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ABsTRACT. We introduce a non-Gaussian dynamic mixture model for macroeconomic fore-
casting. The locally adaptive signal extraction and regression (LASER) model is designed
to capture relatively persistent AR processes (signal) contaminated by high frequency noise.
The distribution of the innovations in both noise and signal is robustly modeled using mix-
tures of normals. The mean of the process and the variances of the signal and noise are
allowed to shift suddenly or gradually at unknown locations and number of times. The
model is then capable of capturing movements in the mean and conditional variance of a
series as well as in the signal-to-noise ratio. Four versions of the model are estimated by
Bayesian methods and used to forecast a total of nine quarterly macroeconomic series from
the US, Sweden and Australia. We observe that allowing for infrequent and large parameter
shifts while imposing normal and homoskedastic errors often leads to erratic forecasts, but
that the model typically forecasts well if made more robust by allowing for non-normal errors
and time varying variances. Our main finding is that, for the nine series we analyze, speci-
fications with infrequent and large shifts in error variances outperform both fixed parameter
specifications as well as smooth, continuous shifts when it comes to interval coverage.
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1. INTRODUCTION

This paper is concerned with the forecasting performance for macroeconomic time series
of a class of dynamic mixture models. The widespread instability of coefficients in standard
autoregressive moving average (ARMA) models for these types of data series has been widely
documented (see for example Stock and Watson, 1996). Multiple shifts in local means, error
variances and autocorrelation structure in inflation, interest rates and other nominal time
series are detected by various frequentist and Bayesian procedures on the last four decades of
data (Levin and Piger 2003, Stock and Watson 2006, Koop and Potter 2008, Giordani and
Kohn, 2008). According to Clements and Hendry (1999), such shifts are the main cause of
forecasting failure of univariate and multivariate linear models.

A variety of models has been formulated to tackle various forms of non-Gaussian behavior.
However, one cannot but be surprised by the overall difficulty in outperforming standard
autoregressive (AR) processes out-of-sample even when more complex models are strongly
supported in-sample (Stock and Watson, 1996). Some simple models have withstood the test of
time and are largely adopted by practitioners and academics. Some of these simple models are
cast in state space form, others are estimated by least squares, but all essentially involve some
exponential discounting of past observations (discounted least squares, exponential smoothing)
and/or over-differencing (ARIMA, local trends models)."” Marcellino (2008) recently reports
good forecasting performance for time varying parameter models (TVP) for macroeconomic
series, while Stock and Watson (1996) report more ambiguous results. Markov switching
models (Hamilton, 1989) and the closely associated multiple change-point models (e.g. Chib,
1998) are very popular for off-line analysis, but little has been published on the forecasting
performance of the former and, as far as we are aware, nothing on the latter. The few available
studies show disappointing results for Markov switching models (Clements and Krolzig (1998)
and Bessec and Bouabdallah, 2005), at least for point forecasts.

We summarize the discussion above as follows. Even though in-sample analysis indicates
that parameter instability in AR(MA) models is widespread in macroeconomic time series,
fixed parameter specifications are competitive with simple models that assume continuous
and smooth time variation and superior to complex Markov switching models when it comes
to forecasting.

The goal of this paper is to shed some light on these seemingly conflicting observations.
Rather than forecasting a large number of series, we choose to provide a more detailed analysis
of three macroeconomic series of particular interest (real GDP growth, CPI inflation and a
short interest rate) using quarterly US, Swedish and Australian data (for a total of nine series).
Our tool of analysis is a Bayesian dynamic mixture model recently developed for forecasting
at the Swedish Central Bank. The model, denoted LASER (locally adaptive signal extraction

"We define over-differencing informally as the differencing of a series that cannot reasonably be considered
unbounded, like the real interest rate or the consumption over income ratio.

*Harvey (1989) and West and Harrison (1997) provide detailed expositions of many such models from a fre-
quentist and Bayesian perspective respectively.



LOCALLY ADAPTIVE SIGNAL EXTRACTION 3

and regression), allows for a variety of generalizations of standard ARMA models that can
account for Gaussian or non-Gaussian shifts in local mean, error variance and persistence, as
well as for non-Gaussian innovations. By switching on and off various features of the model
and monitoring the real-time forecasts we can thereby try to understand which features are
responsible for good and poor performance.

