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approximation of the equilibrium bid function, resulting in a fast and numerically stable
evaluation of the likelihood function. The analysis is also extended to situations with positive
valuations using a hierarchical Gamma model. We use a Bayesian variable selection algorithm
that simultaneously samples the posterior distribution of the model parameters and does
inference on the choice of covariates. The methodology is applied to simulated data and to a
carefully collected dataset from eBay with bids and covariates from 1000 coin auctions. It is
demonstrated that the Bayesian algorithm is very efficient and that the approximation error
in the bid function has virtually no effect on the model inference. Both models fit the data
well, but the Gaussian model outperforms the Gamma model in an out-of-sample forecasting
evaluation of auction prices.
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1. Introduction

Strategic bidding behavior in auctions has been a widely studied phenomenon since the pio-
neering work of Vickrey (1961), particularly over the last decades, see e.g. Wolfstetter (1996),
Klemperer (1999, 2004), and Milgrom (2004) for recent surveys and a general introduction.
The advances in auction theory have also found their way into the econometric analysis of
auction data. It seems to be widely accepted that an explicit modeling of bidders’ strategic
considerations is a necessary condition for making economic sense of the observed patterns in
the bids. The availability of high quality auction data has increased in recent years, especially
with the advent of Internet auction sites, such as eBay, see e.g. Bajari and Hortaçsu (2004)
for a survey. Paarsch (1992) and Elyakime, Laffont, Loisel and Vuong (1997) are two excellent
examples of structural econometric analyses of auction data. Bajari (2005) and Paarsch and
Hong (2006) survey the field.

Analyzing auction data through the lens of a structural game-theoretic model is not an easy
task however. It has been quite a challenge to derive the strategic equilibrium bid function,
i.e. the map from a bidder’s conceived or estimated value of the object to their optimal bids,
under realistic model assumptions. When such results are available they typically come in
a form unamendable to analytical computations, and one needs to resort to time-consuming
and possibly unstable numerical methods, such as numerical integration. This is an important
obstacle to statistical inference as a single likelihood evaluation typically requires repeated
evaluation of the inverse bid function for all bids in the dataset.

Common value auctions have been especially difficult to analyze by structural econometric
models. In common value auctions, the auctioned object has the same value to every bidder,
but the common value is unknown. The bidders use private information (their signal) to infer
the unknown value. In an influential paper, Bajari and Hortaçsu (2003), henceforth BH, make
a number of important advances that substantially simplify the analysis of data from common
value auctions. BH prove that it is sufficient to compute the bid function in a selected auction
and then extrapolate linearly to the other auctions in the dataset. This property speeds up
the computation of the bid function considerably, and thereby also likelihood evaluations. BH
also show that it is optimal to place a bid in the very last seconds of commonly used Internet
auction formats, such as eBay’s. This in turn implies that Internet auctions can be modeled as
sealed bid auctions without additional strategic considerations of the timing of the bids. BH
also extend the results in Milgrom and Weber (1982) to the situation with a stochastic number
of bidders, an inherent feature of Internet auctions.

Our paper refines and extends the analysis in BH. Our first contribution is an accurate linear
approximation of the equilibrium bid function, both for the case with a fixed and a stochastic
number of bidders. The approximate bid function is of a particularly simple analytical form
with interesting interpretation. It can be inverted and differentiated analytically, two extremely
valuable properties for fast and numerically stable evaluations of the likelihood function.

An interesting aspect of the model in BH is the use of auction-specific covariates, both in the
model for the common value and in the stochastic entry process. Our second contribution is the
use of a highly efficient general posterior sampling algorithm that simultaneously approximates
the joint posterior distribution of the model parameters and does Bayesian variable selection
among the model’s covariates. This allows us to quantify the importance of the individual
covariates in the different parts of the model, and to correctly account for the uncertainty
in the choice of covariates in e.g. the predictive distribution of the price. Bayesian variable
selection also makes it possible to use a large number of covariates in the model since it
typically reduces the dimensionality of the parameter space dramatically in every step of the
Metropolis-Hasting algorithm, see Section 3.2.
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The model in BH assumes a Gaussian distribution, both for the common value and for
the bidders’ signals around that common value. The Gaussian distribution is convenient, but
has the obvious drawback of allowing negative values and signals. We also consider also an
alternative model with non-negative values and signals following the Gamma distribution. An
analytical approximation to the bid function is derived for this model too, paralleling the
results for the Gaussian model. We propose a full Bayesian analysis of both the Gaussian and
the Gamma models.

Finally, we apply the methodology to a newly collected dataset with bids and auction-specific
information from 1000 eBay coin auctions. The data set was collected by careful human visual
inspection of both pictures of the auctioned object and the seller’s text description. Both
the Gaussian and the Gamma models are shown to fit the data well. The Gaussian model
also outperforms the Gamma model in an out-of-sample prediction evaluation on a sample
with 48 auctions. The variable selection shows that the publicly available book value and
the condition of the auctioned object are important determinants of bidders valuations, while
eBay’s detailed seller information, such as bidders’ subjective ratings of sellers and the sellers’
historical selling volumes, is essentially ignored by the bidders. The seller’s posted minimum
bid acts as a safeguard for the seller to avoid large losses. We show that it is typically optimal
for the seller to post a minimum bid only slightly below the seller’s valuation of the object if
it remains unsold, despite the fact that a high minimum bid discourages auction entry. The
estimation results are shown to be robust to a variety of modifications of the basic model.

2. two models for second-price common value auctions

2.1. General setup. Assume the seller sets a publicly announced minimum bid (reservation
price), r ≥ 0, and risk-neutral bidders compete for a single object using the same bidding
strategy (symmetric equilibrium). The value of the object, v, is unknown and the same for
each bidder at the time of bidding, but a prior distribution for v is shared by the bidders. To
estimate v, each bidder relies upon their own private information of the object modeled as a
private signal x from a distribution x|v that is the same for all bidders. Let fv(v) denote the
probability density function of v, fx|v(x|v) the conditional probability density function of x|v,
and Fx|v(x|v) the conditional cumulative distribution function of x|v. Since the auction involves
symmetric bidders and a symmetric equilibrium we can focus on a single bidder without loss
of generality. The bid function can be written (BH)

b(x, λ) =


P∞
n=2(n−1)·pn−1(λ)·

´∞
−∞ v·Fn−2

x|v (x|v)·f2
x|v(x|v)·fv(v) dvP∞

n=2(n−1)·pn−1(λ)·
´∞
−∞ Fn−2

x|v (x|v)·f2
x|v(x|v)·fv(v) dv

, if x ≥ x?

0 otherwise,

(2.1)

where pn−1(λ) is the Poisson probability of (n−1) bidders in the auction with λ as the expected
value in the Poisson entry process. Bidders participate with a positive bid if their signal, x, is
above the cut-off signal level x?. Given an arbitrary bidder with signal x, let y be the maximum
signal of the other (n − 1) bidders. The cut-off signal level is then given in implicit form as
(Milgrom and Weber, 1982)

x?(r, λ) = inf
x

(EnE[v|X = x, Y < x, n] ≥ r) ,

which gives the minimum bid, r, as

(2.2) r(x?, λ) =
∞∑
n=1

pn(λ) ·

´∞
−∞ v · F

n−1
x|v (x?|v) · fx|v(x?|v) · fv(v) dv´∞

−∞ F
n−1
x|v (x?|v) · fx|v(x?|v) · fv(v) dv

.
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The minimum bid is exogenously given by the seller and x? is then given as the solution to
(2.2).

In both the Gaussian and the Gamma models presented below the expected value µ and
the variance σ2 exists in the distribution of v. Similar to BH we specify regression models for
(µj , σ2

j , λj) in auction j as

µj = z′µjβµ

σ2
j = exp

(
z′σjβσ

)
λj = exp

(
z′λjβλ

)
,(2.3)

where zj = (z′µj , z
′
σj , z

′
λj)
′ are auction specific covariates in auction j. Also, let β = (βµ, βσ, βλ)′.

BH models σ2 with a linear function of covariates and therefore need to restrict the elements
of βσ to ensure that σ2 is positive, while βσ is unrestricted in our setup.

