De Graeve, Ferre; Westermark, Andreas

Working Paper
Un-truncating VARs

Sveriges Riksbank Working Paper Series, No. 271

Provided in Cooperation with:
Central Bank of Sweden, Stockholm

Suggested Citation: De Graeve, Ferre; Westermark, Andreas (2013) : Un-truncating VARs, Sveriges Riksbank Working Paper Series, No. 271, Sveriges Riksbank, Stockholm

This Version is available at:
http://hdl.handle.net/10419/81922

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Un-truncating VARs*

Ferre De Graeve and Andreas Westermark

June 2013
Un-truncating VARs*

Ferre De Graeve and Andreas Westermark

Sveriges Riksbank Working Paper Series No. 271

June 2013

Abstract

Macroeconomic research often relies on structural vector autoregressions to uncover empirical regularities. Critics argue the method goes awry due to lag truncation: short lag-lengths imply a poor approximation to DSGE-models. Empirically, short lag-length is deemed necessary as increased parametrization induces excessive uncertainty.

The paper shows that this argument is incomplete. Longer lag-length simultaneously reduces misspecification, which in turn reduces variance. For data generated by frontier DSGE-models long-lag VARs are feasible, reduce bias and variance, and have better coverage. Thus, contrary to conventional wisdom, the trivial solution to the critique actually works.

Keywords: VAR, SVAR, Lag-length, Truncation

JEL: C18, E37

*This paper has benefited from discussions with Paul Beaudry, Fabio Canova, Yongsung Chang, Martin Eichenbaum, Jesús Fernández-Villaverde, Jonas Fisher, Jordi Galf, Marco Lippi, Jean-Paul L’Huillier, Lutz Kilian, Per Krusell, Ellen McGrattan, Juan Rubio-Ramirez, Federico Ravenna, Barbara Rossi, Chris Sims, Dan Waggoner, Tao Zha and seminar participants at the Atlanta Fed, Cleveland Fed, Dallas Fed, EIEF, Universitat Pompeu Fabra and NORMAC. The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Executive Board of Sveriges Riksbank. Correspondence: ferre.de.graeve@riksbank.se, andreas.westermark@riksbank.se.
1 Introduction

Structural Vector Autoregressions (SVARs) have proven to be an important tool for measuring macroeconomic regularities. Following Sims’ (1980) seminal contribution Bernanke (1983), Blanchard and Quah (1989), Sims (1989, 1992), Eichenbaum and Evans (1995), Galí (1999), Fisher (2006), Beaudry and Portier (2006) and others provided SVAR-based evidence for a variety of shocks, with each essentially spurring a separate field of research.

Yet the SVAR method is not without its critics. Many critiques of SVARs boil down to the problem of lag truncation. In particular, while DSGE models tend to imply reduced form VAR representations with long lag-length (often infinity), when going to the data, macroeconomists invariably settle on using a very small number of lags (typically one to four quarters). Because lags are truncated, the critics show, impulse response functions (IRFs) computed using the SVAR may not correspond to those of the underlying DSGE model. Chari, Kehoe and McGrattan (2008, henceforth CKM) is the most recent and well-known elicitation of that critique.\(^1\)

The trivial solution to lag truncation, i.e., dramatically increasing lag-length, is unexplored. What keeps macroeconomists from using long lag-lengths is the intuition that uncertainty becomes pervasive. That is, increasing lag-length increases the number of parameters rapidly, thereby reducing the degrees of freedom and making confidence bandwidth explode.

We show that this standard intuition is only part of the story. In the face of misspecification due to lag truncation, increasing lag-length can actually reduce uncertainty. The reason is that as truncation reduces, misspecification reduces. The reduction in misspecification not only leads to the well-known bias reduction, but it also reduces variance. This reduction in variance will work against the imprecision resulting from increased parametrization. This trade-off is general: it applies to all truncated VARs, no matter whether they are identified with short-run, long-run or sign restrictions.

\(^1\)Others include Faust and Leeper (1997), Cooley and Dwyer (1998) and Ravenna (2007).
We show that in increasing lag-length in standard SVARs on small samples of data generated by standard DSGE models, the variance-effect of misspecification reduction often dominates the increased imprecision due to increased parametrization. The result is then almost unequivocally in favor of long-lag VARs: reduced truncation bias, more precise inference, reduced MSE, better coverage rates.

The implication is, contrary to conventional wisdom, that it is possible to estimate SVARs with long lags, and hence reduce truncation bias, and still derive precise structural predictions from them.

The paper is organized as follows. We start by laying out a standard single-equation omitted variables argument. This provides the intuition for the effect of reducing truncation in SVAR impulse responses, where analytics are not tractable. We then assess long-lag VARs on the basis of a series of Monte Carlo experiments. We draw data from a variety of DSGE models, estimate SVARs of different (and possibly very long) lag-length and evaluate their performance. Finally, we assess the implications of our results and discuss some possible avenues for future research.

2 Misspecification

We first briefly re-state a textbook omitted variables argument, which facilitates understanding the intuition behind the general VAR results.

