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Abstract. We propose a general class of �exible models for longitudinal data with special

emphasis on discrete-time survival data. The model is a �nite mixture model where the

subjects are allowed to move between components through time. The time-varying proba-

bilities of component memberships is modeled as a function of subject-speci�c time-varying

covariates. This allows for interesting within-subject dynamics and manageable computa-

tions even with a large number of subjects. Each parameter in the component densities

and in the mixing function is connected to its own set of covariates through a link func-

tion. The models are estimated using a Bayesian approach via a highly e�cient Markov

Chain Monte Carlo (MCMC) algorithm with tailored proposals and variable selection in

all set of covariates. The focus of the paper is on models for discrete-time survival data

with an application to bankruptcy prediction for Swedish �rms, using both exponential and

Weibull mixture components. The dynamic mixture-of-experts models are shown to have an

interesting interpretation and to dramatically improve the out-of-sample predictive density

forecasts compared to models with time-invariant mixture probabilities.
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1. Introduction

We propose a mixture model for �exible modeling of longitudinal data. Our model belongs

to the mixture-of-expert type of models �rst proposed by Jacobs et al. (1991) and Jordan

and Jacobs (1994). In particular, we extend the class of Generalized Smooth Mixture (GSM)

models presented in Villani et al. (2009) and Villani et al. (2012) to a longitudinal data

setting. Villani et al. (2012) generalizes the Smoothly Mixing Regression (SMR) model in

Geweke and Keane (2007). The key features of our approach are: i) subjects are allowed to

move between mixture components over time, ii) the within-subject dynamics is modeled by

letting the component membership probabilities be functions of subject-speci�c time-varying

covariates, and iii) an e�cient Bayesian inference methodology using MCMC with variable

selection.

Our methodology applies to essentially any mixture components, but most of the article

will focus on mixture components for discrete-time survival (duration) data, in particular

the exponential and Weibull components used in our application to �rm bankruptcy. For a

general introduction to survival models, see e.g. Miller et al. (1981). Ibrahim et al. (2005)

provides an introduction and overview of Bayesian modeling in the �eld.

Finite mixtures are useful for modeling unobserved heterogeneity in many �elds, see the

examples in the referenced articles above, and Frühwirth-Schnatter (2006) for a general in-

troduction to �nite mixture models. Mixture models are also used in model based clustering.

Given the longitudinal dimension of our data this paper is closely related to clustering panel

data in form of relatively short time series. A recent survey on model based clustering of

time series is given in Frühwirth-Schnatter (2011). A main di�erence between this literature

and our approach is that we allow for the possibility of subjects to move across clusters over

time.

Our main focus in this paper is on using dynamic mixture-of-experts models for analyzing

survival data. One of the �rst regression models for survival data is the Proportional Hazards,

or Cox regression model introduced in Cox (1972). The restrictiveness of the proportionality

assumption and the inability to capture unobserved heterogeneity has lead researches to
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develop more �exible models. Frailty models, which is a variant of a multiplicative random

e�ects model, are much used in the literature. Introducing an unobserved random variable

(the frailty) which acts multiplicative on the hazard can give a heterogeneous e�ect that vary

across individuals or groups. A common practice is to assume a parametric distribution for

the continuous frailty. Early references are Lancaster (1979) and Vaupel et al. (1979). Mosler

(2003) surveys the theory and applications of these models in Econometrics. Recent work by

Huynh and Voia (2009) assumes a �nite mixture for the frailty distribution to capture a wide

variety of functional shapes. Alternatively, �nite mixture models o�ers a rich model class

where some of the restrictive assumptions in the traditional survival models can be relaxed.

McLachlan et al. (1994) provides a survey on the role of �nite mixture models in survival

analysis. Finite mixture of survival models are closely related to frailty models which is most

easily seen when the distribution of frailty is discrete and �nite. The intuitive interpretation

of �nite mixtures combined with the capability of modeling frailties makes it an interesting

framework for analyzing complex data structures in survival analysis.

In most economics and social sciences applications, time is measured discretely (Allison,

1982). Examples include labor economics when studying the duration of individual unem-

ployment measured e.g. in weeks (Carling et al., 1996), or educational research where the

data is often recorded in school years (Singer and Willett, 1993). In our application we

model time to bankruptcy (in years) for nascent �rms. There are several advantages with

the discrete time framework. One is that time dependent covariates easily can be incor-

porated. Another is that the proportionality assumption in Cox regression models can be

relaxed by allowing the e�ect of a predictor to be di�erent across time periods. Singer and

Willett (1993) provides more arguments why one should consider discrete time survival mod-

els. Heterogeneity has not been explored as much in the discrete time framework. Notable

exceptions are the continuous frailties in Xue and Brookmeyer (1997) and the �nite mixture

approach in Muthén and Masyn (2005).

Our article extends Muthén and Masyn (2005) in the following directions. First, we

allow subjects to be classi�ed to potentially di�erent mixture components at each time
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period (dynamic mixture) while Muthén and Masyn (2005) restrict each subject to belong

to one and only one mixture component during its exposure time (static mixture). Second,

we use the Bayesian paradigm and Markov Chain Monte Carlo (MCMC) to estimate the

model. This allows us to use Bayesian variable selection to obtain model parsimony and give

insights on importance of covariates in di�erent parts of the model. Our approach can also

be straightforwardly extended to include the general latent variable (factor analysis) part in

Muthén and Masyn (2005).

This paper is organized as follows. Section 2 presents the longitudinal mixture-of-experts

models in a general setting. In Section 3 we review necessary concepts of survival analysis

in continuous and discrete time and introduce two models for the discrete survival time.

The structure of the data and likelihood is particularly highlighted. Section 4 applies the

framework in Section 2 to discrete-time survival models. Section 5 discusses the inference

methodology. Priors are introduced in all parts of the model and the general MCMC algo-

rithm with variable selection is presented. Section 6 illustrates the methodology by modeling

the bankruptcy risk for nascent Swedish �rms. Section 7 discusses future research and con-

cludes.

2. mixture-of-experts models for Longitudinal data

In the standard non-longitudinal framework a smooth �nite mixture density with K com-

ponents can be formulated as

p(yi|xi, β, γ) =
K∑
k=1

wk(zi|γk)pk(yi|xi, βk), i = 1, ..., n,(2.1)

where wk(z|γk) denotes the mixing probability and can be interpreted as the prior prob-

ability of belonging to the kth component density. Both x and z are vector of covariates

which may be overlapping. When wk(z|γk) is the multinomial logit with γ1 = 0 this is the

Generalized Smooth Mixture (GSM) model in Villani et al. (2012). To simplify inference

with the Gibbs sampler, augmented data s1, s2, . . . sn is introduced so that si = k means

that the ith observation belongs to the kth component. The model in Equation (2.1) can
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then be formulated as

yi|(si = k, xi, βk) ∼ pk(yi|xi, βk)

P (si = k|zi, γk) = wk(z|γk).

