Westermark, Andreas

Working Paper
Long-term relationship bargaining

Sveriges Riksbank Working Paper Series, No. 266

Provided in Cooperation with:
Central Bank of Sweden, Stockholm

Suggested Citation: Westermark, Andreas (2013) : Long-term relationship bargaining, Sveriges Riksbank Working Paper Series, No. 266

This Version is available at:
http://hdl.handle.net/10419/81872

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Long-Term Relationship Bargaining*

Andreas Westermark

April 2013
The Working Paper series presents reports on matters in the sphere of activities of the Riksbank that are considered to be of interest to a wider public. The papers are to be regarded as reports on ongoing studies and the authors will be pleased to receive comments.

The views expressed in Working Papers are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Executive Board of Sveriges Riksbank.
Long-Term Relationship Bargaining*

Andreas Westermark†

Sveriges Riksbank Working Paper Series
No. 266
April 22, 2013

Abstract

We analyze a bargaining model where there is a long-term relationship between a seller and a buyer and there is bargaining over a sequence of surpluses that arrives at fixed points in time. Markov Perfect Equilibria are analyzed and equilibrium payoffs characterized. The transfers between the players can be described as a first-order system of difference equations. Payoffs depend on both current and future surpluses. Future surpluses are important partly because the risk of separation leads to the loss of surplus today and in the future and partly because delay without separation can last into future periods. We also find conditions for existence and uniqueness of equilibria with immediate agreement.

Keywords: Bargaining, long term relationship.

JEL classification: C72, C78.

*The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Executive Board of Sveriges Riksbank.
†Research Department, Sveriges Riksbank, SE-103 37 Stockholm, Sweden. e-mail: andreas.westermark@riksbank.se.
1 Introduction

Negotiations often take place in long-term relationships where surpluses sequentially arrive over time. Some examples of such situations are firm-worker bargaining in models where labor is not perfectly mobile and bargaining between upstream and downstream firms when there is a long-term relationship between the two firms. This problem has also received attention in the literature. Muthoo (1995) analyzes a model where players bargain over a sequence of surpluses and where the arrival of future surpluses depends on the time of agreement. Also, the papers by Felli and Harris (1996) and Leach (1997) analyze models where the sequence of bargaining situations are interdependent. More recently, Hall and Milgrom (2008) analyzed a bargaining model with both a probability of breakdown and conflicts, following the lines of Binmore, Rubinstein, and Wolinsky (1986). There is also an extensive macro literature on repeated wage bargaining; see e.g., Christiano, Trabandt, and Walentin (2011).

In this paper, we analyze a bargaining model when there is a long-term relationship between a buyer and a seller and when there is bargaining over a sequence of surpluses. We analyze Markov Perfect Equilibria and characterize the equilibrium payoffs.

In the model, a seller and buyer are locked into a long-term relationship. Surpluses arrive sequentially at given points in time. When a surplus arrives, the seller and buyer bargain over the surplus for a fixed number of rounds, whereafter the surplus vanishes. Initially, when the surplus arrives, either the buyer or seller is randomly selected to be the proposer. If the proposal is accepted, the surplus is divided according to the proposal and if the proposal is rejected, play either moves to the next round or breaks down. If play moves to the next round, players get disagreement payoffs that are different from the breakdown payoffs. In the next round, a proposer is randomly selected to make a proposal and so on. Bargaining over the surplus thus proceeds for a given number of rounds until the surplus is forfeited after the final round. A new surplus arrives and then bargaining over the surplus starts anew. The model generalizes the credible bargaining framework in Hall and Milgrom (2008) that also allows for both a probability of breakdown during negotiations and an outside option based on the payoffs under disagreement. In addition we allow for an arbitrary number of bargaining rounds in each time period and a more general payoff structure. We find conditions for the existence and uniqueness of immediate-agreement equilibrium.

We analyze the equilibrium payoffs and find that the payments between the players can be described as a first-order system of difference equations. The solution of this system is described as the number of rounds goes to infinity and equilibrium payoffs can be described in terms of (initial round) current surpluses and future values in the game besides payoffs in terms of disagreement and breakdown. Specifically, note
that the transfers between the seller and the buyer depend both on current and future surpluses, despite
the fact that parties only bargain over current surpluses; as soon as a new surplus arrive, bargaining over
that surplus starts anew. This is partly because bargaining under a risk of breakdown entails the risk of
losing both current ant future surpluses and partly because delay without separation can last until a new
surplus arrives, which means that future surpluses affect the current bargaining outcome.

The model in this paper is different from the model in Muthoo (1995), where the time of arrival of
future surpluses is dependent on the time of agreement. Nevertheless, the payoff is dependent on the
expected value in future agreements. As in Muthoo (1995), the division of surplus is different from the
division of the surplus in a standard bargaining game, see for example Rubinstein (1982), although for
other reasons than in Muthoo (1995).

The bargaining model is introduced in section 2. Section 3 analyzes the equilibrium and finally section
4 concludes the paper.

2 The model

There are two parties \(i \in N = \{b, s\}\) bargaining over a sequence of values \(\{v_t\}_0^\infty\) where \(v_t = \{v^b_t, v^s_t\} \in \mathbb{R}^2\)
is the value that arrives in time period \(t\). In a given time period \(t\), the parties bargain over how to share
the surplus. Bargaining in period \(t\) over \(v_t\) takes place in \(R\) rounds; a round lasts for \(\Delta = \frac{1}{R}\) units of time.
If an agreement is reached between the parties on some payoff division, the distribution is implemented
in round \(r\) in period \(t\). If no agreement is reached before or in round \(R\) the surplus is forfeit. During
bargaining, the parties separate exogenously with probability \(\bar{\delta}\) when a proposal is rejected. Parties
discount future values by the discount factor \(\beta\) per time period. Thus, the value in period \(t\) of receiving a
unit of goods in period \(t' > t\) is \(\beta^{t'-t}\). In each round, the proposer is randomly selected with probability
\(p^s_t\) for the seller and \(p^b_t\) for the buyer. A strategy in the game for player \(i\) is denoted \(\sigma_i\). Let \(\sigma = (\sigma_i)_{i \in N}\)
and let \(\Sigma\) denote the set of strategy profiles. In general, the strategy at any round in time period \(t\) is a
function the history up to that round.

Payoffs are potentially nonlinearly dependent on \(v_t\). Let \(\Upsilon^r_t(v_t^r)\) denote the current (net transfer)
payoff of the seller in round \(r\) and time period \(t\) if agreement is reached in that round and time period.
Similarly, let \(\phi^r_t(v_t^b)\) denote the current (net transfer) payoff of the buyer in round \(r\) and time period \(t\). As
an example, suppose a firm is bargaining with a worker over a fixed labor input of the worker that is used
in the production of a good that the firm sells. \(\Upsilon^r_t\) is then the utility cost of supplying labor for the worker
and \(\phi^r_t\) the gross profits of the firm. We assume that surpluses are nonincreasing in rounds; \(\Upsilon^r_t \leq \Upsilon^r_t'\) and
\(\phi_t' \geq \phi_t \) for \(r' > r \). An example of \(\Upsilon_t' \) and \(\phi_t' \) that satisfies this is as follows. Assume there is a fixed surplus \(v_t \) that arrives at the start of \(t \) and that shrinks by \(\theta \); we have \(\Upsilon_t = \theta^{(r-1)} v_t^u \) and \(\phi_t^r = \theta^{(r-1)} v_t^b \).

The net surplus of agreement is \(\phi_t' + \Upsilon_t' \). Letting \(W_t' \) denote the transfer between agents in cases where an agreement is reached, total current payoffs are then \(\Upsilon_t' + W_t' \) and \(\phi_t' - W_t' \). Furthermore, let \(H \) denote the set of histories and let \(h_t' \) denote the history up to round \(r \) and time \(t \) and let \(h^0_t \) denote the history before the first round in period \(t \). For any strategy profile \(\sigma \in \Sigma \), let \(\sigma (h^r_{t+1}) \) denote the restriction of \(\sigma \) to the histories consistent with \(h^r_{t+1} \). Given the history \(h^r_{t+1} \), let \(V^r_{t+1} (h^r_{t+1}, \sigma (h^r_{t+1})) \) denote the present value of the seller that accrues if play follows the strategy profile \(\sigma (h^r_{t+1}) \) following \(h^r_{t+1} \) for all periods \(t' \geq t + 1 \). Similarly, let \(F^r_{t+1} (h^r_{t+1}, \sigma (h^r_{t+1})) \) denote the present value of the seller. Given a strategy profile \(\sigma \) that prescribes agreement in round \(r \) and period \(t \) on the transfer \(W_t' \), the continuation payoff of the seller is

\[
\Upsilon_t' + W_t' + \beta V^0_{t+1} (h^0_{t+1}, \sigma (h^0_{t+1}))
\]

and the continuation payoff of the buyer is

\[
\phi_t' - W_t' + \beta F^0_{t+1} (h^0_{t+1}, \sigma (h^0_{t+1}))
\]

where \(h^0_{t+1} = \{h_t', W_t', A\} \). The model is a generalization of Hall and Milgrom (2008), both because we allow for \(R > 1 \) rounds and for a more general payoff structure. Thus, let \(U_t \) denote the value for the seller when there is a breakdown in bargaining. For the buyer, the value in case of a breakdown is normalized to zero. If an agreement is not reached in a bargaining round \(r \), the seller receives \(\hat{z}_t \Delta \) and the buyer \(\hat{\gamma}_t \Delta \) in the round. We assume \(\hat{z}_t > 0 \) and \(\hat{\gamma}_t > 0 \). The difference between this model and the model in Muthoo (1995) is that surpluses arrive at fixed points in time in this paper while they arrive at a fixed time after an agreement in Muthoo (1995). Moreover, proposers are selected at random in this paper instead of sequentially.