BH makes the assumption that bids in parallel auctions are independent, and show that
last-minute bidding is a symmetric Nash equilibrium on eBay. This allows us to model eBay
auctions as independent second-price auctions. The likelihood function of bids is complicated
since some bids are unobserved. First, some bidders may draw a signal x < x?, in which case
they do not place a bid. Second, the highest bid is usually not observed because of eBay’s
proxy bidding system, see BH and Section 4.1 for more details. The bid distribution for a single
auction is of the form:

(2.4) fb (b|β, η, r, z, v) = fx|v [φ (b) |β, η, r, z, v]φ
′
(b) ,

where φ (b) is the inverse bid function, and η is a vector of additional parameters in the
model. Let n be the number of bidders who submit a positive bid in a given auction and
let b = (b2, b3, . . . , bn) be the vector of observed bids, where b2 > b3 > ... > bn. Then, the
likelihood function for that auction is given by

fb (b2, b3, . . . , bn|β, η, r, z)

=
N̄∑
i=n

pi(λ) ·
ˆ ∞
−∞

Fx|v (x?|β, η, v)i−n ·
{

1− Fx|v [φ (b2) |β, η, v]
}I(n≥1)

×
n∏
i=2

fb (bi|β, η, r, z, v) · fv(v|β)dv,(2.5)

where I (n ≥ 1) is an indicator variable for at least one observed bid in the auction, and N̄ is
an upper bound for the total number of potential bidders. Following BH, N̄ is set to 30. If
n = 1, b2 equals the minimum bid r.

We use Bayesian methods to estimate the model, see Section 3. A single evaluation of the
posterior density (likelihood function) requires numerical integration to compute b (x|β, r, z) in
(2.1), followed by additional numerical work to invert and differentiate b (x|β, r, z). The same
applies to the computation of x?. This costly procedure needs to be repeated for each of the
auctions in the dataset. BH cleverly exploit a linearity property of the bid function that confines
a large portion of the numerical work to a single auction which is then extrapolated linearly to
the other auctions. Nevertheless, the likelihood evaluation suggested by BH is not fast enough
to be routinely used for inference. Instead, we make use of analytical approximations of the
bid functions, see Section 2.2 and 2.3, which lead to much faster and numerically more stable
likelihood evaluations.

Paarsch (1992) use an interesting method initially suggested by Levin and Smith (1991)
to compute bid functions for a class of models including a model with Gaussian valuations



4

(see the next subsection). This method assumes a diffuse prior for the auction value, which
makes it harder to use an interesting covariate structure as in (2.3). Moreover, contrary to
our approximation approach, the Levin-Paarsch-Smith (1991) method is not easily extended
to the case with stochastic auction entry.

2.2. Gaussian model. Let vj denote the common value in auction j, and let xij denote the
signal of the ith bidder in auction j. The hierarchical Gaussian model in BH can be defined as

vj ∼ N(µj , σ2
j ), j = 1, ...,m,

xij |vj
iid∼ N(vj , κσ2

j ), i = 1, ..., nj ,

where m is the total number of auctions, and nj is the number of bidders that bid zero or place
a positive bid in auction j. We derive the following linear approximation of the bid function
(see Appendix A for details)

(2.6) b(x, λ) ≈

 c+ ωµ+ (1− ω)x, if x ≥ x?

0 otherwise

where c = −
√
κσγθ(λ−2)

γ(λ−2)+1+κ
2
, ω =

κ
2

γ(λ−2)+1+κ
2
, θ = 1.96 and γ = 0.1938. The cutoff-signal can be

similarly approximated by

(2.7) x?(r, λ) ≈
r −

∑∞
n=1 pn(λ)(c̃+ ω̃µ)∑∞

n=1 pn(λ)(1− ω̃)
,

where c̃ = −
√
κσγθ(n−1)

γ(n−1)+ 1
2

+κ
2

, and ω̃ =
κ
2

γ(n−1)+ 1
2

+κ
2

.

The approximate bid function has the following properties. First, it is a linear combination
of the signal x and the publicly held value µ. The weight ω increases monotonically towards
1 as κ increases, which gives

b(x) −→ x if κ −→ 0, and b(x) −→ µ if κ −→∞.
The higher precision in signals the more the bidders trust their private information and vice
versa. A higher variance of the common value v implies a higher risk of drawing a large signal
and thus a higher risk of overestimating the true value of the object, why bidders should lower
their bids. The approximate bid function captures this effect well, increasing the value of σ
leads to lower bids. If n = 2, then Φn−2(t) = 1, and the bid function in 2.1 can be computed
exactly, and equals the approximate solution in 2.6.

The approximation in (2.6) can also be used to derive the unconditional distribution of the
bids b = (b1, ..., bn)′ in an auction with a given number of bids n. It is straightforward to show
that

(2.8) b ∼ N
[
(c+ µ)1n, (1− ω)2σ2 (κIn + 1n×n)

]
,

where In is the identity matrix, and 1n and 1n×n denote the n×1 vector and the n×n matrix
with ones, respectively. Note that we are here ignoring the truncation that comes from x?.
At first glance one might think that κ is merely a factor that inflates the variance of the bids
and is mainly estimated from the variance of the observed bids. Equation (2.8) shows that
this is a too simplistic view. First, the unconditional variance of the bids, (1− ω)2(κ + 1)σ2,
obviously increases with κ via the factor (κ + 1), but κ also affects var(b) through ω in a
non-linear fashion that depends on λ. Second, κ determines the dependence between bids as
the correlation between any pair of bids is (1 + κ)−1.

Figure 2.1 compares the exact and approximate bid function graphically. The exact bid
function is computed by numerical integration as in BH. The upper left sub-graph displays the
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Figure 2.1. Examining the accuracy of the approximate bid function in the
Gaussian model for different configurations of parameter values. The vertical
lines in the figures mark out the mean (thick dotted) ± 1 and 2 standard
deviations (thin dotted) in the unconditional distribution of the signals, x.

bid function and its approximation for a representative auction in the eBay data set analyzed
in Section 4. The representative auction is based on the median of the covariates in the eBay
data, analyzed in Section 4, and the posterior mean of the model parameters. Rounded to the
nearest integer, this gives κ = 5, µ = 22, σ = 9, λ = 4, and r

µ = 0.5. The other sub graphs are
variations from the representative auction. The approximation of the bid function is very good
in all four cases. It is not easy to assess the importance of the approximation errors in Figure
2.1 for practical work, but experiments in Section 3.2 and 4.2 show that inferences based on
the approximate bid function are very similar to those obtained from the exact bid function.

2.3. Gamma model. A drawback of the Gaussian model in the previous section is that the
common value, the signals and the bids can be negative. It can be argued that the Gaussian
distribution serves as a good approximation when the mean is at least a couple of standard
deviations away from zero, which is a common situation in practice. This is clearly not always
the case, however, and there are situations when it would be better to use a distribution with
non-negative support. We will therefore extend and analyze a model in Gordy (1998) based
on the Gamma distribution. The Gaussian and Gamma models are compared in the empirical
application in Section 4.

The Gamma model is more conveniently written in terms of inverse signals, sij = 1
xij

,

vj ∼ Gamma(ξj , ψj), j = 1, ...,m, E (vj) = µj =
ξj
ψj
, V ar(vj) = σ2

j =
ξj
ψ2
j

sij |vj
iid∼ Gamma(τ, τvj), i = 1, ..., nj , E (sij |vj ) =

1
vj
, V ar (sij |vj ) =

1
τv2

j

,(2.9)
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where τ is a precision parameter, m is the total number of auctions, and nj is the number of
bidders that bid zero or place a positive bid in auction j. The bid function for the Gamma
model is of the form (see Gordy (1998) for the case with a fixed number of bidders)

(2.10) b(x, λ) =


P∞
n=2(n−1)·pn−1(λ)·

´∞
0 v·(1−Fs|v(1/x|v))n−2·f2

s|v(1/x|v)·fv(v) dvP∞
n=2(n−1)·pn−1(λ)·

´∞
0 (1−Fs|v(1/x|v))n−2·f2

s|v(1/x|v)·fv(v) dv
, if x ≥ x?

0, if x < x?,

and the minimum bid function for the Gamma model is given by

(2.11) r(x?, λ) =
∞∑
n=1

pn(λ) ·
´∞

0 v · (1− Fs|v(1/x?|v))n−1 · fs|v(1/x?|v) · fv(v) dv´∞
0 (1− Fs|v(1/x?|v))n−1 · fs|v(1/x?|v) · fv(v) dv

.