From a technical perspective, our innovation is to expand on the work of Giordani and
Kohn (2008) (henceforth GK) and introduce a more general extension of the ARMA class than
currently available in the literature. The Markov Chain Monte Carlo (MCMC) technology
of GK is used to achieve fast and efficient Bayesian inference, which allows us to perform
the first (to the best of our knowledge) serious forecasting evaluation of change-point and
mixture innovation models. Based on this forecasting evaluation, our main conclusions are
as follows. First, it is much easier to outperform fixed coefficient models when considering
interval coverage rather than point forecasts. Second, infrequent and large shifts in error
variances provide better conditional interval coverage than continuous smooth shifts. Third,
models that allow for infrequent and large shifts in conditional mean but normal independent
identically distributed (iid) innovations are very fragile to the presence of outliers and of shifts
in error variance, whereas they perform well when the Gaussian iid assumption is removed.

Our interpretation of the first two results is that shifts in error variance are large and
persistent in our series, and therefore easy to detect and model with a change-point approach.
The intuition for the third results is that when normality is imposed on the errors, any
outlier (or increased variance) will be interpreted as a parameter shift in real time, generating
excessively volatile forecasts.

Section 2 presents LASER in rather general terms, and discusses some options to model
shifts in local mean and variances. Section 3 specifies four models that are nested in the
LASER framework and differ in the specification of the error structure and of time variation.
Section 4 shows how two of these models imply time variation in the persistence of the process,
not only in its mean and variance. Section 5 presents the forecasting experiment and discusses
results, focusing on point forecasts first and then on interval coverage. Section 6 concludes.

2. LOCALLY ADAPTIVE SIGNAL EXTRACTION AND REGRESSION

LASER (locally adaptive signal extraction and regression) is a state space model for filtering
and forecasting recently developed at the Swedish Central Bank and employing the approach
to shifts in conditional mean and variance proposed by Giordani and Kohn (2008). The
univariate random variable 1; is decomposed into three processes®, all of which can have

mixture of normals (MN) innovations:

(1) A local mean p,, which can be any conditionally Gaussian process (i.e. Gaussian

conditional on a vector of latent indicators and parameters).

3In fact there is a fourth component, a regression effect (also time-varying) that we omit in our discussion since
the paper focuses on univariate forecasting.
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(2) A latent, unobserved, process x;, modeled as a finite-order, stationary, AR model with
(i) MN innovations in the log variance process (ii) MN errors (iii) unknown lag length
p.

(3) An independently distributed measurement error/additive outlier process with (i) MN

innovations in the log variance process (ii) MN errors.

The observation equation for 3; and the transition equation for x; are

(2.1) Yo = T Tt

(2.2) Ty = P1%—1+ .+ PpTi—p + Ut
(23) € ~ MN(k:yv Ty, ay7 U;,tEZ)
(24) ut ~ MN(kxa Ty Oy, Ui,t&i)'

Equations (2.3) and (2.4) are to be read as follows: ¢ has a mixture of normals (MN) dis-

tribution with &, components, and parameters specified by a k, vector of probabilities m,,

2
y?t

varying) scalar common to all components of the mixture. For identification purposes, we set

a k, vector or means «,,and a k, vector of variances ai}tﬁi, where o7, is a (possibly time-
(], = [az]; =0and [¢,] . = [&.]; = 1, where [a]; denotes the ith element of a vector a. The
autoregressive parameters py, ..., p, are constrained to lie in the stationary region. The lag
length is unknown and we compute its posterior by adding an updating step in the MCMC
algorithm, with the user specifying the maximum number of lags and the prior lag probabil-

4

ities.® At this level the model is still very general and requires several choices to be made

operational. We now discuss some options for the local mean process p,.

Modelling shifts in the local mean p;. We refer to y; as the "local mean" because we
typically assume that p, changes infrequently. One possible specification is the random walk
with a two-component mixture distribution, with one component being degenerate:

(2.5) Wy = fy_1+ op1uy with prob. m

= py_q with prob. 1 —myq,

where u,; is iid N(0,1) and 7 is the probability of a shift. In this case y; is globally non-
stationary, although it may behave as a stationary series for long stretches. For w1 = 1 the
innovations are normal as in the well-known local level model. An attractive alternative when

prior information on the long-run mean of the series p is available or when the sample is large
is the globally stationary specification

(2.6) My = J+ 0pu2u, With prob.
= ;. with prob. 1 — 7.

