Erikson, Robert S.; Snyder Jr., James M.; Folke, Olle

Working Paper
A Gubernatorial Helping Hand? How Governors Affect Presidential Elections

IFN Working Paper, No. 932

Provided in Cooperation with:
Research Institute of Industrial Economics (IFN), Stockholm

Suggested Citation: Erikson, Robert S.; Snyder Jr., James M.; Folke, Olle (2012): A Gubernatorial Helping Hand? How Governors Affect Presidential Elections, IFN Working Paper, No. 932, Research Institute of Industrial Economics (IFN), Stockholm

This Version is available at:
http://hdl.handle.net/10419/81485

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
A Gubernatorial Helping Hand? How Governors Affect Presidential Elections

Robert S. Erikson, Olle Folke and James M. Snyder, Jr.
A Gubernatorial Helping Hand?
How Governors Affect Presidential Elections*

Robert S. Erikson
Columbia University

Olle Folke
Columbia University and Research Institute of Industrial Economics (IFN)

James M. Snyder, Jr.
Harvard University and NBER

September 2012

Abstract

It is commonly argued in the media that a presidential candidate will be helped in a state by having a governor of the same party in office. However, there is little research to support this claim. To address this question we use a regression discontinuity design. The basic idea behind this is that in very close elections the party of the governor is decided essentially by a coin flip. Focusing on these very close elections therefore allows us to estimate the causal effect of gubernatorial party control. We show that a presidential candidate is not helped, but in fact hurt, by having a governor from the same party. On average, winning the governor’s election leads to a 2-3 percentage point reduction in a state’s presidential vote share in the following election. Using a similar methodology, we also show that voters punish the presidential party when voting for governor in midterm years. Having established these relationships, we explore why this is the case. One possible explanation is a variation of the ideological balancing argument, whereby voters’ choices for one office are conditional on which party holds office at a different level.

*We thank Andy Hall and Jim Alt for helpful comments. Olle Folke gratefully acknowledges financial support from the Marianne and Marcus Wallenberg Foundation.
1. Introduction

When a state votes for president, how much sway does the governor have over the outcome? Among political practitioners and political commentators, a commonly expressed view is that governors can be a positive force for their party’s presidential candidate. In an Atlantic magazine commentary, Reid Wilson, editor of *National Journal’s* hotline, summarizes the conventional wisdom thusly:

Those governors who do not have to seek reelection next year can donate their political organizations – often the best existing machines in their states – to their party’s eventual nominee.\(^1\)

Governors supposedly make a difference at the margin by mobilizing their party’s workers and supporters; it is also possible that they exert modest influence on the counting of the votes. Proper empirical evidence for this proposition, however, is difficult to find.\(^2\) One test of this proposition via multiple regression equations over multiple elections finds no support for the idea that governors help their presidential ticket. In fact, in one specification the estimated effect of the governor’s party is both negative and significant, though quite small (Powell, 2004).

One reason for uncertainty about the gubernatorial effect on presidential elections is that there are alternative theoretical arguments to consider, which suggests that a governor of the same party hurts rather than helps a presidential candidate. For example, one could consider an extension of the balancing argument often applied to congressional midterm elections. In the context of midterm congressional elections, midterm voters are motivated to vote against the presidential party to restore an ideological balance – see for example Erikson (1988), Alesina and Rosenthal (1989, 1995, 1996), and Bafumi et al. (2010). Folke and Snyder (2012) use a regression discontinuity design to study the same phenomenon among governors and state legislatures and find support for ideological balancing at the

state level. Outside the U.S., evidence has been found for balancing in federal elections in Canada (Erikson and Fillipov, 2001) and Germany (Lohmann et al., 1997; Kern and Hainmueller, 2006).

To examine the gubernatorial effect on presidential elections, we use data drawn from a dataset of election results covering every presidential and gubernatorial election from 1880 through 2008. We study governors who are not up for reelection in the presidential year, and therefore still in power for two more years at the time of the presidential election.\(^3\) We test for the effect of gubernatorial party control on the state’s presidential vote. For much of the analysis, we restrict our cases to post-World War II and sometimes further to non-southern states only. The dependent variable of interest is the change in the Democratic share of the two-party presidential vote from the previous election.