Gordy (1998) obtains a finite series expansion of the bid function for the Gamma model (see
B2(x) in equation 7 in Gordy’s article). Gordy’s solution for the bid function is elegant and
fast, but there are two reasons why it has limited use in a likelihood-based approach. First, the
likelihood function depends on the inverse bid function which has to be solved numerically for
each bid in every auction. Second, the solution is restricted to the set of positive integers for
τ, which makes it hard to link τ to covariates. The equilibrium bid function for the Gamma
model can be approximated in a similar way to the Gaussian model, see Appendix B. The
approximate bid function is given by

(2.12) b(x) ≈ [ξ + 2τ + (λ− 2)ξτ ] · x
ψx+ 2τ + (λ− 2)ψτ

,

where
ξτ = −0.1659− 0.0159 · τ + 0.2495 · log(1 + τ),

and
ψτ = 0.3095− 0.0708 · τ + 1.0241 · log(1 + τ),

for 0.1 ≤ τ ≤ 10. If necessary, other values of τ can be handled similarly, see Appendix B for
details. The bid function in (2.10) can be computed exactly when λ = 2 or τ = 1 (Gordy,
1998), and is then identical to the approximate bid function in (2.12).

The approximate minimum bid function is given by

(2.13) r(x?, λ) ≈ [ξ + τ + (λ− 1)ξτ ] · x?

ψx? + τ + (λ− 1)ψτ
.

The approximate bid function in Equation (2.12) has the following properties. First, the
more precise is the public information (larger ψ) the less weight is placed on the bidder’s
private signal. To see this, replace ξ with ψµ in equation (2.12) to obtain

(2.14) b(x) ≈ ψµ+ 2τ + (λ− 2)ξτ
ψ + 2τ+(λ−2)ψτ

x

,

which yields

b(x) −→ µ if ψ −→∞ and b(x) −→ 2τ + (λ− 2)ξτ
2τ + (λ− 2)ψτ

· x if ψ −→ 0.

The approximate bid function also satisfies

b(x) −→ µ if τ −→ 0,



7

50 100 150 200
0

10

20

30

x

b
(
x
|

λ)

µ = 21, σ = 8, τ = 3, λ = 4

 

 
Exact
Approx

20 40 60 80 100
0

10

20

30

x

b
(
x
|

λ)

µ = 21, σ = 8, τ = 5, λ = 4

 

 
Exact
Approx

50 100 150 200
0

10

20

30

40

50

x

b
(
x
|

λ)

µ = 21, σ = 12, τ = 3, λ = 4

 

 
Exact
Approx

50 100 150 200
0

10

20

30

x

b
(
x
|

λ)

µ = 21, σ = 8, τ = 3, λ = 6

 

 
Exact
Approx

Figure 2.2. Examining the accuracy of the approximate bid function in the
Gamma model for different configurations of parameter values. The vertical
lines in the figures are mean (thick dotted), and the 5% and 95% percentiles
(thin dotted) in the unconditional distribution of the signals, x.

and

b(x) ≈

[
2 + ξ

τ + (λ− 2) ξττ
]
· x

2 + ψx
τ + (λ− 2)ψττ

−→ x if τ −→∞.

The last two results are easily proved by noting that our approximation routine in Appendix
B implies that (

ξτ
τ
,
ψτ
τ

)
−→ (0, 0) if τ −→∞,

and
(ξτ , ψτ ) −→ (0, 0) if τ −→ 0.

Figure 2.2 compares the approximate bid function in Equation (2.12) to the exact bid
function in Equation (2.10), using the parameter values from the representative eBay auction,
which is defined analogously to the Gaussian model in Section 2.2. The representative auction
has parameter values τ = 3, µ = 21, σ = 8, and λ = 4. The approximation deteriorates
somewhat with increasing λ, but is still very accurate, irrespective of τ and σ.

2.4. Discussion. The two previous subsections have shown that our approximation method
can be used to obtain accurate, easily computable and interpretable approximate bid functions
for second-price common value auctions with Gaussian or Gamma distributed signals and
values. It is obvious however that our approach cannot be used for any arbitrary auction setup
and valuation structure. To state the conditions under which our approach can be used, let us
first define a family of distributions P to be closed under multiplication if for any p1, p2 ∈ P
we have that k · p1 · p2 ∈ P, where k is a constant. The success of our approach hinges upon
i) that the distribution function Fx|v(x|v) can be well approximated by the kernel of a density
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function px|v(x|v), ii) that px|v(x|v), fx|v(x|v) and fv(v) all belong to a family of distributions
P that is closed under multiplication (with respect to v), and iii) that the kernel of any member
of P can be integrated analytically. Since the distribution function Fx|v(x|v) appears in other
major auction formats, it is clear that this approach can at least in principle also be used to
approximate the bid function in other auction setups.

3. Bayesian inference

3.1. Prior. Bayesian inference combines the likelihood function in (2.5) with a prior distribu-
tion on the unknown model parameters. The numerical algorithms that we use for sampling
from the joint posterior distribution (see next section) can be used with any prior. This sec-
tion proposes a particular prior that can be used with very limited input from the user. Our
prior for βµ and βσ in the Gaussian model is motivated by the fact that the common values
v = (v1, ..., vn)′ are modeled as a heteroscedastic regression

(3.1) v = Zµβµ + ε, εi ∼ N(0, σ2
i ),

where σ2 = (σ2
1, ..., σ

2
n)′ = exp(Zσβσ). Pre-multiplying both sides of (3.1) by the n × n

diagonal matrix D1/2 = Diag[exp(−z′σ1
βσ/2), ..., exp(−z′σnβσ/2)] we obtain the transformed

homoscedastic regression

(3.2) ṽ = Z̃µβµ + ε̃, ε̃i
iid∼ N(0, 1),

where ṽ = D1/2v, Z̃µ = D1/2Zµ and ε̃ = D1/2ε. We can now specify a g-prior (Zellner, 1986)
for βµ, conditional on βσ, as

βµ|βσ ∼ N [0, cµ(Z̃ ′µZ̃µ)−1] = N [0, cµ(Z ′µDZµ)−1],

where cµ > 0 is a scaling factor that determines the tightness of the prior. Setting cµ = n,
where n is the number of auctions in the sample, makes the information in the prior equivalent
to the information in a single auction (conditional on βσ), which is a useful benchmark. The
marginal prior for βσ is also taken to be a g-prior

βσ ∼ N [0, cσ(Z ′σZσ)−1].

The Gamma model in Section 2.3 cannot be written as a heteroscedastic linear regression,
and a similar characterization of the prior for βµ and βσ is therefore not possible. We will
instead assume that βµ ∼ N [0, cµ(Z ′µZµ)−1] independently from βσ ∼ N [0, cσ(Z ′σZσ)−1] in the
Gamma model.

Turning to the Poisson entry model, we use the following g-prior for βλ

βλ ∼ N [0, cλ(Z ′λZλ)−1].

We use an inverse Gamma prior for κ in the Gaussian model, κ ∼ IG(κ̄, g), where κ̄ is the
prior mean of κ and g are the degrees of freedom. Similarly, we assume the prior τ ∼ IG(τ̄ , h)
in the Gamma model.

We also allow for variable selection among the covariates, or equivalently that some regres-
sion coefficients are exactly zero. This is implemented by introducing point masses at zero in
the prior distribution on the regression coefficients. For example, the prior on βσ now follows
the two-component mixture distribution

p(βσ) =

 N [0, cσ(Z ′σZσ)−1] with probability πσ

0 otherwise,
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where πσ is referred to as the prior inclusion probability. The user thus needs to specify the
eight hyperparameters cµ, cσ, cλ, πµ, πσ, πλ, κ̄, and g. We typically set cµ = cσ = cλ = c and
πµ = πσ = πλ = π, thus reducing the number of prior hyperparameters to four. We document
in Sections 3.2 and 4 that the posterior distribution and the variable selection inference are not
overly sensitive to the exact choice of these prior hyperparameters, and that a good default
value for c is c = n.