40ur prior assumes that if p; # 0, then also p; # 0 if 4 > j. This assumption could be easily relaxed.
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It is also possible to allow for both types of shifts:
(2.7) My = py_1+ 01, with prob. m
(2.8) = [+ 0oy,2uu with prob. m
= ;_p with prob. 1 —m; — ma.
Finally, when the shifts are infrequent but possibly large, all these specifications are unappeal-
ing for most macroeconomic series in that they suggest an immediate jump of 3 to the new

local mean. Since we believe that large shifts (e.g. from high to low inflation) typically take

place over the course of several quarters, we generalize the specification in (2.7) as follows:

(2.9) Ap, = (1- p,u)(ﬁt — 1)
Ly = Hy_1 + 0ty with prob. m
fiy = &+ 02U, With prob. mo
iy = fi_q with prob. 1 — 7 — 7o,

where p,, determines how gradual the transition is and p, = 0 retrieves (2.7). Here g, jumps

and 1, moves gradually to fi,.

Modelling shifts in variances. We model shifts in log variances as random walks with a

two-component mixture distribution, with one component being degenerate:

(2.10) Inoy; = Inoyi1+ dyeyr with prob. 7j
Inoy; = Inoy;—1 with prob. 1 — 7y,

and

(2.11) Ino,; = Inogi—1+ dyezs with prob. 77
Ino,; = Ino,y—1 with prob. 1 — 7,

with ey and e, both iid N(0,1). This formulation allows for infrequent, large shifts as well

as for continuos, small shifts (7 = 77 =1).

3. FOUR FORECASTING MODELS

3.1. Models. If i, 0, and o, are constant and all innovations normal, LASER simplifies
to the state space representation of an ARMA(p,p) process. We wish to understand which
additional features of LASER can be expected to contribute to forecasting accuracy (both
in terms of point forecasts and of interval coverage). For this purpose we will compare the
forecasting performance for several versions of LASER.? These versions will effectively differ
5Tt would be interesting to also evaluate the forecasting performance of a Bayesian model average of these four

models. Computing marginal likelihoods for dynamic mixture models is a very difficult and time consuming
endeavour, see e.g. Frithwirth-Schnatter (2006). Moreover, we would have to compute marginal likelihoods in
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only in the prior and not in the way inference is performed (which is by MCMC with lag
selection and stationarity imposed in all cases; see the Appendix for a description of the
MCMC scheme). The four models can be broadly characterized as follows:

(1) ARMA. p;, 04+ and o, constant and all innovations normal.

(2) Shifts. Infrequent shifts in s, constant o, ; and o, and normal innovations.

(3) Robust TVP. Normal innovations in y, In(o,) and In(o, ;) and MN innovations else-
where.

(4) Robust Shifts. Infrequent shifts in p,, In(o,,) and In(o, ;) and MN innovations else-

where.

The exact priors for each model are given in the next section. The ARMA model acts as
a benchmark. The Shifts model has shifts in mean but normal iid errors. The Robust TVP
specification is meant, by comparison with the Robust Shifts specification, to evaluate the

relative merits of frequent, small shifts versus infrequent, larger shifts.

3.2. Priors. This section presents the priors used in this paper for blocks of parameters.

Unless otherwise specified, the priors are common to all four models.

Priors for py,...,p,, y, &, 040, 0z, &, 020. We assume the following probabilities for lag
lengths p from 1 to 4 (longer lags have zero probability): prob(p = 1,p =2,p =3,p =4) =
(0.4, 0.3, 0.2, 0.1).

P Loppp
0 1 2

P1, ...,pp\p ~ N ’QZ f pp if py,...,p, lie in the stationary region,
0 1

p(p1s -y pp) = 0 otherwise. The prior attempts to be coherent in the sense that the correlation
structure of the prior covariance matrix is what would be observed in a large sample generated
with parameters fixed at the prior mean. In our applications on quarterly data we let the prior
be somewhat informative at p=08and o 0= 0.2.

The priors on In(oy,,0) and In(o, ) are normal, centered on the residual OLS variance from
an AR(4) but very disperse. ARMA and Shifts have normal (one-component) distributions for
both ¢; and u;. In Robust TVP and Robust Shifts we add a second component to the mixture
for both ¢ and u;, with a somewhat informative prior centered on a scale mixture of normals

(i.e. symmetric leptokurtic) specification. For ¢:

~2
lay], ~ N(0,0.50%)
2
&,], ~ IG(20x3%20),
every time period of the evaluation sample. Since our main motivation is to compare the four models to better

understand their differences in a forecasting environment, we will not compute a Bayesian model average of the
models.
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where the inverse gamma prior on 5; can be interpreted as twenty prior observation with
variance 9, and ¢ = 1.42 - median|e|, with e the OLS residuals from an AR(4) regression, is
an outlier-robust measure of the standard deviation of the errors. The prior probability of
the second component of the mixture, is beta, with prior probability 0.2 and prior sample
size 10 (see Gelman et al. 2004). The priors for ax,Ei, 7, and for ay,fi,ﬂ'y are the same.
This prior formalizes the idea that we are quite confident that the distribution is leptokurtic
(hence the informative prior on the variance of the second component), but less confident of its
precise shape (hence the weakly informative prior on the mean and probability of the second

component).