2.1 Some useful single-equation intuition

Consider a data-generating process

\[y_t = X_{1t} \beta_1 + X_{2t} \beta_2 + \epsilon_t, \quad V(\epsilon_t) = \sigma^2 \]

\[\]
where a variable \(y \) is determined by two (sets of) exogenous variables, \(X_1 \) and \(X_2 \) and a shock \(\epsilon \). Now run the regression

\[
y_t = X_1 b_1 + e_t, \quad V(e_t) = s^2. \tag{2}
\]

It is well-known that omission of the relevant variable \(X_2 \) leads to biased point estimates (unless \(X_1 \perp X_2 \)):

\[
E(b_1) \neq \beta_1
\]
as well as an upwardly biased variance estimate (always):

\[
s^2 > \sigma^2.
\]

2.2 Omitted variables and truncation in VARs

The single-equation textbook result straightforwardly generalizes to VARs. It suffices to think of \(y \) as a vector of variables, \(X_1 \) as the lags the researcher includes, and \(X_2 \) as the lags not included, or truncated.

It is then immediate that a VAR, denoted by

\[
Y_t = B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + u_t, \quad E(u_t u'_t) = \Sigma
\]

\[
B(L) = B_1 L + \ldots + B_p L^p,
\]

which has \(p < p^* \) (where \(p^* \) denotes the true lag-length) will suffer from truncation bias. The omitted variables argument above highlights why: lag truncation (or omitting relevant variables) results in a bias in the reduced form coefficients \(B(L) \) and in the reduced form covariance matrix \(\Sigma \). Any SVAR analysis has impulse responses as a function of both these reduced form objects; let

\[
IRF = f(B(L), \Sigma). \tag{3}
\]

Because impulse responses are a function of both \(B(L) \) and \(\Sigma \) they will tend to become
less biased if both its arguments become less biased.\(^2\) In other words, reducing truncation reduces bias.

But what do we know about variance? Recall that the intuition that keeps macroeconomics from considering long lag-lengths is that the increased parametrization (dimension of \(B(L)\)) leads to increased imprecision.

Though conceptually simple, equation (3) helps formalize that standard intuition. Essentially, recalling that \(V(.)\) denotes variance, the intuition simply states that \(V(B(L)) \uparrow \implies V(IRF) \uparrow\) as lag-length increases. But (3) also makes clear that this argument is incomplete. In particular, it neglects that there is a second argument, \(\Sigma\). Therefore, any claims about \(V(IRF)\) solely based on \(V(B(L))\) are only partial. Importantly, the omitted variables argument suggests a reduction in bias of the estimate of \(\Sigma\), which may well contribute to a reduction in variance of impulse responses.

Equation (3) also makes clear why general statements about \(V(IRF)\) are hard to make: the non-linearity of \(f\) (also across horizons) interacts with the multi-dimensionality of both its arguments, \(B(L)\) and \(\Sigma\). Therefore, we ascertain the balance of this trade-off by means of a series of Monte Carlo experiments based on frequently studied models in macroeconomics.

3 Monte Carlo evidence

For each DSGE model considered, we sample data of length equal to that available in typical macro data samples \((T = 200)\).\(^3\) Given one such draw of data, we estimate VARs of differ-

\(^2\)We merely refer to a documented tendency in DSGE models analyzed in the literature (see, for instance, CKM). From a theoretical perspective, this reduction in bias is not a certitude. Generally, bias reduction in its arguments does not guarantee bias reduction in the impulse response function. See Sims (1972) for an elicitation of a related point in terms of reduced form objects: convergence in individual point estimates (i.e. function arguments) may imply divergence of the sum of coefficients (i.e. the function itself).

\(^3\)When comparing VARs of different lag-length, we ensure each VAR has the same number of effective observations, equal to \(T = 170\). That is, lag initialization does not affect sample size.
ent lag-lengths, calculate impulse response functions and construct confidence bands using
standard methods.\(^4\) We repeat that exercise 1000 times for each model and subsequently
investigate bias, uncertainty bandwidth, mean-squared error and coverage rates.

3.1 Setup

We consider a range of models, both real and nominal, and identified with both short and
long-run restrictions. More precisely, we consider estimating IRFs using long-run restrictions
on data generated from CKM’s RBC model as well as the short-run restriction version in
Christiano, Eichenbaum and Vigfusson (2007), henceforth CEV, of that same model (in
which agents do not observe the productivity shock at the time of making the labor decision).
We consider both these models because they have taken center stage in much of the debate
on the use of SVARs. In addition, we also consider the Smets and Wouters (2007) model,
henceforth SW, because it nests many shocks and frictions frequently discussed in macro
and arguably captures dynamics deemed important in the data. As a simple way of building
in a short-run restriction in that model, we assume that monetary policy responds only to
lagged macroeconomic aggregates. The identifying restriction is then that only the monetary
policy shock affects the interest rate contemporaneously. Because each of these models is
well-known, we refer the reader to the respective papers for a precise description of model
equations and parameter calibration (or, in the case of SW, estimation).\(^5\)

We work under a number of maintained simplifications. First, the identification assump-
tions are invariably correct (i.e., the long or short run restrictions hold true in the DGP).

