L, equals

(3)

Simple inspection of this equation proves the following proposition:

91t should be noted that all models discussed below, including ours, exhibits a scale effect from
Z. Below we demonstrate that a growth equilibrium can be completely scale invariant with respect
to population — the empirical problematic prediction highlighted by Jones (1995a,b). But we do
not mean to argue that a growth equilibrium could be (nor should be) invariant with respect to
any possible kind of scale effect.
10 Hence, we are applying the so-called ’lab-equipment’ framework. See Rivera-Batiz and Romer
(1991).



Proposition 1 The R/GH/AH balanced growth path: (i) The growth rate of
income per capita is increasing in the size of the population. (it) Population growth
18 not necessary for a positive growth rate. Positive population growth renders the
growth rate explosive. (iii) Economic incentives and policy can affect the growth

rate (through o).

As remarked in the introduction the scale effect (7) is inconsistent with the avail-
able empirical evidence. This raises the question of whether growth can be explained
through the accumulation of knowledge without having a positive dependence from
population size to growth.

J/K/S have shown that this is in fact possible. To do so, one need simply replace
the linearity of existing knowledge in producing new knowledge with diminishing
returns, § < 1, and furthermore assume that the total stock of human capital,
Hy, is rising. In the present lab-equipment variant of the J/K/S models — which
is closely related to the model developed by Jones and Williamson (1999) — it is
also necessary to assume increasing returns to scale to the two growing factors of
production, o + 3 > 1, in order to ensure positive income per capita growth. In
the J/K/S models the average human capital endowment per worker is assumed
constant, hy = h. Still, the human capital stock rises through time, albeit at a
constant rate . .

% = % =n >0, (4)

where the parameter n denotes the exogenous growth rate of population and where

Hy = hLy is given. Using equations (1), (2), and (4) it is easy to show that the

growth rate of per capita income along the steady growth path, g,, is given by
— (11—«

pe),

At this point it is possible to establish the following properties of the J/K/S model.

(5)

gy:ﬁgA“‘(a_l)n:

Proposition 2 The J/K/S balanced growth path: (i) The growth rate of per
capita income is invariant to the size of population but the level of income per capita
is increasing in the population size. (ii) Population growth is necessary and con-
ductive for growth in per capita income. (1ii) The balanced growth rate is invariant

to changes in economic incentives and policy (e.g. the growth rate is independent

OfO'A).



Proof. In order to prove the second part of (i), note that per capita income —

using equation (1) — can be written as

Y, _
ft =y = AtﬁL?_lha. (6)
t

On the steady growth path, the growth rate of knowledge, g4, is constant. Taking
equations (2) and (5) into account it must hold that

a  oaY, Leh®

gA:]__ﬂn— At —O'AP.

Isolating A; and substituting the result into equation (6) yields

B
1— 6 _ o £20-a) 5 a
yt:( B_UA) Ly 7 S (7)

(0% n

which reveals that the size of the population, for given h, matters for the long-run

level of per capita income. []

Thus, while the J/K/S framework is able to eliminate the scale effect on long-
run growth, it still features a scale effect on the level of income. Moreover, the
J/K/S approach implies that population growth is necessary for per capita income
growth and, in addition, it removes the identifying characteristic of endogenous
growth theory, namely that policy matters for long-run growth.!?

Observe that in the limiting case of constant returns to the two growing fac-
tors of production, 5 = 1 — «, the scale effect on the level of income is in fact
eliminated from the J/K/S framework (see equation (7)). However, in this case
the long-run growth rate of per capita income is zero. But this result rests on the
assumption that the quality of researchers, that is h;, is assumed to be constant.
On the intuitive level, all that is needed to overcome the diminishing technological
opportunities is that the skills of researchers rise over time. And this need not entail
a growing population as assumed in the J/K/S models. Therefore we investigate

the implications of allowing h; to be endogenous in the next section.

U There are, however, two corollaries to this result. First, policy affects the level of income,
which is apparent from equation (7). Thus policy can have transitional growth effects. Secondly,
policy can have permanent growth effects insofar as it can affect fertility (see Jones, 1997).



