Muller, Christophe

Working Paper
Censored quantile regression of chronic and transient seasonal poverty in Rwanda

CREDIT Research Paper, No. 02/25

Provided in Cooperation with:
The University of Nottingham, Centre for Research in Economic Development and International Trade (CREDIT)

Suggested Citation: Muller, Christophe (2002) : Censored quantile regression of chronic and transient seasonal poverty in Rwanda, CREDIT Research Paper, No. 02/25, The University of Nottingham, Centre for Research in Economic Development and International Trade (CREDIT), Nottingham

This Version is available at:
http://hdl.handle.net/10419/81835

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Censored Quantile Regressions of Chronic and Transient Seasonal Poverty in Rwanda

by

Christophe Muller

Centre for Research in Economic Development and International Trade,
University of Nottingham
The Centre for Research in Economic Development and International Trade is based in the School of Economics at the University of Nottingham. It aims to promote research in all aspects of economic development and international trade on both a long term and a short term basis. To this end, CREDIT organises seminar series on Development Economics, acts as a point for collaborative research with other UK and overseas institutions and publishes research papers on topics central to its interests. A list of CREDIT Research Papers is given on the final page of this publication.

Authors who wish to submit a paper for publication should send their manuscript to the Editor of the CREDIT Research Papers, Professor M F Bleaney, at:

Centre for Research in Economic Development and International Trade,
School of Economics,
University of Nottingham,
University Park,
Nottingham, NG7 2RD,
UNITED KINGDOM

Telephone (0115) 951 5620
Fax: (0115) 951 4159

CREDIT Research Papers are distributed free of charge to members of the Centre. Enquiries concerning copies of individual Research Papers or CREDIT membership should be addressed to the CREDIT Secretary at the above address. Papers may also be downloaded from the School of Economics web site at: www.nottingham.ac.uk/economics/research/credit
Censored Quantile Regressions of Chronic and Transient Seasonal Poverty in Rwanda

by

Christophe Muller
The Author
Christophe Muller is CREDIT Research Fellow, School of Economics, University of Nottingham.

November 2002
Censored Quantile Regressions of Chronic and Transient Seasonal Poverty in Rwanda

by
Christophe Muller

Abstract
It is crucial for social policy in Less Developed Countries to identify separate correlates for transient poverty and chronic poverty at the household level because seasonal poverty substantially contributes to annual poverty. This has been attempted by estimating household equations for those poverty indicators typically by using Tobit and Probit models. However, when errors in household poverty equations are not distributed following a normal law, these models deliver biased estimates of parameters.

Using quarterly data from Rwanda in 1983, we reject the normality assumption for household chronic and transient latent poverty measures and living standard variables. We treat this problem by estimating censored quantile regressions. The estimation results show that different correlates are significant for chronic poverty and for transient seasonal poverty. The effects of the main inputs (land and labour) are more important for the chronic component of poverty than for the transient one. Household location and its socio-demographic characteristics play important roles that are consistent with usual explanations of poverty.

The results of censored quantile regressions and of inconsistent Tobit regressions are substantially different. However, in the case of chronic poverty the signs of the apparently significant coefficients are generally in agreement, while for transient poverty, different variables have significant effects for the two estimation methods.

Résumé
L’identification de corrélats distincts pour la pauvreté transitoire et la pauvreté chronique au niveau des ménages est cruciale à l’établissement de la politique sociale dans les PVDs parce que la pauvreté saisonnière peut contribuer considérablement à la pauvreté. Ceci a été tenté via l’estimation d’équations d’indicateurs de pauvreté au niveau ménage, typiquement à l’aide de modèles Tobits et Probits. Toutefois, lorsque les erreurs dans des équations de pauvreté des ménages ne sont pas distribués suivant une loi normale, ces modèles fournissent des estimateurs inconsistents des paramètres.

A partir de données de panel trimestrielles du Rwanda, nous rejetons l’hypothèse de normalité pour les mesures de pauvreté chroniques et transitoires des ménages. Nous traitons ce problème par l’estimation de régressions quantiles censurées. Les résultats d’estimation montrent que les différents corrélats sont significatifs pour la pauvreté chronique et la pauvreté transitoire. Les effets des inputs principaux (terre et travail) sont plus important pour la composante chronique de la pauvreté que pour la composante transitoire. Le lieu de résidence des ménages et ses caractéristiques socio-démographiques jouent des roles importants qui sont cohérents avec des explications naturelles de la pauvreté.

Les résultats des régressions quantiles censurées et des régressions Tobit sont considérablement différents. Cependant, dans le cas de la pauvreté chronique, les signes des coefficients apparents significatifs sont généralement en accord, alors que pour la pauvreté transitoire différentes variables ont des effets significatifs pour les deux méthodes d’estimation.
Outline
1. Introduction
2. The Data
3. Poverty Equations
4. Conclusions
1 INTRODUCTION
The bulk of the world’s poverty is concentrated in rural areas of developing countries.\footnote{The World Bank (1990, 2000).} The income of households living in these regions mostly comes from local agricultural output, either directly from their own crops when they cultivate land, from the wages they can obtain by working on other exploitations, or else from resources that depend closely on the purchasing power of peasant households, such as for shopkeepers’ income. In an agricultural LDC context, climatic fluctuations are crucial for understanding the causes of poverty.\footnote{Nugent and Walther (1981), Reardon and Taylor (1996).} Because of the high seasonal dispersion of production and the presence of liquidity constraints, the living standards of peasant households may considerably vary across seasons. These households may even cross the poverty line between seasons. This explains why the study of seasonal rural poverty in LDCs has attracted considerable interest in the literature.\footnote{Chambers, Longhurst and Pacey (1981), Chambers (1982), Fortman (1985), FAO (1986), Sahn (1989), Gill (1991), Lipton and Ravallion (1993), Muller (2000).} In this paper, we study seasonal poverty fluctuations in Rwanda by estimating household poverty equations. In order to do this, we need to define poverty indicators, to specify poverty equations incorporating correlates of poverty at household level and to choose an estimation method.

Their interest in seasonal poverty invites researchers to use dynamic poverty indicators. Chaudhuri and Ravallion (1992), using Indian annual data for several years, have shown that the averaged dynamic poverty cannot be approximated by any static indicator. Because living standards of peasants change more across seasons than across years, using static indicators as is almost always done in the literature (based on observations of household annual consumption or household annual income), is likely to be seriously misleading. This suggests the separation of chronic and seasonal components of poverty.

In these conditions, the design of policies to alleviate poverty is delicate. Not only are poor households generally difficult to separate from the rest of the population, but some households, appearing poor in some seasons, may not be poor during the rest of the year, and vice versa. A basic requirement of anti-poverty targeting schemes is the knowledge of correlates of poverty status at the household level. Demographic variables, land owned and household location could be used as efficient screening variables in that they are easy
to observe and they cannot be easily modified by the households to hide their true type. If different correlates can be identified for transient and chronic poverty, then separate policies anchored on these correlates will be possible, for example to distinguish targeting against transient poverty (TP) from targeting against chronic poverty (CP). One can also take advantage of the knowledge of these correlates to directly use them as policy instruments. For example, if children appear to be an intolerable burden for some households and lead them to poverty, measures in favour of fertility control may be efficient. Policies against chronic poverty are often based on permanent household assets or characteristics. Some examples are land reform, education or other human capital policies, agricultural technology improvements. Policies against transient poverty are rather price policies helping to smooth the price evolution, or food aid and other transfer policies designed as a response to urgent situations.

The correlation between poverty, household socio-demographic and environment characteristics has already been studied, although the relationship of these variables broadly varies across periods and countries. In many poverty studies, household composition is controlled for by using equivalence scales (see Jorgenson, 1998, and Triest, 1998). Empirically, the choice of the equivalence scale has been found to systematically affect estimates of poverty (van der Gaag and Smolensky, 1982, Buhmann et al., 1988). However, beyond the debate on the choice of the equivalence scale, and the well known identification problem that it involves (Muellbauer, 1980, Blundell and Lewbell, 1991), Conniffe (1992) shows by using theoretical models that the assumption of constancy of equivalence scales irrespective to income is not plausible. Then, an alternative approach to using equivalence scales is to directly examine the correlation of income and socio-demographic variables. In many studies, household size and per capita consumption or per capita income have been found inversely related, while household size and income are positively correlated (e.g. Kuznets, 1989, Lanjouw and Ravallion, 1995, for developing countries; Lazear and Michael, 1980, for industrialised countries). Moreover, fertility is higher in poor households. Poor households are often younger and their members live for a shorter time, although this may not be the case if poverty is measured with equivalence scales allowing for large scale economies (Lanjouw and Ravallion, 1995). The difficulty of defining appropriate equivalence scales, as illustrated in Coulter et al. (1992), will lead us to estimate household poverty equations where socio-demographic characteristics appear as regressors, in order to control for imperfect
equivalence scales. Such an approach is akin to the common practice of introducing household composition as regressor in food share Engel curves, used as a household welfare indicator (e.g. in Lanjouw and Ravallion, 1995).

One common way of studying the correlates of poverty is to estimate statistical tables or household poverty equations. Tables composed of poverty measures for different populations (poverty profiles) are based on decomposable poverty measures (Foster and Shorrocks, 1988, 1991). For example, Shari (1979), Glewwe (1987) and Slesnick (1993) present tables of poverty incidence by household groups. Rodgers and Rodgers (1992) and Alwang et al. (1996) also estimate tables of various poverty measures by groups of households. Alternatively, log-income equations have been estimated. However, when the focus is poverty analysis, econometric estimation of household poverty equations may be more appropriate. It is possible to account for the fact that some households are not poor by incorporating a censorship of the dependent variable in these equations. For example, Lanjouw and Stern (1991), Dercon and Krishnan (1994), Rodriguez and Smith (1994) and Mason (1996) estimate logit and probit models for the incidence of poverty. Coulombe and McKay (1994) conduct a Probit estimation of the incidence of poverty, and show OLS estimates for the depth of poverty \(P_1/P_0 \). Appleton (1994) accounts for both the quantitative dimension of poverty and for censorship by estimating Tobit models. See Baulch and Hoddinot (2000) for a discussion of other studies. Finally, using a six-year panel data from rural China, Jalan and Ravallion (2000) estimate censored quantile regressions of chronic and annual transient poverty measures and find that the correlates of the two components of poverty can be qualitatively different. Thus, successful policy response to \(CP \) may still leave considerable annual \(TP \). It is not known if similar results occur for seasonal fluctuations of living standards. We provide an answer to these questions in this paper.