To extend to a longitudinal mixture the following notation is introduced. Assume sub-

ject i has been observed over ni time periods. Let yi = (yi1, . . . , yini)
T ∈ Rni×1, xi =

(xi1, . . . , xini)
T ∈ Rni×px and zi = (zi1, . . . , zini)

T ∈ Rni×pz . Let vi ∈ Rpv×1 denote the time-

invariant predictors and si ∈ {1, . . . , K}ni where sij = k if the subject belongs to component

k at time period j. The longitudinal dimension allows for two main speci�cations of s:

sij = k for all j or sij = kj where kj ∈ {1, 2 . . . K}. We refer to the former as a static mixture

and the latter as a dynamic mixture.

Static mixture. The static mixture model is a �nite mixture on the joint distribution of yi,

i.e.

p(yi1, yi2, ..., yini) =
K∑
k=1

wkpk(yi1, yi2, ..., yini)

=
K∑
k=1

wkpk(yi1)pk(yi2|yi1) · · · pk(yini |yi1, yi2, ..., yi(ni−1))(2.2)

and the dependence on covariates and parameters is suppressed everywhere to save space.

The covariates xij and vi both enter in the component models, while the mixing function is

only a function of vi;it is clearly not possible to have time-varying covariates in the mixing

function in a static mixture. The mixing probabilities are modeled with the multinomial

logit

wk(vi) =
exp(vTi γk)∑K
l=1 exp(vTi γl)

(2.3)

where γk ∈ Rpv×1 with γ1 = 0 for identi�cation. The model in Equation (2.2) expresses the

joint distribution. It is straightforward to show that the density at period t conditional on
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previous values is given by

p(yit|yi1, . . . , yi(t−1)) =

∑K
k=1wkpk(yi1) . . . pk(yi(t−1)|yi1, . . . , yi(t−2))pk(yit|yi1, . . . , yi(t−1))∑K

k=1wkpk(yi1) . . . pk(yi(t−1)|yi1, . . . , yi(t−2))
.

(2.4)

In contrast to the dynamic mixture this model lacks the nice interpretation that the condi-

tional distribution at any given time period is a mixture of conditional distributions. The

latent variable formulation of the model in Equation (2.2) is

yi|si = k, xi ∼ pk(yi1) . . . pk(yi(ni−1)|yi1, . . . , yi(ni−2))pk(yini |yi1, . . . , yi(ni−1))

P (si = k|vi) =
exp(vTi γk)∑K
l=1 exp(vTi γl)

.(2.5)

The assumption of this model is that given the component membership, responses are only

associated with the predictors in xi.

Dynamic mixture. Restricting a subject to a single component over time may not be realistic

in some situations because individual behavior may not be homogeneous over time. To

exemplify, consider the modeling of �rm bankruptcy. If the components can be interpreted

as high versus low risk for bankruptcy, the assumption of being constantly a risky or a safe

�rm is unrealistic. The economic surrounding and individual �nancial variables do change

over time which is likely to make the �rm more or less risky. It is therefore sometimes useful

to let subjects be classi�ed at each time period.

The obvious approach to a dynamic mixture is to let si = {si1, . . . , sini} follow a (hidden)

Markov chain, see Baum and Petrie (1966) and Kim and Nelson (2003). The posterior

sampling of si is then performed sequentially from the conditional distribution at each time

point using e.g. Sequential Monte Carlo (SMC) (Doucet et al., 2000). Such an approach is

computationally infeasible in many longitudinal applications since the SMC would have to

be performed for each of the subjects, which is clearly not an option in our application to

�rm bankruptcy. An alternative approach is to sample directly from the joint distribution for
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each si sequence (Franzén, 2008), but the sample space of si grows dramatically with K and

the number of time periods so P (si|yi, xi, zi) quickly becomes computationally intractable.

To overcome these problems we suggest the following approach. Let {si1, . . . sini} be an

independent sequence conditional on the path of time-varying covariates zi, i.e.

P (si1 = k1, . . . sini = kni|zi1, . . . zini) = P (si1 = k1|zi1) . . . P (sini = kni |zini)(2.6)

for 1 ≤ ki ≤ K. The temporal dependence of si is thus induced by the covariate path itself.

The strength of this approach is that given the covariates (and other model parameters) the

component allocations can be sampled independently for all observations and time periods

in the Gibbs sampler, see Section 5.2.

The dynamic mixture model is formulated as

p(yi1, . . . , yi(ni−1), yini) = p(yi1) . . . p(yi(ni−1)|yi1, . . . , yi(ni−2))p(yini |yi1, . . . , yi(ni−1)),

where

(2.7) p(yit|yi1, . . . , yi(t−1)) =
K∑
k=1

wkitpk(yit|yi1, . . . , yi(t−1)), t = 1, ..., ni

and

wkij =
exp(zTijγk)∑K
l=1 exp(zTijγl)

,(2.8)

γk ∈ Rpz×1 with γ1 = 0 for identi�cation. Time invariant predictors vi might also be included

in zi. Persistence in component allocations over time can be achieved by de�ning zij as an

exponential moving average of the time dependent covariates xij

zit = αxit + (1− α)zi(t−1),

and zi1 = xi1, where 0 ≤ α ≤ 1, and α = 1 corresponds to no smoothing. Persistence

prevents a sudden change in the explanatory variables to trigger an immediate reallocation
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of the subject; a sudden decrease in a �rm's pro�ts may not immediately make it a high risk

�rm, but several consecutive years of losses might.

The latent variable formulation of Equation (2.7) is

yij|sij = k, xij ∼ pk(yij|yi1, . . . , yi(j−1))

P (sij = k|zij) =
exp(zTijγk)∑K
l=1 exp(zTijγl)

.(2.9)

The dynamic mixture has the interpretation that the conditional density at a given time

period is a mixture of densities, as can be seen from Equation (2.7). The assumption of

this model is that given the component allocation at each time-period, responses are only

associated with the x predictors at the given time-point.

3. Survival analysis

This section gives a brief review of concepts in continuous time survival analysis and some

background on the extension to discrete time models emphasizing the construction of the

likelihood.