3 A Simple Scale-Invariant Endogenous Growth
Model

In this section we reconsider the J/K/S model above, albeit with two modifications.
First, we allow the average level of human capital, h;, to be endogenous in the
model. Thus, the aggregate stock of human capital rises, not only because of an
increasing number of individuals in the economy, but also because of a rising quality
of each individual. Second, we assume, like in the R/GH/AH models, constant
returns to reproducible factors of production, in our case A; and H;. This requires
that 0 equals 1 — « in equation (1). Note, that the model therefore allows for
diminishing returns to knowledge as in the J/K/S models. However, increases in
the quality and quantity of researchers tend to mitigate this effect. If the number of
researchers grows, measured in efficiency units, a constant flow of research results
can be obtained. If the quality adjusted amount of researchers does not grow,
growth will eventually come to a halt. The model thus captures that a high level
of A; is less useful, when it comes to producing the next idea, if the level of human
capital is low. Following Mankiw, Romer and Weil (1992) we assume that the

equation governing the evolution of the human capital stock is
Ht = UHE? (8)

where oy is the share of output used to produce human capital and where Hy =
hoLg is given. Thus, the share o = 1— (04 + op) of output is consumed. Observe
that equation (8) contains a congestion effect which, as will become clear later,
ensures that the accumulation of human capital does not introduce any new scale
effects neither on the growth rate of per capita income nor on the level of per capita
income. This congestion effect is evident if we use the definition of the human

capital stock, H; = h;L;, to eliminate H; in the above equation. This yields

ilt = - nht; (9)

where hg is given. The numerator, oY}, represents the input in the human capital
sector which consists of land, ideas, and human capital. The denominator in the
first term can be interpreted as the number of students (here equal to the entire

population). As is apparent from the equation, the smaller the ratio of expenditures



on education to the number of students, the less quality expands. If a given growth
of individual human capital is to be attained, expenditures have to be growing
relatively to the inflow of students; otherwise the sheer number of students will
tend to ’crowd out’ quality growth. The second term on the RHS of equation (9)
reflects the costs of bringing the skill level of the newcomers up to the average level
of the existing population. This implies that population growth, ceteris paribus,
tends to reduce the 'quality’ of the average individual in the population.

To solve the model we define
Xt = Ht/At.

The dynamic evolution of y, can subsequently be derived from equations (1), (2),
and (8):
Gy =91 — ga = ouxy ' — oaxy. (10)
Along a steady growth path, where g, is constant, human capital and knowledge
have to grow at the same rate, that is g, = 0. Therefore, the steady state human
capital to knowledge ratio is given by
o
X = O_—Z (11)
It is easy to see from equation (10) that this steady state is indeed stable. Using

(11) it is possible to derive the growth rates of human capital, gy, and knowledge,

g4, along the balanced growth path using equations (2) and (8):

-«

g = ga = 0o, % (12)

Using equation (1) it can be confirmed that the growth rate of per capita income
equals

gy = ool —n. (13)
The characteristics of the balanced growth path are summarized in the following

proposition

Proposition 3 The growth path of the simple scale-invariant model: (i)
The long-run growth rate and level of per capita income is invariant to the size of
the population. (ii) Population growth is neither necessary nor conductive for long-
run growth. (iii) Economic incentives and policy can affect the long-run growth rate

(through o4 and o).



Proof. To see that there is no scale effect on the level of income, we compute the

balanced growth path of per capita income. Using equations (1), (11), (12) and

(13), we get
Y, AcH/™® AN oa\” .
o (2) p = (ZA) hgew
Lt Lt Ht ¢ oy e

which is independent of L for given hy. [

Hence, the present model demonstrates how diminishing returns to knowledge
and endogenous human capital accumulation allow for the simultaneous removal of
the scale effect on the growth rate and on the level of income while allowing for
positive per capita growth.