In the paper, we focus on Markov strategies. A Markov strategy depends on \(r, t \) and the payoff relevant variables. A Markov Perfect Equilibrium is a SPE in Markov strategies (MPE). For a formal treatment, see Maskin and Tirole (2001).

3 Equilibrium

By standard arguments, in any MPE where an offer is accepted with positive probability, when being selected as proposer, the proposer offers the respondent a transfer such that the respondent is indifferent
between accepting and rejecting. Let \(W_{ir^s} \) denote a proposal by the seller and let \(W_{ir^b} \) denote a proposal by the buyer in round \(r \). Define \(\Delta = \frac{1}{R} \) and let \(\delta = \frac{\Delta}{\tilde{\Delta}} \). For now, we restrict attention to equilibria where an agreement is reached; below we describe conditions for existence and uniqueness. Then, as long as \(r < R \), in any equilibrium prescribing an agreement, the buyer offers the seller \(W_{ir^b} \) such that

\[
\begin{align*}
\psi^r_t + W^r_{ir^s} + & \beta \frac{R-r}{R} V^0_{t+1} (h^0_{t+1}, \sigma (h^0_{t+1})) \\
= & \delta \Delta U_t + (1 - \delta \Delta) p^b_t \left[\tilde{\Delta}_t + \beta \tilde{\pi} \left(\psi^{r+1}_t + W^{r+1,^b}_t + \beta \frac{R-r}{R} V^0_{t+1} (h^0_{t+1}, \sigma (h^0_{t+1})) \right) \right] \\
+ & (1 - \delta \Delta) p^s_t \left[\tilde{\Delta}_t + \beta \tilde{\pi} \left(\psi^{r+1}_t + W^{r+1,^s}_t + \beta \frac{R-r}{R} V^0_{t+1} (h^0_{t+1}, \sigma (h^0_{t+1})) \right) \right].
\end{align*}
\] (3)

where \(h^0_{t+1}, h^0_{t+1} \) and \(h^0_{t+1} \) are identical up to period \(t \) and before round \(r \). Following round \(r \) in period \(t \), \(h^0_{t+1} \) prescribes acceptance of \(W^0_{ir^b} \) while \(h^0_{t+1} \) prescribes rejection of \(W^0_{ir^b} \) and acceptance of \(W^{r+1,^b}_t \) and \(W^{r+1,^s}_t \), respectively. Note that, since we analyze Markov Perfect equilibria, we have

\[
V^0_{t+1} (h^0_{t+1}, \sigma (h^0_{t+1})) = V^0_{t+1} (h^0_{t+1}, \sigma (h^0_{t+1})) = V^0_{t+1} (h^0_{t+1}, \sigma (h^0_{t+1})) = V^0_{t+1} \text{ and similarly for the seller.}
\]

Then, as long as \(r < R \), the seller offers the buyer \(W^r_{ir^s} \) such that

\[
\phi^r_t - W^r_{ir^s} + \beta \frac{R-r}{R} F^0_{t+1} = (1 - \delta \Delta) p^b_t \left[\tilde{\Delta}_t + \beta \tilde{\pi} \left(\phi^{r+1}_t - W^{r+1,^b}_t + \beta \frac{R-r}{R} F^0_{t+1} \right) \right] \\
+ (1 - \delta \Delta) p^s_t \left[\tilde{\Delta}_t + \beta \tilde{\pi} \left(\phi^{r+1}_t - W^{r+1,^s}_t + \beta \frac{R-r}{R} F^0_{t+1} \right) \right].
\] (4)

When \(r = R \), the values are

\[
\begin{align*}
\psi^R_t + W^R_{ir^b} + & \beta \frac{R-r}{R} V^0_{t+1} = \delta \Delta U_t + (1 - \delta \Delta) p^b_t \left[\tilde{\Delta}_t + \beta \tilde{\pi} \left(\psi^{r+1}_t + W^{r+1,^b}_t + \beta V^0_{t+2} \right) \right] \\
+ & (1 - \delta \Delta) p^s_t \left[\tilde{\Delta}_t + \beta \tilde{\pi} \left(\psi^{r+1}_t + W^{r+1,^s}_t + \beta V^0_{t+2} \right) \right].
\end{align*}
\] (5)

and

\[
\begin{align*}
\phi^R_t - W^R_{ir^s} + & \beta \frac{R-r}{R} F^0_{t+1} = (1 - \delta \Delta) p^b_t \left[\tilde{\Delta}_t + \beta \tilde{\pi} \left(\phi^{r+1}_t - W^{r+1,^b}_t + \beta F^0_{t+2} \right) \right] \\
+ & (1 - \delta \Delta) p^s_t \left[\tilde{\Delta}_t + \beta \tilde{\pi} \left(\phi^{r+1}_t - W^{r+1,^s}_t + \beta F^0_{t+2} \right) \right].
\end{align*}
\] (6)

Before proving the main result, the following example illustrates that transfers in a given period \(t \) depend on e.g., surpluses in all time periods following \(t \).

Example 1 A simple example with two time periods and one round in each time period. Proposer prob-
abilities are $\frac{1}{2}$, $\beta = 1$ and $\Upsilon^t = 0$ for $t = \{1, 2\}$, $U_1 = U$, $\hat{z}_1 = \hat{z}_2 = \hat{z}$, $\hat{\gamma}_1 = \hat{\gamma}_2 = \hat{\gamma}$, for $t = \{1, 2\}$ and $\phi^1 \neq \phi^2$. In the last round, we have

$$
W^s_2 = \phi^2 - (1 - \delta \Delta) \hat{\gamma} \Delta \\
W^b_2 = \delta \Delta U + (1 - \delta \Delta) \hat{\gamma} \Delta.
$$

(7)

Then the continuation payoffs at the beginning of period 2 can be written as, using $\Delta = 1$,

$$
F^0_2 = \frac{1}{2} (1 - \delta) \hat{\gamma} + \frac{1}{2} \left(\phi^2 - (\delta U + (1 - \delta) \hat{\zeta}) \right) \\
V^0_2 = \frac{1}{2} \left(\phi^2 - (1 - \delta) \hat{\gamma} \right) + \frac{1}{2} (\delta U + (1 - \delta) \hat{\zeta}).
$$

(8)

In the first time period transfers are, using (5) and (6),

$$
W^s_1 = \phi^1 + F^0_2 - (1 - \delta) \frac{1}{2} \left(\hat{\gamma} + \left(\phi^2 - W^b_2 \right) \right) - (1 - \delta) \frac{1}{2} \left[\hat{\gamma} + \left(\phi^1 - W^s_2 \right) \right], \\
W^b_1 = \delta U + (1 - \delta) \frac{1}{2} \left[\hat{\zeta} + W^b_2 \right] + (1 - \delta) \frac{1}{2} \left[\hat{\zeta} + W^s_2 \right] - V^0_2.
$$

(9)

Clearly, the wage W^s_1 and W^b_1 depend on second period surplus, as long as $\delta < 1$.

Note that the transfers between the seller and the buyer depend both on current and future surpluses, despite the fact that parties start to bargain as soon as a new surplus arrives, as long as breakdown probability is less than one. This is partly because a breakdown of negotiations risks losing both current and future surpluses, in turn having the implication that future surpluses affect the current bargaining outcome, and partly because delay without separation might last until future surpluses arrive.