Priors for p,, 71,01, - The process for 1, is described in equation (2.9). In Shifts and
Robust Shifts, we fix p, to 0.8 as we don’t expect to have enough mean shifts to estimate this
parameter accurately. In Robust TVP we of course set p, = 0. In this paper we fix T3 = 0
since we do not want to run the risk of using hindsight in specifying a long-run mean for
all variables. However, in actual applications we would use domain knowledge if available
(e.g. an inflation target). In Robust TVP we set m; = 1. For Shifts and Robust Shifts we
fix m1 to 0.02, which corresponds to an average interval between shifts of around 12 years
(the distribution of the number of shifts is multinomial with parameters 71 and n, the sample
size). The corresponding prior distribution for the number of shifts in each regime is binomial,
with most mass in the 0-8 interval in the period 1959-2007 and probability of a shift equally
distributed across all time periods (see Koop and Potter (2007) for a discussion).

The prior for py and 11 is bivariate normal, centered on the sample mean, with high variance

but near-one correlation. This effectively assumes that 1y = 1.

2

The prior for Ol

is inverse gamma

o2, ~ IG(10 x \*57,10),

2
Y

driven prior to reduce the impact of outliers and high frequency noise. In actual applications

where o is the sample variance of y; = 0.8y; ; + 0.2y;. We smooth y; to construct a data-
we would use available domain knowledge of the series to construct a prior on the likely size
of the shifts.

We notice that given a prior that a sample of a few decades will most likely contain at
most a few shifts, it is important to use informative priors on their variance. As the prior
sample size (here 10) goes to infinity, the standard deviation of a shift concentrates on Ag.
We set A = 0.25 in Robust Shifts and Shifts and A = 0.251/0.02 in Robust TVP, which gives
approximately the same variance for (u; — p;_;). A is fixed at zero for ARMA.

Priors for 7, 77, dy,d,. For 6, and 4, we use the same inverse gamma prior:

52 ~ IG(10 x A7, 10).
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For Robust Shifts, we set A, = A; = 0.7 and we fix 7)) = 77 = 0.02. For interpretation, notice
that § = 0.7 means that a plus (minus) one standard deviation shock to log(o,+) increases
(decreases) oy ¢ by 50% (25%). For Robust TVP nf = 77 =1 and A, = A\, = 0.7v/0.02.

4. MODELING TIME VARIATION IN PERSISTENCE

Even though it would be technically possible to let the AR parameters py, ..., p, be time
varying, LASER treats them as constant. In models with constant o,; and 0., such as
Shifts and ARMA, this does imply that the local autocorrelation properties of the series y;
are also constant. However, shifts in the local mean y; can give rise to a slowly decaying
autocorrelation function (see Granger and Hyung, 1999), and MN innovations can also affect
the persistence properties of y;. If, on the other hand, we let o, and 0, be time varying,
the local autocorrelation structure can change substantially. For example, a drop in o,
effectively means that the persistent component accounts for a smaller share of the variance of
y; and hence all autocorrelations decrease. This approach to modeling time variation in local
persistence is particularly parsimonious (compared to letting py, ..., p, all be time varying) in
the case of a long lag length p. To make a simple example, consider the following version of
LASER with fixed g and normal iid errors:

Y = P+ T+ oyre
(4.1) Ty = pTi—1+ 0z, Ut,
and shifts in o, ; and 0,; modeled as in Robust Shifts.
Let us define the local autocorrelation at lag ¢ and time ¢ as the correlation between y; and

Yi+i obtained assuming (as a heuristic approximation) that o, and o, are constant between

time ¢ and time ¢ + ¢. This takes the simple form

i ond/(1—p%)
U%,t (1—p?)+ U§,t7

from which it is clear that variations in o, and o, will affect local autocorrelations. As an

COT‘Tt(yt, yt+i) =p

illustration, Figure 1 reports the first-order local autocorrelation for quarterly US inflation
over time (see Section 5 for a description of the data) from the Robust Shifts model with one
lag. The parameters are set to their posterior means based on the full sample from 195942 to

2006¢4. It is evident that the local persistence of the process has dropped dramatically.