3.1. Continuous time framework. Let the random variable T c denote the time to some

unrepeatable event. Assume for the moment that T c is continuous with sample space {t :

t ≥ 0} and has a distribution f(t|λ) parametrized by some parameter vector λ. Subject i

is right-censored if the event has not been observed before the censoring time T ∗, and no

further information about subject i is available after T ∗. T ∗ is typically the end of the study,

but some subject may leave the study early so T ∗ may vary across subject. Introducing ci = 1

if the ith subject is censored at time T ∗i and ci = 0 otherwise, the likelihood decomposes as

L(λ) =
n∏
i=1

f(ti|λ)1−ciS(T ∗i |λ)ci .(3.1)
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where S(t|λ) = P (T c > t|λ) is the survival function. A common way of representing the

distribution of T c is through the hazard function

h(t|λ) = lim
∆t→0

P (t ≤ T c < t+ ∆t|T c ≥ t, λ)

∆t
,

=
f(t|λ)

S(t|λ)
.(3.2)

which is the instantaneous rate of experiencing the event given that it has not been experi-

enced yet. The survival function relates to the hazard function through

S(t|λ) = exp(−
ˆ t

0

h(u|λ)du).(3.3)

The extension to regression is made by including dependence of the distribution of T c on

covariates. As an example the Proportional Hazards model Cox (1972) is obtained by

h(t|λ, x) = h0(t) exp(xTβ) where x is the covariate vector, β the regression parameters,

and h0(t) is the baseline hazard.

3.2. Discrete time framework. Survival data are often observed in discrete time, for

example monthly or yearly, see e.g. Allison (1982) and Singer and Willett (1993). Assume

that a study is observed over J periods which can be divided as (0, t1], (t1, t2], . . . (tJ−1, tJ ].

Let T c denote the continuous random variable introduced in Section 3.1. Let T ∈ {1, 2, ...}

be the discrete random variable recording the time period where the event occurs, i.e. T = j

if T c ∈ (tj−1, tj]. It is convenient to express the joint likelihood of the data in terms of the

hazard, which in discrete time is a probability hj = P (T = j|T ≥ j). It will later be useful

to express the hazard in terms of the survival function S(a) = P (T > a)

hj =
P (T > j − 1)− P (T > j)

P (T > j − 1)
= 1− S(j)

S(j − 1)
,

(3.4)

where S(a) may be computed by Equation (3.3) with h(t|λ) being interpreted as the hazard

rate of the continuous random variable underlying the discrete time variable T . Furthermore
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the likelihood terms are expressed in form of hazards as

(3.5) P (T = j) =

(
j−1∏
k=1

(1− hk)

)
hj,

if the subject experienced the event in time period j and

(3.6) P (T > j) =

j∏
k=1

(1− hk)

if the subject left the sample after time period j without experiencing the event. Let the

ith subjects' hazard probability at period j be denoted hij(xij). Assuming n independent

subjects, the likelihood is expressed as

L =
n∏
i=1

ni∏
j=1

h(xij)
yij(1− h(xij))

1−yij ,(3.7)

where

yij =

 0 if subject i does not experience the event at period j,

1 if subject i does experience the event at period j.

Singer and Willett (1993) and Shumway (2001) note that this likelihood has the same form

as regression for binary data with h−1 as the link function. Note that the recording of data

is done through the binary representation of the response - if subject i has ni periods then

the observation is recorded as a sequence {yij, xij}nij=1. Whenever the subject is censored y

consist of only zeros, and if the event is experienced the sequence is terminated by 1 at the

time period where the event took place.

3.3. Survival models in discrete time. In this paper two di�erent models are considered;

a single parameter and a two-parameter model. The �rst, the exponential model, is derived

by assuming that T c ∈ Exp(λ) which gives h(t|λ) = λ. Since λ > 0 the link g(λ) = log(λ)

is suitable. Then

h(xij) = 1− exp(− exp(α + xTijβ)(tij − ti(j−1))).
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The second, the Weibull model, is derived by assuming the Weibull distribution for T c,

parametrized by f(t|λ, ρ) = ρλtρ−1 exp(−λtρ) which implies S(t|λ, ρ) = exp(−λtρ) and there-

fore

h(λij, ρij) = 1− exp(−λij(t
ρij
ij − t

ρij
i(j−1))).

Because both λ and ρ are positive the dependence on the covariates are modeled through

log(λij) = αλ + xTλijβλ

log(ρij) = αρ + xTρijβρ.

Note that the hazard probability of the Weibull model depends on the level of t, while it

only depends on the di�erence in t in the exponential model. Both these models can easily

be extended to allow for an e�ect ηj to model �exible hazards, see our application in Section

6.

4. Mixture-of-experts model for survival data

This section presents the survival models that will be used as the components in the �nite

mixture. The dynamic and static mixture of survival models are presented using results in

Section 2.

4.1. Component models. We characterize the distribution by the hazard probability. The

hazard probability will depend on a set of model parameters φ1, . . . , φL. As in Villani et al.

(2012) each parameter depends on a set of predictors through link functions gl(φl) = xTl βl

The expression of the likelihood of a given component is

L(β1, ..., βL) =
n∏
i=1

ni∏
j=1

h(xij|φ1, . . . φL)yij(1− h(xij|φ1, . . . φL))1−yij(4.1)

where φl = g−1
l (xTl βl).
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4.2. Smooth mixtures of survival models. Section 2 presents the dynamic and static

mixture in a general setting. Here it is restricted to discrete time survival data which is

recorded as the binary vector yi = {0, 1}ni for the ith subject.

Static mixture. The general expression for this model is given in Equation (2.2). This is the

latent class model considered in Muthén and Masyn (2005), but without the general latent

variable part and not restricted to the logit hazard model. The interpretation is that the

mixture is on the joint distribution of yi, i.e.

p(yi1 = 0, . . . , yi(ni−1) = 0, yini = ci) =
K∑
k=1

wkpk(yi1 = 0, . . . , yi(ni−1) = 0, yini = ci)

=
K∑
k=1

wk

(
ni−ci∏
j=1

(1− hkij)

)
(hkini)

ci(4.2)

where ci ∈ {0, 1} is the censor indicator and the dependence on covariates and parameters

is suppressed everywhere to save space. In the component model hkij = hk(xij, vi) while the

mixing function wk = wk(vi). The mixing probabilities are modeled with the multinomial

logit as in Equation (2.3).

The hazard probability at period t is the equivalent of the conditional density in Equation

(2.4), i.e.

p(yit = 1|yi(t−1) = 0) =

∑K
k=1wk

(∏t−1
j=1(1− hkij)

)
hkit∑K

k=1wk
∏t−1

j=1(1− hkij)
.(4.3)

Note that the overall hazard at any given time period is not a mixture of hazard probabilities.

The marginal e�ect of a covariate xt (which does not enter in the mixing function) is easily

computed as

d

dxt
ht(xt) =

∑K
k=1 wk

∏t−1
j=1(1− hkij)

(
d
dxt
hkt (xt)

)
∑K

k=1wk
∏t−1

j=1(1− hkij)
.
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The latent variable formulation of the model in Equation (4.2) is

yi|si = k, {xij}nij=1 ∼

(
ni−ci∏
j=1

(1− hkij(xij))

)
(hkini(xij))

ci

P (si = k|vi) =
exp(vTi γk)∑K
l=1 exp(vTi γl)

.(4.4)

Dynamic mixture. The general dynamic mixture model in Equation (2.7) can be formulated

in terms of hazards as

p(yi1 = 0, . . . , yini = ci) = p(yi1 = 0) . . . p(yini = ci|yi(ni−1) = 0)

=

(
K∑
k=1

wki1(1− hki1)

)
. . .