3.2. A Metropolis-Hastings algorithm for variable selection. It is clear from (2.5) that
the likelihood function for second-price common value auctions is highly non-standard, so the
posterior distribution of the model parameters cannot be analyzed by analytical methods. The
most commonly used algorithm for simulating from posterior distributions is the Metropolis-
Hastings (MH) algorithm, which belongs to the Markov Chain Monte Carlo (MCMC) family of
algorithms, see e.g. Gelman et al. (2004) for an introduction. At a given step of the algorithm,
a proposal draw βp is simulated from the proposal density f(βp|βc), where βc is the current
draw of the parameters (i.e. the most recently accepted draw). The proposal draw βp is then
accepted into the posterior sample with probability

a(βc → βp) = min
[
1,
p(βp|y)/f(βp|βc)
p(βc|y)/f(βc|βp)

]
,

where p(β|y) denotes the posterior density. If βp is rejected, then βc is included in the posterior
sample. This sampling scheme produces (autocorrelated) draws that converge in distribution to
p(β|y). The f(βp|βc) can in principle be any density, but should for efficiency reasons be a fairly
good approximation to the posterior density. One possibility is the random walk Metropolis
algorithm where f(βp|βc) is multivariate normal density with mean βc and covariance matrix
−c·H−1, where H is the Hessian matrix evaluated at the posterior mode and c is a scaling
constant. This algorithm is used in BH. The random walk Metropolis is a robust algorithm,
but is well known to be rather inefficient. Moreover, it is not easily extended to the case with
variable selection. A more efficient alternative that also can be extended to variable selection is
the independence sampler where f(βp|βc) is the multivariate-t density t(β̂,−H−1, h), where β̂ is
the posterior mode of p(β|y), H is again the Hessian matrix at the mode and h is the degrees
of freedom. The multivariate-t density is here defined in terms of its mean and covariance
matrix. We typically use h = 10 degrees of freedom, which we have found to work well. The
posterior mode and Hessian matrix can be easily obtained using a standard Newton-Raphson
algorithm with BFGS update of the Hessian matrix (Fletcher, 1987).

Consider now setting a subset of the elements in β = (β′µ, β
′
σ, β

′
λ)′ to zero (any other value

is also possible). In a regression situation, this is clearly equivalent to selecting a subset of
the covariates. Let J = (j1, ..., jr) be a vector of binary indicators such that ji = 0 iff the ith
element of β is zero. We can view these indicators as a set of new parameters. We shall here
for simplicity assume that the elements of J are independent a priori with Pr(ji) = π for all i,
so that π is the prior probability of including the ith covariate in the model, but other priors
for J are just as easily handled. Appendix B describes in detail how this algorithm can be
generalized to sample from the joint posterior distribution of the parameters and the variable
selection indicators J , all in a single MCMC run.

We use the mean acceptance probability and the inefficiency factor (IF) to measure the
performance of the Metropolis-Hastings algorithm. The inefficiency factor is defined as 1 +
2
∑K

k=1 ρk, where ρk is the autocorrelation at the kth lag in the MCMC chain for a given
parameter and K is an upper limit of the lag length such that ρk ≈ 0 for all k > K. The
inefficiency factor approximates the ratio of the numerical variance of the posterior mean from
the MCMC chain to that from hypothetical iid draws. Put differently, the IF measures the
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number of draws needed to obtain the equivalent result of a single independent draw. IFs close
to unity is therefore an indication of a very efficient algorithm.

We conducted a simulation study to evaluate the performance of the variable selection
procedure, where we are particularly interested in exploring the sensitivity of the posterior
inclusion probabilities to changes in prior hyperparameters c = cµ = cσ = cλ, and g.We set the
prior inclusion probability to π = 0.2 and κ̄ = 0.25 throughout the simulations. Rather than
setting the parameters in the data generating model to arbitrary values we will here generate
data from a model that mimics the estimated model for eBay data in BH. We simulated 50
full datasets, each with 407 auctions, using the posterior mean estimates in BH as parameter
values. The covariates in the model were simulated independently to mimic the summary
statistics in Table 1 and 2 in BH. The eBay auction model in BH for auction j, without a
secret reserve price, can be written as (see BH for a description of the covariates)

µj = β1BookValj + β2Blemishj · BookValj − 2.18

σj = β3BookValj + β4Blemishj · BookValj

logλj = β5 + β6LogBookValj + β7Negativej + β8
MinBidj
BookValj

.

To check that the variable selection procedure assigns small posterior inclusion probabilities to
insignificant covariates in the model, we include one superfluous covariate in each of µj , σj and
λj , with each additional covariate drawn independently from the standard normal distribution.
To speed up the computations we use the approximate bid solution in (2.6). We have checked
that the exact and approximate bid function give very similar results by replicating the analysis
on several simulated datasets. The empirical application on eBay coin auctions in Section 4
also provides reassuring evidence that this approximation does not distort inferences.

In Figure 3.1, posterior inclusion probabilities for each of the covariates in 50 simulated
datasets are shown as box plots for different values of c. Other priors than g = 4 and settings
with unequal values of cµ, cσ, and cλ gave very similar results. As we can see in Figure 3.1,
the inclusion probabilities for the most significant variables are all close to one and differ very
little across the different priors. The inclusion probabilities for parameter β4 and β7 are low
as these coefficients are quite close to zero in the generating model. Figure 3.1 also shows
that insignificant variables obtain a higher posterior inclusion probability when the prior is
tighter around zero, i.e. when c is small, since the cost of including an covariate with small
coefficient is lower when c is small. Finally, most of the Metropolis-Hastings runs gave an
acceptance probability in the range 0.6-0.8, only a few below 0.1, and none below 0.25 for the
prior cµ = cσ = cλ = n.

4. Application to eBay auction data

4.1. Description of the data. Our dataset contains bid sequences and auction characteristics
from 1000 eBay Internet auctions of U.S. proof sets (specially packaged collectors’ coins sold by
the U.S. Mint). The auctions ended between November 7 to December 19, 2007 or December
27, 2007 to January 22, 2008. We exclude multi-unit objects, auctions with a Buy It Now
option, and Dutch auctions. Contrary to BH, we could not observe the secret reserve prices in
our dataset since this information is automatically removed after the secret reserve price has
been met. We also collected data from 48 additional auctions between January, 23 to January,
29, 2008 to evaluate the models’ out-of-sample predictions of auction prices. Appendix D gives
a detailed description of the variables in the dataset, and Table 1 presents summary statistics.

The seller’s shipping cost is added to each bid, and for the auctions without listed shipping
cost we use the mean of the reported shipping costs in the sample. The highest bid is typically
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Figure 3.1. Posterior variable selection probabilities for the simulated data for different
values of c = cµ = cσ = cλ on the horizontal axis. κ̄ = 0.25, g = 4 and π = 0.2 were used in
all simulations.

Table 1. Summary statistics of the eBay data set

Variable Mean Std Dev Min Max
Book 32.33 37.26 7.50 399.50
Price/Book, no Blemish 0.76 0.30 0.16 3.63
Price/Book, Blemish 0.61 0.24 0.05 1.20
MinBlem 0.09 0 1
MajBlem 0.04 0 1
Number of Bidders 3.74 2.70 0 15.00
MinBidShare 0.58 0.38 0 1.70
Seller’s Feedback Score 2427 2883 0 12568
Power 0.53 0 1
ID 0.06 0 1
Sealed 0.10 0 1
% Sold 0.86
NOTE: The variables are defined in Appendix D

not observed in eBay auctions, unless the difference between the two highest proxy bids is less
than eBay’s bid increment. The highest bid is observed in 109 of the 1000 auctions and we
modify the likelihood function in (2.5) accordingly.

The bids recorded on eBay’s Bid History page are supposed to correspond to the final bids
for each bidder. A careful inspection of the bids reveals, however, that some bids are only a
tiny fraction of the object’s book value, and cannot realistically represent serious final bids.
We will therefore exclude the most extreme bids in our main analysis. A bid b is excluded if
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b ≤ δ ·min(Book,Price), where δ = 0.25 in the benchmark estimations (this excludes 107 bids
from the 3742 bids in the sample). We also estimate the models on all bids (δ = 0) and with
δ = 0.5 (431 bids removed).

4.2. Estimation results. We perform some transformations on the covariates before the anal-
ysis to better match the functional form of the model and to reduce correlation between some
of the slope coefficients and intercepts. We use the notation, xd = x− x̄ and Lx = ln(x), where
x is a covariate. As an example, LBookd is the deviation of log book value from the mean log
book value.

Table 2. Tobit regressions of auction prices censored at the minimum bid

Covariate Mean Stdev Incl Prob IF
Const 27.177 0.230 1.000 1.789
Bookd 0.757 0.007 1.000 1.796
Book·Power −0.005 0.009 0.039 −
Book·ID 0.032 0.021 0.118 −
Book·Sealed 0.321 0.018 1.000 2.063
Book·MinBlem 0.003 0.014 0.035 −
Book·MajBlem −0.151 0.023 1.000 1.601
Book·NegScore 0.006 0.013 0.032 −
σε 6.664 0.158 − 1.938

NOTE: x1 · x2 denotes the interaction of x1 and x2.