\(^4\)See Christiano, Eichenbaum and Vigfusson (2007) for a discussion of why this is the appropriate way
to evaluate SVARs. Essentially, one takes an econometrician’s perspective - who has only one draw of data
and faces a question of inference on the basis of just that data.

\(^5\)For CKM and CEV, we follow the CKM baseline calibration. For SW we modify the policy rule to

\[r_t = \rho r_{t-1} + (1 - \rho) \left\{ r_x \pi_{t-1} + r_y \left(y_{t-1} - y_{l-1}^P \right) \right\} + \epsilon_t^r \]

and calibrate the model at the median of SW’s posterior distribution.
Second, invertibility is never a problem; all the models we consider are fundamental. Third, all our experiments are based on two-shock models and two-variable VARs. Both RBC models fit that framework by construction, but the SW model does not. For the latter, we consider the model with only monetary policy and preference shocks, and a VAR on GDP-growth and the short term interest rate (in that order). In Section 5.1, we discuss the extent to which restricting attention to two-variable systems matters. Finally, inference is standard. Uncertainty bands are computed as in e.g. Canova (2007) and Uhlig (2005). In particular, given a weak conjugate prior, VARs have a posterior distribution of the Normal-Inverse Wishart form, where the distributions are centered around their OLS estimates.

3.2 Results

Figure 1 contains, for each model, the median bias across all replications for VARs of different lag-length. The figure resembles those found in the literature and shows how short lag-length can imply substantial bias. Particularly, the short-lag VAR \((p = 4)\) frequently exhibits the maximum bias at multiple horizons for the different models considered. Long lag-length, or reduced truncation, can induce significant bias reduction, most notably in CKM and, from intermediate horizons onward, in CEV and SW. To evaluate if such biases are of concern, we now turn to measures of uncertainty.

Result 1: Uncertainty does not explode for long-lag VARs Figure 2 plots the median width of the confidence bands across all draws. A first glance at that figure reveals that, contrary to common wisdom, bandwidth does not explode. Instead, even for VARs

6. Results for different shocks and variables are qualitatively similar.

7. Our results go through for bootstrap-based confidence bands, used e.g. in CEV. However, bootstrap-based procedures tend to run into non-stationarity problems more frequently. For instance, Kilian’s (1998) double bootstrap often implies an unstable bias correction for large lag-lengths.

8. That is, for each draw we subtract the 5th percentile from the 95th, and then take the median across all draws. Results are similar for 68% credible intervals.
with very long lags uncertainty bands are roughly in the same ballpark as those of short-lag VARs.

Result 2: Short-lag VARs have maximal uncertainty for horizons where uncertainty is not mechanically low For short horizons short-lag VARs have maximal bandwidth. This holds true for each of the models considered. A possible reason for that to occur is that misspecification error is maximal for short-lag VARs. Individual reduced-form coefficients may be estimated more precisely for a given draw, but across draws short-lag VARs have increased variance due to the misspecification of the VAR. Long-lag VARs, by contrast, may have individually imprecise reduced form coefficients, but they suffer much less from misspecification.

For longer horizons, short-lag VARs trivially attain minimum bandwidth. The reason is that a VAR(p) cannot propagate much beyond horizon p. As a result, uncertainty cannot propagate much beyond that horizon either. The consequence is, as apparent from Figure 2, that bandwidth mechanically converges to zero soon after horizon p.

Result 3: Long-lag VARs have comparable coverage and comparable or better MSE than short-lag VARs Combined with a tendency to produce smaller biases, long-lag VARs have favorable properties compared to more standard short-lag VARs. Figure 3 documents how long-lag VARs attain coverage rates that are 1) reasonably good overall, 2) comparable to those for short-lag VARs for the CKM and CEV models, 3) much better for the SW model, where short-lag VARs with short run restrictions go astray entirely.\(^9\)

Figure 4 combines bias and bandwidth in a different way, by plotting mean-squared errors (MSE) across horizons. The message is very much the same: at short horizons -

\(^9\)The huge swings in coverage for short-lag VARs arise naturally as the combination of substantial bias and mechanically low uncertainty. As a result, from intermediate horizons onward, the econometrician becomes relatively certain about the wrong point.
where uncertainty does not mechanically shrink - short-lag VARs are either comparable or considerably worse than long-lag VARs.

4 Decomposing uncertainty effects

From the above results it may not be obvious that standard intuition - increased parametrization leading to increased uncertainty - holds at all. We here provide a decomposition to measure the impact of the standard intuition on the total variance effect.