(
K∑
k=1

wkini(h
k
ini

)ci(1− hkini)
1−ci

)
(4.5)

where hkij = hk(xij, vi) and w
k
ij follows the multinomial model in Equation (2.8). The dynamic

mixture thus has the interpretation that the hazard at a given time period is a mixture of

hazards.

The marginal e�ect of covariate xt, on the hazard when zt = αxt + (1− α)f(xt−1, . . . x1),

is given by

d

dxt
ht(xt) =

K∑
k=1

α
d

dzt
(wk(zt))h

k
t (xt) + wk(zt)

d

dxt
hkt (xt),

where the derivative of the multinomial logit is

d

dzt
(wk(zt)) = wk(zt)

[
γk −

K∑
l=1

wk(zt)γl

]
.

The latent variable formulation of Equation (4.5) is

yij|sij = k, xij ∼

 1− hkij(xij), yij = 0

hkij(xij), yij = 1

P (sij = k|zij) =
exp(zTijγk)∑K
l=1 exp(zTijγl)

.(4.6)
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5. Inference

We adopt a Bayesian approach to inference and use a Metropolis-within-Gibbs sampler

with variable selection to sample from the posterior distribution. The sampler utilizes the

gradient and Hessian of the full conditional posterior to construct tailored proposals.

This section is organized as follows. First, prior distributions are introduced in all parts

of the model. These priors are simple and the user only needs to specify prior beliefs about

scalar parameters. Then the general MCMC scheme is illustrated, followed by a section

describing the algorithm that construct tailored proposals for e�cient inference. Finally, the

method for choosing the number of components is explained.

5.1. Prior Elicitation.

5.1.1. Components. We use the prior construction initially developed in Ntzoufras et al.

(2003) for the Generalized Linear Model (GLM) and subsequently re�ned and extended

in Villani et al. (2012) to GSM models. Assume a component model with a single model

parameter λ and a link function g such that g(λ) = αλ + xTβλ. We �rst discuss the prior

on the intercept. Start by standardizing the covariates to have mean zero and unit standard

deviation. The intercept αλ is then g(λ) at the mean of the original covariates. Assume that

αλ ∼ N(mλ, s
2
λ) and the task is to �nd mλ and s

2
λ by eliciting a suitable prior on the model

parameter λ with mean and variance speci�ed by the user, say E(λ) = m∗λ and V (λ) = s∗2λ .

In the simplest example, with the identity link, λ ∼ N(m∗λ, s
∗2
λ ) transforms directly to

αλ ∼ N(mλ, s
2
λ) with mλ = m∗λ and s2

λ = s∗2λ . In the case with a log-link, a suitable

prior on λ is the log-normal density with mean m∗λ and variance s∗2λ which transforms to

αλ ∼ N(mλ, s
2
λ) with s

2
λ = log

[( s∗λ
m∗
λ

)2
+ 1
]
and mλ = log(m∗λ)− s2

λ/2. For more complicated

links it is a simple exercise to derive the implied distribution of αλ and then use numerical

optimization methods to �nd the parameters in the normal prior, mλ and sλ, that minimizes

the Kullback-Leibler distance between the distribution of λ and α.

The regression coe�cients in βλ are assumed to be a priori independent of αλ with βλ ∼

N(0, cλΣλ). Here Σλ = (W T D̂λW )−1, where W is the matrix of covariates excluding the
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intercept and D̂λ is the conditional Fisher information for λ evaluated at the prior modes of

αλ and βλ, which is the vector β̂λ = (mλ,0
T )T . Thus D̂λ depends only on the constant mλ.

The conditional Fisher information for λ = (λ1, . . . λn)T is a diagonal matrix with elements

−E
[
∂2 log p(yi|λi)

∂λ2
i

]
g′λ(λi)

−2.

Setting cλ = n gives a unit information prior, i.e. a prior that carries the information equiv-

alent to a single subject from the model. For the models in our framework D̂λ can not be

obtained analytically but is easily computed by simulation. It is straightforward to extend

the argument to elicit priors for more than one model parameter. For details and examples

see Villani et al. (2012).

We allow for variable selection in all covariate sets in the model. For a given component

let the indicator variable I = {I1, . . . Ipx} be de�ned such that Ij = 0 means that the jth

element in β is zero and the corresponding covariate drops out. Let βI be the vector of

non-zero coe�cients, and for any I let Ic denote its complement. We make the assumption

that the intercept is always in the model. Let β ∼ N(0, cΣ) as discussed above for the

regression coe�cients. Conditioning on the variables that are in the model we obtain

βI |I ∼ N
[
0, c(ΣI,I − ΣI,IcΣ

−1
Ic,IcΣ

T
Ic,I)

]
and βIc|I is identically zero.

5.1.2. Mixing function. For the vector γ = (γT2 , . . . γ
T
K)T (recall that γ1 = 0) we assume

γ ∼ N(0, cγI). It is also possible to use a prior with non-diagonal structure as above but

this is not pursued here. Variable selection is done similarly as above by introducing the

indicator IZ for γ.

5.1.3. Variable selection indicators. For both the component and the mixing parts of the

model the indicators are assumed to be a priori independent and Bernoulli distributed, i.e

P (Ii = 1) = π, 0 ≤ π ≤ 1 and π is allowed to be di�erent for each model parameter. It is
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straightforward to let π be unknown and estimate it in a separate updating step as in Kohn

et al. (2001).

5.2. General MCMC scheme. Villani et al. (2009) experimented with di�erent algorithms

for �nite mixture models in a related setting. Their preferred algorithm is the one used in

this paper. The algorithm is a Metropolis within Gibbs sampler that draws the regression

parameters and variable selection indicators jointly. Assume a component density with L

di�erent model parameters and K components. The following three blocks are sampled

(1) s

(2) γ, IZ

(3) {(β1, I1), . . . , (βL, IL)}Kk=1.

How to sample s depends if it is a static or dynamic mixture. For the static mixture

P (si = k|xi, vi, yi) ∝

(
ni−ci∏
j=1

(1− hk(xij))

)
(hk(xini))

ci
exp(vTi γk)∑K
l=1 exp(vTi γl)

(5.1)

independently for i = 1, . . . , N . For the dynamic mixture, the full conditional of sij is

independent of all other sij, i = 1, ..., n and j = 1, ..., ni, and is of the form

P (sij = k|xi, zi, yi) ∝


hkij

exp(zTijγk)∑K
l=1 exp(zTijγl)

if ci = 1 and j = ni

(1− hkij)
exp(zTijγk)∑K
l=1 exp(zTijγl)

otherwise.
(5.2)

Note that this allows us to sample sij independently for all i and j so this updating step is

very fast in comparison with Markov models of sij.