A simple test of this question is to see whether the presidential vote shifts more or less in the direction of the governor’s party. While informative, this test is open to the claim of being influenced by unobserved variables. Therefore, we use a regression discontinuity design (RDD). The specific research design follows Folke and Snyder (2012). In effect, the RDD involves comparing the presidential vote shift in those states where a Democratic governor barely won with those where a Republican governor barely won. In these states where the gubernatorial vote was very close, the difference between the states with the two types of winning governors is basically a coin flip, virtually a random draw.\(^4\) Thus, states with Democratic governors who barely won election and states with Republican governors who barely won election should be virtually identical on all variables, except for variables that are directly affected by the gubernatorial election outcome.

The estimates show that winning the governor’s election systematically leads to a loss for the party’s presidential candidate in the state in the subsequent presidential election. On average, this loss is about 3 percentage points. Given our identification strategy, we can interpret this as a causal effect. Thus, we can rule out the that this is due to omitted variables such as swings in party popularity, and we can also rule out that it is due simply to

\(^3\)In some states governors are elected in odd-numbered years, so in these states the governor will be in power for one more year or three more years.

reversion to the mean. This conclusion is supported by other results and several robustness checks. First, our results show a persistent effect from 1880 to 2008. The results are even larger and more stable in the post-WWII era. Finally, placebo tests show that the identifying assumption holds. The bottom line from this analysis that we find strong evidence that there is a penalty for the party of the governor in presidential elections.

Although our RDD estimates establish that there is a negative effect, they say little about why this is the case. In our discussion of potential mechanisms, we explore several alternatives. The explanation we find most plausible is the type of “global” ideological balancing mentioned above. The theoretical argument behind this is that voters prefer a combined set of policies at the national and state level that on average match their ideological tastes. In most cases, the median voter in a state probably finds the Republican party’s policies to be to the voter’s right and the Democratic party’s policies to the voter’s left, at both the state and national level. To achieve better ideological balance, the median voter might believe that the antidote to a rightward Republican (leftward Democratic) governor is a Democratic (Republican) president.

Voting for balance does not require that voters hold complex spatial models of ideology in their heads. All that is required is that the presence of a Republican (Democratic) governor in a state makes voters gravitate toward the Democratic (Republican) presidential candidate. The motivation could be a simple belief that no party should hold all the major offices. Or, voters could respond directly to ideological tendencies of policies enacted under the sitting governor, for which the governor’s party affiliation is a marker.

Apart from balancing, we discuss other potential mechanisms. For example, it could be that governors time unpopular policies so that their impact on the party as a whole is mainly felt during the midterm election. Also, we could consider a story of differential mobilization, where the party holding the governorship becomes complacent, while the opposition becomes especially motivate to win.

Finally, we examine the opposite relationship as that in our main analysis – that is, how does the party of the president relate to gubernatorial elections? We find evidence that there is a similar, but larger, effect. Our results suggest that winning the presidency is
associated with an average vote share loss of 5 percentage points or more in the subsequent gubernatorial elections.

2. Data and Specifications

2.1. Data

We focus on two time periods, 1880-2008, and the post-WWII period, 1946-2008. The main dependent variable is the change in state presidential vote share since the last presidential election. To improve the precision of our estimates, we demean the dependent variable by subtracting the yearly mean of the change in state presidential vote share. This captures “national tides.” The key independent variable is the partisan division of the vote in gubernatorial elections. Electoral data are from the ICPSR and publications by the election officials of each state. Gubernatorial and presidential election returns are measured in terms of the Democratic percent of the two-party vote.

The dependent variable is distributed quite symmetrically about 0, with a mean of 0.17 and standard deviation of 9.5. The Democrats control the governorship in 54.9% of our midterm elections. One important feature of the data is the large number of close gubernatorial elections, at least outside the South. The gubernatorial election margin variable is distributed symmetrically about 0, with a mean of 1.7 and a standard deviation of 10.5. In nearly half of the elections in our main sample (263 out of 566) the winning margin is below 5%.