Figure 5 plots the Monte Carlo distribution of uncertainty bandwidth for three types of impulse responses. Specifically, for each draw of data from the DSGE model, we measure the bandwidth around the contemporaneous impulse response. For short-lag VARs, the dashed line \((B_4, \Sigma_4)\) plots the distribution of bandwidths across all 1000 draws. Similarly, the solid line plots the distribution of bandwidths for a long-lag VAR \((B_{30}, \Sigma_{30})\). The medians of these two distributions are already contained in Figure 2: the contemporaneous response for CKM and SW, the second horizon for CEV.\(^\text{10}\) Comparing these two distributions confirms the earlier results: long-lag VARs do not necessarily imply overwhelmingly dispersed uncertainty bands.

To understand why, and to relate our results to the standard intuition, we construct the following counterfactual impulse responses:

\[
IRF = f(B_{30}(L), \Sigma_4).
\]

These hypothetical IRFs are constructed using the (many) reduced form coefficients of a long-lag VAR, \(B_{30}(L)\), combined with the reduced form covariance matrix of a short-lag VAR. Such IRFs can be interpreted as isolating the effect of increased parametrization.

\(^{10}\)While similar effects are at work at longer horizons for all models considered, they are harder to disentangle due to the mechanical reduction in uncertainty for short-lag VARs, as apparent in Figure 2. For CEV the contemporaneous response of hours to technology shocks is subject to a zero restriction and is thus uninformative. The figure therefore contains the IRF uncertainty distribution for the second horizon.
They shut down the effect of misspecification reduction by ignoring the reduced bias in Σ. The dotted (B_{30}, Σ_4) distributions in Figure 5 show the bandwidth associated with these counterfactual impulse responses. Standard intuition dictates that long lag-length makes the entire distribution shift outward, through the additional uncertainty created by the strong increase in number of parameters.

It is immediately apparent that, across models, the dotted distribution does not unequivocally lie to the right of the dashed distribution. In other words, the strong increase in number of parameters need not imply an increase in uncertainty. For the SW model, there is no effect at all from increased parametrization, since the short-run restriction implies that the contemporaneous IRF only depends on Σ and not on $B(L)$. For the CEV and CKM models the right tail of the bandwidth distribution becomes fatter, as standard intuition would suggest. However, two observations stand out. First, the increase in bandwidth is not overwhelming. Second, a significant portion of the mass is shifting to the left of the dashed, short-lag distribution, indicating reduced uncertainty.

The fact that increased parametrization does not invariably increase uncertainty is at odds both with standard intuition (less degrees of freedom) and with a well-known omitted variables result. Particularly, coefficient estimates b_1 in (2) are not only biased, but also have too low variance. Intuitively, to the extent that omitted variables correlate with included ones, the explanatory power of those included will appear to be larger than it really is. Analytically, if we denote the coefficients on X_1 in the correct regression (which does include X_2) by $b_{1.2}$, then

$$Var(b_1) < Var(b_{1.2}).$$

(4)

This suggests that by including additional relevant variables one increases the variance of coefficients. We now provide detail on the effects in each of the individual models, which will lay bare the reasons for these seemingly counterintuitive results.

Let us start with the SW model in Figure 5. As mentioned above, since identification is
based on short run restrictions, contemporaneous IRFs are not a function of $B(L)$, only of Σ. Hence, the dashed and dotted lines overlap. The effect of misspecification reduction, on the other hand, substantially reduces uncertainty, as can be seen by the shift to the solid distribution.

Now consider the bandwidth distribution for the CEV model. Here, taking into account the long-lag polynomial clearly only partially results in an increase in uncertainty measures. To see the reason for this, note that IRFs are functions involving multiple coefficients. As a result, covariance between coefficients becomes an issue. For the sake of argument, consider the simplest possible function involving two parameters in (1), their sum. Let $X_1 = [X_{1a}, X_{1b}]$ and denote the corresponding point estimates by b_{1a} and b_{1b}. Then the variance of the sum of the two coefficients in b_1 in the equation that omits X_2 is

$$V(b_{1a} + b_{1b}) = V(b_{1a}) + V(b_{1b}) + 2Cov(b_{1a}, b_{1b}).$$

Similarly, the variance of the sum in the correct regression (which includes X_2) is

$$V(b_{1a,2} + b_{1b,2}) = V(b_{1a,2}) + V(b_{1b,2}) + 2Cov(b_{1a,2}, b_{1b,2}).$$

While we know that each of the first two terms is smaller in (5) than the corresponding terms in (6), the presence of the covariances prevents any automatic conclusion on whether $V(b_{1a} + b_{1b}) \leq V(b_{1a,2} + b_{1b,2})$.

Thus, as soon as one considers functions that combine coefficients of a regression subject to omitted variables, the usual variance relation in (4) can break down. This explains the shift from the dashed to the dotted distribution in the CEV model, and particularly why there can be significant mass shifting towards lower uncertainty despite having a big increase in the number of parameters.