A common problem in all these studies, apart from the one by Jalan and Ravallion, is that they are generally based on an implicit assumption that the distribution of the errors in the poverty equations follows a normal (or a logistic) distribution. Unfortunately, Probit and Tobit models are subject to drawbacks. First, if the normal distribution assumption is not satisfied, maximum likelihood estimators based on normality assumptions deliver

inconsistent estimates. Second, because households are very heterogeneous, in particular with respect to their size and their income, the error term in household poverty equations is likely to be heteroskedastic, which is not the case in Probit or Tobit models. Finally, living standard regressions, and by extension poverty regressions, may be exaggeratedly influenced by economic mechanisms characterising the upper classes of society. Indeed, Yitzhaki (1996) shows that in OLS regressions of income the regression coefficients depend heavily on high-income groups. As a matter of fact, the weight of the highest income decile may exceed that of the other nine deciles in such regressions. The estimates thus obtained may be ill-adapted to the determination of poverty correlates.

The aim of this article is to investigate the correlates of chronic and seasonal transient poverty of rural households in Rwanda. For this, we need to deal with the above-mentioned problems in household poverty equations. We firstly test the normality assumption for household poverty equations; secondly we estimate censored quantile regressions which control for the problems of censorship, non-normality, heteroscedasticity and poverty focus. We present the data and density estimates in Section 2. In Section 3, we test the distribution assumptions and we estimate equations of transient seasonal and chronic poverty. Finally, we conclude in Section 4.

2 THE DATA

Rwanda is a small African country with a population of 5.7 million in 1983. The political situation at this period was stable; much more peaceful than that of the recent civil war. In 1983, per capita GDP was equal to 1983 US$ 270, making Rwanda a very poor country. More than 95 percent of the population lived in rural areas (Bureau National du Recensement, 1984), and agriculture accounted for 38 percent of GDP. The growth rate of the population was 3.5 percent a year, corresponding to an average of 8.3 children per fertile woman. This high demographic growth resulted in an intense pressure on land, which partly explains why food production per capita dropped between 1980 and 1991 at a rate of 1.8 percent a year. Climatic seasonal fluctuations are notable in Rwanda (Bulletin Climatique du Rwanda, 1982, 83, 84).

5 Arabmazar and Schmidt (1982) have shown that the asymptotic bias can be substantial. As a solution Pudney (1999) proposes a new statistical method for modelling the incidence of poverty. Using data from Hungary, he carries out in a first step a nonparametric estimation of the income distribution, then he calculates the poverty measure from that estimated model. Thus, his estimation results for the head-count index are valid under non-normality. Other estimation methods can account for the non-normality, as we shall see later.
The data for the estimation are taken from the 1983 Rwandan national budget-consumption survey of 270 households that was conducted by the government of Rwanda and the French Cooperation and Development Ministry\(^6\) in the rural part of the country (Ministère du Plan, 1986). The sampling scheme (Roy, 1983) that we completed during our stay at the Direction Générale de la Statistique du Rwanda has four sampling levels (communes, sectors, districts and households). The survey was conducted from November 1982 to December 1983. Households were surveyed quarterly on their demographic characteristics, their budget and their consumption. The dates of the quarterly rounds are the following: round A from 01/11/1982 until 16/01/1983; round B from 29/01/1983 until 01/05/1983; round C from 08/05/1983 until 07/08/1983; round D from 14/08/1983 until 13/11/1983.

We have calculated quarterly consumption indicators that are of very high quality. This is shown by the proximity of income and consumption indicators for most households. The ratios (income-consumption)/consumption are on average 0.16 over the sample of surveyed households, with a median of 0.078, a first quartile of –0.13 and a third quartile of 0.36. A very intensive collection and treatment explains the quality of consumption indicators. The volume of all containers and the employed traditional measurement units were measured for each household. Then, accurate measures of quantities of goods could be obtained. Every household was visited at least once a day during two weeks for every quarter. The enumerators conducted daily interviews covering these two weeks and retrospective interviews covering the quarter. They weighed the food at every meal. Moreover, every household was left with a diary where the transaction information was recorded between the survey rounds. The surveyed topics were extensive, and much information was repeatedly collected. This situation permitted multiple controls, which enhanced the quality of the collection and of the data cleaning. Finally, we designed algorithms for the calculus of consumption indicators so as to reduce measurement errors by combining several information sources and exploiting the redundancies present in the data.

\(^6\) The main part of the collection was designed by INSEE (French statistical national institute). The author was involved in this project until the last stage of the analysis as technical adviser for the French Ministry of Cooperation and Development.
Table 1 shows the descriptive statistics of the main variables for the household sample. The average household has 5.2 members with 2.6 children. The average age of members is 24.3 years. The household head is generally not educated. Only a few of these heads are women (mainly widows) or belong to the Tutsi ethnic group. The land farmed by the average household is very small (1.24 ha). Most of the average production of 57028 Frw (Rwandan Francs) is used for an average household consumption of 51848 Frw.

To account for geographical and seasonal price variations, we deflate the consumption with Laspeyres price indices I_t that are specific to each household and each quarter and that are described in Muller (2002). We use local (at the cluster level) and quarterly prices, which ensures a more precise deflation than the national price index generally employed in poverty studies. The living standard indicator for household i at quarter t is defined by $y_{it} = c_{it}/(I_{it} S_i)$ where c_{it} is the value of consumption of household i at quarter t, I_{it} is the price index associated with household i and quarter t, S_i is the size of household i. Three other equivalence scales have been used and lead to relatively similar results in poverty equations except for the demographic variables. To shorten the exposition, we focus on per capita consumption that is the most commonly used living standard indicator and enables the comparison with other studies.

Let us first choose a general perspective by directly looking at the distribution of household per capita consumption for different quarters and for the year. Because we may want to estimate Probit and Tobit models, we shall pay attention to the normality of living standards and household poverty indicators. Figure 1(a) to 1(d) show kernel density estimates of quarterly and annual real per capita consumption distributions in levels and in logarithms, based on the Epanechnikov method, with the three vertical lines representing the poverty lines used in this paper (see below). A kernel density estimator $f_K(u)$ is defined by summing the values of the variable of interest weighted with the kernel function K as follows: $f_K(u) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{u - U_i}{h}\right)$, where u is the variable for which the density is calculated, n is the sample size, U_i are the observations of the variable of

7 In 1983, the average exchange rate was 100.17 Frw for one 1983 US $, i.e. 60.16 Frw for one 1999 US $(sources: IMF, Penn Tables).
interest, h is a ‘window width’ parameter chosen by the researcher. The Epanechnikov kernel is defined as $K(u) = 3 (1-u^2/5)/(4\times 5^{1/2})$ if $|u|$ is inferior to $5^{1/2}$, and 0 otherwise.

The shape of the estimated living standard distribution varies a lot across quarters and is never close to normality, whether the living standard variable is in level or in logarithm, notably because of tails being too heavy. However, if one treats the extreme observations as outliers and if one accounts for other measurement errors, it could be argued that the evidence against normality from these graphs only is not definitive. This partly justifies formally testing the normality assumption in Section 3. At quarter D (after the dry season), the mode is higher and centred at a lower value, which corresponds to a higher incidence of poverty. The other quarters cannot be ordered in terms of poverty from their per capita consumption density estimates.

Because the dependent variable in the household poverty equations will be a poverty indicator, it is instructive to look at the normality of the distribution of household poverty indicators. Let us examine density estimates for household squared poverty gaps that are described in Section 3.1. below. Figure 2 shows kernel density estimates of household squared poverty gaps (truncated so as to keep only positive values) with the poverty line z_A (see in Section 3.1) that suggest the normality assumption is not adequate for these measures. This is important because if normality is rejected for household poverty measures, Tobit estimates of poverty equations are likely to be inconsistent because the error terms in such equations are likely to be non-normal as well. Interestingly, the density estimates of the quarterly poverty measures are all characterised by a bimodal feature, suggesting a dichotomy between the extremely poor and the moderately poor at each quarter. In contrast, the density estimates for truncated CP and truncated TP are both approximately unimodal. Although these results are a bad sign for the normality hypothesis, they only inform about the unconditional distribution, which does not necessarily imply that the errors in poverty equations are not normal. We carry out normality tests in the Section 3.2 for conditional distributions of poverty measures. Let us first define the used poverty measures.

3 POVERTY EQUATIONS

3.1 Poverty measures and their estimators
In this sub-section, we present the poverty lines and the poverty indicators that we used,
then we discuss the notions of chronic and transient poverty, and finally we discuss the estimators of CP and TP and the estimation results. Our unit of analysis is the household because we do not have information on individual consumptions or individual incomes. A point of interest is whether poverty correlates vary with the chosen poverty line. Indeed, the definition of the poverty line is a very contentious topic (Ravallion, 1998), and one may want to design a poverty policy by using correlates that are robust to the choice of the poverty line. Alternatively, since different poverty lines may define different populations of poor households that may each be of interest (for example so as to separate the extremely poor from the rest of the poor), one may wish to take advantage of different correlates for different poverty lines in order to obtain some flexibility for the policy design.

We use three different poverty lines expressed in terms of Rwandan Francs. Various types of poverty lines have been proposed (van Pragg, Spit and van der Stadt, 1982, Ravallion, 1998). In the absence of a definitive doctrine in this matter, our definitions are based on second quintiles of the per capita consumption distributions for all periods. We choose these poverty lines because we believe that they are located in reasonable parts of the distribution for Rwanda and make sense for policy against poverty in this country. Focusing on too large a share of the population would exceed the possibility of government action, while using a very small population of the poor would amount to neglecting some very dramatic household situations. In Rwanda using poverty lines calculated from nutritional minima leads one to consider the quasi-totality of the rural population as poor (The World Bank, 2000). Such poverty lines are useful for comparisons across countries, but they do not seem useful for guiding anti-poverty targeting in Rwanda. In such situations, using poverty lines based on bottom quintiles ensures that most of the population cannot be considered poor. Also, it is important not to choose poverty lines that would be too low because in that case the observed sample of the poor would be too small to enable us to estimate any credible household poverty equation. Clearly, because of these evoked reasons, if the purpose is to estimate household poverty equations to discuss the situation of the poor, the choice of the poverty line is much more constrained than for aggregate poverty analysis or international comparisons of poverty. Finally, very low poverty lines or poverty lines in the upper half of the living standard distribution may yield different levels of transient poverty, but we do not deal with the corresponding poverty notions. Note that we shall be able to obtain
meaningless results with these low poverty lines, i.e. under limited measurement information, without having to artificially inflate the poverty lines (like in Jalan and Ravallion, 2000). We define the poverty lines as follows: z_A is the second quintile of the annual per capita consumption; z_B is the sum of the second quintiles of the quarterly per capita consumption; z_C is four times the minimum (across quarters) of the second quintiles of the quarterly per capita consumption.

In this paper we restrict ourselves to identical poverty lines across quarters. Indeed, to allow variations of poverty lines across quarters without much information on which to base this variation would overly determine the results of the analysis. Because our poverty lines are deduced from reasonable choice rather than estimated from a model, we consider that they are known a priori and that the poverty estimations for different poverty lines are separately implemented.