Table 3. Poisson regression with the number of bids as the response variable

Coeff Covariate Mean Stdev Incl Prob IF
λ Const 1.056 0.023 1.000 1.694

Power −0.031 0.037 0.010 −
ID −0.401 0.093 0.997 1.304
Sealed 0.444 0.049 1.000 1.379
MinBlem −0.027 0.055 0.005 −
MajBlem −0.235 0.090 0.111 1.615
NegScore 0.085 0.056 0.011 −
LBookd −0.113 0.028 0.973 1.416
MinBidShared −1.894 0.074 1.000 2.797

As a first check on the data, we ran a Tobit regression with the auction price as the response
variable (censored at the minimum bid). Table 2 presents the results from the Bayesian
estimation with variable selection (using the algorithm in Appendix C). An auction with an
object in good condition with a large book value in an unopened envelope is very likely to sell
for a large price. The seller’s feedback score or status (Power or ID) does not seem to matter
for prices.

Table 3 presents the results from a Poisson regression with the number of bids as the response
variable. Posting a high minimum bid is clearly seen to strongly discourage entry, and the same
holds to some extent for a high book value. A verified seller (ID) seems to attract less bidders,
but this will turn out to not hold in the structural models.

We will now turn to the inferences from the two structural models with Gaussian and
Gamma distributed values. We will mainly concentrate on the Gaussian model, however, as
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Table 4. Posterior inferences for the eBay data from the Gaussian model with
the exact and the approximate bid function

Mean St Dev Incl prob
Parameter Covariate Approx Exact Approx Exact Approx Exact
κ - 5.499 5.287 0.772 0.375 - -
µ Const 28.273 28.604 0.245 0.403 1.000 1.000

Bookd 0.740 0.732 0.010 0.013 1.000 1.000
Book·Power 0.033 0.052 0.015 0.017 0.064 0.451
Book·ID 0.128 0.121 0.036 0.064 0.900 0.046
Book·Sealed 0.372 0.450 0.029 0.034 1.000 1.000
Book·MinBlem −0.022 −0.018 0.021 0.022 0.010 0.013
Book·MajBlem −0.252 −0.214 0.030 0.029 1.000 1.000
Book·NegScore −0.003 −0.023 0.018 0.027 0.004 0.025

log(σ2) Const 3.997 4.309 0.071 0.051 1.000 1.000
LBookd 1.262 1.533 0.038 0.035 1.000 1.000
LBook·Power 0.043 0.057 0.018 0.019 0.220 0.628
LBook·ID 0.042 0.082 0.040 0.036 0.481 0.122
LBook·Sealed 0.211 0.241 0.027 0.023 1.000 1.000
LBook·MinBlem −0.028 0.021 0.027 0.026 0.012 0.003
LBook·MajBlem 0.036 −0.025 0.040 0.029 0.007 0.029
LBook·NegScore 0.035 0.046 0.021 0.012 0.017 0.143

log(λ) Const 1.193 1.269 0.021 0.022 1.000 1.000
Power 0.009 −0.020 0.035 0.033 0.005 0.009
ID −0.177 −0.129 0.110 0.092 0.030 0.003
Sealed 0.323 0.322 0.048 0.047 1.000 1.000
MinBlem −0.049 −0.127 0.048 0.045 0.008 0.004
MajBlem −0.151 -0.172 0.085 0.060 0.019 0.016
NegScore 0.055 0.085 0.049 0.055 0.012 0.018
LBookd −0.038 -0.119 0.027 0.028 0.018 0.989
MinBidShared −1.433 -1.591 0.056 0.075 1.000 1.000

NOTE: c = n, κ̄ = 0.25, g = 4, and π = 0.2. x1 · x2 denotes the interaction of x1 and x2.

this model is shown to outperform the Gamma model for this particular data set, see Section
4.3. The Gaussian model is also faster to estimate and gives a higher efficiency in the MCMC
posterior sampling. The Gaussian model is given implicitly by the linear equations for µ, lnσ
and lnλ in Table 4. Contrary to BH we do not subtract the shipping cost in the µ-equation
(the shipping cost of each auction is instead added to the bids, see Section 4.1 above).

Table 4 reports the estimation results for the Gaussian model, both for the exact and
approximate bid function. The exact inverse bid function is computed by first evaluating the
bid function for a single auction over a grid of signals. This discretized bid function is then
linearly extrapolated to the other auctions using a polynomial fitting method, see BH for
details. The results in Table 4 are based on 10, 000 MCMC draws after a burn-in of 2, 000
iterations. The MH acceptance probability in the model with the exact bid function was 53%
(compared to 59% in the approximate case). The mean and maximal inefficiency factors when
the exact bid function is used are 12.36 and 46.21, which should be compared to 5.32 and 10.90
in the approximate case. This means that one needs roughly 2.5− 4 times as many posterior
draws in the exact case to obtain the same numerical precision as when the approximate bid
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Table 5. Comparing the posterior inference for the eBay data from the Gauss-
ian and Gamma models

Mean St Dev Incl Prob
Parameter Covariate Gauss Gamma Gauss Gamma Gauss Gamma
κ/τ − 5.499 2.997 0.772 0.111 1.000 1.000
µ Const 28.273 28.307 0.245 0.304 1.000 1.000

Bookd 0.740 0.747 0.010 0.012 1.000 1.000
Book·Powerd 0.033 0.046 0.015 0.018 0.064 0.107
Book·ID 0.128 0.052 0.036 0.039 0.900 0.017
Book·Sealed 0.372 0.488 0.029 0.051 1.000 1.000
Book·MinBlem −0.022 0.002 0.021 0.028 0.010 0.008
Book·MajBlem −0.252 −0.269 0.030 0.040 1.000 1.000
Book·LargNeg −0.003 −0.020 0.018 0.025 0.004 0.009

log(σ2) Const 3.997 4.314 0.071 0.038 1.000 1.000
LBookd 1.262 1.276 0.038 0.026 1.000 1.000
LBook·Power 0.043 0.069 0.018 0.020 0.220 1.000
LBook·ID 0.042 0.032 0.040 0.067 0.481 0.011
LBook·Sealed 0.211 0.362 0.027 0.019 1.000 1.000
LBook·MinBlem −0.028 −0.057 0.027 0.026 0.012 0.039
LBook·MajBlem 0.036 0.063 0.040 0.049 0.007 0.017
LBook·NegScore 0.035 0.042 0.021 0.027 0.017 0.050

log(λ) Const 1.193 1.234 0.021 0.022 1.000 1.000
Power 0.009 −0.028 0.035 0.029 0.005 0.012
ID −0.177 −0.197 0.110 0.078 0.030 0.048
Sealed 0.323 0.331 0.048 0.048 1.000 1.000
MinBlem −0.049 −0.042 0.048 0.048 0.008 0.009
MajBlem −0.151 −0.115 0.085 0.097 0.019 0.015
NegScore 0.055 0.086 0.049 0.047 0.012 0.022
LBookd −0.038 −0.036 0.027 0.021 0.018 0.031
MinBidShared −1.433 −1.380 0.056 0.059 1.000 1.000

NOTE: The approximate bid function was used for both models. c = n, κ̄ = 0.25, g = 4, and π = 0.2.

x1 · x2 denotes the interaction of x1 and x2.

function is used. We note that an inefficiency factor equal to one is an ideal that is typically
never obtained (the draws are then as efficient as iid sampling from the posterior). In many
models of this size and complexity the IFs are often counted in hundreds, or sometimes even in
thousands, so the IFs obtained here indicates a very efficient posterior sampling algorithm. The
MCMC sampling takes roughly 12 times longer when the exact bid function is used compared
to the approximate case. This means that the computing time to obtain the equivalent of an
iid draw is roughly 30− 48 times larger in the exact case relative to the approximate case. It
should be noted that the computing time can be reduced substantially in the exact case by
lowering the precision in the numerical integration and by using a polynomial interpolation of
lower order when computing the inverse bid functions. However, this reduction in computing
time comes at the expense of a much less efficient MCMC algorithm, and may cause the MCMC
chain to get stuck for long spells.