The quantitatively more important effect on uncertainty is not due to the big increase in parametrization, however, but rather the effect of the reduction in misspecification. This is illustrated by the shift from the dotted to the solid distribution.
Finally, consider the CKM model in Figure 5. The dotted line in the figure shows how increased parametrization, along the lines of standard intuition, tends to shift the distribution of uncertainty outward compared to the short-lag VAR. Here, too, there is some mass that shifts leftward. As in the case of the CEV model, this can occur because IRFs involve a combination of parameters.11 Despite the push toward increased uncertainty following the increase in number of parameters, once the misspecification effect through Σ is incorporated long-lag VARs appear associated with smaller, not larger uncertainty bandwidth.

Thus, the figures show the uncertainty trade-off: increased parametrization ($B_4 \rightarrow B_{30}$) which can - but need not - push the distribution outward (from dashed to dotted) vs. reduced misspecification ($\Sigma_4 \rightarrow \Sigma_{30}$) which shrinks uncertainty and thus pulls the distribution to the left (from dotted to solid). In sum, while standard intuition on increased parametrization is partially correct and clearly part of the story, misspecification reduction tends to have more substantial variance effects. As a result, for VARs on data generated by standard DSGE models, the total effect of increasing lag-length can easily imply a reduction in variance.

5 Concluding remarks

5.1 On the maintained simplifications

Throughout the analysis, the only modification as compared to the standard approach in e.g., Galí (1999), is an increase in lag-length. No additional degree of complexity is introduced, and only standard tools are used. Let us briefly dwell on one of the simplifications, notably that all simulations are based on two variable VARs. Considering small VARs serves to keep the number of parameters limited. As lags increase, the increase in parameters increases

11The reduction in uncertainty in the dotted distribution can also be the result of reduced misspecification in $B(1)$, documented by Sims (1972), in combination with long-run identifying restrictions. This effect exists because $B(1)$ enters the identification procedure in the case of long-run restrictions. For more on the importance of $B(1)$, see Christiano, Eichenbaum and Vigfusson (2004).
faster the more variables in the system.

Since much of the influential SVAR evidence in the literature is based on small VARs, with two, maximum three variables, it seems reasonable to focus on small VARs. Moreover, many developments in empirical macro enable dealing with larger systems. For instance, variants on Minnesota-type priors can allow inclusion of long lags in VARs with many variables. Alternatively, factor dynamics with potentially long lags may well improve structural inference without a large increase in parameters relative to the size of the data. Smoothness priors are yet another available alternative. In short, there are potentially many ways of dealing with larger systems. Irrespective of the particular approach, the variance trade-off we document will be at work in larger systems, too.

5.2 On choosing lag-length

All of the above results are in terms of structural inference. None of our results imply that long-lag VARs ought to be used for matters such as forecasting. For instance, the large dimensionality of the lag polynomial in long-lag VARs prohibits any success in forecasting due to the lack of parsimony. While one can certainly envisage ways to reduce the dimensionality, that is not the issue here. Rather, if one wants to draw structural conclusions, e.g. by means of IRFs, then misspecification concerns are essential. Therefore, if forecasting is not the main purpose of the model, it may be ill-advised to trust lag-selection criteria which focus on parsimony.12

A potential drawback of including longer lags is that it induces overfitting. We have extensively investigated this possibility. For the models and the lag-lengths considered here, we find it not be a major problem. One way to see this is as follows. If present, overfitting should have a first-order effect on bias. In other words, one would expect bias to increase

12See Kilian (2001) for a similar argument. He argues that lag criteria which punish parametrization less heavily often have better properties in terms of IRF.
when overfitting sets in. This does not generally occur in our simulations. That said, one avenue of future research lies in the development of information criteria that take into account that the purpose of the model is structural inference, while also avoiding issues of overfitting.

5.3 Generality

We document a general trade-off. Of course, it is possible to design models or find data for which the balance of the trade-off leans toward short lag-lengths. However, contrary to common wisdom, long lag-length need not imply prohibitively large imprecision. While increased parametrization in itself may increase uncertainty, this effect is counteracted by a reduction in misspecification. For SVARs run on data generated by frequently used DSGE models, longer lag-length tends to imply less bias and more precise inference. Long-lag VARs are therefore a viable instrument in the empirical macroeconomist’s toolkit.

In ongoing empirical work we find that the variance trade-off in VARs is not particular to data generated by DSGE models. For long-lag versions of many prominent SVARs in the literature, the balance of uncertainty effects seems to favor misspecification reduction over parametrization concerns. In particular, we find that results can be substantially different from their short-run counterparts and that uncertainty does not explode.
References

Figure 1: Bias
Figure 2: Bandwidth (95th-5th percentile)
Figure 3: Coverage (90 percent)
Figure 4: Mean-squared error
Figure 5: Bandwidth distribution

![SW](image)
![CEV](image)
![CKM](image)
Earlier Working Papers:

For a complete list of Working Papers published by Sveriges Riksbank, see www.riksbank.se

Estimation of an Adaptive Stock Market Model with Heterogeneous Agents
by Henrik Amilon
2005:177

Some Further Evidence on Interest-Rate Smoothing: The Role of Measurement Errors in the Output Gap
by Mikael Apel and Per Jansson
2005:178