For each poverty line, we estimate Foster-Greer-Thorbecke squared poverty gaps (Foster, Greer and Thorbecke, 1984), for every quarter t in 1983. The aggregate squared poverty gap is defined as: $P_2 = \int_0^\infty (1-y/z)^2 dF(y)$, where F is the c.d.f. of the distribution of the real per capita consumption, y, and z is the poverty line. P_2 satisfies the monotonocity axiom, the transfer axiom and the subgroup monotonocity axiom.

Other poverty measures would be possible, for example the poverty gap P_1. In Muller (2000) we present results based on this measure, as well as on P_3 and on the Watts poverty measure. To save space, we refrain here from providing estimates for too many measures. Then, we focus on the most frequently used axiomatically valid poverty measure. The poverty gap has the drawback of not satisfying the transfer axiom and we prefer to base the poverty equations on P_2 that satisfies this axiom. However, using axiomatically valid indicators also implies that they are sensitive to outliers caused by measurement errors (Cowell and Victoria-Feser, 1996). In a sense, this situation must be accepted as an inevitable shortcoming of poverty indicators of quality. We discuss the measurement error problem further on and deal with it by using estimation methods that are robust to the presence of outliers.

We use the following notions of living standards. The annual per capita consumption is the sum of the four quarterly per capita consumptions. The mean per capita consumption
of a household over the studied agricultural year is denoted *chronic per capita consumption*. Note that it is not the permanent income for the entire lifetime of the household. Because of the short length of the observation period, discount factors between the quarters are omitted.

The notions for poverty measures share similar names with per capita consumption indicators, although they are of a different nature since these names are directly taken from the literature on poverty studies. Ravallion (1988), Rodgers and Rodgers (1993), Chaudhuri and Ravallion (1994), McCulloch and Baulch (1999) use the definition of the aggregate poverty measure for several years as an arithmetic average of the period-specific indices:

\[AP = \frac{1}{T} \sum_{t=1}^{T} P_t, \]

where \(P_t \) is the poverty measure of period \(t \) (in this literature the period is the year), and \(T \) is the number of periods. In our case the periods are the four quarters, and \(AP \) will be called the *annual poverty*.

Using the framework of welfare optimality developed in Harris (1978) and Hammond (1981), it can be seen that the sum of the aggregate poverty measures over the whole set of periods can be interpreted as the opposite of an ex-post social welfare function. ‘ex post’ means here that the welfare criterion is based on realisations of consumption rather than expectations of present and future consumptions, as is the case in the standard Arrow-Debreu framework of decisions under uncertainty. Moreover, poverty at a given period can be seen as the opposite of a social welfare function specific to this period. All this is correct under the assumption that price indices and equivalence scales validly convert income or consumption information in living standards. Here, since only four quarters are observed, we can consider that \(AT \) is akin to an ex-post social welfare function over the year.

The *chronic poverty* \((CP)\) is defined by using the poverty measure formula applied to the chronic per capita consumption (average of the per capita consumption of the four quarters). It is the poverty indicator that one may like to measure if people could have smoothed consumption if desired. It corresponds to the usual poverty indicators of the

literature. The term ‘chronic’ refers here to the use of the chronic per capita consumption in the calculus. The definition of chronic poverty is therefore reminiscent of consumer theory of life-cycle consumption, where the permanent income is enough to explain consumption at each period. Although there is no precise theoretical framework here, this indicator acts as a convenient landmark for analysing poverty fluctuations. The same poverty line is used in calculating each one of the quarterly poverty measures, \(P_t \) \((t = 1,2,3,4)\) and the chronic poverty measure, \(CP \).

The *transient poverty* over the year is defined as the residual of the annual poverty once the chronic poverty has been taken into account: \(TP = AP - CP \). Thus, \(TP \) is the poverty increase that can be attributed to the variability of consumption about its intertemporal mean during the year. This definition is based on Ravallion (1988), and variants accounting for survey design appear in Gibson (2001). To stress the fact that this component of the measured annual poverty comes from the seasonal fluctuations of consumption, we denote it *transient-seasonal poverty*. Naturally, \(TP \) could be negative for some poverty indices and data sets, although this does not normally occur in practice. The share of annual poverty caused by seasonal fluctuations is the ratio \(F = (AP - CP)/AP \).

We do not use the head-count index \(P_0 \) in the equations, mostly because it is invariant to changes in the distribution of welfare amongst the poor, which makes its analysis less attractive from a normative point of view. Using the poverty gap \(P_1 \) would imply that \(TP = 0 \) if there is no household crossing the poverty line across periods. This is due to the neutrality of this indicator with respect to poverty risk. This feature points out problems arising when using non-axiomatically valid poverty measures. When households cross the poverty line across periods, \(TP \) is generally non-null even when based on \(P_1 \). Another approach, not followed in this paper, is to define chronic and transient poverty indicators in terms of the length of consecutive poverty spells, \(CP \) being assimilated to long spells and \(TP \) to short spells (Rodgers and Rodgers, 1993, Baulch and McCulloch, 1998). A drawback of this approach is that poverty severity is not accounted for.

If we possessed seasonal data for several years, we could define seasonal poverty from residuals of moving averages of per capita consumption calculated over a larger time interval, rather than from observations of poverty at four quarters. This would also allow the separation of the trend and random shocks from the seasonal component, which is
impossible here.

For any household i, one can define its chronic poverty index, CP_i, and its transient poverty index, TP_i, by considering the population composed of the household only. National poverty measures generally result from aggregating individual poverty measures (Atkinson, 1987). TP_i and CP_i are null for a large set of observed households and strictly positive for others.

Let us turn to how the aggregate poverty measures are estimated. We estimate the aggregate poverty measure P_2 at quarter t by using sampling weights with the usual formula. Kish (1965) discusses this commonly used estimator. TP, AP and CP are estimated by using similar estimators. The complexity of the actual sampling scheme does not enable a robust use of classical sampling variance formula\(^9\). We use an estimator for sampling standard errors (see Appendix 1) that is a combination of ‘linearization’ estimators obtained using balanced repeated replications (Krewski and Rao, 1981, Roy, 1984, Shao and Rao, 1993) and that is simpler and quicker than stratified bootstrap procedures. Howes and Lanjouw (1998) show that the sampling design can substantially modify the estimated standard errors for poverty measures. Consequently, our estimators for the sampling standard errors account for the sample design.

One permanent concern in empirical studies of transient poverty is how much of transient poverty is caused by measurement errors. Various techniques have been developed in the literature to attempt to deal with this problem, for example by using income dynamic components as instruments for consumption (as in Alderman, 1996), or by simulating the effect of regular measurement errors with convolution product methods (Chesher and Schluter, 2000). Although such approaches are useful, they may also eliminate crucial observations for poverty analysis. Indeed, as Cowell and Victoria-Feser (1996) have shown, even if poverty indicators are sensitive to measurement errors causing outliers, it is this sensitivity to outliers that makes them interesting as axiomatically valid welfare indicators. Moreover, the lowest consumption observations are the ones that incorporate much of the relevant information for poverty analysis. Therefore, there is a trade-off

\(^9\) Kakwani (1993) provides an estimator for sampling standard errors of poverty indices, but it is only valid for a simple random sample frame, which is not the case in most national surveys.
between measurement error treatment and extraction of optimal consumption information for poverty indicators.

We deal with these problems in the following way. Firstly, we use consumption indicators of exceptional quality, based on a very intensive collection process. This is likely to remove much of the consumption measurement problems met in many studies. Secondly, we have estimated in Muller (2000) the robustness of poverty estimates to the presence of measurement error by using the Chesher and Schluter (2000) method. The results show that only a very large amount of measurement error could modify the overall picture of chronic and transient poverty in Rwanda. We also tried to instrument consumption with income and other variables, but this yields unusable results because of the poor goodness-of-fit of predictive equations. Indeed, it is doubtful that such a method is appropriate for Rwanda, where because of very high levels of own-consumption, income and consumption indicators are largely endogenous, and only residual income information can be used, producing poor predictions of consumption. Finally, because our main concern is the estimation of household poverty equations, the measurement error problem must be dealt with in this context. This is done by using an estimation method, the censored quantile regression, that is robust to various measurement error problems, including the presence of outliers. This approach should alleviate some of the influence of data contamination in the estimated equations.

Table 2 shows the estimates of P_2 for the three poverty lines, by quarter and for the whole year. Corresponding estimates of AP, CP, TP and F are also shown. The sampling standard errors in parentheses indicate that all these poverty estimates are significant at common levels. The worst quarter for the poor is quarter D, occurring just after the dry season. At this period, the stocks have not yet been reconstituted before the next important harvests, in particular the beans harvest at the end of December and the beginning of January. The best period for the poor is quarter B. The second worst quarter for the poor is quarter A, although the level of poverty in this period is close to that of quarter C. For all poverty lines, the poverty rise between the first and the last quarter is dramatic.

Using chronic poverty measures only based on annual consumption delivers lower levels of poverty indicators than using annual poverty measures for all tried poverty measures.
In particular, when using indicators based on P_2, the share of annual poverty caused by seasonal consumption fluctuations ranges between 50 percent and 65 percent for the squared poverty gap with the tried poverty lines. This feature has been confirmed for many poverty measures and poverty lines with the same data in Muller (2000).

The importance of the seasonal-transient poverty cannot be attributed to a "bad year" since 1982-83 is a normal agricultural year. The observed low levels of living standards in quarter D of 1983 are usual at this season. The non-negligible sizes of both CP and TP justify a separate investigation of the correlates of CP (the usual poverty indicator in the literature), and those of TP. This is undertaken in Sections 3.4 and 3.5. However, we first need to present the model and to test the normality of errors in poverty equations in the following Section.

3.2. The model and the tests of normality

In this section we model the correlates of the two components of annual poverty with the household as the basic statistical unit. Another approach to the study of poverty correlates could be to refer to the huge literature on consumption smoothing (e.g. Deaton, 1990, 1992, 1997, Townsend, 1994, Ravallion and Chaudhuri, 1997, Attanasio, 1999). Indeed, people would be better off if their consumption was smoothed, and the poverty indicator used much as a welfare function. If consumption smoothing were perfect, the difference between average poverty and chronic poverty would disappear. For Rwanda, the poverty statistics in Section 3.1 have shown that the degree of consumption smoothing for the poor is weak, too weak to protect them against large seasonal welfare variation. This is less true for richer categories of households, although much consumption seasonal variability remains for all quantiles of the per capita consumption distribution. Muller (2001) presents quarterly means of per capita consumption for each quintile, which vary a lot across quarters. This is confirmed by low correlation coefficients of the household per capita consumption across quarters for all quintiles.

A large variety of models has been proposed for explaining the fluctuations of household consumption over time, and as Deaton advocates, although suggestive explanations have been proposed, much work is still to be done before a satisfactory model can be estimated. One difficulty is the probable presence of liquidity constraints that prevent anchoring of the model on smooth Euler equations for consumption evaluation. In this situation
numerical simulation methods are available, but only very simple specifications are presently tractable. One problem is that the household income processes are serially correlated and that this largely increases the computation burden of such consumption models.