Observe from equation (13) that population growth actually reduces growth in
income per capita. This effect is permanent - contrary to, say, standard neoclas-
sical growth theory where increases in n only has a temporary negative impact on
growth. However, in the microfounded version of the model, developed in the next
section, increases in n may have either none or a negative effect on long-run growth
depending on household preferences.

In addition our model allows policy to play a role in shaping long-run growth.
This occurs in a similar fashion as in the R/GH/AH models where 0,4 also enters
the growth equation. However, contrary to these models increases in o4 need not

spur growth in our framework. Consider the following corollary

Corollary 1 For any given o¢, growth in per capita income is maximized when

O A 11—«

oy (6

Proof. The problem is to max,, g, = 0%0® — n subject to the identity oy =

1 — o¢ — 04, which immediately yields the result. [

Hence, growth will be reduced if the share of resources used on R&D is increased
at the expense of resources for human capital formation beyond the point where g—g
equals fT" The intuition is that R&D and human capital accumulation complement
each other; if too little emphasis is placed on human capital production, the average
quality of researchers suffers, and so does growth. Thus, the corollary suggests that
looking at the share of resources used on R&D or human capital in isolation may

be misleading. Another unique implication of the model is the following

10



Corollary 2 For n > 0, individuals tend to become relatively more ignorant over

time, since g4 — gn > 0.

Thus the ’knowledge frontier’ grows faster than the average knowledge of any
given individual. In a world featuring increasing specialization this implication is
eminently reasonable. This will become more evident when we, in the next section,
reconfirm the conclusions of the above simple analysis in a model of growth through

specialization.

4 The Decentralized Model

In the model developed below, technical progress manifests itself as increasing spe-
cialization, that is through an increasing variety of intermediate inputs. The struc-
ture follows Rivera-Batiz and Romer (1991), but we depart from the basic frame-
work by allowing the stock of human capital to be endogenously determined as in
the toy model above. Therefore, growth persists in our model for two reasons —
R&D and human capital accumulation.

At the more detailed level, the model comprises three sectors; a final goods
sector, an intermediate good sector, and finally, an R&D sector. While the final
goods sector and the R&D sector are competitive, we assume that the intermediate
goods sector is monopolistic. Final goods are produced using intermediate goods
and human capital. The output from the final goods sector is used for consumption
and investment. Furthermore, we assume that investments can be made in patents,
that is funding for R&D and intermediate goods production, and human capital.
This implies that final goods are used for three kinds of production purposes; R&D,
intermediate good production and production of human capital. While firms decide
on how many resources to employ in R&D and in production of intermediate goods,
it is the household that decides on investing in human capital.

We start by examining the final goods sector in Section 4.1. In Section 4.2 we
solve the monopolists’ problem in the intermediate goods sector, and in Section
4.3 we characterize the incentives to innovate. Then, in Section 4.4, we solve the
consumers’ problem. Lastly, we derive the balanced growth path and state our main

results in Section 4.5.
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4.1 The Final Goods Sector

We assume that final goods, Y;, are produced using human capital augmented labor
input, H; = hL,, a fixed factor Z, and specialized inputs z ;. The latter is indexed
by 7. We denote by A; the total number of varieties used in production at time ¢.

Specifically, the production function of the representative firm is given by

HN\® [
Y, = (—) / aldj - 2707, (14)
At ]:0

where o and ~y are positive parameters fulfilling o + v < 1. The term (H;/A;)"
is thought to capture that production tends to become more human capital in-
tensive through time as production complexity increases (see e.g. Howitt, 1999).
Technically, it allows for an aggregate production function which exhibits constant
returns to rival inputs (H, zj, and Z) and to human capital and ideas (H; and A;).
The former property ensures that the aggregate production function is consistent
with the well-known replication argument whereas the latter represent a sufficient
condition for endogenous growth. Like in the toy model we normalize Z to one.
The representative firm maximizes profits. The price of final goods act as nu-
meraire. Therefore, the firm employ intermediate goods and human capital to the
point where marginal productivity equals the price, denoted by p;; and r{?, respec-

tively. Thus,

Y, H\®
= (30) 7 e (5)
J
aY; a—1 p—«a A Y i H
oH, aHP A O.I'jtd] =r,. (16)
‘]:

4.2 The Intermediate Goods Sector

The intermediate goods sector operates under monopoly. We assume that once
monopoly status is acquired, by purchasing a blueprint from the R&D sector, it
lasts indefinitely. Additionally, it is assumed that the production of one unit of in-
termediary input costs one unit of final output. Thus, the jth monopolists problem
of maximizing profits, 7, can be stated as

maijt = (p]t — 1) xjt, (17)

Tjt

12



subject to the demand schedule, equation (15). On this basis it can readily be
shown that the profit maximizing price and output level are given by

2 ([ H, =
Djt = Dt = 1/, Tjp = Ty = Y17 (ﬁ) . (18)

Notice that the production of each intermediary input is an increasing function of
the supply of human capital. This follows from the complementarity between x;
and H; in the production of final goods. As output and prices are identical for all

7, it follows that profits are the same for all 5 :

=2 (H =
T, =m = (1/y—1)yT (Iz) ) (19)

Notice that insofar as H;/A; is constant, as it will be in steady state, x¢, p;, and 7

will be constant.

4.3 The R&D Sector

Anybody can engage in R&D and will do so as long as the benefits exceed the
costs. Assuming that spending one unit of output (deterministically) leads to the
discovery of a new variety, there will be entry until
1=V, = / mee i g, (20)
s=t
where V; is the benefits from engaging in production of intermediary inputs and
r# is the rate of return on research and development. Differentiating (20) one can

derive the condition on flow form:

1=—L. (21)

4.4 The Households

The total number of households is constant through time, and normalized to unity.
However, the size of the household increases through time at the rate of population

growth, n. The representative household maximizes

© l1-e 1
Up = / A——— (22)
=0 1l—¢

13



where ¢; is the consumption level of each individual in the household and where 6
and e are the rate of time preference and the coefficient of relative risk aversion,
respectively.!? The optimization problem of the representative household consists of
dividing income, ();, between consumption, ¢;L;, and investments, and furthermore,

in allocating investments between human capital, I, and patents, I/A. Thus,
Qi =I" + I + ¢ Ly, (23)

where I/ = H, and I/ = A,.

Total household income derives from the return from human capital r7 H, and
from investing in the production of ideas, the proceeds of which is returned to
the households in the shape of dividends, r/'4;. In order to parameterize policy,
we allow for subsidies to human capital and R&D investments at the proportional
rates 717 and 7 (which may be negative corresponding to a tax). The subsidies are
financed trough a lump sum tax, 7}, and we assume that the government balances

the budget at all times. Hence,
Q: = (1+7'H) r! H; + (1+7’A) A, — T, (24)

The representative household chooses {ct,I,;“,ItH }zo in order to maximize (22)
subject to (23), (24), and the non-negativity constraints ¢, > 0, I* > 0, and
I' > 0. The solution to this problem is provided in Appendix A.

4.5 The Balanced Growth Equilibrium

The above non-negativity constraints on the household may give rise to transitional
dynamics, that is the household may choose temporary to invest in only one of the
two assets.!®> However, the economy converges to a unique balanced growth path
in finite time (see Appendix B). On this path the household invests in both human

capital and patents and the returns on these two investments are equalized, that is

L+l =1+ r) =r, (25)

12 As usual we assume that discounted utility is bounded, implying that 6§ > (1 — ¢) g,,, where
gy is the long-run growth rate in per capita income, derived below.

13This type of dynamics arising from combining accumulation of both R&D and human capital
are discussed in greater detail in Sgrensen (1999).