5. DATA AND RESULTS

We use three widely monitored series of US data and the three corresponding Australian
and Swedish series: (i) real gross domestic product (GDP) growth (ii) consumer price index
(CPI) inflation (iii) three month treasury bill. The data cover the period 1980¢2-2006¢4 for
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the US, and 1980¢2-2007¢4 for Sweden and Australia.® For all counties, we start forecasting
with forty observations and then update model parameters and forecasts one observation at
a time. We do not consider publishing delays nor (for GDP growth) data revision. A new
MCMC (see the Appendix for details) is run as each observation is added to the sample. Given
the large number of MCMC run, we do not assess convergence and mixing for each run. Based
on our experience, these are usually adequate, particularly when the object of interest is the
forecast distribution rather than the model parameters and when informative priors are used
(as in this paper).”

We evaluate one and four quarter ahead forecasts using the root mean squared forecast error
(RMSFE) loss function and correspondingly taking the mean of the forecast distribution as
our point forecast. We note that the forecast distribution averages over parameter uncertainty
and, in more complex models, also over uncertainty over latent indicators for the mixture of
normals used to model the error distributions as well as uncertainty over the number, timing

and size of shifts in mean and log variances.

5.1. Point forecasts. The RMSFE statistics are summarized in Table 1. We highlight the

following results:

(1) Robust Shifts performs better than Shifts on average.

(2) Robust Shifts performs substantially better than Robust TVP one quarter ahead and
about as well four quarters ahead on average.

(3) Robust Shifts outperforms Robust TVP for interest rate forecasting in all three countries
and forecast horizons, often by a large margin.

(4) On average Robust Shifts performs slightly better than ARMA on US data and sub-
stantially better on Swedish data.

(5) All models largely outperform a random walk on all series except for Swedish interest

rates.

We interpret result (1) as a warning that allowing for large shifts in parameters while
assuming normal iid errors may be dangerous, in particular for forecasting. Under a normal
iid assumption, an outlier or an increase in error variance is likely to be interpreted as a
mean shift and produce excessively volatile forecasts. This problem will be more severe the
more volatile are the time series. As an illustration, Figure 2 shows an extreme case for US
interest rates on a longer sample than used in the forecasting exercise, starting already in
1959¢2: during a period (1979-1982) of extremely volatile US interest rates, Shifts exhibits

6US data are from the Fred database (http://research.stlouisfed.org/fred2/). GDP growth is the annualized log
growth rate of real DGP (GDP251). Inflation is the log growth rate of CPI for all urban consumers, aggregated
from monthly (CPIAUCSL). The three month interest rate is a quarterly average of daily values (FYGM3).
Swedish data are obtained using the same transformations as for US data. The Ecowin database codes for
the original series are swe01850, swell899, swel4010. Australian data are from the Reserve Bank of Australia
website. The codes for the original series are GGDPCVRGDI, GCPIAGQP, and FIRMMBAB90.

"An analysis of mixing for similar models is given in Giordani and Kohn (2008). They also notice that the use
of informative priors is in some case important in ensuring both good forecasting performance and good mixing
of the chain.
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disastrously volatile forecasts while Robust Shifts does not. Note that Figure 2 displays the
actual data at time ¢ and the four-steps ahead forecast made at time t. Conversely, if the
error variance decreases, a model with iid errors will take longer to recognize a shift in mean
than a model with time varying variances. An example of this can be seen in Figure 3, which
shows that Robust Shifts adjusts the local mean of the Swedish interest rate downward at a
much faster pace than Shifts.

Our sample is too small for us to interpret result (2) as strong evidence of superior forecast-
ing performance of infrequent and large shifts. However, we can put result (1), (2) and (4)
together and state with some confidence that well specified change-point models that allow
for non-normal errors and non-constant variances are a promising forecasting tool. Result
(3) is probably a reflection of the smoothness of interest rates from quarter to quarter. This
smoothness means that shifts in mean are very large compared to quarterly prediction errors,
facilitating the detection of shifts.

Finally, we observe that inflation and interest rates exhibit a decade long downward shift
(approximately 1980-1990), followed by a period of stability. The driftless random walk spec-
ification for the local mean outlined in equation (2.9) does not capture these features of the

data particularly well.