We can rearrange the equilibrium conditions for making an acceptable proposal (3) and (4) in any round $r < R$ so that the transfers between the seller and the buyer can be characterized by two difference equations. Thus, we have, for $r \leq R - 1$,

$$
\begin{pmatrix}
W^b_t \\
W^s_t
\end{pmatrix} = (1 - \delta \Delta) \beta^t \tilde{A}_t
\begin{pmatrix}
W^b_{t+1} \\
W^s_{t+1}
\end{pmatrix} + B^r_t \\
\begin{pmatrix}
W^b_t \\
W^s_t
\end{pmatrix} = (1 - \delta \Delta) \beta^t \tilde{A}_t
\begin{pmatrix}
W^b_{t+1} \\
W^s_{t+1}
\end{pmatrix} + B^r_t
$$

(10)

where

$$
\tilde{A}_t = \begin{pmatrix}
p^b_t & 1 - p^b_t \\
p^b_t & 1 - p^b_t
\end{pmatrix}
$$

(11)
\[B_t^r = \left((1 - \delta \Delta) \left(\hat{z}_t \Delta + \left[\beta \frac{1}{\pi} Y_t^{r+1} + \beta \frac{R-r+1}{\pi} V_{t+1}^0 - U_t \right] \right) - \left(\hat{\phi}_t^r + \beta \frac{R-r+1}{\pi} F_{t+1}^0 \right) \right) . \] (12)

This follows easily by rearranging expressions (3) and (4). Intuitively, the current transfers are equal to a combination of a current round payoffs, as given by \(B_t^r \), plus a probability-weighted average of the transfers in the next round, modified by discounting and the probability of breakdown. Note that \(A_t \) is idempotent.

Moreover, the equilibrium conditions (5) and (6) for making an acceptable proposal in the last round of period \(t \), i.e., when a rejection leads to complete forfeit of the surplus in period \(t \) and continued bargaining in period \(t+1 \), can be rewritten as

\[
\begin{bmatrix} W_t^{R,b} \\ W_t^{R,s} \end{bmatrix} = (1 - \delta \Delta) \beta \frac{1}{\pi} \bar{A}_{t+1} \begin{bmatrix} W_{t+1}^{1,b} \\ W_{t+1}^{1,s} \end{bmatrix} + B_t^R
\] (13)

where

\[
B_t^R = \left((1 - \delta \Delta) \left(\hat{z}_t \Delta + \left[\beta \frac{1}{\pi} V_{t+1}^0 - U_t \right] \right) - \left(\hat{\phi}_t^R + \beta \frac{1}{\pi} F_{t+1}^0 \right) \right) . \] (14)

By repeatedly using expressions (10) - (12) and expressions (13) - (14) in a MPE with immediate agreement, the solution for the transfers between the seller and the buyer is given by

\[
\begin{bmatrix} W_t^{1,b} \\ W_t^{1,s} \end{bmatrix} = (1 - \delta \Delta)^{R-1} \beta \frac{R-1}{\pi} \bar{A}_t \begin{bmatrix} W_t^{R,b} \\ W_t^{R,s} \end{bmatrix} + B_t^1 + \sum_{r=2}^{R-1} (1 - \delta \Delta)^{r-1} \beta \frac{r-1}{\pi} \bar{A}_t B_t^r
\] (15)

and

\[
\begin{bmatrix} W_t^{R,b} \\ W_t^{R,s} \end{bmatrix} = (1 - \delta \Delta) \beta \frac{1}{\pi} \bar{A}_{t+1} \begin{bmatrix} W_{t+1}^{1,b} \\ W_{t+1}^{1,s} \end{bmatrix} + B_t^R . \] (16)

The following Lemma describes the transfers as a first-order difference equation.

Lemma 1 The transfers between the seller and the buyer are given by the following difference equation:

\[
\begin{bmatrix} W_t^{1,b} \\ W_t^{1,s} \end{bmatrix} = (1 - \delta \Delta)^R \beta \bar{A}_{t+1} \begin{bmatrix} W_{t+1}^{1,b} \\ W_{t+1}^{1,s} \end{bmatrix} + B_t^1 + \sum_{r=2}^{R} (1 - \delta \Delta)^{r-1} \beta \frac{r-1}{\pi} \bar{A}_t B_t^r . \] (17)
The following example shows that uniqueness of an immediate agreement equilibrium cannot be guaranteed.

Example 2 An example with two time periods and one round in each time period (i.e., \(\Delta = 1 \)). Proposer probabilities are \(\frac{1}{2} \), \(\beta = 1 \), \(\hat{z}_t = \hat{\gamma}_t = 0 \) and \(\Upsilon_{1,t} = 0 \) for \(t = \{1, 2\} \), \(U_1 = \phi_2^1 + \gamma \) and \(\phi_2^1 > U_2 \). In the last round, equilibrium prescribes agreement and we have

\[
W_{2}^{1,s} = \phi_2^1 \\
W_{2}^{1,b} = \delta U_2.
\] (18)

Then the continuation payoffs at the beginning of period 2 can be written as

\[
F_2^0 = \frac{1}{2} (\phi_2^1 - \delta U_2) \\
V_2^0 = \frac{1}{2} (\phi_2^1 - \delta U_2) + \delta U_2.
\] (19)

Consider a candidate equilibrium where unacceptable offers are made in period 1. Then payoffs in period 1 are

\[
(1 - \delta) F_2^0 \\
\delta \Delta U_2 + (1 - \delta) V_2^0.
\] (20)

If the buyer deviates and makes an acceptable offer \(\tilde{W} = W_{1}^{1,b} + \varepsilon \) for some \(\varepsilon > 0 \), the wage has to satisfy

\[
(\tilde{W} - \varepsilon) + V_2^0 = \delta \Delta U_1 + (1 - \delta) V_2^0 \Rightarrow \tilde{W} = \delta U_2 - \delta V_2^0 + \varepsilon.
\] (21)

Then the gain from making an acceptable offer is, using that \(F_2^0 + V_2^0 = \phi_2^1 \),

\[
\phi_1^1 + \delta (\phi_2^1 - U_1) - \varepsilon.
\] (22)

The above expression is violated if

\[
\frac{\phi_1^1}{\delta} < U_1 - \phi_2^1 = \gamma.
\] (23)

Since an identical condition can be established if the seller deviates and makes an acceptable offer, there is an equilibrium with zero probability of agreement in period 1 if \(\gamma \) is large enough. Note that the above
expression implies $\phi_1^1 + \phi_2^1 < U_1$, since $\delta < 1$ when $R = 1$.

To ensure existence, we impose the following conditions on payoffs.

Condition 1 For all t and $r < R$,

$$\phi_t^r + \Upsilon_t^r > \phi_t^{r+1} + \Upsilon_t^{r+1} + \hat{z}_t \Delta + \hat{\gamma}_t \Delta$$

and, for $r = R$,

$$\phi_t^r + \Upsilon_t^r > \hat{z}_t \Delta + \hat{\gamma}_t \Delta.$$

Condition 2 For all r, t we have

$$\phi_t^r + \Upsilon_t^r + \beta^{R-1} \sum_{i=1}^{\infty} (\beta^{i-1}) (\phi_{t+i}^1 + \Upsilon_{t+i}^1) > U_t.$$

The first condition requires that there is a surplus in agreeing rather than disagreeing and remaining in the relationship and the second that there is a surplus in disagreeing rather than separating.

Proposition 1 If conditions 1 and 2 are satisfied, an immediate agreement MPE exists for any $\Delta \leq 1$.

Proof: See the appendix. ■

To show uniqueness we restrict attention to convergent sequences of U_t, \hat{z}_t and $\hat{\gamma}_t$. Let

$$\bar{U} = \lim_{t \to \infty} U_t$$

$$\bar{z} = \lim_{t \to \infty} \hat{z}_t$$

$$\bar{\gamma} = \lim_{t \to \infty} \hat{\gamma}_t.$$ (24)

We restrict the limits of the inside and outside options in the following way.

Condition 3 \bar{U}, \bar{z} and $\bar{\gamma}$ satisfies

$$\bar{U} < \bar{z} + \bar{\gamma}.$$

Proposition 2 If conditions 1, 2 and 3 are satisfied, then there is a $\bar{\beta}$ such that, for any $\beta > \bar{\beta}$, 1 the immediate agreement MPE is unique for any $\Delta < \Delta$.

1 Note that $\bar{\beta} = \frac{1}{\bar{\delta}}$. If the yearly discount rate is 4%, the condition is satisfied if surpluses arrive in intervals of up to almost 25 years.
Proof: See the appendix. ■

Due to conditions 1 and 2, the only reason for delaying is that the value of breakdown in the future is larger than remaining in the relationship. Given the fairly mild condition 3, the proposition rules out the case with delayed agreement. ²

Equilibrium transfers as $\Delta \to 0$ can be found by repeatedly using expressions (15) - (16), together with the following continuity and boundedness conditions.