2.2 Specifications

We consider four different specifications for estimating the effect of the gubernatorial party on state presidential vote share: (i) OLS, (ii) an RDD specification with a flexible control polynomial, (iii) an RDD specification in which the sample is restricted to close elections, and (iv) an RDD specification in which the sample is restricted to close elections, and in which we include a local linear control function. The OLS specification quantifies the general association between gubernatorial party and the state presidential vote share, but it

5Thus, the last presidential election we examine is in 2008.
does not provide an estimate of the causal effect. However, with the RDD we can estimate the causal effect of the gubernatorial party on the presidential vote share. Let \(i\) index states, and let \(t\) index election years, where each election year \(t\) corresponds to two years, i.e., one-half of a presidential election cycle. Let \(P_{it}^D\) be the vote share won by the Democratic presidential candidate in state \(i\) in election \(t\); let \(\Delta P_{it}^D = P_{it}^D - P_{it-2}^D\) be the change in the Democratic presidential vote share in state \(i\) between the last presidential election at time \(t-2\) and the election at time \(t\); and let \(G_{i,t-1}^D\) be a dummy variable indicating whether or not state \(i\) has a Democratic governor during the presidential mid-term at time \(t-1\).

The OLS specification assumes a simple relationship between \(\Delta P_{it}^D\) and \(G_{i,t-1}^D\):

\[
\Delta P_{it}^D = \beta_0 + \beta_1 G_{i,t-1}^D + \gamma P_{it-2}^D + \epsilon_{it}
\]

(1)

where \(\beta_1\) measures the relationship between having a Democratic governor and the change in state Democratic vote share in the presidential election. Note that we also include the lagged presidential vote share \(P_{it-2}^D\), which might capture reversion to the mean. We estimate models with and without this control variable.

The RDD regressions follow three of the standard RDD approaches. The first approach uses the full sample and includes a control function. The control function is a low-order polynomial function of the forcing variable, which is the Democratic margin of winning or losing in the gubernatorial election in state \(i\) at time \(t-1\), \(M_{i,t-1}^D\). The basic idea behind this specification is that the treatment variable, \(G_{i,t-1}^D\), is entirely determined by the forcing variable, \(M_{i,t-1}^D\). Because of this, we can control for potential endogeneity of the treatment variable, and also deal with other problems, such as omitted variable bias, by controlling flexibly for the forcing variable. We present results for 3rd- and 4th-degree polynomials in the tables below. Following the conventional RDD approach, we use a separate control function on each side of the threshold. To reduce the possibility of over-fitting the control polynomials by including outliers in the tails of the vote share distribution, we limit the sample to observations where the parties have between 40\% and 60\% of the vote share. After this exclusion we are left with 75\% of the total sample.
The specification is then:

\[\Delta P^D_{it} = \beta_0 + \beta_1 G^D_{i,t-1} + \gamma P^D_{it-2} + \delta_t + f(M^D_{i,t-1}) + \epsilon_{it} \]

(2)

where \(f(M^D_{i,t-1}) \) is the control function. Note again that we also include the lagged presidential vote share \(P^D_{it-2} \). It is not necessary to include this variable for our identifying assumptions to hold. It is also not necessary for us to demean the data by subtracting the yearly mean from the dependent variable. Doing so, however, substantially reduces the estimated standard errors. In the robustness checks, we show that the point estimates are similar with or without these adjustments.

The other two RDD approaches employ the simple OLS specification in equation (1) above, but limit the sample to “close” elections – i.e., those where the winner’s share of the vote is close to 50%. We consider several different vote margins around 50% to define close elections, including 5%, 3%, 2% and 1% margins. In the two narrowest windows, we the run the specifications without any control for the forcing variable. In the two wider windows we include a local linear control of the forcing variable. Including the local linear control allows us to account for the possibility that there is a strong relationship between the forcing variable and our outcome even within the window of “close” elections.\(^6\) In the local linear specification we allow the slope of the linear control function to vary on either side of the threshold.