Bayesian Estimation of an Open Economy DSGE Model with Incomplete Pass-Through
by Malin Adolfson, Stefan Laseen, Jesper Lindé and Mattias Villani
2005:179

Are Constant Interest Rate Forecasts Modest Interventions? Evidence from an Estimated Open Economy
DSGE Model of the Euro Area
by Malin Adolfson, Stefan Laseen, Jesper Lindé and Mattias Villani
2005:180

Inference in Vector Autoregressive Models with an Informative Prior on the Steady State
by Mattias Villani
2005:181

Bank Mergers, Competition and Liquidity
by Elena Carletti, Philipp Hartmann and Giancarlo Spagnolo
2005:182

Testing Near-Rationality using Detailed Survey Data
by Michael F. Bryan and Stefan Palmqvist
2005:183

Exploring Interactions between Real Activity and the Financial Stance
by Tor Jacobson, Jesper Lindé and Kasper Roszbach
2005:184

Two-Sided Network Effects, Bank Interchange Fees, and the Allocation of Fixed Costs
by Mats A. Bergman
2005:185

Trade Deficits in the Baltic States: How Long Will the Party Last?
by Rudolfs Bems and Kristian Jönsson
2005:186

Real Exchange Rate and Consumption Fluctuations following Trade Liberalization
by Kristian Jönsson
2005:187

Modern Forecasting Models in Action: Improving Macroeconomic Analyses at Central Banks
by Malin Adolfson, Michael K. Andersson, Jesper Lindé, Mattias Villani and Anders Vredin
2005:188

Bayesian Inference of General Linear Restrictions on the Cointegration Space
by Mattias Villani
2005:189

Forecasting Performance of an Open Economy Dynamic Stochastic General Equilibrium Model
by Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani
2005:190

Forecast Combination and Model Averaging using Predictive Measures
by Jana Eklund and Sune Karlsson
2005:191

Swedish Intervention and the Krona Float, 1993-2002
by Owen F. Humpage and Javiera Ragnartz
2006:192

A Simultaneous Model of the Swedish Krona, the US Dollar and the Euro
by Hans Lindblad and Peter Sellin
2006:193

Testing Theories of Job Creation: Does Supply Create Its Own Demand?
by Mikael Carlsson, Stefan Eriksson and Nils Gottfries
2006:194

Down or Out: Assessing The Welfare Costs of Household Investment Mistakes
by Laurent E. Calvet, John Y. Campbell and Paolo Sodini
2006:195

Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models
by Paolo Giordani and Robert Kohn
2006:196

Derivation and Estimation of a New Keynesian Phillips Curve in a Small Open Economy
by Karolina Holmberg
2006:197

Technology Shocks and the Labour-Input Response: Evidence from Firm-Level Data
by Mikael Carlsson and Jon Smedsaas
2006:198

Monetary Policy and Staggered Wage Bargaining when Prices are Sticky
by Mikael Carlsson and Andreas Westermark
2006:199