Conditional on s, Step 2 is a multinomial logistic regression with variable selection. It is

possible to apply a generalization of the algorithm described in the next section to handle

this updating step e�ciently, see Villani et al. (2009) for details.

5.3. Variable-dimension �nite step Newton proposals. This section presents how to

construct the tailored proposals for any component model presented in Section 4.1 based

on the algorithm in Villani et al. (2009) and Villani et al. (2012), which generalizes earlier

algorithms in Gamerman (1997), Qi and Minka (2002) and Nott and Leonte (2004). For
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clari�cation the algorithm is �rst presented in the case with no variable selection and then

extended. The only requirement is that the likelihood part of the posterior can be factorized

as

p(β|y) =
N∏
i=1

p(yi|φi)p(β)(5.3)

where φi = g−1(xTi β). Note that there can be more than one model parameter and then

p(β|y) is a full conditional posterior distribution and the algorithm can be used as a Metropolis-

within-Gibbs step. After a proper relabeling of the product in the likelihood in Equation

(4.1) it has the same form as the likelihood part in Equation (5.3). The proposal distribution

is tailored using an approximate posterior mode and the curvature around that mode. The

approximate mode is found by taking a few steps with Newton's algorithm. To implement

the algorithm we need the following results from Lemma 1 in Villani et al. (2012)

∂ log p(y|β)

∂β
= XT g̃(5.4)

where X is the covariate matrix, g̃ = (g̃1, . . . , g̃n)T ,

g̃i =
∂ log p(y|φi)

∂φi
g′(φi)

−1.

The outer-product approximation of the Hessian is

∂2 log p(β|y)

∂β∂βT
≈ XTDX,(5.5)

where D = diag(g̃2
i ). Villani et al. (2012) also derives expression for the exact Hessian but we

have found the outer-product approximation to be more numerically stable for our problem.

Note that the Lemma only requires derivatives for the scalar parameters of the log-likelihood

which makes it possible to write general computer code and the user is only required to

compute analytical derivatives for one-dimensional quantities. Newton's algorithm is

βr+1 = βr − A−1
r sr, r = 0, . . . , R(5.6)
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where sr and Ar is the gradient and Hessian of the log posterior, respectively. Using the

results above we have

sr = XT g̃ +
∂ log p(β)

∂β

Ar = XTDX +
∂2 log p(β)

∂β∂βT
.

Start with β0 = βc and let β̂ be the vector obtained after R Newton steps. This is not

necessarily the mode but is often close because the previously accepted draw is used as

initial value. Setting R = 1, 2 or 3 is usually su�cient. Let βc ∈ Rpx×1 denote the current

and βp ∈ Rpx×1 the proposed posterior draw. The proposal distribution is a multivariate

t-distribution with ν ≥ 2 degrees of freedom, i.e

βp|βc ∼ tν

[
β̂,−

(
∂2 log p(β|y)

∂β∂βT

) ∣∣∣∣
β=β̂

]
.

To extend the algorithm to variable selection the pair (β, I) is proposed jointly conditional

on the previously accepted parameter and indicator. This proposal can be factorized as

J(βp, Ip|βc, Ic) = J1(βp|Ip, βc)J2(Ip|βc, Ic)(5.7)

J1 is a generalization of the proposal for βp above and J2 is the proposal for the indicators.

Consider �rst the β proposal. Since βc and βp may be of di�erent dimensions we use the

following generalized Newton algorithm from Villani et al. (2012)

βr+1 = A−1
r (Brβr − sr), r = 0, . . . , R(5.8)

where

sr = XT
r+1g̃ +

∂ log p(β)

∂β

Ar = XT
r+1DXr+1 +

∂2 log p(β)

∂β∂βT

Br = XT
r+1DXr +

∂2 log p(β)

∂β∂βT
,
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where Xr is the matrix with columns corresponding to the non-zero coe�cients in βr, and

the likelihood part of the expressions are evaluated at β = βr. The prior parts are evaluated

at the entire vector β (including the zero parameters) and then the sub-vector conformable

with βr+1 is extracted from the result. Note that after the �rst step the parameter no

longer changes dimension and the generalized Newton algorithm reduces to the usual Newton

algorithm.

Following Villani et al. (2009) and Villani et al. (2012) we choose a simple proposal of I

where a subset of the indicators is randomly selected and a change of the selected indicators

is proposed, one variable at a time.

With these proposals the acceptance probability in the Metropolis Hastings algorithm is

α[(βc, Ic)→ (βp, Ip)] = min

(
1,
p(y|βp, Ip)p(βp|Ip)p(Ip)/J1(βp|Ip, βc)J2(Ip|βc, Ic)
p(y|βc, Ic)p(βc|Ic)p(Ic)/J1(βc|Ic, βp)J2(Ic|βp, Ip)

)
.

The proposal density for β at the proposed point J1(βp|Ip, βc) is the multivariate t-density

with mode β̂ and covariance matrix evaluated at β̂, where β̂ is obtained by iterating Equa-

tion (5.8) with β0 = βc. The proposal density at the current point J1(βc|Ic, βp) is also a

multivariate t-density but with mode β̃ and covariance matrix evaluated at β̃, obtained from

the same iteration scheme but this time from initial value β0 = βp. The proposal density for

I at the current and proposed is the same for this simple proposal.

It is well-known that �nite mixtures have identi�cation problems because the likelihood

is invariant with respect to permutations of the components. This is referred to as the label

switching problem, see Frühwirth-Schnatter (2006) and Jasra et al. (2005). When estimating

the predictive density this is not a problem (Geweke, 2007) but if the model is used for model

based clustering one needs to proceed with caution. Plotting the MCMC samples may reveal

if there was a problem with switching labels. Order conditions on the parameter space may

be imposed to avoid the identi�cation problem, see Jasra et al. (2005).
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5.4. Selecting number of components. The key quantity for selecting models in the

Bayesian framework is the marginal likelihood which allows to compute Bayes factors and

determine the plausibility of one model against another. However, the marginal likelihood

may be sensitive to the choice of prior distribution, especially when the prior information

is vague. For a general discussion see Kass (1993) and Richardson and Green (2002) in the

context of mixture models.