Although this does not seem to be appropriate in poor LDCs with imperfect credit market like Rwanda, one approach is to neglect the liquidity constraints. For example, one could estimate a model of expenditure dynamics across quarters, similar to Paxson (1992, 1993) or Alderman (1996). This type of model could be used to derive implications concerning the effects of exogenous variables on poverty. For the estimation of such a model, we would need to observe quarterly income data, local weather information and several years of consumption. In particular, one may want to observe the household responses to successive annual shocks that may be important (Alderman, 1996). Unfortunately, our data are not well suited for this task since this information is not available, and because there are only four observations per household. Moreover, because our major concern is the study of poverty, our strategy is to focus on the population of the poor and we directly investigate the correlates of household transient and chronic poverty measures based on indicator P_2. Indeed, as shown in Yitzhaki (1996), estimating an income model for the whole population may be excessively influenced by the characteristics of the rich. It also avoids the difficulty caused by the unobserved liquidity constraints.

The estimated model is the following. Two dependent variables are considered for household i:

$$CP_i = (1 - \frac{y_{i1} + y_{i2} + y_{i3} + y_{i4}}{4z})^2 I[y_{i1} + y_{i2} + y_{i3} + y_{i4} < 4z]$$ is the chronic poverty measure of household i where $I[.]$ is the indicator function;

$$TP_i = \frac{((1 - y_{i1}/z)^2 I[y_{i1} < z] + (1 - y_{i2}/z)^2 I[y_{i2} < z] + (1 - y_{i3}/z)^2 I[y_{i3} < z] + (1 - y_{i4}/z)^2 I[y_{i4} < z])}{4} - CP_i$$ is the transient poverty measure of household i. Household TP_i and CP_i indicators are calculated using the deflated per capita consumption and the three poverty lines.

It is important to model the censorship. The distributions of CP_2 and TP_2 are characterised by a large spike at zero corresponding to households that are not poor in these senses. It is analytically convenient and typical to model such a spike as a result of censorship of a latent variable. Thus, one can define an extension of the observed poverty measure that would take negative values for non-poor people. This usual econometric approach is
justified by the continuity of the subjacent living standard distribution across the poverty line.

We define two latent variables, "the latent transient poverty", TP_i, and "the latent chronic poverty", CP_i^*, in order to interpret the null values of TP_i and CP_i as resulting from censorship. The link between latent and observed variables is the following:

$$TP_i = TP_i^* \quad \text{if} \quad TP_i^* > 0, \quad TP_i = 0 \quad \text{otherwise};$$

$$CP_i = CP_i^* \quad \text{if} \quad CP_i^* > 0, \quad CP_i = 0 \quad \text{otherwise} \quad (1)$$

Then, we specify equations for the two latent poverty variables.

$$TP_i^* = X_i' \beta + u_i \quad \text{and} \quad CP_i^* = X_i' \gamma + v_i \quad (2)$$

where X_i is a vector of poverty correlates for household i, β and γ are parameters, u_i and v_i are error terms. The basis of the separate estimations of the censored regressions is eqs. (1) and (2). The usual method employed for these estimations is the Tobit regression. However, this method relies on the hypothesis that the errors in (2) are normally distributed and homoscedastic. Therefore, we need to test these hypotheses before employing this estimation method.

We test normality and homoscedasticity for Tobit estimates (for all TP and CP indicators), using tests proposed by Gouriéroux, Monfort, Renault and Trognon (1987) and Pagan and Vella (1989) which are described below in Table 3. The test results shown in Table 3 indicate that normality is very strongly rejected at the 1 percent level for all poverty lines. Moreover, homoscedasticity is rejected at the 5 percent level for different types of heteroscedasticity. This is also the case for a very large number of alternative sets of regressors. The results of these tests imply that the estimations of poverty equations produced by using Probit and Tobit models are inconsistent. We shall therefore use an alternative estimation method, which is robust to non-normality and heteroscedasticity. We present this method in the next sub-section.

3.3. The estimation method

Censored quantile-regressions are robust to heteroscedasticity and non-normality assumptions and constitute a convenient response to the test results of the previous section. Consequently, we base our estimation on this method. The censored quantile
regression estimator for CP_i and quantile θ is defined as the solution to the minimisation of

$$\frac{1}{N} \sum_i \rho_\theta[CP_i - \max(0, X_i' \gamma)],$$

where $\rho_\theta[u] = \{\theta I[u \geq 0] + (1 - \theta) I[u < 0]\} |u|$. A similar estimator can be defined for TP_i.

Powell (1983, 1986) and Buchinsky and Hahn (1998) study the properties of these estimators. As described in Buchinsky (1994, 1995), the estimation is obtained by a combination of a linear programming algorithm and selection of a sub-sample at each iteration of the optimisation. We estimate the confidence intervals of the censored quantile regression estimates by using the bootstrap method with 1000 bootstrap iterations. Hahn (1995) shows that these confidence interval estimators have asymptotically correct probabilities. The bootstrap estimation of the variance-covariance matrix of parameters is applied when convergence has been obtained.

The main reason why we use the quantile regression method is because it provides consistent estimates even under non-normality and heteroscedasticity. It also provides estimates that are robust to the presence of outliers, a permanent concern in poverty analysis because of measurement errors in consumption surveys. It has been argued that this method helps the analysts to focus on the population of interest by choosing quantiles corresponding to the poor. This latter argument is exaggerated since the quantile is that of the conditional distribution, i.e. of the error term, and not directly of the latent poverty index. However, because the usual household poverty equation explains only a small part of the variability of the household poverty distribution, one would expect there to be a strong correlation between quantiles of these conditional and unconditional distributions of the household latent poverty measures. In any case, the focus property of the quantile regression is not the main reason for using the quantile regressions in this paper. Because we deal with TP and CP, a simultaneous estimation method would have been convenient. Unfortunately, no quantile regression method for simultaneous equations is presently available in the literature. This, the absence of strong structural priors about income generating processes and data limitations, explains why we have separate estimations for household TP and household CP.

The choice of the quantile in the censored quantile regressions is in part motivated by the interest of focusing on the population of the poor so that the observation of very rich
households plays little role in the estimation. As discussed before, caution must be applied for this type of interpretation. This approach corresponds to specifying quantiles close to zero in the regressions of the latent poverty indices. More importantly, as both the censorship and the robustness of estimation methods are associated with a loss of accuracy, a major reason for choosing quantiles close to zero is to dispose of most of the information described by poverty indicators in the maximised objective function. Thereby, we improve the precision of the estimates. After a few trials, quantiles 0.10 are used for the estimation tables for transient poverty, and quantiles 0.025 for chronic poverty. Here, 0.025 could be interpreted as if we focus on the 2.5 percent poorest.

We now discuss the correlates of the model. Information about cultivated land by the household, which is the main agricultural input, and about the household labour force, can be incorporated as fundamental income sources whether it is via agricultural production or via the labour market. We dispose of an indicator of the land area cultivated by the household, and we know the household composition for five age classes. These variables are included in the set of correlates. In human capital theories (Willis, 1986), household earnings are largely explained by the age and the education levels of the members. Only the age and the education levels (in years) of the household heads can be incorporated in the equations. The access to markets is also important in that it determines the economic return of household production and the opportunity costs of the goods it consumes. This is described in the equations by the distance to the nearest market. Finally, some regressors are there to control for economic or econometric misspecifications. They are various socio-demographic variables (household composition, characteristics of the head such as age, gender, and education). In particular, they help to control for imperfect adult-equivalent scales, for the unobserved heterogeneity of households, and for omitted demographic changes correlated with poverty status (e.g. caused by household fertility). They may also be correlated with segregation restricting household access to certain resources. Regional dummy variables can play similar roles, while also accounting for the geographical heterogeneity of the environment. We now turn to the regression results.

3.4. The estimation results

Table 4 shows the estimates of censored quantile regressions (Csqr) of the chronic and transient poverty measures and Table 5 shows the corresponding estimates with Tobit regressions. To save on degrees of freedom, variables whose coefficient had a P-value
over 0.5 in preliminary estimators have been eliminated from the equations. This explains why estimations corresponding to different poverty lines have different sets of independent variables. It is important to eliminate such useless regressors because we lack degrees of freedom due to a small sample. This yields better results than badly determined estimates obtained with too many regressors.

The comparison of Tobit and censored quantile regressions results based on the same restricted set of regressors shows that while the estimated coefficients can be substantially different, on the whole the significant correlates (at 5% level) of \(CP \) revealed by censored quantile regressions and Tobits are often qualitatively similar. By contrast, the significant correlates (at 5% level) of \(TP \) are radically different across the two estimation methods.

The number of coefficients significant at 5% level in equations for \(TP \) and \(CP \) is roughly the same whether Tobit or Csqr methods are used. The sensitivity of the results to the choice of the poverty line also looks similar across the two estimation methods. Not only are significant coefficients different for the two methods, but also the levels of the estimated coefficients differ markedly. Very often higher levels of the effects of regressors are found with Csqr. This implies that the estimated standard deviations for Tobit models are probably over-optimistic, making the Tobit estimates appear more significant than they are.

Let us examine more closely the differences in significant effects for the two methods, focussing on 1%, 5%, 10% and 15% significance levels. On the one hand, for chronic poverty Csqr results show more effectively the influence of the number of adults, the education level and the ethnic group of the household head, and of land. In contrast, Tobit results exhibit more significant responses for the numbers of children and adolescent, female heads and market distance, although these responses, or at least their significant levels, are likely to be illusions caused by the rejected normality hypothesis. Some differences of significance for region dummies also occur across methods.

On the other hand, for transient poverty the Csqr elicits more significant effects of the head’s gender and of the location in region Centre-South. Tobit estimates show, probably wrongly, more significant influences for the number of children, the number of young adults and the location in the East region. Note also that the non-significance of the
intercept term for the Tobit model may be interpreted as a hint at its misspecification. On the whole for TP and CP together, Tobit estimates exhibit exaggerated effects of household composition and insufficient effects of the characteristics of the household head.

The Tobits fail to reveal important influences that are better captured by Csqr. Not only does Csqr better show significant influences, but also the size of the effects elicited with this method is larger. Moreover, Tobit estimates are not only inconsistent but also the corresponding P-values are also inconsistent and therefore invite the deduction of erroneous inferences. The differences between Tobit and Csqr are large enough to suspect many of the conclusions that would be obtained by using Tobit models.

The marked difference between estimates obtained with Tobits against censored quantile regressions raises doubts about the validity of many estimated poverty equations in the literature based on Tobit or Probit models, i.e. on implausible normality assumptions. This implies that policies to alleviate poverty and notably anti-poverty targeting may be misguided by traditional estimation method. We now proceed with the comment of the consistent quantile regression estimates.

Slightly different correlation structures correspond to different poverty lines. However, the signs of the estimated coefficients are stable across poverty lines when they are significant. There are clear differences in the effects of correlates for TP and CP, although the only significant effect with opposite signs for TP and CP is that of the Centre-South region and female head if one considers 15% significance level. The number of adolescents, the number of young people and the dummy for the North-West region are never significant at the 5 percent level and we neglect them in our comment.