14



which corresponds to a standard no-arbitrage condition. Additionally, the path is

characterized by the Keynes-Ramsey rule

Ct 1
G == (r—0-n). 2
o g E(T n) (26)

The research arbitrage equation (21), the equilibrium condition for the asset market
(25), along with the expression for the rental rate of human capital (16), and the
expression for profits (19), pin down the H;/A; ratio along the balanced growth

path:
ﬁ—cb ")/(1—’)/)1+7'A
H, o 14+ 7H
The immediate implication of this equation is that g4 = gy along the balanced

(27)

growth path. From the accounting equations (23) and (24), it can readily be con-
firmed that aggregate output and consumption grow at the same rate. Hence, the
Keynes-Ramsey rule pins down growth in total (and per capita) income.'*

To solve for the growth rate in per capita income, we derive the equilibrium
interest rate, r, from equations (16) and (18), and insert the expression into equation

(26). This yields

m | =

gy = ((1+TH) aq)%ly%—ﬁ—n>, (28)

which we assume is positive. The entire balanced growth path of per capita income

can now be derived from equation (14) and the equilibrium expressions for z; and
H;/A;, which gives

A -« L

Y = yoel' = (_0) zghoe?t = ’y% e hoedvt. (29)
Hy

The properties of the balanced growth path of the model are summarized in the

following proposition

Proposition 4 (i) The long-run level and growth rate of per capita income are
invariant to the size of the population. (ii) Population growth is neither necessary
nor conductive for long-run growth. (iii) Policy affects the long-run growth rate of

income per capita (through 74 and 7).

14Notice, that the ratio of R&D expenditures to GDP will be constant through time, as g4 = gy;
an implication which conforms with the available empirical evidence (see e.g. Howitt, 1999).
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The proposition shows that it is possible to construct a microfounded theory of
scale-invariant endogenous growth.

Observe from equation (28) that increases in population growth, n, decreases per
capita income growth like in the toy model of Section 3. However, this result is not
robust as it depends crucially on the specification of preferences. Suppose that the
household, instead of using the current welfare criteria, had used the Benthamite
welfare criteria.!® Under such circumstances # would be replaced by p — n, where
p reflects the "pure” rate of time preference. It is easy to see from equation (28)
that growth of per capita income in this case would be independent of n. The
intuition is simply that, under total utility maximization (the Bentham criteria),
the household becomes more patient, because the size of the family in the future is
taken into account. This tends to increase the propensity to save, and as a result,
exactly cancels the detrimental effect of population growth on the rate of income
expansion which is present in equation (28). This is, however, the only difference
in results between the general model and the toy model discussed above.

The decentralized model also features the result that there exists a non-linear
relationship between growth and the share of output used for R&D, cf. Corollary
1. To see this consider the special case of the model where lump sum taxes, T}, are
zero implying that the subsidies/taxes, 75 and 74, fulfill

TFEQTH_FTfAiTA

Y: Y:
where the first equality follows from equations (14), (16), (19), (21), and (27).
Maximizing growth, equation (28), with respect to 7 and 74 subject to (30) yields

= a4+ (1 —~)yr* =0, (30)

~H (07
=— —(1-— e(—1,1
ot e L),

%A:%(l_ﬁ> € (—1,00),

where we have used the parameter restriction a+~ < 1. Now, if the share of output
used for R&D, A;/Y;, is increased by raising 74 (and lowering 7 correspondingly)
then this only increases growth if 74 < 7. Increasing 7% beyond 7% is detrimen-
tal to growth, and the intuition is exactly as in the toy model: if the quality of

researchers does not increase sufficiently over time income growth will suffer.

5That is, if we had used L; (¢; ©—1) /(1 —¢) as instantaneous utility function in equation
(22).
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The result of ”increasing relative ignorance”, cf. Corollary 2, can also be con-

firmed within the present model, since the following holds:

9gAa = 9gu = gn + 1.

Thus, g4 > gp. This result is a product of the balanced growth property, that
knowledge is increased as the effective amount of labor input rises. Thus, in a
relative sense, each person in the economy becomes increasingly ignorant as time

passes by.

5 Concluding Remarks

In this paper, we offer a novel explanation for the absence of the scale effect on
growth which, like recent contributions, preserves a role for policy in shaping eco-
nomic growth and allows for perpetual growth when the population size is fixed. In
contrast, however, our explanation does not imply that the population size matters
for the long-run level of income per capita and that population growth is conductive
for growth in per capita income. Hence, the present paper demonstrates that the
elimination of all scale effects from population size in no way makes endogenous
growth impossible.