5.2. Interval forecasts. Turning to the evaluation of forecast intervals, let us define the
sequence of hit indicators of a 1-step-ahead forecast interval® with coverage probability o
as: I;* = 1 if the realized y; falls inside the interval, and I;* = 0 otherwise. Christoffersen
(1998) develops asymptotic likelihood ratio tests of correct conditional coverage using that
Iy w Bernoulli(a) for a correct forecast interval. Adolfson, Lindé and Villani (2007) propose

a Bayesian alternative to these tests by computing posterior probabilities of the following three

hypotheses
Hy : I w Bern(a)
(5.1) H, @ I i Bern(m), m unrestricted

Hy : I}~ Markov(m1,m11), mo1 and 711 unrestricted.

The notation Markov(mgi,711) is here used to denote a general two-state Markov chain
with transition probabilities w91 = Pr(0 — 1) and 713 = Pr(1 — 1). If Hy is supported,
the forecast intervals are correct, both in terms of coverage and independence of interval hits.
If data supports Hi, the hit indicators are independent, but do not generate the intended
coverage a. A large posterior probability of Hy suggests a violation of the independence
property of the interval. Note that even if Hsy receives the largest posterior probability, the
coverage of the interval may still be correct. Whether or not the interval has the correct
coverage when the evidence is in favor of Hs is indicated by the relative distribution of the

remaining probability mass on Hy and Hi. We will for simplicity use a uniform prior on m, mg1

8We shall here restrict attention to forecast intervals with equal tail probabilities.
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and 711, with prior independence between my; and 711.0 Given a sequence of hit indicators,
the posterior probabilities of all three hypothesis in (5.1) can be computed analytically by
integration.'’

Table 2 presents the results from an out-of-sample evaluation of the 70% predictive intervals
of the four models. The columns labelled Mean present the posterior mean of the actual
coverage, i.e. the posterior mean of 7 in Equation 5.1. Bold numbers in the Mean columns
indicate that the target value of 0.7 lies inside the 95% posterior interval of 7. The remaining
columns of Table 2 display the posterior probabilities of the three hypotheses in equation 5.1.
Focusing first on the results for the US sample, it is clear that first two models produce too
wide forecast intervals for US GDP growth, whereas Robust TVP and Robust Shifts seem to
have the correct coverage (the 95% probability intervals for m covers 0.7) and also independent
interval hits (the posterior probabilities of Hy are 0.714 and 0.774, respectively). Basically the
same results apply to US inflation, here Robust Shifts has excellent coverage. Looking at the
US interest rates, it is clear that only Robust Shifts accurately captures the distribution of the
US interest rate. The other three models have much too wide forecast intervals and ARMA
and Robust TVP seem to generate dependent intervals hits.

Turning to the analysis of the Swedish data in Table 2 we see that all four models have
fairly accurate intervals for GDP growth. Robust TVP and Robust Shifts perform better than
their competitors on the inflation series, and, similar to the US analysis, Robust Shifts give
a much more accurate coverage of the interest rate than the other models. Finally, Table 2
shows that only Robust Shifts has fairly accurate forecast intervals of Australian GDP growth.
Robust TVP and Robust Shifts do much better than ARMA and Shifts on Australian inflation.
All four models generate to wide 70% intervals for the Australian interest rate, but Robust
Shifts is again doing much better than the other models.

A less formal, but more detailed, way of investigating the quality of models’ forecast densities
is by plotting their normalized forecast error over time. The normalized forecast error at time ¢
is defined as ® [F}(y;+1)], where Fy(y;11) is the model’s one-step-ahead predictive cumulative
density function (CDF) evaluated at the realization y;11, and ®~1(-) is the inverse Gaussian
CDF. If the model is correct then Fi(y;+1) should be independent and uniformly distributed
over time, and hence ®[F;(y;+1)] should be iid N(0,1).

9The working paper version of our paper presents results for a whole range of Beta priors.

10The posterior probabilities of Ho, H1 and H2 are computed as follows. Let ng and ni denote the number of
zeros and ones, respectively, in the hit sequence. Let further n;; denote the number of transitions from state
i to state j in the Markov chain under hypothesis H2, so that for example ng1 is the number of zeros in the
sequence which are followed by ones. Assuming independent priors m ~ Beta(y,d) in H1, mo1 ~ Beta(vqy,001)
and 711 ~ Beta(y;1,011) in Ha, the marginal likelihoods of the three hypotheses are easily shown to be

mo = a"(1-—a)™
_ B(no+v,n1+9)
e B(7.9)