Following Geweke and Keane (2007) and Villani et al. (2009) we therefore choose models

based on the log predictive score (LPS). The LPS removes most of the dependence on the

prior by sacri�cing a subset of the data to train the prior to get a posterior based on the

training data. If ytest denotes the test data and ytrain the training data then the LPS is

p(ytest|ytrain) =

ˆ
p(ytest|θ)p(θ|ytrain)dθ

if the test and training data are independent conditional on θ, which is the case in our

longitudinal setting since the entire time series for a single subject belongs to either the

test or training set. To deal with the arbitrary division into training and test data, a cross

validated version of the LPS is used

LPS =
1

B

B∑
b=1

log p(ỹb|ỹ−b, x),

where ỹb is the test data in the bth test sample and ỹ−b denotes the training data. Since

subjects are independent conditional on the parameters

p(ỹb|ỹ−b, x) =

ˆ ∏
i∈τb

p(yi|θ, xi)p(θ|ỹ−b)dθ,

where τb contains the index set of the observations in the test data for the bth sample.

p(ỹb|ỹ−b, x) is easily computed by averaging
∏

i∈τb p(yi|θ) over the posterior draws p(θ|ỹ−b).

This requires sampling from B posterior distributions based on di�erent training data but

can be done independently for each data set so computer parallelism may be exploited.
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As a very rough rule of thumb, a di�erence in LPS between 3 and 5 between two models

is usually said to be strong evidence in favor of one model, and a di�erence of more than

�ve LPS points is very strong evidence (Kass and Raftery, 1995).

6. Application: modeling Firm Bankruptcy risk

6.1. Data. Our data set contains yearly observations for Swedish �rms in the time period

1991-2008 on bankruptcy status, �rm-speci�c variables and two macro variables. This data

set has been analyzed in Jacobson et al. (2011) and Giordani et al. (2013). Jacobson et al.

(2011) uses a similar approach as Shumway (2001) with a multi-period logit model extended

with macro economic variables. Giordani et al. (2013) extend by modeling the log odds

of the �rm failure probability as a non-linear function of covariates by introducing spline

functions. They show substantial improvements in predictive power as a result of accounting

for nonlinearities. The present paper consider the same predictors as in Giordani et al. (2013).

These are three �nancial ratios, two �rm-speci�c control variables and two macroeconomic

variables. The �nancial ratios are: EBIT/TA - earnings before interest and taxes over total

assets (earnings ratio); TL/TA - total liabilities over total assets (leverage ratio) and CH/TL

- cash and liquid assets over total liabilities (cash ratio). The control variables are: logTS

- logarithm of de�ated total sales and logAge - logarithm of �rm age in years since �rst

registered as a corporate. Finally the macroeconomic variables included are: GDPG - yearly

GDP-growth rate and Repo - the interest rate set by Sveriges Riksbank (the Central bank

of Sweden). For a thorough description of the data set, de�nition of bankruptcy, and other

details see Giordani et al. (2013).

6.2. Models. Although the spline model accounts for nonlinearities in a �exible way it

has some drawbacks. First, the model assumes additivity, i.e. it rules out interactions

between the covariates, and the extension to spline surface models with interactions is not

computationally realistic for a data set of our size. Second, it can be hard to interpret spline

models as the nonlinearities are not themselves explained by other covariates. Third, it

cannot account for heterogeneity coming from missing explanatory variables. Fourth, it can
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be computationally demanding for moderate to large data sets when doing Bayesian inference

via MCMC. This is because the dimension of the covariate space can increase dramatically

after expanding in basis functions. Variable selection can be used to keep the number of

e�ective parameters at a minimum, but increases the computational burden.

We propose to analyze bankruptcy data for Swedish �rms with a �nite mixture of survival

models . Such models can not only account for heterogeneity and nonlinearities, but also

gives an interpretation of these features in terms of covariates. A mixture model can also

be used for model based clustering which gives insights about �rm dynamics. The use

of covariates in the mixing function is extremely useful for understanding the role of the

di�erent mixture components. Many models in the bankruptcy literature are special cases

of our model. For example the models in Shumway (2001) and Jacobson et al. (2011) are

obtained with K = 1 and h(xij) =
expxTijβ

1+expxTijβ
. Likewise, the model in Giordani et al. (2013)

has the same structure but in addition x is expanded using spline functions. It is even

possible to have K > 1 and use splines simultaneously as in Villani et al. (2009) for the case

of heteroscedastic Gaussian regression. This paper omits splines to stress the fact that the

�nite mixture itself can capture the non-monotonic relationships. Adding spline terms in

the mixture components would also increase the computing time dramatically.

We want each �rm to have a sample space t = {1, 2, . . . }. This requires covariates for

each observed time period, so we are restricted to consider �rms with start-up year 1991

at the earliest. The analysis can be broaden to other type of �rms but then one has to

consider missing data issues so this is not pursued here. Thus the population studied in

the present paper consist of Swedish �rms that enter the sample in the period 1991-2008.

The dataset is huge with a total of 228, 589 �rms with 1, 670, 781 �rm-year observations,

on average 7.3 time-periods per �rm. To speed up computing times, we shall here analyze

a randomly selected subset of 11, 317 �rms with 82, 831 �rm-year observations, on average

7.3 time-period per �rm. We are currently working on an extension of the MCMC methods

with the potential of handling essentially arbitrarily large data sets, but this will be reported

elsewhere.
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We estimate and compare both static and dynamic mixtures and also a one-component

model with �exible baseline hazards. Two di�erent distributions for the survival time are

considered: exponential and Weibull as described in Section 4.1. The Weibull models are

used with and without covariates in the shape parameter ρ. Weibull models with covariates

in ρ seems to be novel in the literature.

In all dynamic mixtures, exponential moving average covariates have been used to achieve

persistence in component allocations over time, as described in Section 2. The choice α = 0.3

was justi�ed by computing for a range of values for α and then choose the one with highest

in-sample LPS score. The choice of α does not a�ect the relative comparison between the

dynamic and static models. It is also possible to estimate α from the data but this is not

pursued here.

6.3. Priors. The prior for λ is log-Normal with E (λ) = 0.01405 (the empirical hazard for

another subset of the data) and D (λ) = 0.05 for both the exponential and Weibull model.

The additional parameter ρ in the Weibull model is also assigned a log-Normal prior with

E (ρ) = 1 and D (ρ) = 5. Note that ρ = 1 gives the exponential model. Both priors are

rather non-informative considering the scale and the log-link. The prior utilizing the Fisher

information described in Section 5.1.1 is not needed in this particular example because of

the enormous amounts of data, and we therefore assume prior independence between the

regression coe�cients for simplicity. For the mixing function the shrinkage factor cγ = 10

gives a non-informative prior. The prior inclusion probability was set to 0.5 for each variable

and in all parts of the model.