3. Basic Results

3.1. Graphical Analyses

Following previous RDD work, we begin with a graphical analysis. Figures 1(a)-1(d) show binned averages of the change in state presidential vote share, \(\Delta P^D_{it} \), as a function of the percentage of votes received by the Democratic gubernatorial candidate, \(G^D_{i,t-1} \). The range of \(G^D_{i,t-1} \) in the figures is 40% to 60%, which covers 75% of the observations in our sample. The interval for each bin is 1 percentage point. Figure 1(a) shows the full sample

\(^6\)See Snyder et. al. (2012) for a discussion of this potential problem.

\(^7\)As in the regressions we subtract the yearly mean of the change in state presidential vote share.
from 1882 to 2008, 1(b) excludes the southern states, 1(c) shows the period after WWII for all states, and 1(d) shows the period after WWII with the southern states excluded.

It seems clear from Figure 1(a) that for the full sample ΔP^D_t falls as we cross the 50% threshold and move from Republican gubernatorial control to Democratic control. The downward shift appears to be around 2-3 percentage points. Figure 1(b) shows that when we exclude the southern states the downward shift across the threshold appears to be of the same magnitude, but the drop is clearer. Figure 1(c) shows that in the post-WWII period the downward shift appears to be slightly larger, and Figure 1(d) shows that when we exclude the southern states the drop becomes even clearer. Note that the overall relationship between the change in state presidential vote share and the gubernatorial vote share is positive, if we consider cases far from the threshold.

Overall, while it is difficult to pin down the magnitude, the figures indicate that there is a loss in state presidential vote share for the party of the governor. Most importantly the shifts in the outcome variable around the 50% threshold indicate that this is a direct effect of gubernatorial party control, rather than general trends in party support, reversion to the mean, or other potential omitted variables.

3.2. Regression Analyses

We now turn to the regressions. Table 1 presents the main results. Each row of the table represents a different specification, and each column covers a different sample. Column 1 covers the full time period and all states, column 2 excludes the south, column 3 covers the post-WWII period for all states, column 4 covers the post-WWII period excluding the south, and column 5 covers the full time period for the cases with a gubernatorial election coinciding with the presidential election (which are excluded in columns 1-4). Each cell contains the estimated coefficient on the Democratic governor dummy variable – i.e., β_1 in equation (1) or (2) – as well as the standard errors in parentheses and number of observations in brackets. Estimates that are significant the 5% level are highlighted by being in bold font.

Consider the full time period, shown in column 1. The OLS estimate shows no overall relationship between the party of the governor and the change in state presidential vote
share. The estimates for the RDD specifications, however, are all negative and at least weakly statistically significant. The range of the estimates is large, extending from -2.2 to -4.0. The reason for the large variation in the estimates can be traced back to Figure 1(a). First, there is a considerable amount of noise in the relationship between the forcing variable and the outcome variable. This means that the estimates may vary considerably as we change the margin used to define close elections. Also, as we increase the margin we use to define close elections, we capture more and more of the overall positive relationship between the forcing variable and the outcome variable. By including the local linear control function in the two wider windows we address this issue. Although the range of the estimates is fairly large, we can be confident that the party that controls the governor’s office can expect a noticeable vote loss in the presidential election.

Column 2 shows that the loss in the presidential vote share is slightly larger for the non-southern states. The estimated vote loss in the RDD specifications ranges from about -2.4 to -5.4. Also, all of the estimates are statistically significant at the 5% level. Note that the standard errors shrink when we exclude the southern states, even though this reduces the sample size.

Next we explore the post-WWII period, 1946-2008. Column 3 considers all states, while column 4 excludes the southern states. The OLS estimates are still close to zero. The RDD point estimates are stable around -2.7 to -4.1 in the full sample of states, and between -4.1 and -6.0 when we exclude the southern states. All the estimates are statistically significant. This suggests that there is a relatively large and clear penalty for the party of the governor in the post-WWII period.

In column 5, we see that the party of the sitting governor no longer matters for the presidential contest when the state holds a fresh gubernatorial election in the presidential year. All point estimates for the RDD specifications are small and statistically insignificant. This is as expected, since for these cases the party of the next governor is being determined at the same time as party of the next president, so the party of the sitting governor should be largely irrelevant.