A first observation from Table 4 is that the posterior means and standard deviations from the
approximate and the exact bid functions are practically identical. The estimated coefficients
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are mostly of the expected sign and have reasonable magnitudes. The book value plays a
central role in all of µ, σ and λ. The covariate Sealed is also a very important in all parts of
the model. It is interesting to note that eBay’s detailed seller information seems to be of little
use to buyers: the covariates Power, ID and NegScore (dummy for a large proportion of negative
feedbacks from buyers) have almost invariably very small posterior inclusion probabilities (a
possible exception is ID in µ). We experimented with other transformations of the negative
feedback score and also transformations of the overall feedback score as substitutes for Power
and ID, with unchanged results. This result is in contrast to the reduced form analysis in BH
where it is found that overall reputation is a significant predictor of auction prices. Overall
reputation was not used as a covariate in BH’s structural model. The model in Table 4 will
be our benchmark model.

Table 5 compares the inferences from the Gaussian model to the ones from the Gamma
model in Section 2.3. With a couple of minor exceptions, the posterior distribution and variable
selection results are strikingly similar in both models.

The posterior means and standard deviations in Table 5 are robust to a variety of different
priors (e.g. c = n/16, c = n/64 and c = n/256, or changing π = 0.5); results are available
from the authors by request. Similarly, the posterior inclusion probabilities are not altered
enough to overturn any conclusions regarding the importance of individual covariates. The
results were also essentially unchanged when we used all the bids (δ = 0) or when more bids
were removed (δ = 0.5) compared to the benchmark setting.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Actual data

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Gaussian model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Gamma model

(Maximum observed bid − Minimum bid)/BookValue

Figure 4.1. Posterior predictive analysis of the models’ fit of the within-
auction variation.

4.3. Model evaluations and predictions. We use posterior predictive analysis to evaluate
the in-sample fit of the models, i.e. we compare the observed data to simulated data from
the estimated models (Gelman et al., 2004). Given the observed auction-specific covariates,
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Figure 4.2. Posterior predictive analysis of the models’ fit of the cross-auction heterogeneity.

we simulated 100 new complete datasets for each of a 100 systematically sampled posterior
draws of the model parameters. This gives us 10, 000 full datasets, each with bids from a 1000
auctions.

Following BH, we compare the observed and simulated data through two summary statistics:
within-auction bid dispersion and cross-auction heterogeneity. The within-auction dispersion
is defined as the difference between the highest observed bid and the lowest bid divided by the
auctioned item’s book value, and the cross-auction heterogeneity is investigated by histograms
of the bids divided by the corresponding book value in that auction. As we can see in Figures
4.1 and 4.2, the observed within-auction bid dispersion and the cross-auction heterogeneity are
very well captured by both the Gaussian and the Gamma models, and the differences between
the two models are small. This is in contrast to BH where the within-auction bid dispersion
is under-estimated and the cross-auction heterogeneity is highly over-estimated. BH suggest
adding unobserved heterogeneity to the model as a way to improve the in-sample fit of the
model, but our results in Figures 4.1 and 4.2 suggest that such extensions are not needed to
capture the variation in the bids.

We also evaluate the out-of-sample predictions of auction prices in a dataset with 48 ad-
ditional auctions of U.S. proof sets. These auctions were all completed in the week directly
following the estimation sample. Given the covariates from these auctions, we simulated pre-
dictive price distributions for each auction in a similar way as above. The 48 hold-out auctions
were not used when computing the posterior distribution. Figure 4.3 illustrates the predictive
distributions from both models for half of the out-of-sample auctions (to save space, we do
not plot all auctions). Note that the predictive distributions have three components: i) a
probability that the item is not sold, p0, ii) a point mass with probability p1 at the minimum
bid (which is the final price when there is a single bidder in the auction), and iii) a continuous
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Table 6. LPDS comparison of the Gaussian and Gamma models

Measure Gaussian Gamma
LPDSc -131.239 -136.308
LPDSd -25.248 -24.720

NOTE: LPDSc is computed on the 37 test auctions that
had at least two bids, and hence a realized price above
the minimum bids.

price density conditional on there being at least two bidders in the auction. The predictive
price distributions look reasonable and capture the observed prices very well in most cases
(note that the integral of the continuous part of the distribution equals the probability of at
least two bids).

Table 6 summarizes the results from the out-of-sample predictions using the log predictive
density score (LPDS). LPDS is the log of the predictive density evaluated at the realized price
in the 48 out-of-sample auctions. Since not all auctions end with a realized price we compute
two versions of the LPDS: LPDSc evaluates the log predictive density in the 37 auctions with
at least two bids, while LPDSd is a multinomial type of evaluation that focuses on the three
discrete events: i) no bids, ii) one bid (where price = minimum bid) and iii) more than one
bid. LPDSd is evaluated on all 48 out-of-sample auctions. As can be seen from Table 6, the
Gaussian model outperforms the Gamma model in terms of LPDSc by nearly 6 units on the log
scale, which is very large difference given the relatively small hold-out sample. The difference
between the two models in LPDSd is negligible, however.

We also conducted a small simulation study (not reported in detail here) with bids simulated
from a Gamma distribution with three different degrees of skewness: 0.5, 1 and 2. The
Gamma model was only slightly better than the Gaussian model for the least skewed data,
but outperformed the Gaussian model substantially in the two other cases.

4.4. Winner’s curse. The winner’s curse is by far the most highlighted phenomena in com-
mon value auctions (Thaler, 1988). In equilibrium, bidders react to the winner’s curse by
lowering their bids as the number of bidders increases (Krishna, 2002), see the left part of
Figure 4.4 for an illustration based on the exact bid function in the Gaussian model. The
Winner’s curse is the net result of two opposite forces on the bids. First, more bidders leads to
more competition which gives a bidder incentives to submit a higher bid (competition effect).
This effect is more than offset by an overestimation effect : since the winner has the largest
signal, the probability that the winner has over-estimated the object’s value increases with the
number of bidders. The right part of Figure 4.4 shows that the approximate bid function in
the Gaussian model captures the winner’s curse effect very well for signals near the center of
the distribution. The linearity of the approximation has the consequence that the winner’s
curse effect is reversed for large enough signals, but those signals lie almost three standard
deviations above the expected value and are therefore highly improbable. To investigate this
more generally, we look at the first derivative of the approximate bid function with respect to
n

(4.1) b′n(x) =
γκ
[
x− µ− σθ(2+κ)√

κ

]
2
[
γ(n− 2) + 1 + κ

2

]2 .
Since x ∼ N [µ, (κ+ 1)σ2], xd = µ+ dσ

√
κ+ 1 is a signal that lies d standard deviations above

the mean. It is now easy to see that b′n(xd) > 0 for all κ if d > θ(2+κ)√
κ(κ+1)

> θ = 1.96. This
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Figure 4.3. Predictive distributions for the auction price in 24 of the auctions
in the hold-out sample. The values of p0 and p1 in the titles are the predictive
probabilities of zero and one bid (where the price is not observed) for the
Gaussian (first number) and Gamma models (second number). The densities
are the predictive densities of the price when the auction has at least two
bidders (the integral of the density is the probability of at least two bids) for
the Gaussian (thick line) and Gamma (thin line) models. The vertical lines
indicate the minimum bid (dotted) and the book value (dashed). The realized
price (if observed) is displayed by the star symbol.
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means that our approximation preserves the winner’s curse effect for all signals up to at least
1.96 standard deviations above the mean, regardless of κ. Moreover, d is much larger than
1.96 for many values of κ that occur in practice: for example when κ = 4.5 we have d = 2.56,
and for κ = 1 we get d = 4.16.
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Figure 4.4. Illustrating the winner’s curse using the exact (left) and approx-
imate (right) bid functions.

4.5. Determinants of expected seller revenue. We compute the expected seller revenue
by simulating from the posterior predictive distribution of the auction price, in a similar
way to how we obtained the measures of in-sample fit in Section 4.3. Figure 4.5 shows that
the expected seller revenue increases with n and µ (in our representative eBay auction using
the Gaussian model). The difference between the results from the exact (left graph) and
approximate (right graph) bid functions is small. We also found that a higher variance of the
common value v decreases expected seller revenue (not shown).