Condition 4 For all r, t such that $r < R - 1$ we have

$$
\lim_{\Delta \to 0} \phi_t^{r+1} = \phi_t^r,
\lim_{\Delta \to 0} \Upsilon_t^{r+1} = \Upsilon_t^r.
$$

Furthermore, $\lim_{\Delta \to 0} \phi_t^R = 0$ and $\lim_{\Delta \to 0} \Upsilon_t^R = 0$.

Condition 5 The sequence of surpluses $\{Y_t^1\}_{t=1}^\infty$ and $\{\phi_t^1\}_{t=1}^\infty$ satisfies

$$
\lim_{t \to \infty} \lim_{\Delta \to 0} \sum_{i=1}^\infty \left(\prod_{j=1}^{t+i} (1 - \delta \Delta)_R \right) \beta \left(\phi_{t+i}^1 + Y_{t+i}^1 \right) = 0. \tag{25}
$$

Thus, the surpluses grow slower than breakdown-adjusted discounting, ensuring that the total discounted value when bargaining is finite.

The equilibrium transfers are given by the following proposition.

Proposition 3 Suppose conditions 4 and 5 are satisfied. In a MPE with immediate agreement, the solution to the system of difference equations (15) and (16) when $\Delta \to 0$ is given by

$$
\begin{pmatrix}
W_t^{1,b} \\
W_t^{1,s}
\end{pmatrix} = \sum_{i=0}^\infty \beta^i e^{-\delta i} \bar{A}_{t+i} \left(\bar{B}_{t+i} + \bar{D}_{t+i} \right), \tag{26}
$$

²If the sequences are not convergent, there is a unique equilibrium if condition 3 is modified to

$$
\frac{\delta}{\delta - \ln \beta} \liminf_{t \to \infty} U_t + \frac{-\ln \beta}{\delta - \ln \beta} \liminf_{t \to \infty} (\hat{z}_t + \hat{\gamma}_t) > \limsup_{t \to \infty} U_t
$$

10
where

\[B_{t+i} = \frac{1 - \beta e^{-\delta}}{\delta - \ln \beta} \begin{pmatrix} \delta U_{t+i} + \dot{z}_{t+i} - \delta V^0_{t+i+1} \\ -\dot{\gamma}_{t+i} + \delta F^0_{t+i+1} \end{pmatrix} \]

\[\tilde{D}_{t+i} = \begin{pmatrix} -\gamma^1_{t+i} \\ \phi^1_{t+i} \end{pmatrix}. \]

Moreover,

\[\lim_{\Delta \to 0} W^1_{t}^{1,b} = \lim_{\Delta \to 0} W^1_{t}^{1,s}. \]

Proof: Step 1. Preliminaries and showing \(\lim_{\Delta \to 0} W^1_{t}^{1,b} = \lim_{\Delta \to 0} W^1_{t}^{1,s} \).

Note that we can write

\[B_t^r = \bar{B}_t^r + \tilde{D}_t^r, \]

where, for \(r < R \),

\[\bar{B}_t^r = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \Delta \begin{pmatrix} \delta U_t + (1 - \delta \Delta) \dot{z}_t - \delta (\beta^{1-r\Delta+\Delta} V^{0}_{t+1}) \\ (1 - \delta \Delta) \dot{\gamma}_t - \delta (\beta^{1-r\Delta+\Delta} F^{0}_{t+1}) \end{pmatrix}, \]

and

\[\tilde{D}_t^r = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \left([\beta^{\Delta} (1 - \delta \Delta) \gamma^r_{t+1} + \beta^{1-r\Delta+\Delta} V^{0}_{t+1}] \right) - (\gamma^r_t + \beta^{1-r\Delta+\Delta} V^{0}_{t+1}) \\ \left(\beta^{\Delta} (1 - \delta \Delta) \phi^r_{t+1} + \beta^{1-r\Delta+\Delta} F^{0}_{t+1} \right) - (\phi^r_t + \beta^{1-r\Delta+\Delta} F^{0}_{t+1}) \end{pmatrix}. \]

And for \(r = R \),

\[\bar{B}_t^R = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \Delta \begin{pmatrix} \delta U_t + (1 - \delta \Delta) \dot{z}_t - \delta \left([\beta^{\Delta} \gamma^1_{t+1} + \beta^{1+\Delta} V^{0}_{t+2}] \right) \\ (1 - \delta \Delta) \dot{\gamma}_t - \delta \left([\beta^{\Delta} \phi^1_{t+1} + \beta^{1+\Delta} F^{0}_{t+2}] \right) \end{pmatrix} \]

and

\[\tilde{D}_t^R = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \left([\beta^{\Delta} V^{0}_{t+1}] \right) - \left(\gamma^R_t + \beta^{\Delta} V^{0}_{t+1} \right) \\ \left(\beta^{\Delta} F^{0}_{t+1} \right) - \left(\phi^R_t + \beta^{\Delta} F^{0}_{t+1} \right) \end{pmatrix}. \]
Using expressions (15) - (16) we then have

\[
\begin{pmatrix}
W_t^{1,b} \\
W_t^{1,s}
\end{pmatrix}
= \prod_{j=1}^{i} \left((1 - \delta \Delta)^R \beta \bar{A}_{t+j} \right)
\begin{pmatrix}
W_{t+i}^{1,b} \\
W_{t+i}^{1,s}
\end{pmatrix}
+ \sum_{i=0}^{i} \left(\prod_{j=1}^{i} \left((1 - \delta \Delta)^R \beta \bar{A}_{t+j} \right) \right)
\begin{pmatrix}
B_{t+i}^1 \\
\sum_{r=2}^{R} (1 - \delta \Delta)^{r-1} \beta \frac{r-1}{\pi} \bar{A}_{t+i} B_{t+i}^r
\end{pmatrix}.
\] (34)

If the sequences \(\{\gamma_t^1\}_{t=1}^{\infty} \) and \(\{\phi_t^1\}_{t=1}^{\infty} \) satisfy condition 5, we have

\[
\lim_{t \to \infty} \prod_{j=1}^{i} \left((1 - \delta \Delta)^R \beta \bar{A}_{t+j} \right) \begin{pmatrix}
W_{t+i}^{1,b} \\
W_{t+i}^{1,s}
\end{pmatrix} = \begin{pmatrix}
0 \\
0
\end{pmatrix}.
\] (35)

Hence the first term in expression (34) goes to zero as \(\hat{t} \to \infty \). Moreover, noting that \(B_t^r = \bar{B}_t^r + \bar{D}_t^r \) gives

\[
\begin{pmatrix}
W_t^{1,b} \\
W_t^{1,s}
\end{pmatrix}
= \sum_{i=0}^{\infty} \left(\prod_{j=1}^{i} \left(1 - \delta \Delta \right)^R \beta \bar{A}_{t+j} \right) \left(\bar{B}_{t+i}^1 + \bar{D}_{t+i}^1 \right)
+ \sum_{i=0}^{\infty} \left(\prod_{j=1}^{i} \left(1 - \delta \Delta \right)^R \beta \bar{A}_{t+j} \right) \left(\sum_{r=2}^{R-1} (1 - \delta \Delta)^{r-1} \beta \frac{r-1}{\pi} \bar{A}_{t+i} (\bar{B}_{t+i}^r + \bar{D}_{t+i}^r) \right)
+ \sum_{i=0}^{\infty} \left(\prod_{j=1}^{i} \left(1 - \delta \Delta \right)^R \beta \bar{A}_{t+j} \right) (1 - \delta \Delta)^{R-1} \beta \frac{R-1}{\pi} \bar{A}_{t+i} (\bar{B}_{t+i}^R + \bar{D}_{t+i}^R).
\] (36)

Note that, by the definition of \(\bar{A}_{t+i} \), the only terms that are different in \(W_t^{1,b} \) and \(W_t^{1,s} \) are \(\bar{B}_t^1 \) and \(\bar{D}_t^1 \). Then, since \(\lim_{\Delta \to 0} \bar{B}_t^1 = 0 \) and we have \(\lim_{\Delta \to 0} \bar{D}_t^1 = 0 \) by using condition 4, it follows that

\[
\lim_{\Delta \to 0} W_t^{1,b} = \lim_{\Delta \to 0} W_t^{1,s}.
\] (37)

Step 2. Computing \(\bar{B}_{t+i} \) and \(\bar{D}_{t+i} \).