These results arise naturally when allowing for endogenous accumulation of both
ideas and human capital. Human capital production is, contrary to the production
of ideas, associated with an important congestion effect: an increase in the number
of students will, ceteris paribus, tend to crowd out the quality of the average student.
This simple congestion effect is crucial for eliminating the scale effects.

Several empirical questions remain. First, does population size matter for long-
run income? It seems to be an important topic for future empirical work to asses
whether a scale effect on income levels is supported by the evidence. Second, is
population growth conductive for long-run growth in income per capita? Accord-
ing to recent theoretical contributions the tentative answer is affirmative — on the

contrary, our theory suggests that the answer is in the negative.

A The Households’ Problem

The households’ problem is to
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oo 1—¢
-1
max Uoz/ Ct—e_etdt,
t

{ct,ItA,I{I}zO -0 l—¢
subject to the following set of constraints:
Ht = ItH >0, Hpy= hoLg given,
4, = ItA >0, A given,
c > 0,
'+t = Q+mMrfHo+ 1+ rfA - T, — e Ly,
Ay > 0 forallt,
H, > 0 forallt.

The discounted value Hamiltonian, J;, after insertion of ¢, is given by

Ly

( (147 ) e Het (1474 )rf A =Ty — 1 -1
Ji

—&
> 1
1_¢ e_et + )\Ht]tI{ + >\At]tA-

Due to the inequalities I* > 0 and I > 0, the first order conditions with respect

to I/ and IH are

0J,
ﬁ IA =0, (31)
a0J;
ﬁ IH =0, (32)
and 97
a_I;‘ =g —c - L7 e <0, (33)
0J; 1 oe
ﬁ = A — L 'e;fe % <0, (34)
The first order conditions with respect to the state variables are
a0J, e :
a_Att =L e ™" (1+ 7))} = =, (35)
0J, e :
8_Hi =L (1+ ") r]l = =X (36)

Finally, the solution has to fulfill the two transversality conditions:
thm AAtAt S 0,

thm )\Hth S 0.
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A.1 Household behavior when (1+77)rf = (1 4 74) rA

If the return on the two assets are identical, it follows from equations (16), (18),
(19), and (21) that

(1 + TH) ri = (1 + TA) it =r= (1 + TH) a‘b%lylﬁ—?,
where ® is a constant given by equation (27). We now rule out that (a) I > 0 A
IH=0,() I =0A I >0,and (c) I = I =0, thus implying that the solution
is characterized by IA >0 A I > 0.
First, note that the transversality conditions and Ay > 0 and Hy > 0 and I/ > 0
and I}! > 0 imply

Tlim Aar =0, (37)
Next, integrate equations (35) and (36) from time 0 to time 7" to yield

T T

/ Aedt = Aar — Aao = —/ L tc (1 + TA) rfe’etdt, (39)
=0 =0
T T

/ )\tht = )\HT — )\HO = —/ L;lcf (1 + TH) ’I“tHeietdt. (40)
=0 =0

We next subtract equation (40) from (39) and let 7" — oco. After using equations
(37) and (38), we obtain
Ao — Ao = / Lt’lc;5 [(1 + TA) rf — (1 + TH) rﬂ e Odt. (41)
=0
When (1+74)r and (1 + 7) rf are identical, so are Ayg and Ago. This implies
from equations (33) and (34) that &% = 2%

The assumption of positive growth, that is r > 6 + n, implies that the household

which rules out case (a) and (b).

has an incentive to invest thereby ruling out case (c) directly. Hence, I/ > 0 and
IF > 0. Tt is now straightforward to derive the Keynes-Ramsey-rule, equation (26),
from the equations (31) to (36).