The estimates are consistent with the beneficial influence of the volume and the quality of the main inputs (land and labour) on living standards. A few variables are always significant whatever the poverty line used. Thus, the number of children and the dummy for Tutsi heads are associated with higher CP and the land area with lower CP. The dummy for female heads and the dummy for the Centre-South region are related to lower TP. The coefficients of the other variables are only significant for some poverty lines. In that case, the number of babies, the age of the head, the distance to the market and the
location in the South-West region are linked with higher \(CP \), while the number of adults and the education of the head are associated with lower \(CP \). Finally, a large land area and a location in the eastern region correspond to lower \(TP \).

Let us analyse these effects in more detail. The positive impact of land, of the head’s education, and of the number of adults on the reduction of chronic poverty can be explained by the direct contributions of land and labour input to household production and income. By contrast, the numbers of babies and young children have negative effects on chronic poverty. This may reflect the fact that these categories of members are a burden for households. This suggests developing programmes of fertility control to alleviate this problem. The household composition and the area of cultivated land could be used as screening variables for policy against chronic poverty. Also, policies favouring the access of poor households to land and the improvement of their labour force are likely to alleviate chronic poverty. Improvements of agricultural technology should also enhance the productivity of these factors.

Other socio-demographic characteristics matter for the chronic poverty status. Female heads and old heads are weakly associated with higher \(CP \). This may be caused by lower productivity, but also by limited access to economic opportunities for these households. Households led by a Tutsi head are associated with higher \(CP \). This is consistent with past negative shocks on their living standards due to political events. Notably, civil troubles in 1959 and 1973 severely hit the Tutsi community. These head characteristics could be used for targeting policies against \(CP \), although the ethnic group is to be avoided because of the delicate political context. Specific help could be directed towards households led by female heads or old heads, for example in the form of local solidarity schemes.

The household location is also important. The dummy variables for the South-West, Centre-South and East regions sometimes have significant effects, although they are difficult to interpret because of the large size of these regions. These effects may correspond to regional crop specialisation. Moreover, a large distance to the market is related to high levels of \(CP \). This is consistent with costly access to the market that reduces opportunities for transactions and jobs, and results in lower permanent exchange gains. Policies against \(CP \) should be directed more intensively towards households in disadvantaged regions or household living far from the main roads or from trade centres.
Investments in transport, communication and road infrastructure are also likely to improve the situation of the chronic poor.

The land area, the gender of the head, and regional dummies for Centre-South and East are the correlates of TP that policy fighting TP could use. Owning a large area of land is associated with a higher level of TP, probably due to the fact that these households specialise in agricultural activities dependent on seasonal climatic fluctuations. Consequently, policies against TP could be more than proportionally directed towards peasants who do not diversify their activities in other sectors. In Rwanda, land is the signal of relative wealth in terms of chronic poverty, but also of a smaller vulnerability to transient seasonal poverty. The significant effects of regional dummies on TP may come from different regional crop specialisations. If that is the case, policies against TP should account for local agronomic characteristics. They may be more efficient when adapted to each local mix of crops rather than when planned uniformly at a national level. Finally, the fact that female led households have lower TP is consistent with widows often relying on regular food and income transfers from family members. Such transfer schemes, which constitute a traditional obligation, could be encouraged in the direction of other household types by offering, for example, public subsidies.

4 CONCLUSION
Because of the frequent occurrence of seasonal poverty in LDCs, social policy could be guided by separate correlates for transient seasonal poverty and chronic poverty at the household level. Using data from Rwanda in 1983, we test and reject the normality of error terms in household poverty equations. The non-normality of household poverty indicators is likely to invalidate many estimation results of poverty equations estimated in the literature by using Tobit and Probit models. We treat this problem by estimating censored quantile regressions of household poverty measures. Also, in contrast with most of the literature, we consider quarterly household consumption variations rather than annual variations.

The estimated coefficients for the correlates of chronic and transient household poverty indicators are sufficiently different with Tobit and censored quantile regressions to raise doubts about the validity of inference obtained from Tobit models of household transient and chronic poverty. This may have serious consequences on the way policies to alleviate
poverty are guided by Tobit estimates of poverty equations or by other methods relying on implausible error assumptions.

The censored quantile regression estimates show that different correlates are significant for chronic poverty and for transient poverty in Rwanda. The effects of the main inputs (land and labour) are more important for the chronic component of poverty than for the transient one. Household location and its socio-demographic characteristics are important in describing its poverty status. The significant correlates are well suited to differentiated strategies against chronic poverty and transient poverty based on different instrument or target groups.

What kind of policies can be improved by the information obtained from the estimates? Clearly, to base anti-poverty policies only on estimates of household poverty equations is a risky exercise and it is not what is typically proposed in the best articles in this domain. Moreover, Atkinson and Bourguignon (2000) convincingly argue that a consistent model explaining income distribution and poverty should involve a dynamic general equilibrium approach, which is far from what can be obtained from household poverty equations. Then, the design of sound anti-poverty policies remains a challenge under limited knowledge about the relevant economic mechanisms.

However, it is possible to use the estimates of household poverty equations as a first stage of the analysis to suggest directions in which policies to alleviate poverty could be developed. Three general avenues could be explored. Firstly, anti-poverty targeting schemes can be guided by these estimates by enabling a better screening of households benefiting from these schemes. What is interesting here is that it is possible to differentiate targeting schemes for chronic poverty, which could be based on the observation of household composition, land, age and sex of the household head and distance from trading centres. Regional targeting is also likely to be efficient against chronic poverty over the year. For targeting against transient seasonal poverty, the observations of non-agricultural activities are key variables since households more specialised in agriculture are more vulnerable to agricultural production shocks that have a strong seasonal component and more effort to observe these activities would help policies against seasonal transient poverty. Seasonal public works could be used to alleviate poverty by providing low wage jobs at crucial periods to poor households that
would self-select themselves for these jobs. Thus, ‘leakages’ of these schemes towards over-wealthy populations can be avoided.

Secondly, policy measures directed towards improvement of household human and physical capital, household productivity and agricultural technology, and household environment may be efficient against poverty. Again, actions directed against \(CP \) and against \(TP \) could be sometimes be separable. Measures improving permanently agricultural technology and land and labour productivity are likely to reduce \(CP \), as it is also the case for investments in transports and communication infrastructures. Health and fertility control programmes are likely both to permanently improve the household human capital, and also reduce the domestic burden brought by children and ill person household members.

Thirdly, support to insurance and solidarity institutions seems to be necessary to reduce the riskiness of rural incomes. This should contribute to the alleviation of both \(CP \) and \(TP \), depending on the time scope of the insurance mechanisms. Several types of programmes are possible, including credit schemes, buffer stocks and crop insurance schemes. The estimates suggest that such solidarity programmes against chronic poverty should be more directed toward female and old heads, while widows would need to be helped more against transient seasonal poverty. However, if public action to provide better insurance seems necessary, its implementation is complicated by the fact that traditional insurance and solidarity schemes are already in place, as well as household protection strategies against income risk. This calls for further studies in these domains.

Finally, the policies of interest may have implications for the methodology. In particular, it would be very useful to introduce questions directly related to these policies in household surveys, for example: who is part of a traditional solidarity scheme? Who has been affected by a specific public policy? Who has benefited from a specific development project and how?

However, in the longer run, one may want to go beyond targeting schemes for anti-poverty policies. This is notably the case because agricultural households develop their own protection strategies against chronic and transient poverty and these strategies are likely to be correlated with some observable characteristics used for defining the target
group or the policy measures. For example, Fafchamps (1992) shows how food security concerns may lead peasants with different amounts of land to choose different protection strategies based on own-consumption or on crop diversification. Then, informed anti-poverty policies would benefit from a better knowledge of household strategies and should be designed in co-ordination with these strategies. This interesting research line is left for future work.
Table 1: Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Consumption</td>
<td>51 847</td>
<td>25 409</td>
</tr>
<tr>
<td>Total Production</td>
<td>57 027</td>
<td>36 682</td>
</tr>
<tr>
<td>Per Capita Total Consumption</td>
<td>18 856</td>
<td>5 344</td>
</tr>
<tr>
<td>Total Surplus</td>
<td>5 180</td>
<td>26 521</td>
</tr>
<tr>
<td>Female head</td>
<td>0.20</td>
<td>0.40</td>
</tr>
<tr>
<td>Age of the head</td>
<td>47.4</td>
<td>16.3</td>
</tr>
<tr>
<td>Household size</td>
<td>5.2</td>
<td>2.3</td>
</tr>
<tr>
<td>Average age of members</td>
<td>24.3</td>
<td>13.4</td>
</tr>
<tr>
<td>Tutsi head</td>
<td>0.10</td>
<td>0.31</td>
</tr>
<tr>
<td>Land area (m²)</td>
<td>12 398</td>
<td>13 156</td>
</tr>
<tr>
<td>Number of children 0-3</td>
<td>0.85</td>
<td>0.87</td>
</tr>
<tr>
<td>Number of children 4-10</td>
<td>1.07</td>
<td>1.05</td>
</tr>
<tr>
<td>Number of adolescents 11-15</td>
<td>0.74</td>
<td>0.92</td>
</tr>
<tr>
<td>Number of young adults 16-20</td>
<td>0.50</td>
<td>0.77</td>
</tr>
<tr>
<td>Number of adults</td>
<td>2.04</td>
<td>0.75</td>
</tr>
<tr>
<td>Northwest</td>
<td>0.14</td>
<td>0.35</td>
</tr>
<tr>
<td>Southwest</td>
<td>0.15</td>
<td>0.36</td>
</tr>
<tr>
<td>Centre-North</td>
<td>0.20</td>
<td>0.40</td>
</tr>
<tr>
<td>Centre-South</td>
<td>0.24</td>
<td>0.43</td>
</tr>
<tr>
<td>East</td>
<td>0.24</td>
<td>0.43</td>
</tr>
<tr>
<td>Education of the head</td>
<td>1.80</td>
<td>2.49</td>
</tr>
</tbody>
</table>

256 observations.
Table 2: Estimates of the Squared Poverty Gap

<table>
<thead>
<tr>
<th></th>
<th>z_A</th>
<th>z_B</th>
<th>z_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter A</td>
<td>0.057</td>
<td>0.0468</td>
<td>0.0345</td>
</tr>
<tr>
<td></td>
<td>(.0076)</td>
<td>(.0067)</td>
<td>(.005)</td>
</tr>
<tr>
<td>Quarter B</td>
<td>0.0442</td>
<td>0.0355</td>
<td>0.0247</td>
</tr>
<tr>
<td></td>
<td>(.0075)</td>
<td>(.0064)</td>
<td>(.0051)</td>
</tr>
<tr>
<td>Quarter C</td>
<td>0.0566</td>
<td>0.0467</td>
<td>0.0343</td>
</tr>
<tr>
<td></td>
<td>(.0062)</td>
<td>(.0055)</td>
<td>(.0047)</td>
</tr>
<tr>
<td>Quarter D</td>
<td>0.0873</td>
<td>0.0731</td>
<td>0.0555</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.014)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Annual Poverty: AP</td>
<td>0.0613</td>
<td>0.0505</td>
<td>0.0373</td>
</tr>
<tr>
<td></td>
<td>(.0053)</td>
<td>(.0045)</td>
<td>(0.0037)</td>
</tr>
<tr>
<td>Chronic Poverty: CP</td>
<td>0.0302</td>
<td>0.0221</td>
<td>0.0133</td>
</tr>
<tr>
<td></td>
<td>(.0027)</td>
<td>(.0023)</td>
<td>(0.0019)</td>
</tr>
<tr>
<td>Transient Poverty: TP</td>
<td>0.0310</td>
<td>0.0284</td>
<td>0.0239</td>
</tr>
<tr>
<td></td>
<td>(.0043)</td>
<td>(.0039)</td>
<td>(0.0034)</td>
</tr>
<tr>
<td>Share of TP: F</td>
<td>0.507</td>
<td>0.561</td>
<td>0.643</td>
</tr>
</tbody>
</table>

The estimates of the squared poverty gap are shown in the cells. Standard errors are in parentheses. All poverty estimates are significant at 5 % level. 256 observations.