8Some states hold gubernatorial elections every two years and some hold gubernatorial elections only in presidential election years.
3.3. Robustness Checks

We perform two types of robustness check to test the validity of our RDD results in Table 1. First, we omit the control for lagged presidential vote share, and define the dependent variable as the “raw,” non-demeaned, change in state presidential vote share. Second, we perform three placebo tests. In these, we test whether the party of the governor appears to affect three different outcome variables from the previous election. This is a key test of the identifying assumptions of the RDD. If the identifying assumptions hold, then in the RDD specifications the party of the governor should not be related to outcomes in previous elections.

The results are presented in Table 2. Each row covers a different RDD specification, and each column covers a different robustness check. As in Table 1, each cell contains the point estimate of the Democratic governor dummy variable – i.e., β_1 in equation (1) or (2) – as well as the standard error of the estimate in parentheses, and number of observations in brackets.

In column 1 and 2 we drop the control variables and do not subtract the yearly mean from the dependent variable. Column 1 shows estimates for the full period, and column 2 covers the post-WWII period. In these specifications all the point estimates are negative, but the range is larger. Also, as expected, the standard errors become much larger than in our baseline specifications. Thus, none of the estimated coefficients are statistically significant. Most importantly, although the point estimates are of course a bit different from those in Table 1, none are very different from the estimates in the baseline specification. This shows that the control variables are needed only to increase the precision of the estimates.

Columns 3-5 show the results of the placebo tests. The outcome variable in column 3 measures Democratic control of the state legislature after the previous election;\(^9\) the outcome in column 4 is a dummy indicating whether the Democratic candidate won the previous gubernatorial election; and the outcome in column 5 is the state presidential vote share in the previous presidential election. The estimated coefficients for all outcomes and specifications

\(^9\)This variable is -1 if Republicans control a majority of the seats in both chambers of the legislature, $+1$ if Democrats control a majority of seats in both chambers, and 0 if control is split between the parties.
are close to zero, and none are even close to being statistically significant. Thus, the placebo
tests give strong support for the identifying assumptions of the RDD. This increases our
confidence that the RDD estimates provide the causal effect of the party of the governor.

3.4. Effect of Presidential Party on Gubernatorial Elections

If voters condition their vote for a presidential candidate on the party of their state’s
governor, then it seems likely that the reverse also holds – that is, people might condition
their vote for governor based on the party of the president.10 We test this hypothesis using
national-level election data. More precisely, we estimate the same type of RDD as the
baseline regressions above, except that we do not include any control variables other than
the forcing variable. Also, because the sample is so small, we only include a linear control
function, rather than a low-order polynomial. We also estimate specification where the
sample is restricted to close elections. Of course, this should not be treated as a true RDD
due to the small sample size.

We use the Democratic share of the two-party popular vote to define the presidential
winning margin.11 The dependent variable is the mean change in the Democratic vote
share from one midterm election to the next. The forcing variable is the national two-party
vote share for president. The independent variable of interest is the party of the president.
Our expectation is that the Republican (Democratic) vote for governor shifts in the negative
direction when the Republican (Democrat) is elected as president in the intervening election.

Figure 2 shows the data. There, we plot the average change in gubernatorial vote share
against the two party presidential vote share. Evidently, there is a large negative shift in
the gubernatorial vote share as we cross the threshold determining whether the president is
a Republican or a Democrat.

The regression results are shown in Table 3. The estimates suggest that the presidential
party generates between a 5-7 percentage point swing in the gubernatorial vote from the
previous election to the next. The results are similar in the full sample of 33 elections

10Indeed, given the importance of presidential elections and the presidency, this seems even more likely.
11Two presidential elections in the data set – 1888 and 2000 – resulted in Republican victories in the
Electoral College even though the popular vote plurality favored the Democratic candidate. Of course, we
count these instances as Republican victories.
between 1882-2010 and the post-WWII sub-sample, but slightly larger in the latter period. All estimates are highly significant. Thus, there appears to be a direct electoral penalty in gubernatorial elections associated with holding the presidency, akin to the “midterm slump” in congressional elections.