Define

\[
\bar{B}_{t+i}^{\Sigma} = \sum_{r=1}^{R} (1 - \delta \Delta)^{r-1} \beta \frac{r-1}{\pi} \bar{B}_{t+i}^r.
\] (38)

Then, using the definition of \(R \) and \(\bar{B}_{t+i}^r \),

\[
\bar{B}_{t+i}^{\Sigma} = \frac{1 - (1 - \delta \Delta)^R \beta \frac{R}{\pi}}{\frac{1}{\Delta} - \frac{1}{\Delta} (1 - \delta \Delta) \beta \pi} \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}^{-1} \begin{pmatrix}
\delta U_t + (1 - \delta \Delta) \tilde{z}_t - \delta \left(\beta \frac{1}{\pi} V_{t+1}^0 \right) \\
(1 - \delta \Delta) \tilde{y}_t - \delta \left(\beta \pi F_{t+1}^0 \right)
\end{pmatrix}.
\] (39)
Letting
\[\tilde{B}_{t+i} = \lim_{R \to \infty} \tilde{B}_{t+i}^\Sigma \] (40)
and using that
\[\lim_{R \to \infty} \frac{1 - (1 - \delta \frac{1}{R})^R \beta}{R - R (1 - \delta \frac{1}{R}) \beta \pi} = \frac{1 - \beta e^{-\delta}}{\delta - \ln \beta} \] (41)
and the properties of \(\tilde{A}_{t+i} \), i.e., we have \(\tilde{A}_{t+j} \tilde{A}_{t+i} = \tilde{A}_{t+i} \), we can establish (27) in the proposition. To establish (28), let
\[\tilde{D}_{t+i}^\Sigma = \sum_{r=2}^{R} (1 - \delta \Delta)^{r-1} \beta^{-\pi} \tilde{D}_{t+i}^r \] (42)
and note that \(\tilde{D}_{t+i}^\Sigma \) can be written as
\[\sum_{r=2}^{R-1} (1 - \delta \Delta)^{r-1} \beta^{-\pi} \left(\beta \Delta (1 - \delta \Delta) \chi_{t+i}^{r+1} - \chi_{t+i}^r \right) + (1 - \delta \Delta)^{R-1} \beta^{-\pi} \left(-\chi_{t+i}^R \phi_{t+i}^R \right), \] (43)
a telescoping series and hence, using that \(\lim_{R \to \infty} \tilde{D}_{t+i}^1 = 0 \), that \(\tilde{A}_{t+j} \tilde{A}_{t+i} = \tilde{A}_{t+i} \) and defining
\[\tilde{D}_{t+i} = \lim_{R \to \infty} (\tilde{D}_{t+i}^1 + \tilde{D}_{t+i}^\Sigma) = \begin{pmatrix} -\chi_{t+i}^1 \\ -\phi_{t+i}^1 \end{pmatrix}, \]
we can establish (28).\[\Box\]

The proof divides up the round payoff in (12) in terms of flow round payoffs in expression (27) and surplus changes between rounds in (28). Specifically, even if transfers in (15) depend on the surpluses in all rounds in the current period through \(B_r^t \), the resulting wage depends only on the surplus in the first round in each time period. From a technical perspective, this is because the payoffs in expression (17) depend on the change in surpluses between rounds implying that surpluses for higher rounds enter payoffs in a telescoping way and hence cancel themselves out, leading to that transfers depend only on first-period surplus. Note also that, since agreement is reached in the first round, total payoffs depend only on first-period surplus. Thus, we can express the equilibrium payoffs partly in terms of future disagreement and separation payoffs, i.e., \(U_{t+i} \), \(\hat{z}_{t+i} \) and \(\hat{\gamma}_{t+i} \), and partly in terms of future values of the problem, besides depending on current first round surplus.

Remark 1 Note that expression (17) in Lemma 1 can be written as
\[W_{t}^{1,b} = e^{-\delta} \beta W_{t+1}^{1,b} + \tilde{A}_t \left(\tilde{B}_t + \tilde{D}_t \right). \] (44)
Generally these expressions are somewhat complicated. However, in the special case when the probability of breakdown vanishes (i.e., \(\delta \to 0 \)), equilibrium payoffs have a simpler and more intuitive form. Then (26) becomes

\[
\begin{pmatrix}
W^{1,b}_t \\
W^{1,s}_t
\end{pmatrix} = \sum_{i=0}^{\infty} \beta^i A_{t+i} \begin{pmatrix}
\frac{1-\beta}{\ln \beta} \hat{z}_{t+i} - \Upsilon^1_{t+i} \\
-\frac{1-\beta}{\ln \beta} \hat{\gamma}_{t+i} + \phi^1_{t+i}
\end{pmatrix}.
\] (45)

Remark 2 Note that, if there is no discounting between rounds in a given time period, but rather only between time periods, the results above hold with minor modifications of conditions and results. Equation (3) is modified to

\[
\Upsilon^r_t + W^{r,b}_t + \beta V^0_{t+1} = \delta U_t + (1 - \delta \Delta) p_t^b \left[\hat{z}_t \Delta + \left(\Upsilon^{r+1}_t + W^{r+1,b}_t + \beta V^0_{t+1} \right) \right] + (1 - \delta \Delta) p_t^s \left[\hat{z}_t \Delta + \left(\Upsilon^{r+1}_t + W^{r+1,s}_t + \beta V^0_{t+1} \right) \right]
\] (46)

Equations (4), (5) and (6) are modified similarly. Straightforward modifications of Propositions 1 and 2 establish existence and uniqueness. Proposition 3 is modified so that \((1-\delta \Delta)^{r-1} \beta^{r-1} \hat{\tau}^r_t\) is replaced by \((1-\delta \Delta)^{r-1}\) and the adjustment of \(B^r_t\) in (12) is

\[
B^r_t = \begin{pmatrix}
(1 - \delta \Delta) \left(\hat{z}_t \Delta + \left[\Upsilon^{r+1}_t + \beta V^0_{t+1} - U_t \right] \right) - (\Upsilon^r_t + \beta V^0_{t+1} - U_t) \\
- \left[(1 - \delta \Delta) \left(\hat{\gamma}_t \Delta + \left[\phi^{r+1}_t + \beta F^0_{t+1} \right] \right) - (\phi^r_t + \beta F^0_{t+1}) \right]
\end{pmatrix},
\] (47)

which is reflected in the construction of \(\bar{B}^r_t\) and \(\bar{D}^r_t\) in the proof. In the statement of the proposition, expression (27) when \(\Delta \to 0\) is modified to

\[
B_{t+i} = \frac{1 - e^{-\delta}}{\delta} \begin{pmatrix}
\delta U_{t+i} + \hat{z}_{t+i} - \delta \beta V^0_{t+i+1} \\
-\hat{\gamma}_{t+i} + \delta \beta F^0_{t+i+1}
\end{pmatrix}
\] (48)

Furthermore, we can write

\[
W^{1,b}_t = \beta W^{1,b}_{t+1} + \frac{1 - e^{-\delta}}{\delta} \left(\delta U_t + \hat{z}_t - \delta \beta V^0_{t+1} \right) - \Upsilon^1_t
\] (49)

\[
+ \left(1 - p^b_t \right) \left[\frac{1 - e^{-\delta}}{\delta} \left(\hat{\gamma}_t + \delta \beta F^0_{t+1} - \left(\delta U_t + \hat{z}_t - \delta \beta V^0_{t+1} \right) \right) + (\phi^1_t + \Upsilon^1_t) \right]
\]
As $\delta \to 0$ then $\lim_{\delta \to 0} \frac{1-e^{-\delta}}{\delta} = 1$ and hence

$$W_t^{1,b} = \delta \left(U_t - \beta V_{t+1}^0 \right) + \hat{\gamma}_t - Y_t^1$$

$$+ \left(1 - p_t^b \right) \left(\phi_t^1 + Y_t^1 - \hat{\gamma}_t - \delta U_t - \hat{\gamma}_t + \delta \beta \left(F_{t+1}^0 + V_{t+1}^0 \right) \right) + \beta W_{t+1}^{1,b}. \quad (50)$$

Thus, the value of agreeing is equal to the disagreement value (the right-hand side terms on the first row) plus the seller proposer probability $(1 - p_t^b)$ times the surplus of agreeing plus the future wage (capturing future surpluses). When the probability of breakdown parameter δ goes to infinity, equilibrium payoffs depend only on the separation payoffs and not on $\hat{\gamma}_t$ and $\hat{\gamma}_t$, besides current and future values. To see this, note that, as $\delta \to \infty$, we get

$$W_t^{1,b} = \lim_{\delta \to \infty} p_t^b \left[\frac{1-e^{-\delta}}{\delta} \left(\delta U_t + \hat{\gamma}_t - \delta \beta V_{t+1}^0 \right) - Y_t^1 \right]$$

$$+ \lim_{\delta \to \infty} \left(1 - p_t^b \right) \left[\frac{1-e^{-\delta}}{\delta} \left(-\hat{\gamma}_t + \delta \beta F_{t+1}^0 \right) + \phi_t^1 \right]. \quad (51)$$

Since $\lim_{\delta \to \infty} \frac{1-e^{-\delta}}{\delta} \to 0$, we thus get

$$W_t^{1,b} = \left(1 - p_t^b \right) \left(\phi_t^1 + \beta F_{t+1}^0 \right) - p_t^b \left(\left(Y_t^1 + \beta V_{t+1}^0 \right) - U_t \right), \quad (52)$$

implying that the payoff of agreeing is

$$Y_t^1 + W_t^{1,b} + \beta V_{t+1}^0 = \left(1 - p_t^b \right) \left(\phi_t^1 + \beta F_{t+1}^0 \right) + \left(\left(Y_t^1 + \beta V_{t+1}^0 \right) - U_t \right) + U_t, \quad (53)$$

i.e., the separation outside option plus the proposal probability times the total value of agreeing. Note that the above expression differs from (45) in that the current payoff of agreeing for the seller depends on the outside option U_t.