The Swedish External Position and the Krona
by Philip R. Lane
2006:200
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Year:Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>The geography of asset holdings: Evidence from Sweden</td>
<td>Nicolas Coeurdacier and Philippe Martin</td>
<td>2007:202</td>
</tr>
<tr>
<td>Evaluating An Estimated New Keynesian Small Open Economy Model</td>
<td>Malin Adolfsson, Stefan Laséen, Jesper Lindé and Mattias Villani</td>
<td>2007:203</td>
</tr>
<tr>
<td>The Use of Cash and the Size of the Shadow Economy in Sweden</td>
<td>Gabriela Guibourg and Björn Segendorf</td>
<td>2007:204</td>
</tr>
<tr>
<td>Bank supervision Russian style: Evidence of conflicts between micro- and macro-prudential concerns</td>
<td>Sophie Claey and Koen Schoors</td>
<td>2007:205</td>
</tr>
<tr>
<td>Optimal Monetary Policy under Downward Nominal Wage Rigidity</td>
<td>Mikael Carlsson and Andreas Westermark</td>
<td>2007:206</td>
</tr>
<tr>
<td>Financial Structure, Managerial Compensation and Monitoring</td>
<td>Vittoria Cerasi and Sonja Daltung</td>
<td>2007:207</td>
</tr>
<tr>
<td>Financial Frictions, Investment and Tobin's q</td>
<td>Guido Lorenzoni and Karl Walentin</td>
<td>2007:208</td>
</tr>
<tr>
<td>Sticky Information vs Sticky Prices: A Horse Race in a DSGE Framework</td>
<td>Mathias Trabandt</td>
<td>2007:209</td>
</tr>
<tr>
<td>Acquisition versus greenfield: The impact of the mode of foreign bank entry on information and bank lending rates</td>
<td>Sophie Claey and Christa Hainz</td>
<td>2007:210</td>
</tr>
<tr>
<td>Nonparametric Regression Density Estimation Using Smoothly Varying Normal Mixtures</td>
<td>Mattias Villani, Robert Kohn and Paolo Giordani</td>
<td>2007:211</td>
</tr>
<tr>
<td>The Costs of Paying – Private and Social Costs of Cash and Card</td>
<td>Mats Bergman, Gabriella Guibourg and Björn Segendorf</td>
<td>2007:212</td>
</tr>
<tr>
<td>Using a New Open Economy Macroeconomics model to make real nominal exchange rate forecasts</td>
<td>Peter Sellin</td>
<td>2007:213</td>
</tr>
<tr>
<td>Introducing Financial Frictions and Unemployment into a Small Open Economy Model</td>
<td>Lawrence J. Christiano, Mathias Trabandt and Karl Walentin</td>
<td>2007:214</td>
</tr>
<tr>
<td>Earnings Inequality and the Equity Premium</td>
<td>Karl Walentin</td>
<td>2007:215</td>
</tr>
<tr>
<td>Bayesian forecast combination for VAR models</td>
<td>Michael K. Andersson and Sune Karlsson</td>
<td>2007:216</td>
</tr>
<tr>
<td>Do Central Banks React to House Prices?</td>
<td>Daria Finocchiaro and Virginia Queijo von Heideken</td>
<td>2007:217</td>
</tr>
<tr>
<td>The Riksbank's Forecasting Performance</td>
<td>Michael K. Andersson, Gustav Karlsson and Josef Svensson</td>
<td>2007:218</td>
</tr>
<tr>
<td>Macroeconomic Impact on Expected Default Frequency</td>
<td>Per Asberg and Hovick Shahnazarian</td>
<td>2008:219</td>
</tr>
<tr>
<td>Monetary Policy Regimes and the Volatility of Long-Term Interest Rates</td>
<td>Virginia Queijo von Heideken</td>
<td>2008:220</td>
</tr>
<tr>
<td>Governing the Governors: A Clinical Study of Central Banks</td>
<td>Lars Frisell, Kasper Roszbach and Giancarlo Spagnolo</td>
<td>2008:221</td>
</tr>
<tr>
<td>The Monetary Policy Decision-Making Process and the Term Structure of Interest Rates</td>
<td>Hans Dillén</td>
<td>2008:222</td>
</tr>
<tr>
<td>How Important are Financial Frictions in the US and the Euro Area</td>
<td>Virginia Queijo von Heideken</td>
<td>2008:223</td>
</tr>
<tr>
<td>Block Kalman filtering for large-scale DSGE models</td>
<td>Ingvar Strid and Karl Walentin</td>
<td>2008:224</td>
</tr>
<tr>
<td>Optimal Monetary Policy in an Operational Medium-Sized DSGE Model</td>
<td>Malin Adolfsson, Stefan Laséen, Jesper Lindé and Lars E. O. Svensson</td>
<td>2008:225</td>
</tr>
<tr>
<td>Firm Default and Aggregate Fluctuations</td>
<td>Tor Jacobson, Rikard Kindell, Jesper Lindé and Kasper Roszbach</td>
<td>2008:226</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Year:Page</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Re-Evaluating Swedish Membership in EMU: Evidence from an Estimated Model</td>
<td>Ulf Söderström</td>
<td>2008:227</td>
</tr>
<tr>
<td>Expectation Driven Business Cycles with Limited Enforcement</td>
<td>Karl Walentin</td>
<td>2009:229</td>
</tr>
<tr>
<td>Effects of Organizational Change on Firm Productivity</td>
<td>Christina Håkanson</td>
<td>2009:230</td>
</tr>
<tr>
<td>Flexible Modeling of Conditional Distributions Using Smooth Mixtures of Asymmetric Student T Densities</td>
<td>Feng Li, Mattias Villani and Robert Kohn</td>
<td>2009:233</td>
</tr>
<tr>