4. Discussion

Despite the common wisdom that governors help their presidential ticket, we find that having a sitting governor of the same party actually hurts their party’s presidential ticket.

It is worth reviewing the strength of the evidence for our claim. We observe that barely winning the governorship in a state versus barely losing affects the state’s vote in the next presidential election. The governor’s party loses 2-3 percentage points or more. This gap is statistically significant at the 5% level in virtually all specifications, and in many specifications it is significant at the 1% level. A negative relationship this strong would be found no more than one chance in one hundred if the null hypothesis were true (and even less, of course, if governors actually help the ticket). This significance level takes on special importance because our RDD closely approximates the random assignment of outcomes in a true experiment. We also show that several placebo tests strongly support the identification assumptions of the RDD.

Although we are confident that we have established the existence of a gubernatorial penalty in presidential elections, we cannot maintain the same degree of confidence in our accounting of the mechanisms behind this effect. We have posited that voters penalize the gubernatorial party because they are motivated by a desire for ideological moderation. A more modest version of this argument is that voters may simply be broadly motivated by the less cognitively demanding goal of balancing the partisan distribution of political executives who influence their life. One result that is suggestive of ideological balancing is that the estimated effects are strongest post-WWII and stronger without than with the South. The current ideological division between the parties in the states did not emerge in its current shape until the 1940s, and not in the South until much later (see, e.g., Feinstein and Schickler, 2009).

Other explanations should be considered, in addition to ideological or partisan balanc-
ing. One intriguing possibility is that governors frequently implement unpopular policies – or time decisions so that unpopular policies are felt mainly in years when the governors themselves are not up for re-election – which endangers their party’s reputation and thus its presidential prospects. Another possibility is that when a party holds the governorship it becomes complacent about mobilizing its supporters, to its electoral detriment. By contrast, the opposition might be especially motivated to win. Yet another possibility is that presidential strategists might overestimate the power of the governor to mobilize voters, also leading to complacency and fewer votes than expected.

5. Conclusion

This paper shows that the common belief that governors help their presidential ticket is false. Rather, the paper provides compelling statistical evidence that the reverse is true. A state’s voters are less likely to vote for a presidential candidate when the sitting governor in their state is of the candidate’s party. We suggest that this result is a product of voters engaging in ideological balancing. While plausible, however, this is just one possible mechanism. Why governors exert a negative rather than positive influence on presidential voting remains an open question.
References