The poverty lines are $z_A = \text{Frw } 8352.49$, $z_B = \text{Frw } 7762.88$, $z_C = \text{Frw } 6944.97$.
Table 3: Normality and Heteroscedasticity Tests

<table>
<thead>
<tr>
<th></th>
<th>TP</th>
<th>TP</th>
<th>TP</th>
<th>CP</th>
<th>CP</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>z_A</td>
<td>z_B</td>
<td>z_C</td>
<td>z_A</td>
<td>z_B</td>
<td>z_C</td>
</tr>
<tr>
<td>Normality (M1)</td>
<td>5.58</td>
<td>6.15</td>
<td>6.60</td>
<td>6.01</td>
<td>7.64</td>
<td>8.80</td>
</tr>
<tr>
<td>Normality (M2)</td>
<td>4.18</td>
<td>4.68</td>
<td>5.08</td>
<td>5.60</td>
<td>7.12</td>
<td>8.15</td>
</tr>
<tr>
<td>Heteroskedasticity (M3)</td>
<td>5.54</td>
<td>6.04</td>
<td>6.44</td>
<td>5.83</td>
<td>7.39</td>
<td>8.57</td>
</tr>
</tbody>
</table>

The table shows the values of the absolute t statistics used for the test. The null hypothesis of normality or heteroscedasticity is rejected at 5% level if the absolute value of the Student’s t is above 1.96, and at 1% level if it is above 2.58.

These statistics correspond to the Tobit results with the whole set of correlates. The column headers show the dependent variable (TP or CP) and the used poverty line. The line headers show the stochastic moment used for the test. Restricted sets of correlates yield the same qualitative results. The rejection of the heteroskedasticity is very general and occurs with many socio-demographic and economic variables used as instruments. Here, for example, the statistics shown correspond to the use of the local price of palm oil as instrument.

The poverty lines are $z_A = \text{Frw} 8352.49$, $z_B = \text{Frw} 7762.88$, $z_C = \text{Frw} 6944.97$.

Description of the tests:

The tests are based on the following restrictions.

M1: $N^{-1} > \sum_{i=1}^{N} E [E (u_i^3 | y_i)] = 0$, where u_i is the residual, y_i is the dependent variable and σ is the fixed variance.

M2: $N^{-1} > \sum_{i=1}^{N} E [E (u_i^4 | y_i) - 3\sigma^4] = 0$.

for the normality test, and

M3: $N^{-1} > \sum_{i=1}^{N} E [E (u_i^2 | y_i) - \sigma^2] = 0$.

for homoskedasticity test, and where u_i is the error term for household i and y_i the dependent variable, i.e. the household poverty indicator of interest in our application.

For the Tobit model, the $E(u_i^k | y_i = 0)$ ($k = 2, 3, 4$) are calculated by using:

$E(u_i | y_i = 0) = -\sigma \lambda_i$ where $\lambda_i = \phi(x_i^T \beta/\sigma)/\Phi(x_i^T \beta/\sigma)$ with ϕ and Φ respectively the pdf and the cdf of the standard normal law, and $E(u_i^{k+1} | y_i = 0) = \sigma^2 k E(u_i^k | y_i = 0) - \sigma (-x_i^T \beta)^k \lambda_i$ for $k = 1, 2, 3$.

Pagan and Vella (1989) show that the test statistics can be calculated by regressing the moments M1, M2, M3 against 1 and the score of the Log-likelihood, and test if the coefficients on the intercepts are zero by reading the value of the t-statistics. We follow this approach for Table 3.
Table 4: Censored Quantile Regressions of Household Transient and Chronic Poverty

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>z_A</th>
<th>z_B</th>
<th>z_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>0.179</td>
<td>0.100</td>
<td>-0.126</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.023)</td>
<td>(0.154)</td>
</tr>
<tr>
<td>nb babies</td>
<td>0.0496</td>
<td></td>
<td>0.0790</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td></td>
<td>(0.003)</td>
</tr>
<tr>
<td>nb children</td>
<td>0.0674</td>
<td>0.0599</td>
<td>0.0347</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.005)</td>
<td>(0.078)</td>
</tr>
<tr>
<td>nb adolescents</td>
<td></td>
<td></td>
<td>0.0264</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.207)</td>
</tr>
<tr>
<td>nb young adults</td>
<td></td>
<td></td>
<td>-0.0342</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.226)</td>
</tr>
<tr>
<td>nb adults</td>
<td>-0.0749</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutsi head</td>
<td>0.243</td>
<td>0.226</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.008)</td>
<td>(0.096)</td>
</tr>
<tr>
<td>Female head</td>
<td></td>
<td></td>
<td>0.0769</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.113)</td>
</tr>
<tr>
<td>Age of the head</td>
<td>0.00252</td>
<td></td>
<td>0.00273</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td></td>
<td>(0.075)</td>
</tr>
<tr>
<td>Education of the head</td>
<td>-0.0123</td>
<td>-0.0126</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.130)</td>
<td>(0.089)</td>
<td></td>
</tr>
<tr>
<td>Distance to market</td>
<td>0.00106</td>
<td>0.00124</td>
<td>0.000716</td>
</tr>
<tr>
<td></td>
<td>(0.070)</td>
<td>(0.040)</td>
<td>(0.365)</td>
</tr>
<tr>
<td>Land</td>
<td>-0.00442</td>
<td>-0.00449</td>
<td>-0.00656</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Northwest</td>
<td>0.0672</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.393)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southwest</td>
<td>0.0617</td>
<td></td>
<td>0.0780</td>
</tr>
<tr>
<td></td>
<td>(0.095)</td>
<td></td>
<td>(0.181)</td>
</tr>
<tr>
<td>Centre-South</td>
<td>0.146</td>
<td>0.0729</td>
<td>0.0553</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.049)</td>
<td>(0.181)</td>
</tr>
</tbody>
</table>

P-value in parentheses. 256 observations.
The poverty lines are $z_A = \text{Frw} \ 8352.49$, $z_B = \text{Frw} \ 7762.88$, $z_C = \text{Frw} \ 6944.97$.
<table>
<thead>
<tr>
<th>Independent variables</th>
<th>z_A</th>
<th>z_B</th>
<th>z_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>0.149</td>
<td>0.196</td>
<td>0.179</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>nb children</td>
<td>0.0120</td>
<td>0.0149</td>
<td>0.0151</td>
</tr>
<tr>
<td></td>
<td>(0.214)</td>
<td>(0.211)</td>
<td>(0.243)</td>
</tr>
<tr>
<td>nb young</td>
<td>-0.0101</td>
<td>-0.0117</td>
<td>-0.0118</td>
</tr>
<tr>
<td></td>
<td>(0.284)</td>
<td>(0.223)</td>
<td>(0.191)</td>
</tr>
<tr>
<td>nb adults</td>
<td>0.0137</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.476)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female head</td>
<td>-0.0594</td>
<td>-0.0698</td>
<td>-0.0562</td>
</tr>
<tr>
<td></td>
<td>(0.056)</td>
<td>(0.003)</td>
<td>(0.0008)</td>
</tr>
<tr>
<td>Age of the head</td>
<td>-0.000619</td>
<td>-0.000583</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.300)</td>
<td>(0.337)</td>
<td></td>
</tr>
<tr>
<td>Distance to market</td>
<td>-0.000317</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.488)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land</td>
<td>-0.00154</td>
<td>-0.00140</td>
<td>-0.000634</td>
</tr>
<tr>
<td></td>
<td>(0.051)</td>
<td>(0.067)</td>
<td>(0.360)</td>
</tr>
<tr>
<td>Southwest</td>
<td>-0.0340</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.456)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centre-South</td>
<td>-0.0532</td>
<td>-0.0458</td>
<td>-0.0472</td>
</tr>
<tr>
<td></td>
<td>(0.093)</td>
<td>(0.044)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>East</td>
<td>-0.0410</td>
<td>-0.0405</td>
<td>-0.0457</td>
</tr>
<tr>
<td></td>
<td>(0.236)</td>
<td>(0.129)</td>
<td>(0.049)</td>
</tr>
</tbody>
</table>

P-value in parentheses. 256 observations.

The poverty lines are $z_A = \text{Frw} 8352.49$, $z_B = \text{Frw} 7762.88$, $z_C = \text{Frw} 6944.97$.

Table 5: Tobit Regressions of Household Transient and Chronic Poverty

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>z_A</th>
<th>z_B</th>
<th>z_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>-0.204</td>
<td>-0.0978</td>
<td>-0.254</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>nb babies</td>
<td>0.0434</td>
<td>0.0523</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nb children</td>
<td>0.0315</td>
<td>0.0363</td>
<td>0.0267</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.000)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>nb adolescents</td>
<td>0.0143</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.147)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nb young</td>
<td>0.00448</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.686)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nb adults</td>
<td>-0.0216</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.098)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutsi head</td>
<td>0.0328</td>
<td>0.0285</td>
<td>0.0325</td>
</tr>
<tr>
<td></td>
<td>(0.230)</td>
<td>(0.293)</td>
<td>(0.206)</td>
</tr>
<tr>
<td>Female head</td>
<td></td>
<td></td>
<td>0.0448</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.042)</td>
</tr>
<tr>
<td>Age of the head</td>
<td>0.00138</td>
<td></td>
<td>0.00171</td>
</tr>
<tr>
<td></td>
<td>(0.075)</td>
<td></td>
<td>(0.009)</td>
</tr>
<tr>
<td>Education of the head</td>
<td>-0.00586</td>
<td>-0.00712</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.193)</td>
<td>(0.068)</td>
<td></td>
</tr>
<tr>
<td>Distance to market</td>
<td>0.000902</td>
<td>0.000693</td>
<td>0.000985</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.088)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Land</td>
<td>-0.00153</td>
<td>-0.00172</td>
<td>-0.00181</td>
</tr>
<tr>
<td></td>
<td>(0.066)</td>
<td>(0.036)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Northwest</td>
<td>0.0356</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.219)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southwest</td>
<td>0.0603</td>
<td></td>
<td>0.0537</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td></td>
<td>(0.019)</td>
</tr>
<tr>
<td>Centre-South</td>
<td>0.0662</td>
<td>0.0440</td>
<td>0.0563</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.031)</td>
<td>(0.005)</td>
</tr>
</tbody>
</table>

P-value in parentheses. 256 observations.