<td>Forecasting Macroeconomic Time Series with Locally Adaptive Signal Extraction</td>
<td>Paolo Giordani and Mattias Villani</td>
<td>2009:234</td>
</tr>
<tr>
<td>Evaluating Monetary Policy</td>
<td>Lars E. O. Svensson</td>
<td>2009:235</td>
</tr>
<tr>
<td>Risk Premiums and Macroeconomic Dynamics in a Heterogeneous Agent Model</td>
<td>Ferre De Graeve, Maarten Dossche, Marina Emiris, Henri Sneessens and Raf Wouters</td>
<td>2010:236</td>
</tr>
<tr>
<td>Picking the Brains of MPC Members</td>
<td>Mikael Apel, Carl Andreas Claussen and Petra Lennartsdottor</td>
<td>2010:237</td>
</tr>
<tr>
<td>Housing collateral and the monetary transmission mechanism</td>
<td>Karl Walentin and Peter Sellin</td>
<td>2010:239</td>
</tr>
<tr>
<td>The Discursive Dilemma in Monetary Policy</td>
<td>Carl Andreas Claussen and Øistein Røisland</td>
<td>2010:240</td>
</tr>
<tr>
<td>Monetary Regime Change and Business Cycles</td>
<td>Vasco Cúrdia and Daria Finocchiar</td>
<td>2010:241</td>
</tr>
<tr>
<td>Bayesian Inference in Structural Second-Price common Value Auctions</td>
<td>Bertil Wegmann and Mattias Villani</td>
<td>2010:242</td>
</tr>
<tr>
<td>Equilibrium asset prices and the wealth distribution with inattentive consumers</td>
<td>Daria Finocchiaro</td>
<td>2010:243</td>
</tr>
<tr>
<td>Identifying VARS through Heterogeneity: An Application to Bank Runs</td>
<td>Ferre De Graeve and Alexei Karas</td>
<td>2010:244</td>
</tr>
<tr>
<td>Modeling Conditional Densities Using Finite Smooth Mixtures</td>
<td>Feng Li, Mattias Villani and Robert Kohn</td>
<td>2010:245</td>
</tr>
<tr>
<td>The Output Gap, the Labor Wedge, and the Dynamic Behavior of Hours</td>
<td>Luca Sala, Ulf Söderström and Antonella Trigari</td>
<td>2010:246</td>
</tr>
<tr>
<td>Anticipated Alternative Policy-Rate Paths in Policy Simulations</td>
<td>Stefan Laséen and Lars E. O. Svensson</td>
<td>2010:248</td>
</tr>
<tr>
<td>The Effects of Endogenous Firm Exit on Business Cycle Dynamics and Optimal Fiscal Policy</td>
<td>Lauri Vilmi</td>
<td>2011:250</td>
</tr>
<tr>
<td>Parameter Identification in a Estimated New Keynesian Open Economy Model</td>
<td>Malin Adolfson and Jesper Lindé</td>
<td>2011:251</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Wage Adjustment and Productivity Shocks</td>
<td>Mikael Carlsson, Julián Messina and Oskar Nordström Skans</td>
<td>2011</td>
</tr>
<tr>
<td>Stylized (Arte) Facts on Sectoral Inflation</td>
<td>Ferre De Graeve and Karl Walentin</td>
<td>2011</td>
</tr>
<tr>
<td>Hedging Labor Income Risk</td>
<td>Sebastien Betermier, Thomas Jansson, Christine A. Parlour and Johan Walden</td>
<td>2011</td>
</tr>
<tr>
<td>Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios</td>
<td>Paolo Giordani, Tor Jacobson, Erik von Schedvin and Mattias Villani</td>
<td>2011</td>
</tr>
<tr>
<td>Collateralization, Bank Loan Rates and Monitoring: Evidence from a Natural Experiment</td>
<td>Geraldo Cerqueiro, Steven Ongena and Kasper Roszbach</td>
<td>2011</td>
</tr>
<tr>
<td>Labor-Market Frictions and Optimal Inflation</td>
<td>Mikael Carlsson and Andreas Westermark</td>
<td>2012</td>
</tr>
<tr>
<td>Output Gaps and Robust Monetary Policy Rules</td>
<td>Roberto M. Billi</td>
<td>2012</td>
</tr>
<tr>
<td>The Information Content of Central Bank Minutes</td>
<td>Mikael Apel and Marianna Blix Grimaldi</td>
<td>2012</td>
</tr>
<tr>
<td>The Cost of Consumer Payments in Sweden</td>
<td>Björn Segendorf and Thomas Jansson</td>
<td>2012</td>
</tr>
<tr>
<td>Trade Credit and the Propagation of Corporate Failure: An Empirical Analysis</td>
<td>Tor Jacobson and Erik von Schedvin</td>
<td>2012</td>
</tr>
<tr>
<td>Structural and Cyclical Forces in the Labor Market During the Great Recession: Cross-Country Evidence</td>
<td>Luca Sala, Ulf Söderström and Antonella Trigari</td>
<td>2012</td>
</tr>
<tr>
<td>Pension Wealth and Household Savings in Europe: Evidence from SHARELIFE</td>
<td>Rob Alessie, Viola Angelini and Peter van Santen</td>
<td>2013</td>
</tr>
<tr>
<td>Long-Term Relationship Bargaining</td>
<td>Andreas Westermark</td>
<td>2013</td>
</tr>
<tr>
<td>Using Financial Markets To Estimate the Macro Effects of Monetary Policy: An Impact-Identified FAVAR*</td>
<td>Stefan Pitschner</td>
<td>2013</td>
</tr>
<tr>
<td>DYNAMIC MIXTURE-OF-EXPERTS MODELS FOR LONGITUDINAL AND DISCRETE-TIME SURVIVAL DATA</td>
<td>Matias Quiroz and Mattias Villani</td>
<td>2013</td>
</tr>
<tr>
<td>Conditional euro area sovereign default risk</td>
<td>André Lucas, Bernd Schwaab and Xin Zhang</td>
<td>2013</td>
</tr>
<tr>
<td>Nominal GDP Targeting and the Zero Lower Bound: Should We Abandon Inflation Targeting?*</td>
<td>Roberto M. Billi</td>
<td>2013</td>
</tr>
</tbody>
</table>