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>-0.432</td>
<td>-0.981</td>
<td>-0.827</td>
<td>-1.263</td>
<td>1.267</td>
</tr>
<tr>
<td></td>
<td>(0.457)</td>
<td>(0.411)</td>
<td>(0.518)</td>
<td>(0.458)</td>
<td>(0.537)</td>
</tr>
<tr>
<td></td>
<td>[566]</td>
<td>[456]</td>
<td>[423]</td>
<td>[335]</td>
<td>[659]</td>
</tr>
<tr>
<td>RDD, 3rd-Order Polynomial</td>
<td>-2.771</td>
<td>-3.650</td>
<td>-4.061</td>
<td>-5.502</td>
<td>-1.004</td>
</tr>
<tr>
<td></td>
<td>(1.585)</td>
<td>(1.566)</td>
<td>(1.739)</td>
<td>(1.665)</td>
<td>(1.749)</td>
</tr>
<tr>
<td></td>
<td>[420]</td>
<td>[354]</td>
<td>[310]</td>
<td>[248]</td>
<td>[485]</td>
</tr>
<tr>
<td>RDD, 4th-Order Polynomial</td>
<td>-3.959</td>
<td>-5.436</td>
<td>-4.047</td>
<td>-6.019</td>
<td>-1.512</td>
</tr>
<tr>
<td></td>
<td>(1.949)</td>
<td>(1.925)</td>
<td>(2.131)</td>
<td>(2.031)</td>
<td>(2.171)</td>
</tr>
<tr>
<td></td>
<td>[420]</td>
<td>[354]</td>
<td>[310]</td>
<td>[248]</td>
<td>[485]</td>
</tr>
<tr>
<td>RDD, 5% Margin + Local Linear</td>
<td>-2.209</td>
<td>-2.670</td>
<td>-3.582</td>
<td>-4.792</td>
<td>-0.869</td>
</tr>
<tr>
<td></td>
<td>(1.108)</td>
<td>(1.086)</td>
<td>(1.251)</td>
<td>(1.181)</td>
<td>(1.198)</td>
</tr>
<tr>
<td></td>
<td>[263]</td>
<td>[226]</td>
<td>[190]</td>
<td>[154]</td>
<td>[313]</td>
</tr>
<tr>
<td>RDD, 3% Margin + Local Linear</td>
<td>-2.750</td>
<td>-3.599</td>
<td>-4.022</td>
<td>-5.377</td>
<td>-1.431</td>
</tr>
<tr>
<td></td>
<td>(1.366)</td>
<td>(1.345)</td>
<td>(1.522)</td>
<td>(1.480)</td>
<td>(1.544)</td>
</tr>
<tr>
<td></td>
<td>[157]</td>
<td>[139]</td>
<td>[108]</td>
<td>[91]</td>
<td>[208]</td>
</tr>
<tr>
<td>RDD, 2% Margin</td>
<td>-2.215</td>
<td>-2.430</td>
<td>-3.369</td>
<td>-4.089</td>
<td>-0.408</td>
</tr>
<tr>
<td></td>
<td>(0.918)</td>
<td>(0.869)</td>
<td>(1.023)</td>
<td>(0.973)</td>
<td>(0.940)</td>
</tr>
<tr>
<td></td>
<td>[108]</td>
<td>[96]</td>
<td>[75]</td>
<td>[63]</td>
<td>[138]</td>
</tr>
<tr>
<td>RDD, 1% Margin</td>
<td>-2.525</td>
<td>-3.218</td>
<td>-2.737</td>
<td>-4.104</td>
<td>-0.994</td>
</tr>
<tr>
<td></td>
<td>(1.299)</td>
<td>(1.228)</td>
<td>(1.397)</td>
<td>(1.404)</td>
<td>(1.462)</td>
</tr>
<tr>
<td></td>
<td>[61]</td>
<td>[55]</td>
<td>[45]</td>
<td>[39]</td>
<td>[70]</td>
</tr>
</tbody>
</table>

Cell entries are the estimated coefficients on the Democratic Governor dummy variable. The dependent variable is Change in Democratic State Presidential Vote, ΔP. Standard errors in parentheses. Sample sizes in brackets. Estimates that are statistically significant at the 5% level are in bold font.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>1.475 (0.806)</td>
<td>1.744 (0.932)</td>
<td>0.177 (0.085)</td>
<td>0.289 (0.043)</td>
<td>0.869 (0.463)</td>
</tr>
<tr>
<td></td>
<td>[566]</td>
<td>[423]</td>
<td>[424]</td>
<td>[522]</td>
<td>[507]</td>
</tr>
<tr>
<td>RDD, 3rd-Order Polynomial</td>
<td>-4.480 (3.121)</td>
<td>-4.548 (3.641)</td>
<td>-0.168 (0.199)</td>
<td>0.015 (0.096)</td>
<td>0.838 (0.945)</td>
</tr>
<tr>
<td></td>
<td>[420]</td>
<td>[310]</td>
<td>[305]</td>
<td>[379]</td>
<td>[379]</td>
</tr>
<tr>
<td>RDD, 4th-Order Polynomial</td>
<td>-4.905 (3.852)</td>
<td>-4.447 (4.479)</td>
<td>-0.219 (0.247)</td>
<td>0.017 (0.119)</td>
<td>-0.228 (1.132)</td>
</tr>
<tr>
<td></td>
<td>[420]</td>
<td>[310]</td>
<td>[305]</td>
<td>[379]</td>
<td>[379]</td>
</tr>
<tr>
<td>RDD, 5% Margin + Local Linear</td>
<td>-3.784 (2.161)</td>
<td>-3.442 (2.632)</td>
<td>0.010 (0.237)</td>
<td>-0.014 (0.123)</td>
<td>-0.147 (1.184)</td>
</tr>
<tr>
<td></td>
<td>[263]</td>
<td>[190]</td>
<td>[202]</td>
<td>[249]</td>
<td>[244]</td>
</tr>
<tr>
<td>RDD, 3% Margin + Local Linear</td>
<td>-3.797 (2.720)</td>
<td>-4.072 (3.372)</td>
<td>-0.256 (0.298)</td>
<td>-0.081 (0.155)</td>
<td>-1.159 (1.556)</td>
</tr>
<tr>
<td></td>
<td>[157]</td>
<td>[108]</td>
<td>[127]</td>
<td>[154]</td>
<td>[150]</td>
</tr>
<tr>
<td>RDD, 2% Margin</td>
<td>-2.490 (1.802)</td>
<td>-2.692 (2.308)</td>
<td>-0.146 (0.189)</td>
<td>0.019 (0.097)</td>
<td>-0.468 (1.019)</td>
</tr>
<tr>
<td></td>
<td>[108]</td>
<td>[75]</td>
<td>[89]</td>
<td>[108]</td>
<td>[104]</td>
</tr>
<tr>
<td>RDD, 1% Margin</td>
<td>-1.207 (2.550)</td>
<td>-0.519 (3.130)</td>
<td>-0.179 (0.255)</td>
<td>0.033 (0.134)</td>
<td>-0.629 (1.085)</td>
</tr>
<tr>
<td></td>
<td>[61]</td>
<td>[45]</td>
<td>[47]</td>
<td>[58]</td>
<td>[56]</td>
</tr>
</tbody>
</table>