The seller needs to decide on a minimum bid; a low minimum bid encourages entry, but
exposes the seller to the risk of a low sale price. A risk-neutral seller will choose the minimum
bid that maximizes expected revenue,

E[Revenue] = Pr(Sale|r)E(Price|r) + [1− Pr(Sale|r)] · ResidualValue,

where ResidualValue is the value of the object to the seller if he fails to sell it. The left side
of Figure 4.6 depicts the seller’s expected revenue as a function of the ratio of the minimum
bid to the book value (MinBidShare) when the residual value is set to four different fractions of
the mean valuation µ. The optimal minimum bid is as high as 92% of the object’s book value
when the residual value is µ, roughly 70% when the residual value is 80% of µ, and zero when
the residual value is below or equal to 0.7µ. These are slightly higher optimal minimum bid
than the ones obtained in BH, with the exception of the lowest residual value. It is typically
optimal for the seller to place a minimum bid around 90-100% of the residual value, which
is close to the optimal 80-90% of the residual value in BH. The right hand side of Figure 4.6
shows that the probability intervals of the number of bidders shrink as MinBidShare increases.
The probability of zero entry is essentially unity beyond the point MinBidShare= 1.
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Figure 4.5. Expected seller revenue as a function of µ for different number of
bidders using the exact (left) and approximate (right) bid function.
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Figure 4.6. Analysis of the optimal choice of minimum bid. The figure shows
the posterior distribution of the sellers expected revenue (left) and the number
of bids, i.e. the number of bidders with signals x > x?, (right) as a function of
the proportion of the minimum bid to the book value. The circles in the figure
to the left marks out the optimal MinBidShare value for each residual value.
Note that the optimal minimum bid is zero when the residual value is 0.7µ.

5. Conclusions

Our paper contributes to the technically challenging econometric analysis of second-price
common value auctions. Building on the seminal work of Bajari and Hortaçsu (2003), we
propose a Bayesian framework to analyze auction datasets on a routine basis using a prior
distribution with a small number of easily specified prior hyperparameters. We also extend the
model in Bajari and Hortaçsu (2003) to non-negative values and signals following the Gamma
distribution. One of the key features of our approach is an analytical approximation of the
otherwise highly complicated equilibrium bid functions. The approximate bid functions are
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analytically invertible and differentiable and can therefore be used for a fast and numerically
stable evaluation of the likelihood function. Our proposed posterior sampling algorithm has
the ability to handle variable selection among the model’s covariates which makes it possible
to use many covariates in the model. The algorithm is documented to be very efficient on real
and simulated data.

We applied the models on a new collected dataset from coin auctions on eBay. The results
pointed strongly to book values as the most important predictor of common values. Inter-
estingly, the detailed seller information provided by eBay, and eBay’s feedback score system
seemed to be of very little importance to the buyers. These covariates did consistently get a
low posterior inclusion probability in the estimations. The seller’s minimum bid was found to
strongly discourage auction entry, but a relatively high minimum bid was nevertheless found
to maximize sellers expected revenue. The estimated eBay model captured the within-auction
bid dispersion and the cross-auction heterogeneity very well. The predictive price distributions
looked reasonable and captured the observed prices very well in most cases.

Possible extensions of the models could be to introduce elements of incremental bidding
(Ockenfels and Roth, 2006) and to consider the effects of bidders’ search for low-price auctions
(Sailer, 2006). More generally, it would be interesting to carefully model the dependence
between auctions, especially auctions with overlapping time frames. Other possible extensions
include auctions with both a private and a common value element of the object, multi-unit
objects, or auctions with risk-averse bidders.

Appendix A. approximating the bid function in the Gaussian model

We focus first on the case with a known number of bidders n and then generalize the results
to the case with stochastic entry. The derivation of the linear approximation is divided into
three steps.

Step 1. By substituting t = x−v√
κσ

the bid function in (2.1) becomes

b(x) = x−
√
κσ

´∞
−∞ te

−t2Φn−2(t)e−
1

2σ2 (x−
√
κσt−µ)2 dt´∞

−∞ e
−t2Φn−2(t)e−

1
2σ2 (x−

√
κσt−µ)2 dt

,

where Φ(·) is the standard normal c.d.f.

Step 2. Let h(t|γ, θ) = e−γ·(t−θ)
2 be the approximating function to the standard normal

distribution function Φ(t) on [−a, a], see Figure A.1. The approximation error outside this
interval is likely to have only a minor effect on the approximation of b(x) as we choose a in
the tails of the signal density, see below. The approximation constants γ and θ are obtained
by minimizing the maximum divergence between h(t|γ, θ) and Φ(t) over [−a, a], i.e.

(γ̂, θ̂) = min
γ,θ

(
max
t
|h(t|γ, θ)− Φ(t)|

)
.

For a = 2, we obtain
(γ̂, θ̂) = (0.1938, 1.9600).

Figure A.1 shows that the strictly increasing Φ(t) is well approximated by the Gaussian density
at most values over the target domain [−2, 2]. The figure also shows that choosing a = 1 gives
a worse approximation in the tails, and a = 3 does somewhat better in the tails than a = 2,
but looses out in the main part of the distribution. The posterior inferences in the eBay’s data
used in Section 4 are strikingly similar for a = 1, 2 or 3, but the value a = 2 gave the best
approximation of the exact bid function (results can be obtained from the authors by request).
We therefore use a = 2 in the paper.



22

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

 

 

C
D

F

Φ(t)
a = 1

a = 2

a = 3

Figure A.1. Approximating the Gaussian CDF with a Gaussian PDF over
the interval [−a, a].

Step 3. Replacing Φ(t) by h(t|γ̂, θ̂), the approximated bid function becomes

b(x) ≈ x−
√
κ · σ ·

´∞
−∞ t · e

−t2 · e−(n−2)γ̂(t−θ̂)2 · e−
1

2σ2 ·(x−
√
κσt−µ)2 dt´∞

−∞ e
−t2 · e−(n−2)γ̂(t−θ̂)2 · e−

1
2σ2 ·(x−

√
κσt−µ)2 dt

.

By completing the squares of the exponential functions, the bid function b(x) can be simplified
to

b(x) ≈ x−
√
κ · σ ·

´∞
−∞ t · e

−m1(t−m2)2 dt´∞
−∞ e

−m1(t−m2)2 dt

= x−
√
κ · σ · E(t)

1
= x−

√
κ · σ ·m2,

where m1 = 1+(n−2)γ̂+ κ
2 , and m2 = (n−2)γ̂θ̂+

√
κ(x−µ)

2σ
1+(n−2)γ̂+κ

2
. Note that the constants of the normal

kernel in the numerator and the denominator cancel out. Substituting the expression for m2

gives the approximate bid function in (2.6).
Turning to the model with stochastic entry, it is straight-forward to see that the same type

of approximations can used for the minimum bid in (2.2)

r(x?, λ) ≈
∞∑
n=1

pn(λ) (cr + ωrµ+ (1− ωr)x?) ,

which can be solved for x? as

x?(r, λ) ≈
r −

∑∞
n=1(cr + µωr)pn(λ)∑∞
n=1(1− ωr)pn(λ)

.

The same approach can not be used to approximate the bid function in (2.1). We could do
the approximation term by term in the summation, but the bid function can then no longer
be inverted analytically. One way to proceed is to note that the bid function can be expressed
as

(A.1) b(x) =
En|λ [(n− 1)g1(n)]
En|λ [(n− 1)g2(n)]

,



23

where g1(n) =
´∞
−∞ v ·F

n−2
x|v (x|v) ·f2

x|v(x|v) ·fv(v)dv, g2(n) =
´∞
−∞ F

n−2
x|v (x|v) ·f2

x|v(x|v) ·fv(v)dv,
and En|λ denotes the expectation with respect to the Poisson distribution of the number of
bidders n. A first-order Taylor expansion of (n− 1)g1(n) and (n− 1)g2(n) around n = λ then
gives

(A.2) b(x) =
En|λ [(n− 1)g1(n)]
En|λ [(n− 1)g2(n)]

≈ g1(λ)
g2(λ)

,

where the ratio g1(λ)/g2(λ) can now be approximated with the linear approximation in (2.6)
with n = λ. Figure 2.1 and the estimation results in Section 4.2 verify that this gives a quite
accurate approximation of the true bid function. The reason for this is that g1(n) and g2(n)
are very similar functions and the approximation errors in the numerator and denominator in
(A.2) therefore cancel out, see Tierney and Kadane (1986) for similar results in a more general
setting.

Appendix B. Approximating the bid function in the Gamma model

In the Gamma model we approximate the survival function (1− Fs|v(1/x|v)) by a Gamma
probability density function over the whole interval (0,∞). By substitution the distribution
function of s|v becomes

Fs|v(1/x|v) =
ˆ 1/x

0

(τv)τ

Γ(τ)
lτ−1e−τv·l dl =

ˆ τ · v
x

0

1
Γ(τ)

tτ−1e−t dt.