6.4. Algorithmic considerations. We use the Metropolis-within-Gibbs algorithm with

tailored proposals and variable selection to sample from the posterior. The number of steps

in the variable dimension Newton algorithm R is set to 1 for the component model in all

parameters and 3 for the mixing function. The degrees of freedom in the multivariate t

proposal is set to 10, for both the component and the mixing part of the model. Each

variable selection indicator is proposed to change with probability 0.2 in each iteration of

the algorithm.
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For all combinations of models in Section 6.2, 20, 000 iterations with the MCMC algorithm

where performed and 5, 000 of them discarded as burn-in period, leaving 15, 000 draws from

the posterior distribution. The e�ciency of the sampler is measured by the ine�ciency

factor, which is de�ned as

IF = 1 + 2
L∑
l=1

ρl,

where ρl is the autocorrelation at the lth lag in the MCMC chain and L is an upper limit

such that ρl ≈ 0 when l > L. IF-values near 1 suggests a very e�cient algorithm. We

monitor convergence and measure performance using the cumulative means and IFs for the

predictive mean E(y|x) over a grid of x-values. The LPS was computed using B = 4 folds

of the data.

6.5. Results. As a �rst attempt to investigate the �t of the models, Figure 6.1 compares the

models' implied hazard function ht(xt) as function of time to the empirical hazard rate. The

models' hazard probabilities have been computed for each of the �rms in the panel and then

averaged across all �rms. The posterior uncertainty regarding the hazard is illustrated with

a box plot computed from the MCMC draws. In the case of the exponential model (left col-

umn), it is clear that the one-component model gives a very poor �t to the empirical hazard,

but then quickly improves as more components are added to the model. A two-component

exponential model gives a similar estimated hazard as a one-component model with �exible

baseline hazards (top right). The one-component Weibull model without covariates in the

shape parameter ρ produces a similar hazard as the one-component exponential model, but

by adding covariates in ρ the Weibull model can capture the non-monotonic relationship of

the empirical hazard fairly well.
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Figure 6.1. Hazard as a function of time for some models (box-plots) plotted
against the empirical hazard (red vertical lines).

Table 1. Log Predictive Score (LPS) for the static and dynamic mixtures
computed using 4-fold cross-validation. The best model for a given number of
components are in bold typeface.

Static mixtures Comp 1 Comp 2 Comp 3

Exponential -1784.83 -1712.16 -1687.54
Weibull -1785.17 -1725.08 -1683.60
Weibull covariates in ρ -1696.96 -1652.78 -1648.73

Dynamic mixtures Comp 1 Comp 2 Comp 3

Exponential -1784.83 -1618.51 -1570.20
Weibull -1785.17 -1605.00 -1561.97
Weibull covariates in ρ -1696.96 -1585.07 -1553.43

Exponential Flex Baseline -1686.41
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The assessment of model �t in Figure 6.1 is visually appealing, but is very much a rather

limited marginal view of the data. We will now turn to a comparison of the models' Log

Predictive Scores (LPS), to compare the out-of-sample forecasting performance of the mod-

els. Table 1 reports the LPS for static and dynamic mixtures, using either exponential or

Weibull components, with and without covariates in the Weibull shape parameter. The

most striking result in Table 1 is the dramatically better out-of-sample predictive perfor-

mance of the dynamic mixtures compared to their static counterparts. As an example,

the three-components dynamic mixture of exponentials is 117.34 LPS units better than

the three-components static mixture of exponentials. Table 1 also reports the LPS of the

one-component exponential model with a free baseline hazard parameter estimated for each

year. Using a �exible baseline hazard clearly improves the LPS, but also this model model

is clearly outperformed by the dynamic mixtures; the LPS di�erence between the �exible

baseline model and the three-component dynamic mixture of exponentials is 116.21. This

suggests that these data are truly heterogeneous even after controlling for age and size e�ects

and di�erent baseline hazards.

Another interesting observation from Table 1 is that the LPS for the Weibull model im-

proves considerably when allowing for covariates in both model parameters. This is true for

models with multiple components as well. Covariates in the shape parameter of the Weibull

is rare or perhaps even non-existent in practical work, but this is clearly an extension that

should be considered.

In all models, the LPS improves for each added component but the rate of improvement

decreases. It is worthwhile to mention that variable selection implies that adding components

does not necessarily give a more complex model. See the Lidar example in Li et al. (2011)

for a clear demonstration of how variable selection in mixture-of-experts models can be a

very e�ective guard against over�tting.

To illustrate some of the interpretations of our models, Tables 2-4 presents parameter

estimates for some selected one- and two-component models. Data have been standardized

to have zero mean and unit variance for all covariates, hence all parameter estimates are on
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the same scale. The posterior mean and standard deviation are computed conditional on the

covariate belonging to the model.

Table 2. Estimation results for exponential model with one component. IF:
min = 0.55, median = 1, max = 1.70.

Component 1

Intercept Earnings Leverage Cash Size Age GDPG Repo
Post Mean -4.397 -0.258 0.25 -1.174 -0.02 0.399 0.057 0.1
Post Std 0.045 0.019 0.018 0.11 0.023 0.033 0.033 0.029
Post Incl Prob - 1 1 1 0.012 1 0.051 0.837

Mean Acc Prob 0.404

Starting with the results for the one component exponential model in Table 2, we see

that the most signi�cant variables are cash, age, earnings, and leverage, all with a posterior

inclusion probability of unity. The variable selection e�ectively removes size, GDPG, and to

some extent Repo. In this model, a positive sign corresponds to increased hazard probability

as a variable increases, and vice versa. For the Weibull model with covariates in both

parameters in Table 3, the important covariates in ρ are cash and age, both with a posterior

inclusion probability 1 and for the rest of the covariates the inclusion probability is near

zero.

Table 3. Estimation results for Weibull model with one component and co-
variates in both parameters. IF: min = 0.92, median = 7.01, max = 14.5.

Parameter λ

Intercept Earnings Leverage Cash Size Age GDPG Repo
Post Mean -4.985 -0.265 0.213 0.81 -0.04 1.971 -0.02 0.057
Post Std 0.244 0.022 0.02 0.073 0.026 0.118 0.026 0.028
Post Incl Prob - 1 1 1 0.029 1 0.014 0.063

Mean Acc Prob 0.712

Parameter ρ

Intercept Earnings Leverage Cash Size Age GDPG Repo
Post Mean 0.231 0.021 -0.013 -1.07 -0.008 -0.782 -0.003 0.015
Post Std 0.093 0.015 0.014 0.071 0.008 0.04 0.009 0.009
Post Incl Prob - 0.007 0.01 1 0.002 1 0.004 0.016

Mean Acc Prob 0.788
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Moving to the dynamic mixture of two exponential components in Table 4 it is evident

that the most signi�cant covariates in the mixing function are age and cash. There is also a

posterior inclusion probability of 1 for GDPG and Repo, but the magnitude of their e�ects

are smaller. This means that the separation of the data into the two di�erent classes is

mostly determined by age and cash. Our parametrization is such that when age increases it

is more likely to belong to the �rst component and the same holds for cash. To illustrate the

interpretation of the mixture models, let us consider a newly founded �rm. Since a newly

founded �rm is by de�nition of low age, such a �rm tends to belongs to the second component

with a large probability, everything else equal. Since age has a large positive coe�cient in the

second component, this young �rm will initially experience a rapidly increasing hazard as it

grows older. If the �rm manages to survive the early years, it will eventually move over to the