- B(no1 4+ vg1,m00 + 601)B(ni1 + 41, n10 + 611)
B(vo1,001)B(7v11,011) ’

where B(-,-) is the Beta function. We present results for uniform priors on 7, mo1 and w11, i.e. we set
¥=0="p =001 =71 =011 =1
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Figure 4 displays the normalized forecast errors for the US data. The ARMA normalized
forecast errors in the top row of Figure 4 show clear periods of low and high variance that
last at least several years, a feature that neither of the two constant variance models ARMA
and Shifts can capture. Robust TVP also struggles here because its smoothly varying variance
needs to move rapidly and then stay approximately constant for long periods, the end result
here is that Robust TVP behaves more like a fixed-parameter model. Similar to the evidence
from the conditional coverage analysis in Table 2, the Robust Shifts model does well one all
three variables. Its shifting mean and variance adapts quickly, and its heavy tailed errors
serve the dual purpose of moderating the shifting processes and accounting for the largest
outliers in the earlier part of the sample. The normalized forecast errors for the Swedish
data in Figure 5 show similar behavior as in the US data. The four models give similarly
well-behaved normalized forecast errors for Swedish GDP growth and inflation, but they all
have a hard time capturing the Swedish interest rate, with Robust Shifts doing a much better
job than its competitors. Finally, the normalized residuals in Figure 6 shows clear evidence
of over-coverage for the first three models on Australian GDP growth. It is also striking from
Figure 6 that Robust Shifts produces much more well-behaved normalized residual for the

Australian interest rate than the other three models, who all fail miserably in this respect.

6. CONCLUSIONS

Any conclusion based on forecasts made on only nine series should be proposed and received
with caution. This being said, the results offer several interesting interpretations. The first
point to emerge is that models that allow for large shifts in the conditional mean parameters
should be coupled with at least a fat tailed distribution for the errors, and, if possible, shifts
in error variance. This observation is likely to extend to regime-switching models and to be
particularly important when the focus is on forecasting. With these extensions, models that
allow for occasional shifts or regime switches can be useful forecasting tools. Whether smooth,
continuous shifts or infrequent and large ones are more appropriate will of course depend on
the data, but in our case infrequent shifts perform somewhat better for point forecasts and
considerably better for interval coverage. The good performance of the model with infrequent,
large shifts in variance is probably due to the fact that in our series the error variance does
seem to move in this fashion, with periods of high or low volatility that come about rather
quickly and last several years. Mean shifts, in contrast, can take a decade or more and be
immediately reversed. Finally, all inflation series show large shifts in the local persistence of

the process, which can be fruitfully modeled.
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APPENDIX A. MARKOV CHAIN MONTE CARLO INFERENCE

Sampling of parameters and states is done by Markov Chain Monte Carlo. LASER is not a

conditionally Gaussian model. However, it falls into the class of multiplicative models (Shep-

hard, 1994) which can be made conditionally Gaussian by sequential conditioning. Efficient

inference for conditionally Gaussian sub-models can then be performed as described in Gior-

dani and Kohn (2008). In their paper the time variation in log variances is limited to one
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equation (measurement or one transition) only. However, this already makes the model mul-
tiplicative, so they draw conditional mean parameter and states given the evolution of the log
variance and viceversa. LASER extends the time variation to transition equation variances.
This results in a rather different model, but the inferential procedure is only trivially modified.
We therefore sketch the steps of the Gibbs sampler and refer to Giordani and Kohn (2008) for
further details. The MCMC steps are given for Robust Shifts, since this is the more general of
the models considered in this paper.

For inferential purposes, it is convenient to rewrite the model in equations (2.1)-(2.4) as

(A1) Yo = py+ 3+ ay(Sye) + 0y (Sy et
(A.2) Ty = p1T-1+ e+ ppTiop + e (Set) + 020y 1 (Set)ur,

where Sy; and S, ; are discrete latent variables which index components of a mixture of
normals.
The MCMC sampler is now sketched. First initialize parameters and states. The complete

update of all parameters and states (one iteration) involves nine steps:

(1) Draw latent variables (interventions) in p, one at a time given y;, oy ¢, 041, (S, 1),
§y(Syt), az(Se ) €4 (S ), prys ey pp for t =1, ..., with 5™ and pb" integrated out, as
described in Giordani and Kohn (2007). (z!" stands for 1, ..., x,,, with n the sample
size. When there is no risk of misunderstanding, we also write z for z".)

(2) Draw the states %" and p!™ in one block conditional on the same variables as in step
(1) using for example the algorithm of Carter and Kohn (1994).

(3) Draw the lag length and pq, ..., pp in one block imposing stationarity as described
below.