Hence, the distribution function Fs|v depends on the parameter τ through the support v
x . Let

h
(
v
x |ξτ , ψτ

)
= ψξτ+1

τ

Γ(ξτ+1)( vx)ξτ · e−ψτ ·
v
x be the approximating Gamma p.d.f. to (1− Fs|v(1/x|v)).

Then, given an arbitrary τ the approximation constants ξτ and ψτ are obtained by minimizing
the maximum divergence between h

(
v
x |ξτ , ψτ

)
and (1− Fs|v(1/x|v)), i.e.

(ξ̂τ , ψ̂τ ) = min
ξτ ,ψτ

(
max
v
x

∣∣∣h(v
x
|ξτ , ψτ

)
−
(
1− Fs|v(1/x|v)

)∣∣∣) .
The approximation constants can in principle be calculated for any τ, but in practice it

is more convenient to tabulate them over a grid T = (τ1, ..., τT ) of values for τ. Since the
approximation of the bid function needs to be solved for any τ in the estimation process,
we model {ξ̂τ , ψ̂τ}τ∈T as a multivariate regression with several functions of τ as independent
variables. The fit of the regression is improved if the grid T is not too wide, and we will
here choose a grid that covers all relevant values of τ in our datasets. The best multivariate
regression model (according to adjusted R2) is

ξ̂τ = −0.1659− 0.0159 · τ + 0.2495 · log(1 + τ),

and

ψ̂τ = 0.3095− 0.0708 · τ + 1.0241 · log(1 + τ)

for 0.1 ≤ τ ≤ 10 with R2 equal to 99.5% and 99.2%, respectively.
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Now, by replacing (1 − FS|V (1/x|v)) with hv(v|ξ̂τ , ψ̂τ ), the approximate bid function for a
known number of bidders becomes

b(x) ≈
´∞

0 v · v(n−2)ξ̂τ+2τ+ξ−1 · e−( 1
x

(ψ̂τ (n−2)+2τ)+ψ)·v dv´∞
0 v(n−2)ξ̂τ+2τ+ξ−1 · e−( 1

x
(ψ̂τ (n−2)+2τ)+ψ)·v dv

.

=

´∞
0 Gamma(v|ξ′τ + 1, ψ

′
τ ) dv´∞

0 Gamma(v|ξ′τ , ψ
′
τ ) dv

=
Γ(ξ

′
τ + 1)

ψ
′(ξ′τ+1)
τ

· ψ
′ξ
′
τ

τ

Γ(ξ′τ )

=
ξ
′
τ

ψ′τ
=

[
ξ + 2τ + (n− 2)ξ̂τ

]
· x

ψx+ 2τ + (n− 2)ψ̂τ

where ξ′τ = (n− 2)ξ̂τ + 2τ + ξ, ψ′τ = 1
x(ψ̂τ (n− 2) + 2τ) +ψ and Gamma(v|ξ′τ , ψ

′
τ ) denotes the

pdf of the Gamma distributed variable v with parameters ξ′τ , and ψ
′
τ .

The same approach as in the Gaussian model (see Appendix A) can be used to generalize
this result to the case with a stochastic number of bidders.

Appendix C. The MH algorithm with variable selection

Starting with George and McCulloch (1993) and Smith and Kohn (1996), there has been a
number of algorithms that simultaneously draw the regression coefficients from the posterior
and does variable selection, all in a single run of the sampler. In particular, Nott and Leonte
(2004) propose an efficient algorithm for variable selection in generalized linear models (GLM).
Villani et al. (2009) extend this algorithm to a general setting with the only requirement being
that the gradient of the log posterior is available in closed form. The algorithm presented
below is of similar form, but can be applied to any problem as long as the likelihood and prior
can be evaluated numerically, and it is therefore applicable for most auction models.

We present the algorithm for a general setting where β contains all the r model parameters
and D denotes the available data. Consider now setting a subset of the elements in β to zero
(any other value is also possible). Let J = (j1, ..., jr) be a vector of binary indicators such that
ji = 0 iff the ith element of β is zero. We shall here for simplicity assume that the elements of J
are independent a priori with Pr(ji) = π for all i, so that π is the prior probability of including
the ith covariate in the model. The following algorithm samples β and J simultaneously using
an extended Metropolis-Hastings algorithm with a proposal density of the form

f(βp,Jp|βc,Jc) = g(βp|Jp, βc)h(Jp|βc,Jc),
where βp and Jp are the proposed values for β and J , βc and Jc are the current values for β
and J , h is the proposal distribution for J , and g is the proposal density for β conditional on
Jp. The Metropolis-Hastings acceptance probability then becomes

a[(βc,Jc)→ (βp,Jp)] = min
(

1,
p(D|βp,Jp)p(βp|Jp)p(Jp)/g(βp|Jp, βc)h(Jp|βc,Jc)
p(D|βc,Jc)p(βc|Jc)p(Jc)/g(βc|Jc, βp)h(Jc|βp,Jp)

)
,

where p(D|βp,Jp) is the likelihood of the observed data conditional on β with zeros given by
Jp, p(β|J ) is the prior of the non-zero elements of β, and p(J ) is the prior probability of J .

In any given iteration of the algorithm, we propose Jp by going through all β-coefficients
one by one and with probability 0.2 change the indicator of the corresponding covariate (i.e.
if currently j = 1, then we propose j = 0 and vice versa). Note also that the acceptance
probability for these updates simplifies to

(C.1) a[(βc,Jc)→ (βp,Jp)] = min
(

1,
p(D|βp,Jp)p(βp|Jp)p(Jp)/g(βp|Jp, βc)
p(D|βc,Jc)p(βc|Jc)p(Jc)/g(βc|Jc, βp)

)
.
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One can also consider an additional type of move by randomly picking a pair of covariates (one
currently in the model and the other currently not in the model) and propose a switch of their
corresponding indicators. More sophisticated ways to propose are also easily implemented,
e.g. the adaptive scheme in Nott and Kohn (2005), where the history of J -draws is used to
adaptively build up a proposal for each indicator.

The proposal density g(βp|Jp, βc) is obtained as follows. First, in a model with all covariates
included, we approximate the posterior with the t(β̂,−H−1, h) density described in Section
3.2 for the case without variable selection. We then propose βp|Jp from this multivariate t
distribution conditional on the zero restrictions dictated by Jp. Assume for notational sim-
plicity that the elements in β has been rearranged so that β = (β′0, β

′
p)
′ where β0 are the p0

zero-restricted elements of β under Jp, and βp are the non-zero parameters. Decompose β̂ and
P = −H−1 conformably with the decomposition of β as

β̂ = (β̂′0, β̂
′
p)
′

P̂ =
(
P00 P0p

Pp0 Ppp

)
.

Using result from the conditional distributions of subsets of multivariate-t variables (see e.g.
Bauwens, Lubrano and Richard (1999, Theorem A.16)), we can now propose βp conditional on
β0 = 0 from

βp|(β0 = 0) ∼ t[β̂p + P−1
pp Pp0β̂0, Ppp, c(β0), v + p0].

c(β0) = 1 + β̂′0(P̂00 − P̂0pP̂
−1
pp P̂p0)β̂0,

using the parametrization of the t distribution in Bauwens et al. (1999). A similar algorithm
has recently been suggested by Giordani and Kohn (2010) in their adaptive sampling frame-
work. They propose to use a mixture of multivariate normals as a proposal density rather than
a multivariate t.

Appendix D. Description of eBay covariates

• Book. The price of the item as reported by the Internet coin seller Golden Eagle Coins
at http://www.goldeneaglecoin.com.
• MinBlem. Dummy variable, coded as 1 if the proof set had a minor damage on the
box or packaging according to a subjective assessment of the item using the seller’s
description and pictures of the auctioned object.
• MajBlem: Dummy variable, coded as 1 if at least one coin were missing in the package
or if other major imperfections were present.
• Power. Dummy variable, coded to be 1 if the seller is ranked among the most successful
sellers in terms of product sales and customer satisfaction on eBay.
• ID. Dummy variable, coded to be 1 if the seller’s identity has been established by
cross-checking his contact information in consumer and business databases.
• Sealed. Dummy variable, coded to be 1 if the proof set is sealed in its original envelope.
• NegScore. Dummy variable, coded to be 1 if more than 1% of the seller’s feedback
score from buyers have been negative.
• MinBidShare. Seller’s reservation price as a fraction of the object’s book value.
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