4 Concluding remarks

In the paper we analyze a bargaining model when there is a long-term relationship between a seller and a buyer and bargaining over a sequence of surpluses arriving at fixed points in time. Markov Perfect Equilibria are analyzed and the equilibrium payoffs characterized. We find conditions for uniqueness and existence of an immediate-agreement equilibrium. Furthermore, we show that the transfers between the players can be described as a first-order system of difference equations in terms of current and future
transfers.

We find that the transfers between the seller and the buyer depend both on current and future surpluses, despite the fact that parties start to bargain as soon as a new surplus arrives, as long as breakdown probability is positive. This is not only because bargaining under a risk of breakdown risks losing the surplus both today and in the future, but also because delay without separation might last until the arrival of future surpluses, which in turn means that future surpluses affect the current bargaining outcome.
References

Appendix

This appendix gives proofs of some of the results in the paper.

Proof of Proposition 1. Suppose the buyer is the proposer. The seller case follows by a similar argument.

Case 1. Suppose $r < R$. The wage when making an acceptable offer is

$$\begin{align*}
Y_t^r + W_t^{r,b} + \beta \frac{R-r+1}{R} V_{t+1}^0 \\
= \delta U_t + (1 - \delta) p_t^b \left[\tilde{z}_t \Delta + \beta \frac{1}{R} \left(Y_t^{r+1} + W_t^{r+1,b} + \beta \frac{R-r}{R} V_{0,t+1}^0 \right) \right] \\
+ (1 - \delta) p_t^s \left[\tilde{z}_t \Delta + \beta \frac{1}{R} \left(Y_t^{r+1} + W_t^{r+1,s} + \beta \frac{R-r}{R} V_{t+1}^0 \right) \right]
\end{align*}$$

and when making an unacceptable offer

$$\begin{align*}
(1 - \delta) \left(-p_t^b \beta \frac{1}{R} W_t^{r+1,b} - p_t^s \beta \frac{1}{R} W_t^{r+1,s} + \left[\tilde{z}_t \Delta + \left(\beta \frac{1}{R} \phi_t^{r+1} + \beta \frac{R-r+1}{R} F_{t+1}^0 \right) \right] \right).
\end{align*}$$

The gain of making an acceptable offer is then

$$\phi_t^r - (1 - \delta) \left(\beta \frac{1}{R} \phi_t^{r+1} + \hat{\gamma}_t \Delta \right) - \left(W_t^{r,b} - (1 - \delta) \beta \frac{1}{R} \left(p_t^b W_t^{r+1,b} + p_t^s W_t^{r+1,s} \right) \right) + \delta \Delta \beta \frac{R-r+1}{R} F_{t+1}^0.$$ (56)

From expression (10) - (12) we have

$$\begin{align*}
\left(W_t^{r,b} - (1 - \delta) \beta \frac{1}{R} \left(p_t^b W_t^{r+1,b} + p_t^s W_t^{r+1,s} \right) \right) \\
= \left((1 - \delta) \left(\tilde{z}_t \Delta + \beta \frac{1}{R} Y_t^{r+1} \right) - \left(Y_t^r + \delta \Delta \left(\beta \frac{R-r+1}{R} V_{t+1}^0 - U_t \right) \right) \right)
\end{align*}$$

and hence expression (56) is

$$\phi_t^r + Y_t^r - (1 - \delta) \left(\beta \frac{1}{R} \phi_t^{r+1} + \beta \frac{1}{R} Y_t^{r+1} + \tilde{z}_t \Delta + \hat{\gamma}_t \Delta \right) + \delta \Delta \left(\beta \left(F_{t+1}^0 + V_{t+1}^0 \right) - U_t \right).$$ (58)

Using conditions (1), (2) and that

$$F_{t+1}^0 + V_{t+1}^0 = \sum_{i=1}^{\infty} \left(\beta^i \right) \left(\phi_{t+i}^1 + Y_{t+i}^1 \right)$$

18
we establish that there exists a $\tilde{\Delta}$ such that

$$\phi^r_t + \Upsilon_t^r - (\beta^r \phi^{r+1}_t + \beta^r \Upsilon_{t+1}^{r+1} + \hat{z}_t \Delta + \hat{\gamma}_t \Delta) > 0,$$

$$\phi^{r+1}_t + \Upsilon_t^{r+1} + \beta^{r+1} \left(F_{t+1}^0 + V_{t+1}^0 - U_t \right) > 0$$

for any $\Delta \leq 1$.

Case 2. Suppose $r = R$. The gain of making an acceptable offer is

$$\phi^R_t - (1 - \delta \Delta) \hat{\gamma}_t \Delta - \left(W_t^{R,b} - (1 - \delta \Delta) \beta^R \left(p_{t+1}^b W_{t+1}^{1,b} + p_{t+1}^s W_{t+1}^{1,s} \right) \right) + \delta \Delta \beta^R F_{t+1}^0. \tag{60}$$

From (16) we have

$$\left(W_t^{R,b} - (1 - \delta \Delta) \beta^R \left(p_{t+1}^b W_{t+1}^{1,b} + p_{t+1}^s W_{t+1}^{1,s} \right) \right) = \left((1 - \delta \Delta) \left(\hat{z}_t \Delta + \beta^R V_{t+1}^0 - U_t \right) \right) - \left(\Upsilon_t^R + \beta^R V_{t+1}^0 - U_t \right) \tag{61}$$

and hence (60) can be rewritten as

$$\phi^R_t + \Upsilon^R_t - (\hat{z}_t \Delta + \hat{\gamma}_t \Delta) + \delta \Delta \left[\beta^R \left(V_{t+1}^0 + F_{t+1}^0 \right) + (\hat{z}_t \Delta + \hat{\gamma}_t \Delta) - U_t \right].$$

By similar arguments as in Case 1 there is a $\tilde{\Delta}$ such that the expression above is positive, for all $\Delta \leq 1$.

Combining case 1 and 2 and letting $\tilde{\Delta} = \min \{ \tilde{\Delta}, \tilde{\Delta} \}$ we establish existence for any $\Delta \leq 1$. ■

Proof of Proposition 2. Suppose the buyer is the proposer. The seller case follows by a similar argument.

We first show that, if it is profitable to make an acceptable offer in round r in period t, then it is profitable to make an acceptable offer in period $t - 1$.

Suppose the MPE has a buyer proposal accepted in round $r \leq R$ for some t. Consider round $r - 1$ and suppose the buyer proposes \hat{W} such that

$$\Upsilon_t^{r-1} + \hat{W} - \epsilon + \beta^{r-1} V_{t+1}^0$$

$$= \delta \Delta U_t + (1 - \delta \Delta) p_t^b \left[\hat{z}_t \Delta + \beta^{r-1} \left(\Upsilon_t^r + W_t^{r,b} + \beta^{R-r-1} V_{t+1}^0 \right) \right] + (1 - \delta \Delta) p_t^s \left[\hat{z}_t \Delta + \beta^{r-1} \left(\Upsilon_t^r + W_t^{r,s} + \beta^{R-r-1} V_{t+1}^0 \right) \right] \tag{62}$$

for some $\epsilon > 0$. Clearly, the seller accepts this offer with probability one for any $\epsilon > 0$. The payoff when
an unacceptable offer is made is

\[(1 - \delta \Delta) \left(-p^b_t \beta \pi W^r_t - p^s_t \beta \pi W^r_t + \left(\beta^s_t \phi^r_t + \beta^r \pi F^0_{t+1} \right) \right). \tag{63} \]

Note that we can set \(\varepsilon \) such that \(\tilde{W} - \varepsilon = W^r_t \) and hence the gain of making an acceptable offer is then

\[\phi^r_t - (1 - \delta \Delta) \left(\beta^s_t \phi^r_t + \hat{\gamma}_t \Delta \right) = \left(W^r_t + \varepsilon - (1 - \delta \Delta) \beta^r \pi \left(p^b_t W^r_t + p^s_t W^r_t \right) \right) + \delta \Delta \beta^r \pi F^0_{t+1}. \tag{64} \]