A.2 Household behavior when (1+ 7)rf # (14 74) rf

Consider the case where (1+74)rg > (14 7) rfl at time zero. We wish to rule
out (a) I >0ANIL =0, (b) IIF >0AI¢ >0, and (¢) IZ =0 A I3t =0, thus
demonstrating that I' > 0 and I = 0 holds.

19



Consider, first case (a). When If > 0 equation (34) holds with equality accord-
ing to equation (32), that is

Lic,fe % = Ay > 0.
Using this equation and equation (33), it follows that
e — Lite7fe™ = A gy — Ay < 0. (42)

If If' > 0 and I;* = 0 then the production technology implies that (1 +77) r will
be decreasing through time whereas (1 + TA) r2 will be increasing through time.
Hence, if (14 74)rg' > (14 77) rfl implies Il" > 0A I = 0 then (1+74)rf* >
(1 + TH) ri for all t > 0. In then follows from equation (41) that A\4; — Ay > 0,
which contradicts equation (42).

Consider case (b). Equation (31) and (32) implies that gj—ﬁ = gI—J,g = 0. Hence,
equations (33) and (34) imply that t t

>\At = )\Ht for all t,

from which it follows that \ AL = )\Ht for all t. It then follows from equations
(35) and (36) that (14 74)r* = (1+7) r Vt contradicting that (1+74) rg >
(1+77)rfl.
Finally, consider case (¢). If I = I! = 0 then total income is constant and
equal to total consumption, that is Y; =Y = ¢,L,, implying that
&

= —n.
Ct

Also, if I* = I! = 0,then A;/H, is constant implying that the returns to the two

assets are constant, that is r/! = 74 and r# = 7. Using this, equation (39), and

the transversality condition, we have

Ado = / Liters (L+ ) e ®dt = Ly'ey® (1+74) 74 / e~ (Onle=)t gy,
t=0 t=0
(43)
For the parameter constellation § — n (¢ — 1) < 0 this equation implies that A9 =

oo. This leads to a contradiction since equation (33) implies that
Ao < ¢ - Lyt (44)
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in case (c). Consider instead the parameter constellation § —n (e — 1) > 0. Then

equation (43) yields
L Lytet (14T

Aao = 45
A0 0—n(e—1) (45)
To see that this contradicts (44), insert (45) into (44). This gives
Lfl (1 4+ A\ A
ot (LT <Lyt
0—n(e—1)
or, equivalently,
(1+ TA) ' —0—n< —en. (46)

Note that (1 +74) 74 > (1 + 7)) 77 implies that (14 74) 7 > r > (1+77) 71
where r corresponds to the value of A;/H; where (1 + TA) ri = (1 +7H ) r =r.
Hence,

(1+TA)fA—9—n>r—9—n>0,

where the last inequality follows from the assumption of positive steady state
growth. The above inequality contradicts the inequality (46), thereby ruling out
case (c).

Thus, if (1 +74) rg > (1+7) r{f then I > 0 and I}! = 0. A similar argument
as above can be used to show that (1+74)r¢ < (1+7)r{ implies I§' = 0 and

I >o.

B The Transition to the Balanced Growth Path

If A;/H; = ®, where  is given by equation (27), it follows from equations (16), (18),
(19), and (21) that (1 4+ 74) r{* = (1 4+ 7%) rf' = r. In this case the economy follows
the balanced growth path which exhibits the properties summarized in Proposition
4. We now show that the economy converges to this path if A;/H; # ®. Consider
first the case where A;/H; < ®. It then follows from equations (16), (18), (19), and
(21) that (1+74)rf > 7> (1+7%) rff. In Appendix A we have established that
this implies that I > 0 and I = 0 ensuring that A;/H, is rising. This process will
continue until A;/H; = ® corresponding to the balanced growth path. A similar
argument applies to the case when A;/H; > ®.

The economy reaches the balanced growth path in finite time. To see this,

remember that the households only invest in Ay, as long as A;/H; < ®, and that
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the amount of investment needed to reach the steady state ratio ® equals ® Hy — Ag
which is finite. Thus, the economy will eventually reach the balanced growth path

and continue along this path afterwards.
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