The poverty lines are $z_A = \text{Frw} 8352.49$, $z_B = \text{Frw} 7762.88$, $z_C = \text{Frw} 6944.97$.
<table>
<thead>
<tr>
<th>Independent variables</th>
<th>z_A</th>
<th>z_B</th>
<th>z_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>-0.00856</td>
<td>0.00346</td>
<td>0.00870</td>
</tr>
<tr>
<td></td>
<td>(0.436)</td>
<td>(0.729)</td>
<td>(0.367)</td>
</tr>
<tr>
<td>nb children</td>
<td>-0.0116</td>
<td>0.0114</td>
<td>0.0102</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>nb young adults</td>
<td>-0.00277</td>
<td>0.00209</td>
<td>0.00166</td>
</tr>
<tr>
<td></td>
<td>(0.462)</td>
<td>(0.559)</td>
<td>(0.631)</td>
</tr>
<tr>
<td>nb adults</td>
<td>0.000856</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.837)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female head</td>
<td>0.00900</td>
<td>-0.0109</td>
<td>-0.0111</td>
</tr>
<tr>
<td></td>
<td>(0.260)</td>
<td>(0.141)</td>
<td>(0.119)</td>
</tr>
<tr>
<td>Age of the head</td>
<td></td>
<td>0.000158</td>
<td>0.000135</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.388)</td>
<td>(0.442)</td>
</tr>
<tr>
<td>Distance to market</td>
<td>-5.9E-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.967)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land</td>
<td>0.000389</td>
<td>-0.000366</td>
<td>-0.000351</td>
</tr>
<tr>
<td></td>
<td>(0.133)</td>
<td>(0.143)</td>
<td>(0.145)</td>
</tr>
<tr>
<td>Southwest</td>
<td>-0.00520</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.519)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centre-South</td>
<td></td>
<td>0.00512</td>
<td>0.00566</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.442)</td>
<td>(0.380)</td>
</tr>
<tr>
<td>East</td>
<td>0.0246</td>
<td>-0.0216</td>
<td>-0.0195</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.003)</td>
<td>(0.006)</td>
</tr>
</tbody>
</table>

P-value in parentheses. 256 observations.
The poverty lines are $z_A = \text{Frw} 8352.49$, $z_B = \text{Frw} 7762.88$, $z_C = \text{Frw} 6944.97$.
REFERENCES

APPLETON, "The rich are just like us, only richer. Poverty functions or consumption functions? Evidence from Uganda," Discussion paper CSAE, November 1994.

Across Ten Countries Using The Luxembourg Income Study (LIS) Database,”

CHAMBERS, R., “Health, Agriculture and Rural Poverty: Why Seasons Matter,”

Working paper University of Bristol, February 1999.

Appendix 1: Sampling standard-error estimators

The poverty indicator of a sub-population is estimated by a ratio of the type $\bar{y}'_x = \frac{z'}{x'}$

where ' denotes the Horwitz-Thompson estimator for a total (sum of values for the variable of interest weighted by the inverse of inclusion probability). z is the sum of the poverty in the sub-population and x is the size of the sub-population. The variance associated with the sampling error is then approximated by:

$V(\bar{y}'_x) \approx V(\bar{y}'_x) - 2 \bar{y}'_x \text{Cov}(\bar{y}'_x, x') + (\bar{y}'_x)^2 V(x') / (x')^2$

obtained from a Taylor expansion at first order from function $Y = f(Z/X)$ around $(E_y', E_{x'})$ and because $E z' \neq 0$ and x' does not cancel, where the appropriate expectancies are estimated by x' and \bar{y}'_x.

We divide the sample of communes (first actual stage of the sampling since all the prefectures are drawn) in five super-strata ($\alpha = 1$ to 5) so as to group together the communes sharing similar characteristics, and to reduce a priori the variance intra-strata. Several sectors are assumed to have been drawn in each strata. This allows the estimation of the variance intra-strata, while the calculation of the variance intra-commune was impossible, since in fact only one sector had been drawn in each commune. Then, the Horwitz-Thompson formula for superstrata α is:

$z'_\alpha = \sum_h M_h \sum_{m_{hi}}^{m_{h\alpha}} N_{hi} \sum_{n_{qij}}^{n_{hi}} Q_{hij} \sum_{q_{kij}}^{q_{hi}} z_{hijk}$

and $x'_\alpha = \sum_h M_h \sum_{m_{hi}}^{m_{h\alpha}} N_{hi} \sum_{n_{qij}}^{n_{hi}} Q_{hij} \sum_{q_{kij}}^{q_{hi}} x_{hijk}$

where M_h is the number of communes in prefecture h; $m_{h\alpha}$ is the number of communes in prefecture h and drawn in superstrata α; N_{hi} is the number of sectors in commune i of prefecture h and superstrata α; n_{hi} is the number of households in sector j of commune i of prefecture h and superstrata α; Q_{hij} is the number of households drawn in sector j of commune i of prefecture h; q_{kij} is the number of households drawn in sector j of commune i of prefecture h and superstrata α. A similar formula can also be used to account for the intermediary drawing of several districts in every sector.

$\text{Cov}(z', x')$ is estimated by:

$\hat{\text{Cov}}(z', x') = \frac{1}{20} \sum_{\alpha=1}^{5} (z'_\alpha - z')(x'_\alpha - x').$

Similar formulae for $V(x)$ and $V(z)$ are obtained by making $x = z$.
Fig. 1a: Quarterly per capita consumption
Fig. 1b: Annual per capita consumption
Fig. 1c: Log quarterly per capita consumption
Fig. 1d: Log per capita annual consumption
Fig. 2a: Truncated quarterly poverty measures
Fig. 2b: Truncated chronic and transient squared poverty gaps
<table>
<thead>
<tr>
<th>CREDIT PAPERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00/1 Robert Lensink, “Does Financial Development Mitigate Negative Effects of Policy Uncertainty on Economic Growth?”</td>
</tr>
<tr>
<td>00/2 Oliver Morrissey, “Investment and Competition Policy in Developing Countries: Implications of and for the WTO”</td>
</tr>
<tr>
<td>00/3 Jo-Ann Crawford and Sam Laird, “Regional Trade Agreements and the WTO”</td>
</tr>
<tr>
<td>00/4 Sam Laird, “Multilateral Market Access Negotiations in Goods and Services”</td>
</tr>
<tr>
<td>00/5 Sam Laird, “The WTO Agenda and the Developing Countries”</td>
</tr>
<tr>
<td>00/7 Henrik Hansen and Fin Tarp, “Aid and Growth Regressions”</td>
</tr>
<tr>
<td>00/8 Andrew McKay, Chris Milner and Oliver Morrissey, “The Trade and Welfare Effects of a Regional Economic Partnership Agreement”</td>
</tr>
<tr>
<td>00/9 Mark McGillivray and Oliver Morrissey, “Aid Illusion and Public Sector Fiscal Behaviour”</td>
</tr>
<tr>
<td>00/10 C.W. Morgan, “Commodity Futures Markets in LDCs: A Review and Prospects”</td>
</tr>
<tr>
<td>00/11 Michael Bleaney and Akira Nishiyama, “Explaining Growth: A Contest between Models”</td>
</tr>
<tr>
<td>00/12 Christophe Muller, “Do Agricultural Outputs of Autarkic Peasants Affect Their Health and Nutrition? Evidence from Rwanda”</td>
</tr>
<tr>
<td>00/13 Paula K. Lorgelly, “Are There Gender-Separate Human Capital Effects on Growth? A Review of the Recent Empirical Literature”</td>
</tr>
<tr>
<td>00/15 I. Dasgupta, R. Palmer-Jones and A. Parikh, “Between Cultures and Markets: An Eclectic Analysis of Juvenile Gender Ratios in India”</td>
</tr>
<tr>
<td>00/16 Sam Laird, “Dolphins, Turtles, Mad Cows and Butterflies – A Look at the Multilateral Trading System in the 21st Century”</td>
</tr>
<tr>
<td>00/17 Carl-Johan Dalgaard and Henrik Hansen, “On Aid, Growth, and Good Policies”</td>
</tr>
<tr>
<td>01/01 Tim Lloyd, Oliver Morrissey and Robert Osei, “Aid, Exports and Growth in Ghana”</td>
</tr>
<tr>
<td>01/02 Christophe Muller, “Relative Poverty from the Perspective of Social Class: Evidence from The Netherlands”</td>
</tr>
<tr>
<td>01/03 Stephen Knowles, “Inequality and Economic Growth: The Empirical Relationship Reconsidered in the Light of Comparable Data”</td>
</tr>
<tr>
<td>01/04 A. Cuadros, V. Orts and M.T. Alguacil, “Openness and Growth: Re-Examining Foreign Direct Investment and Output Linkages in Latin America”</td>
</tr>
<tr>
<td>01/05 Harold Alderman, Simon Appleton, Lawrence Haddad, Lina Song and Yisehac Yohannes, “Reducing Child Malnutrition: How Far Does Income Growth Take Us?”</td>
</tr>
</tbody>
</table>
01/06 Robert Lensink and Oliver Morrissey, “Foreign Direct Investment: Flows, Volatility and Growth”
01/07 Adam Blake, Andrew McKay and Oliver Morrissey, “The Impact on Uganda of Agricultural Trade Liberalisation”
01/08 R. Quentin Grafton, Stephen Knowles and P. Dorian Owen, “Social Divergence and Economic Performance”
01/09 David Byrne and Eric Strobl, “Defining Unemployment in Developing Countries: The Case of Trinidad and Tobago”
01/10 Holger Görg and Eric Strobl, “The Incidence of Visible Underemployment: Evidence for Trinidad and Tobago”
01/12 Eric Strobl and Frank Walsh, “Minimum Wages and Compliance: The Case of Trinidad and Tobago”
01/13 Mark McGillivray and Oliver Morrissey, “A Review of Evidence on the Fiscal Effects of Aid”
01/14 Tim Lloyd, Oliver Morrissey and Robert Osei, “Problems with Pooling in Panel Data Analysis for Developing Countries: The Case of Aid and Trade Relationships”
01/15 Oliver Morrissey, “Pro-Poor Conditionality for Aid and Debt Relief in East Africa”
01/17 Michael Bleaney and Lisenda Lisenda, “Monetary Policy After Financial Liberalisation: A Central Bank Reaction Function for Botswana”
01/18 Holger Görg and Eric Strobl, “Relative Wages, Openness and Skill-Biased Technological Change in Ghana”
01/19 Dirk Willem te Velde and Oliver Morrissey, “Foreign Ownership and Wages: Evidence from Five African Countries”
01/20 Suleiman Abrar, “Duality, Choice of Functional Form and Peasant Supply Response in Ethiopia”
01/21 John Rand and Finn Tarp, “Business Cycles in Developing Countries: Are They Different?”
01/22 Simon Appleton, “Education, Incomes and Poverty in Uganda in the 1990s”
02/01 Eric Strobl and Robert Thornton, “Do Large Employers Pay More in Developing Countries? The Case of Five African Countries”
02/02 Mark McGillivray and J. Ram Pillarisetti, “International Inequality in Human Development, Real Income and Gender-related Development”
02/03 Sourafel Girma and Abbi M. Kedir, “When Does Food Stop Being a Luxury? Evidence from Quadratic Engel Curves with Measurement Error”
02/04 Indraneel Dasgupta and Ravi Kanbur, “Class, Community, Inequality”
02/05 Karuna Gomanee, Sourafel Girma and Oliver Morrissey, “Aid and Growth in Sub-Saharan Africa: Accounting for Transmission Mechanisms”
02/06 Michael Bleaney and Marco Gunderman, “Stabilisations, Crises and the “Exit” Problem – A Theoretical Model”
02/07 Eric Strobl and Frank Walsh, “Getting It Right: Employment Subsidy or Minimum Wage? Evidence from Trinidad and Tobago”
02/08 Carl-Johan Dalgaard, Henrik Hansen and Finn Tarp, “On the Empirics of Foreign Aid and Growth”
02/10 Simon Feeny and Mark McGillivray, “Modelling Inter-temporal Aid Allocation”
02/11 Mark McGillivray, “Aid, Economic Reform and Public Sector Fiscal Behaviour in Developing Countries”
02/13 Lucian Cernat, Sam Laird and Alessandro Turrini, “How Important are Market Access Issues for Developing Countries in the Doha Agenda?”
02/14 Ravi Kanbur, “Education, Empowerment and Gender Inequalities”
02/15 Eric Strobl, “Is Education Used as a Signaling Device for Productivity in Developing Countries?”
02/16 Suleiman Abrar, Oliver Morrissey and Tony Rayner, “Supply Response of Peasant Farmers in Ethiopia”
02/17 Stephen Knowles, “Does Social Capital Affect Foreign Aid Allocations?”
02/18 Dirk Willem te Velde and Oliver Morrissey, “Spatial Inequality for Manufacturing Wages in Five African Countries”
02/19 Jennifer Mbabazi, Oliver Morrissey and Chris Milner, “The Fragility of the Evidence on Inequality, Trade Liberalisation, Growth and Poverty”
02/20 Robert Osei, Oliver Morrissey and Robert Lensink, “The Volatility of Capital Inflows: Measures and Trends for Developing Countries”
02/21 Miyuki Shibata and Oliver Morrissey, “Private Capital Inflows and Macroeconomic Stability in Sub-Saharan African Countries”
02/23 Oliver Morrissey, “British Aid Policy Since 1997: Is DFID the Standard Bearer for Donors?”
02/24 Öner Günçavdi, Suat Küçükçifçi and Andrew McKay, “Adjustment, Stabilisation and the Analysis of the Employment Structure in Turkey: An Input-Output Approach”
02/25 Christophe Muller, “Censored Quantile Regressions of Chronic and Transient Seasonal Poverty in Rwanda”
SCHOOL OF ECONOMICS DISCUSSION PAPERS