Using expression (57) as in the proof of proposition 1 above, we have

\[\phi^r_t + \gamma^r_t - (1 - \delta \Delta) \left(\beta^s_t \phi^r_t + \beta^r \pi \gamma^r_t + \hat{\gamma}_t \Delta \right) + \delta \Delta \left(\beta \left(F^0_{t+1} + V^0_{t+1} \right) - U_t \right) - \varepsilon. \tag{65} \]

For any \(\beta > \frac{1}{\varepsilon} \equiv \bar{\beta} \) we have

\[\frac{1}{\delta - \ln \beta} \left(\delta U_{t+v} + \hat{\gamma}_{t+v} \right) > \frac{\delta}{\delta - \ln \beta} U_{t+v} + \frac{-\ln \beta}{\delta - \ln \beta} \left(\hat{\gamma}_{t+v} \right). \tag{66} \]

Hence, from condition 3, there is a \(t^* \) such that, for any \(t > t^* \), we have

\[\frac{1 - \beta e^{-\delta}}{\delta - \ln \beta} \sum_{v=1}^{\infty} \left(\beta e^{-\delta} \right)^{v-1} \left(\delta U_{t+v} + \hat{\gamma}_{t+v} \right) \tag{67} \]

\[> \left(1 - \beta e^{-\delta} \right) \sum_{v=1}^{\infty} \left(\beta e^{-\delta} \right)^{v-1} \left(\frac{\delta}{\delta - \ln \beta} U_{t+v} + \frac{-\ln \beta}{\delta - \ln \beta} \left(\hat{\gamma}_{t+v} \right) \right) > U_t. \]

Since

\[F^0_{t+1} + V^0_{t+1} \geq \frac{1 - \beta e^{-\delta}}{\delta - \ln \beta} \sum_{v=1}^{\infty} \left(\beta e^{-\delta} \right)^{v-1} \left(\delta U_{t+v} + \hat{\gamma}_{t+v} \right) \tag{68} \]

condition 1, 2 and 3 establishes that, for \(\varepsilon \) small, there exists a \(\tilde{\Delta} \) such that expression (65) is positive for \(\Delta < \tilde{\Delta} \) whenever \(\beta > \frac{1}{\varepsilon} \).

Suppose the buyer proposal is not accepted in any round. Consider round \(R \) and suppose the buyer proposes \(\tilde{W} \) such that

\[\gamma^r_t + \tilde{W} - \varepsilon + \beta^r \pi V^0_{t+1} = \delta \Delta U_t + (1 - \delta \Delta) p^b_t \left[\hat{\gamma}_t \Delta + \beta^s \pi V^0_{t+1} \right] + (1 - \delta \Delta) p^s_t \left[\hat{\gamma}_t \Delta + \beta^s \pi V^0_{t+1} \right]. \tag{69} \]

The seller accepts this offer with probability one as long as \(\varepsilon > 0 \). The payoff when an unacceptable offer
is made is

$$(1 - \delta \Delta) \left[\dot{\gamma}_t \Delta + \beta \frac{1}{2} F^0_{t+1} \right]$$

and hence the gain is

$$\phi^R_t + \Upsilon^R_t - (1 - \delta \Delta) (\dot{\gamma}_t \Delta + \hat{\gamma}_t \Delta) + \delta \Delta \left(\beta \frac{1}{2} \left(V^0_{t+1} + F^0_{t+1} \right) - U_t \right) - \varepsilon.$$ \hspace{1cm} (71)

Again, for \(\varepsilon \) small, there exists a \(\bar{\Delta} \) such that expression (65) is positive for \(\Delta < \bar{\Delta} \) whenever \(\beta > \frac{1}{\varepsilon} \).