(4) Update S;’n in one block given y*7, ptm, 2", oyt and parameters of the MN. This is
accomplished by defining yf = (y: — 2t — p1;)/0y,+ and noticing that y; = a,(S¢) /oy +
§,(Sy.t)er- The problem is then a standard one of drawing the latent indicators of a
standard mixture of normal (except that the division by o, ; must be accounted for)
described for example in Geweke (2005).

(5) Update 5’;’” in one block given z!'", p;, <y Pps Ozt and the parameters of the MN as
described in step (4).

(6) Update the parameters of the MN for the observation equation and the transition
equation using a sequence of standard Gibbs steps described in Geweke (2005).

(7) Define yf = (yr — xt — p1, — ay(Sy1))/€,(Syt) = ocrer. Update o¢; as in Giordani and
Kohn. This again involves updating latent indicators one at a time and then updating
ln(ai’") in one block.

(8) Similarly define 27 = (v1—p121-1— .. = PpTt—p—az(Syt)) /€4 (Sy.t) = o and update
Ot

(9) Update the variances of the shifts in i, In(oy¢) and In(o, ) given zbm, pbn, In(oy™)

ln)

and In(o;") drawing from independent inverse gamma distributions.
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Drawing the lag length while imposing stationarity. Updating the lag length p in step
3 while imposing stationarity is not particularly difficult, but since statements to the contrary
and cumbersome approaches are sometimes seen in the literature, we outline this step in more
detail.

Let P be the maximum number of lags (four in out paper). We draw p and py, ..., p,, jointly
conditional on x_py1,...,z,, ON Ui’", S™ and the parameters of the MN.'! This is done as
follows:

(1) Define f = (24—az(Sy4t))/(€x(Sy)X0er) and zy_; = x4 /(£,(Syt)oes) fort =1,...,n
and ¢ =1,..., P, where x_p41, ..., xg are generated by data augmentation at each draw.
Then xf ~ N(pixf 1 + ...+ ppz;_p,1).

(2) Propose a lag length p as a random draw from 1, ..., P.

/ ! .
(3) Draw pq,...., p, given x* p, .., 7},

Given a normal prior, the posterior is also normal
with standard form.
(4) Reject the draw of p and pll, e p;) if the parameters imply that x} lies outside the

stationary region (see Hamilton, 1994). Otherwise accept with probability

i L @S fplz",p)
© f@rp) flelp) f(p)  f(p'a*p") |7

where p = (py, ..., pp)-
We notice that the acceptance rate is one for p’ = p and p stationary, so this procedure is
as efficient as the more common practice of integrating out p, but more practical to impose
stationarity or any other truncated prior on p.

H Ap alternative would be to perform a Metropolis-Hastings step without conditioning on x_p*41, ..., . This
more expensive approach will probably work substantially better when x; accounts for a small share of the
variance of y; (Frithwirth-Schnatter, (1994) and Giordani and Kohn, 2007).
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U.S. 1990Q2-2006Q4

1Q 4Q)
GDP Infl. Rate GDP Infl Rate
ARMA 1.991 1.289 0.409 1.950 1.410 1.419
Shifts 0.985 0.993 1.011 1.033 1.005 0.997
Robust TVP 1.002 1.023 1.133 1.014 0.972 0.974
Robust Shifts 0.974 1.029 0.866 1.052 1.001 0.942
Random walk 2.086 1.345 1.900 2.402 1.710 1.201

Sweden 1990Q2-2007Q4

1Q 4Q)
GDP Infl. Rate GDP Infl. Rate
ARMA 2.095 3.117 1.071 2.805 3.337 2.404
Shifts 1.010 0.989 0.962 0.996 0.966 0.935
Robust TVP  0.986 0.946 0.971 0.983 0.951 0.938
Robust Shifts 0.985 0.909 0.873 0.989 0.935 0.837
Random walk 1.115 1.261 1.161 1.184 1.051 0.918

Australia 1990Q2-2007Q4

1Q 40Q
GDP Infl. Rate GDP Infl. Rate
ARMA 2.909 2.715 0.703 2.906 3.160 2.407
Shifts 0.999 0.996 0.968 0.999 0971 0.956
Robust TVP 1.001 1.011 1.134 1.000 1.042 1.148
Robust Shifts 1.014 0.950 0.925 1.003 0.964 0.976
Random walk 1.391 1.244 1.510 1.380 1.237 1.540

TABLE 1. Root Mean Squared Forecast Errors (RMSFE). The first row of each
subtable displays the RMSFE of the ARMA model. The following rows give
the ratio of the RMSFE of the ARMA model to the RMSFE of the indicated
model. The best model for a given country, variable and horizon is indicated

in bold.
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