�rst mixture component where age is no longer a signi�cant determinant of the hazard. The

�rm has managed to survive the �rst risky years and can now grow older without accelerating

risk on account of its age. Figure 6.2 shows the posterior allocation of �rms over their time:

�rms that have survived for a long time are classi�ed to component 1 in their later time

periods, while �rms in early time periods are classi�ed to the second component. Cash has

a similar interpretation as age; with a large probability, a �rm with low cash belongs to the

second component where the coe�cient on cash is strongly negative. This means that a

low cash �rm can drastically reduce the bankruptcy probability by increasing its holdings of

cash. As the �rm continues to improve its liquidity, it will eventually reach a point where it

switches over to the �rst component. In this component, cash remains a positive factor for

decreasing bankruptcy risk, but its e�ect is much smaller.
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Table 4. Estimation results for a dynamic exponential model with two com-
ponents. Covariates in the mixing function are exponentially moving averages.
Parameters in the mixing function corresponds to P (st = 2|zt). IF: min = 0.84,
median = 1.23, max = 110.84.

Component 1

Intercept Earnings Leverage Cash Size Age GDPG Repo
Post Mean -4.311 -0.251 0.339 -0.559 0.033 0.096 -0.024 0.039
Post Std 0.058 0.026 0.023 0.108 0.035 0.086 0.05 0.067
Post Incl Prob - 1 1 1 0.016 0.055 0.016 0.026
Mean Acc Prob 0.751

Component 2

Post Mean -2.522 -0.367 0.042 -2.873 -0.004 4.544 -0.066 0.044
Post Std 0.238 0.036 0.053 0.501 0.052 0.237 0.045 0.043
Post Incl Prob - 1 0.027 1 0.013 1 0.04 0.019
Mean Acc Prob 0.782

Mixing

Post Mean -4.777 -0.113 0.031 -1.698 0.039 -8.296 0.788 0.735
Post Std 0.496 0.088 0.094 0.39 0.089 0.815 0.184 0.196
Post Incl Prob - 0.092 0.067 1 0.066 1 1 1
Mean Acc Prob 0.835

Figure 6.2. Fraction allocated to respective component over time for the
dynamic exponential mixture.

To further explore the di�erence between the static and dynamic mixtures we plot the

overall predictive hazard ht(xt) in Figures 6.3 and 6.4 for a �rm that is born in the beginning



DYNAMIC MIXTURE-OF-EXPERTS 30

of the sample period, i.e. 1991. Each subgraph shows the predictive hazard ht(xt) as a

function of the covariate cash for a given year. The analysis in Figures 6.3 and 6.4 is

conditioned on �xed paths for the other covariates. We have chosen to set the covariate

paths for Repo, GDPG and age as the realized values at each time point but with a one year

lag for repo and GDPG; when predicting bankruptcy at period t, macro variables from t− 1

are used. For the �nancial ratios and the size variable, the average covariate value in the

sample for each respective year is used as conditioning paths. The covariate paths together

with their moving averages are presented in Figure 6.5. Figure 6.3 plots the predictive hazard

ht(xt) for the early years 1991 − 1994 corresponding to a survival time t = 1, 2, 3, 4, while

Figure 6.4 covers the years 2004 − 2007 corresponding to t = 14, 15, 16, 17. This example

clearly illustrates the main di�erence in these models; the dynamically evolving proportions

in the dynamic mixture (left panel) gives a much more �exible hazard than the static mixture

(right panel) where the mixture weights are constant thoughout time and the overall shape

of the hazard is forced to remain unchanged.
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Figure 6.3. Posterior distribution of the hazard probability of the represen-
tative �rm as a function of cash for a dynamic (left panel) and a static (right
panel) exponential mixture with two components for t = 1, . . . , 4. The dark
shaded area corresponds to 68% Highest Posterior Density (HPD) regions and
lighter shaded area are the 95% HPD regions. The red solid line is the posterior
mode.
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Figure 6.4. Posterior distribution of the hazard probability of the represen-
tative �rm as a function of cash for a dynamic (left panel) and a static (right
panel) exponential mixture with two components for t = 14, . . . , 17. The dark
shaded area corresponds to 68% Highest Posterior Density (HPD) regions and
lighter shaded area are the 95% HPD regions. The red solid line is the posterior
mode.
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Figure 6.5. Covariate paths for a representative �rm. The dashed blue line
corresponds to realized covariates and the solid red line are the exponentially
moving averages with α = 0.3.

7. Conclusions

We propose �exible smooth mixture models for longitudinal data, with special emphasis on

models for survival data in discrete time. We discuss how the longitudinal dimension opens

up for two di�erent types of mixture models, the static and dynamic mixture. In the static

mixture, subjects have to remain in the same component in all time periods, whereas in the

dynamic mixture they can move between mixture components over time. We argue that the

obvious Markov transition model would be prohibitively time-consuming for datasets with a

large number of subjects, and we propose an alternative approach where the within-subject

dynamics is determined by subject-speci�c time-varying covariates.

We compare the static and dynamic mixtures in bankruptcy modeling for a large panel

of Swedish �rms over the time period 1991-2008. The main result is that the dynamic
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mixture formulation dramatically outperforms the static mixture, a result that holds both

when exponential or Weibull mixture components are used. We also show that the MCMC

algorithm with variable selection in Villani et al. (2012) can be straightforwardly extended

to the longitudinal case and we document a high MCMC e�ciency in our application to �rm

bankruptcy.

It is also shown that the �rm bankruptcy data are heterogeneous even after the standard

�rm speci�c variables in the literature are included in the model and when a �exible baseline

hazard is used. This result suggests that there are di�erent classes of �rms and the e�ect

of the covariates on the hazard probability is di�erent in each class. Furthermore, it is also

shown that model with multiple classes is able to generate a non-monotonic hazard function

which agrees with the empirical hazard and also with models that uses a �exible baseline

hazard with a separate parameter for each time period.

Although our way of modeling within-subject dynamics by mixture-of-experts with time-

varying mixing covariates is computationally attractive in comparison to other standard

approaches, data sets with millions of observations remains a challenge. We are currently

working on extensions of the MCMC algorithm presented here that may reduce computing

times substantially for large data sets. In terms of model extensions it would be interesting

to explore the role of a continuous frailty in the components. The hierarchical structure

of such a model requires two extra steps in the MCMC scheme; sampling the frailty and

the parameters in its distribution. This is in principle straightforward, but will add to the

computing time, which again requires innovations in the MCMC methodology.
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