Combining case 1 and 2 and letting \(\hat{\Delta} = \min \{ \Delta, \bar{\Delta} \} \) we establish uniqueness for any \(\Delta < \hat{\Delta} \) whenever \(\beta > \frac{1}{\varepsilon} \). \(\blacksquare \)
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation of an Adaptive Stock Market Model with Heterogeneous Agents</td>
<td>Henrik Amilon</td>
<td>2005:177</td>
</tr>
<tr>
<td>Some Further Evidence on Interest-Rate Smoothing: The Role of Measurement Errors in the Output Gap</td>
<td>Mikael Apel and Per Jansson</td>
<td>2005:178</td>
</tr>
<tr>
<td>Bayesian Estimation of an Open Economy DSGE Model with Incomplete Pass-Through</td>
<td>Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani</td>
<td>2005:179</td>
</tr>
<tr>
<td>Are Constant Interest Rate Forecasts Modest Interventions? Evidence from an Estimated Open Economy DSGE Model of the Euro Area</td>
<td>Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani</td>
<td>2005:180</td>
</tr>
<tr>
<td>Inference in Vector Autoregressive Models with an Informative Prior on the Steady State</td>
<td>Mattias Villani</td>
<td>2005:181</td>
</tr>
<tr>
<td>Bank Mergers, Competition and Liquidity</td>
<td>Elena Carletti, Philipp Hartmann and Giancarlo Spagnolo</td>
<td>2005:182</td>
</tr>
<tr>
<td>Exploring Interactions between Real Activity and the Financial Stance</td>
<td>Tor Jacobson, Jesper Lindé and Kasper Roszbach</td>
<td>2005:184</td>
</tr>
<tr>
<td>Two-Sided Network Effects, Bank Interchange Fees, and the Allocation of Fixed Costs</td>
<td>Mats A. Bergman</td>
<td>2005:185</td>
</tr>
<tr>
<td>Real Exchange Rate and Consumption Fluctuations following Trade Liberalization</td>
<td>Kristian Jönsson</td>
<td>2005:187</td>
</tr>
<tr>
<td>Bayesian Inference of General Linear Restrictions on the Cointegration Space</td>
<td>Mattias Villani</td>
<td>2005:189</td>
</tr>
<tr>
<td>Forecasting Performance of an Open Economy Dynamic Stochastic General Equilibrium Model</td>
<td>Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani</td>
<td>2005:190</td>
</tr>
<tr>
<td>Forecast Combination and Model Averaging using Predictive Measures</td>
<td>Jana Eklund and Sune Karlsson</td>
<td>2005:191</td>
</tr>
<tr>
<td>A Simultaneous Model of the Swedish Krona, the US Dollar and the Euro</td>
<td>Hans Lindblad and Peter Sellin</td>
<td>2006:193</td>
</tr>
<tr>
<td>Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models</td>
<td>Paolo Giordani and Robert Kohn</td>
<td>2006:196</td>
</tr>
<tr>
<td>Derivation and Estimation of a New Keynesian Phillips Curve in a Small Open Economy</td>
<td>Karolina Holmberg</td>
<td>2006:197</td>
</tr>
<tr>
<td>Monetary Policy and Staggered Wage Bargaining when Prices are Sticky</td>
<td>Mikael Carlsson and Andreas Westermark</td>
<td>2006:199</td>
</tr>
<tr>
<td>The Swedish External Position and the Krona</td>
<td>Philip R. Lane</td>
<td>2006:200</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Year:Volume</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>The geography of asset holdings: Evidence from Sweden</td>
<td>Nicolas Coeurdacier and Philippe Martin</td>
<td>2007:202</td>
</tr>
<tr>
<td>Evaluating An Estimated New Keynesian Small Open Economy Model</td>
<td>Malin Adolfsson, Stefan Laséen, Jesper Lindé and Mattias Villani</td>
<td>2007:203</td>
</tr>
<tr>
<td>The Use of Cash and the Size of the Shadow Economy in Sweden</td>
<td>Gabriela Guibourg and Björn Segendorf</td>
<td>2007:204</td>
</tr>
<tr>
<td>Bank supervision Russian style: Evidence of conflicts between micro- and macro-prudential concerns</td>
<td>Sophie Claey and Koen Schoors</td>
<td>2007:205</td>
</tr>
<tr>
<td>Optimal Monetary Policy under Downward Nominal Wage Rigidity</td>
<td>Mikael Carlsson and Andreas Westermark</td>
<td>2007:206</td>
</tr>
<tr>
<td>Financial Structure, Managerial Compensation and Monitoring</td>
<td>Vittoria Cerasi and Sonja Daltung</td>
<td>2007:207</td>
</tr>
<tr>
<td>Financial Frictions, Investment and Tobin's q</td>
<td>Guido Lorenzoni and Karl Walentin</td>
<td>2007:208</td>
</tr>
<tr>
<td>Sticky Information vs Sticky Prices: A Horse Race in a DSGE Framework</td>
<td>Mathias Trabandt</td>
<td>2007:209</td>
</tr>
<tr>
<td>Acquisition versus greenfield: The impact of the mode of foreign bank entry on information and bank lending rates</td>
<td>Sophie Claey and Christa Hainz</td>
<td>2007:210</td>
</tr>
<tr>
<td>Nonparametric Regression Density Estimation Using Smoothly Varying Normal Mixtures</td>
<td>Mattias Villani, Robert Kohn and Paolo Giordani</td>
<td>2007:211</td>
</tr>
<tr>
<td>The Costs of Paying – Private and Social Costs of Cash and Card</td>
<td>Mats Bergman, Gabriella Guibourg and Björn Segendorf</td>
<td>2007:212</td>
</tr>
<tr>
<td>Using a New Open Economy Macroeconomics model to make real nominal exchange rate forecasts</td>
<td>Peter Sellin</td>
<td>2007:213</td>
</tr>
<tr>
<td>Introducing Financial Frictions and Unemployment into a Small Open Economy Model</td>
<td>Lawrence J. Christiano, Mathias Trabandt and Karl Walentin</td>
<td>2007:214</td>
</tr>
<tr>
<td>Earnings Inequality and the Equity Premium</td>
<td>Karl Walentin</td>
<td>2007:215</td>
</tr>
<tr>
<td>Bayesian forecast combination for VAR models</td>
<td>Michael K. Andersson and Sune Karlsson</td>
<td>2007:216</td>
</tr>
<tr>
<td>Do Central Banks React to House Prices?</td>
<td>Daria Finocchiaro and Virginia Queijo von Heideken</td>
<td>2007:217</td>
</tr>
<tr>
<td>The Riksbank’s Forecasting Performance</td>
<td>Michael K. Andersson, Gustav Karlsson and Josef Svensson</td>
<td>2007:218</td>
</tr>
<tr>
<td>Macroeconomic Impact on Expected Default Frequency</td>
<td>Per Asberg and Hovick Shahnazarian</td>
<td>2008:219</td>
</tr>
<tr>
<td>Monetary Policy Regimes and the Volatility of Long-Term Interest Rates</td>
<td>Virginia Queijo von Heideken</td>
<td>2008:220</td>
</tr>
<tr>
<td>Governing the Governors: A Clinical Study of Central Banks</td>
<td>Lars Frisell, Kasper Roszbach and Giancarlo Spagnolo</td>
<td>2008:221</td>
</tr>
<tr>
<td>The Monetary Policy Decision-Making Process and the Term Structure of Interest Rates</td>
<td>Hans Dillén</td>
<td>2008:222</td>
</tr>
<tr>
<td>How Important are Financial Frictions in the US and the Euro Area</td>
<td>Virginia Queijo von Heideken</td>
<td>2008:223</td>
</tr>
<tr>
<td>Block Kalman filtering for large-scale DSGE models</td>
<td>Ingvar Strid and Karl Walentin</td>
<td>2008:224</td>
</tr>
<tr>
<td>Optimal Monetary Policy in an Operational Medium-Sized DSGE Model</td>
<td>Malin Adolfsson, Stefan Laséen, Jesper Lindé and Lars E. O. Svensson</td>
<td>2008:225</td>
</tr>
<tr>
<td>Firm Default and Aggregate Fluctuations</td>
<td>Tor Jacobson, Rikard Kindell, Jesper Lindé and Kasper Roszbach</td>
<td>2008:226</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Year:Page</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Re-Evaluating Swedish Membership in EMU: Evidence from an Estimated Model</td>
<td>Ulf Söderström</td>
<td>2008:227</td>
</tr>
<tr>
<td>Expectation Driven Business Cycles with Limited Enforcement</td>
<td>Karl Walentin</td>
<td>2009:229</td>
</tr>
<tr>
<td>Effects of Organizational Change on Firm Productivity</td>
<td>Christina Håkanson</td>
<td>2009:230</td>
</tr>
<tr>
<td>Flexible Modeling of Conditional Distributions Using Smooth Mixtures of Asymmetric Student T Densities</td>
<td>Feng Li, Mattias Villani and Robert Kohn</td>
<td>2009:233</td>
</tr>
<tr>
<td>Forecasting Macroeconomic Time Series with Locally Adaptive Signal Extraction</td>
<td>Paolo Giordani and Mattias Villani</td>
<td>2009:234</td>
</tr>
<tr>
<td>Evaluating Monetary Policy</td>
<td>Lars E. O. Svensson</td>
<td>2009:235</td>
</tr>
<tr>
<td>Risk Premiums and Macroeconomic Dynamics in a Heterogeneous Agent Model</td>
<td>Ferre De Graeve, Maarten Dossche, Marina Emiris, Henri Sneessens and Raf Wouters</td>
<td>2010:236</td>
</tr>
<tr>
<td>Picking the Brains of MPC Members</td>
<td>Mikael Apel, Carl Andreas Claussen and Petra Lennartsdotter</td>
<td>2010:237</td>
</tr>
<tr>
<td>Housing collateral and the monetary transmission mechanism</td>
<td>Karl Walentin and Peter Sellin</td>
<td>2010:239</td>
</tr>
<tr>
<td>The Discursive Dilemma in Monetary Policy</td>
<td>Carl Andreas Claussen and Øistein Reisland</td>
<td>2010:240</td>
</tr>
<tr>
<td>Monetary Regime Change and Business Cycles</td>
<td>Vasco Cúrdia and Daria Finocchiar</td>
<td>2010:241</td>
</tr>
<tr>
<td>Bayesian Inference in Structural Second-Price common Value Auctions</td>
<td>Bertil Wegmann and Mattias Villani</td>
<td>2010:242</td>
</tr>
<tr>
<td>Equilibrium asset prices and the wealth distribution with inattentive consumers</td>
<td>Daria Finocchiaro</td>
<td>2010:243</td>
</tr>
<tr>
<td>Identifying VARs through Heterogeneity: An Application to Bank Runs</td>
<td>Ferre De Graeve and Alexei Karas</td>
<td>2010:244</td>
</tr>
<tr>
<td>Modeling Conditional Densities Using Finite Smooth Mixtures</td>
<td>Feng Li, Mattias Villani and Robert Kohn</td>
<td>2010:245</td>
</tr>
<tr>
<td>The Output Gap, the Labor Wedge, and the Dynamic Behavior of Hours</td>
<td>Luca Sala, Ulf Söderström and Antonella Trigari</td>
<td>2010:246</td>
</tr>
<tr>
<td>Anticipated Alternative Policy-Rate Paths in Policy Simulations</td>
<td>Stefan Laséen and Lars E. O. Svensson</td>
<td>2010:248</td>
</tr>
<tr>
<td>The Effects of Endogenous Firm Exit on Business Cycle Dynamics and Optimal Fiscal Policy</td>
<td>Lauri Vilmi</td>
<td>2011:250</td>
</tr>
<tr>
<td>Parameter Identification in a Estimated New Keynesian Open Economy Model</td>
<td>Malin Adolfson and Jesper Lindé</td>
<td>2011:251</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Year:Page</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Wage Adjustment and Productivity Shocks</td>
<td>Mikael Carlsson, Julián Messina and Oskar Nordström Skans</td>
<td>2011:253</td>
</tr>
<tr>
<td>Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios</td>
<td>Paolo Giordani, Tor Jacobson, Erik von Schedvin and Mattias Villani</td>
<td>2011:256</td>
</tr>
<tr>
<td>Collateralization, Bank Loan Rates and Monitoring: Evidence from a Natural Experiment</td>
<td>Geraldo Cerqueiro, Steven Ongena and Kasper Roszbach</td>
<td>2012:257</td>
</tr>
<tr>
<td>Labor-Market Frictions and Optimal Inflation</td>
<td>Mikael Carlsson and Andreas Westermark</td>
<td>2012:259</td>
</tr>
<tr>
<td>Output Gaps and Robust Monetary Policy Rules</td>
<td>Roberto M. Billi</td>
<td>2012:260</td>
</tr>
<tr>
<td>The Information Content of Central Bank Minutes</td>
<td>Mikael Apel and Marianna Blix Grimaldi</td>
<td>2012:261</td>
</tr>
<tr>
<td>The Cost of Consumer Payments in Sweden</td>
<td>Björn Segendorf and Thomas Jansson</td>
<td>2012:262</td>
</tr>
<tr>
<td>Trade Credit and the Propagation of Corporate Failure: An Empirical Analysis</td>
<td>Tor Jacobson and Erik von Schedvin</td>
<td>2012:263</td>
</tr>
<tr>
<td>Structural and Cyclical Forces in the Labor Market During the Great Recession: Cross-Country Evidence</td>
<td>Luca Sala, Ulf Söderström and Antonella Trigari</td>
<td>2012:264</td>
</tr>
<tr>
<td>Pension Wealth and Household Savings in Europe: Evidence from SHARELIFE</td>
<td>Rob Alessie, Viola Angelini and Peter van Santen</td>
<td>2013:265</td>
</tr>
</tbody>
</table>