Cell entries in columns 1-2 are the estimated coefficients on the Democratic Governor dummy variable. In columns 3-5 the cell entries are the estimated coefficients on the Future Democratic Governor dummy variable. The dependent variables are Democratic Control of State Legislature (column 3), Democratic Control of Governorship (column 4), and Change in Democratic State Presidential Vote (column 5). Standard errors in parentheses. Sample sizes in brackets. Estimates that are statistically significant at the 5% level are in bold font.
<table>
<thead>
<tr>
<th></th>
<th>1882-2010</th>
<th>1946-2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>-4.644(1.111)</td>
<td>-6.611(1.406)</td>
</tr>
<tr>
<td></td>
<td>[33] [17]</td>
<td></td>
</tr>
<tr>
<td>Linear Control</td>
<td>-5.818(1.760)</td>
<td>-6.816(2.303)</td>
</tr>
<tr>
<td></td>
<td>[33] [17]</td>
<td></td>
</tr>
<tr>
<td>5% Margin</td>
<td>-5.152(1.323)</td>
<td>-6.499(1.913)</td>
</tr>
<tr>
<td></td>
<td>[20] [11]</td>
<td></td>
</tr>
<tr>
<td>4% Margin</td>
<td>-5.522(1.529)</td>
<td>-6.944(1.983)</td>
</tr>
<tr>
<td></td>
<td>[17] [10]</td>
<td></td>
</tr>
<tr>
<td>3% Margin</td>
<td>-5.655(1.788)</td>
<td>-6.909(2.666)</td>
</tr>
<tr>
<td>2% Margin</td>
<td>-6.446(1.890)</td>
<td>-9.286(1.556)</td>
</tr>
<tr>
<td></td>
<td>[9] [5]</td>
<td></td>
</tr>
</tbody>
</table>

Cell entries are the estimated coefficients on the Democratic president dummy variable. The dependent variable is Change in the average Democratic Gubernatorial Vote, ΔG. Standard errors in parentheses. Sample sizes in brackets. Estimates that are statistically significant at the 5% level are in bold font.
Figure 1. Presidential Vote vs. Lagged Gubernatorial Vote
Figure 2. Gubernatorial Vote vs. Lagged Presidential Vote

- Change in Average Gov Vote Share
- Lagged Democratic Presidential Win/Lose Margin
- Pop vote winner won pres
- Pop vote winner lost pres

-8 -4 0 4 8
-10 -5 0 5 10
-8 -4 0 4 8