In addition to the CREDIT series of research papers the School of Economics produces a discussion paper series dealing with more general aspects of economics. Below is a list of recent titles published in this series.

00/1 Tae-Hwan Kim and Christophe Muller, “Two-Stage Quantile Regression”
00/2 Spiros Bougheas, Panicos O. Demetriades and Edgar L.W. Morgenroth, “International Aspects of Public Infrastructure Investment”
00/3 Michael Bleaney, “Inflation as Taxation: Theory and Evidence”
00/4 Michael Bleaney, “Financial Fragility and Currency Crises”
00/5 Sourafel Girma, “A Quasi-Differencing Approach to Dynamic Modelling from a Time Series of Independent Cross Sections”
00/6 Spiros Bougheas and Paul Downward, “The Economics of Professional Sports Leagues: A Bargaining Approach”
00/7 Marta Aloi, Hans Jørgen Jacobsen and Teresa Lloyd-Braga, “Endogenous Business Cycles and Stabilization Policies”
00/8 A. Ghoshray, T.A. Lloyd and A.J. Rayner, “EU Wheat Prices and its Relation with Other Major Wheat Export Prices”
00/9 Christophe Muller, “Transient-Seasonal and Chronic Poverty of Peasants: Evidence from Rwanda”
00/10 Gwendolyn C. Morrison, “Embedding and Substitution in Willingness to Pay”
00/11 Claudio Zoli, “Inverse Sequential Stochastic Dominance: Rank-Dependent Welfare, Deprivation and Poverty Measurement”
00/12 Tae-Hwan Kim, Stephen Leybourne and Paul Newbold, “Unit Root Tests With a Break in Variance”
00/13 Tae-Hwan Kim, Stephen Leybourne and Paul Newbold, “Asymptotic Mean Squared Forecast Error When an Autoregression With Linear Trend is Fitted to Data Generated by an I(0) or I(1) Process”
00/14 Michelle Haynes and Steve Thompson, “The Productivity Impact of IT Deployment: An Empirical Evaluation of ATM Introduction”
00/15 Michelle Haynes, Steve Thompson and Mike Wright, “The Determinants of Corporate Divestment in the UK”
00/16 John Beath, Robert Owen, Joanna Poyago-Theotoky and David Ulph, “Optimal Incentives for Incoming Generations within Universities”
00/17 S. McCorriston, C. W. Morgan and A. J. Rayner, “Price Transmission: The Interaction Between Firm Behaviour and Returns to Scale”
00/18 Tae-Hwan Kim, Douglas Stone and Halbert White, “Asymptotic and Bayesian Confidence Intervals for Sharpe Style Weights”
00/19 Tae-Hwan Kim and Halbert White, “James-Stein Type Estimators in Large Samples with Application to the Least Absolute Deviation Estimator”
00/20 Gwendolyn C. Morrison, “Expected Utility and the Endowment Effect: Some Experimental Results”
00/21 Christophe Muller, “Price Index Distribution and Utilitarian Social Evaluation Functions”
00/22 Michael Bleaney, “Investor Sentiment, Discounts and Returns on Closed-End Funds”
00/23 Richard Cornes and Roger Hartley, “Joint Production Games and Share Functions”
00/24 Joanna Poyago-Theotoky, “Voluntary Approaches, Emission Taxation and the Organization of Environmental R&D”
00/25 Michael Bleaney, Norman Gemmell and Richard Kneller, “Testing the Endogenous Growth Model: Public Expenditure, Taxation and Growth Over the Long-Run”
00/26 Michael Bleaney and Marco Gundermann, “Credibility Gains and Output Losses: A Model of Exchange Rate Anchors”
00/27 Indraneel Dasgupta, “Gender Biased Redistribution and Intra-Household Distribution”
00/28 Richard Cornes and Roger Hartley, “Rentseeking by Players with Constant Absolute Risk Aversion”
00/29 S.J. Leybourne, P. Newbold, D. Vougas and T. Kim, “A Direct Test for Cointegration Between a Pair of Time Series”
00/30 Claudio Zoli, “Inverse Stochastic Dominance, Inequality Measurement and Gini Indices”
01/01 Spiros Bougheas, “Optimism, Education, and Industrial Development”
01/02 Tae-Hwan Kim and Paul Newbold, “Unit Root Tests Based on Inequality-Restricted Estimators”
01/03 Christophe Muller, “Defining Poverty Lines as a Fraction of Central Tendency”
01/04 Claudio Piga and Joanna Poyago-Theotoky, “Shall We Meet Halfway? Endogenous Spillovers and Locational Choice”
01/05 Ilias Skamnelos, “Sunspot Panics, Information-Based Bank Runs and Suspension of Deposit Convertibility”
01/06 Spiros Bougheas and Yannis Georgellis, “Apprenticeship Training, Earnings Profiles and Labour Turnover: Theory and German Evidence”
01/07 M.J. Andrews, S. Bradley and R. Upward, “Employer Search, Vacancy Duration and Skill Shortages”
01/08 Marta Aloi and Laurence Lasselle, “Growing Through Subsidies”
01/09 Marta Aloi and Huw D. Dixon, “Entry Dynamics, Capacity Utilisation, and Productivity in a Dynamic Open Economy”
01/10 Richard Cornes and Roger Hartley, “Asymmetric Contests with General Technologies”
01/11 Richard Cornes and Roger Hartley, “Disguised Aggregative Games”
01/12 Spiros Bougheas and Tim Worrall, “Cost Padding in Regulated Monopolies”
10/13 Alan Duncan, Gillian Paull and Jayne Taylor, “Price and Quality in the UK Childcare Market”
01/14 John Creedy and Alan Duncan, “Aggregating Labour Supply and Feedback Effects in Microsimulation”
Members of the Centre

Director

Oliver Morrissey - aid policy, trade and agriculture

Research Fellows (Internal)

Simon Appleton – poverty, education, household economics
Adam Blake – CGE models of low-income countries
Mike Bleaney - growth, international macroeconomics
Indraneel Dasgupta – development theory, household bargaining
Norman Gemmell – growth and public sector issues
Ken Ingersent - agricultural trade
Tim Lloyd – agricultural commodity markets
Andrew McKay - poverty, peasant households, agriculture
Chris Milner - trade and development
Wyn Morgan - futures markets, commodity markets
Christophe Muller – poverty, household panel econometrics
Tony Rayner - agricultural policy and trade

Research Fellows (External)

David Fielding (University of Leicester) – investment, monetary and fiscal policy
Ravi Kanbur (Cornell) – inequality, public goods – Visiting Research Fellow
Henrik Hansen (University of Copenhagen) – aid and growth
Stephen Knowles (University of Otago) – inequality and growth
Sam Laird (UNCTAD) – trade policy, WTO
Robert Lensink (University of Groningen) – aid, investment, macroeconomics
Scott McDonald (University of Sheffield) – CGE modelling, agriculture
Mark McGillivray (WIDER, Helsinki) – aid allocation, aid policy
Doug Nelson (Tulane University) - political economy of trade
Shelton Nicholls (University of West Indies) – trade, integration
Eric Strobl (University College Dublin) – labour markets
Finn Tarp (University of Copenhagen) – aid, CGE modelling