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Abstract

Using the concept of market-distribution functions, we derive general
optimality conditions for discriminatory divisible-good auctions, which are
also applicable to Bertrand games and non-linear pricing. We introduce the
concept of o¤er distribution function to analyze randomized o¤er curves,
and characterize mixed-strategy Nash equilibria for pay-as-bid auctions
where demand is uncertain and costs are common knowledge; a setting
for which pure-strategy supply function equilibria typically do not ex-
ist. We generalize previous results on mixtures over horizontal o¤ers as
in Bertrand-Edgeworth games, and we also characterize novel mixtures
over partly increasing supply functions.
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1 Introduction

Modelling auctions has been one of the major successes in the application of
game theory, since in this setting the rules controlling the interactions between
agents are particularly well de�ned. With auction theory it has been possible to
predict bidding behaviour under di¤erent auction formats, and this has helped
auction designers to choose e¢ cient formats and to avoid disastrous ones. In this
paper we focus on multi-unit auctions where the auctioneer buys or sells several
homogeneous objects at once and bidders are free to choose a separate price for
each object. When the number of traded objects is large, such auctions are called
divisible-goods auctions [7] [27], auctions of shares [28] or supply function auctions
[15] [20], and each bid consists of a curve. Important markets with this character
are treasury auctions, electricity auctions and auctions of emission permits.
Divisible-good auctions have two typical mechanisms. In a pay-as-bid (or dis-

criminatory) procurement auction the auctioneer pays each supplier according to
its o¤er curve, whereas in a uniform-price auction all sellers are paid the clear-
ing price for all of their accepted supply. The debate between proponents of the
two formats has a long history and the issue is still largely unsettled. Ausubel
and Cramton [6] show that it will depend on the character of the market which
format is preferable to the auctioneer. A survey has found that 39 out of 42 coun-
tries used the discriminatory format in their treasury auctions [8]. On the other
hand, the vast majority of electricity markets use the uniform-price format. But
there are exceptions. The balancing market in Britain switched to a pay-as-bid
format in 2001, and a similar move has been considered in California [18] and
more recently in Italy. Moreover, balancing markets in several European zonal
markets are a blend of the uniform-price and pay-as-bid format, because pro-
ducers�post-clearing adjustments that are used to relax local system constraints
(counter-trading) are compensated in a discriminatory way. Some of the power
system reserves are also procured using this mechanism, e.g. in Germany [25].
Most studies of bidding behaviour in divisible good auctions are limited to

characterizations of pure-strategy equilibria. But such equilibria are sometimes
non-existent, and in electricity markets with the pay-as-bid format this seems to
be the rule rather than the exception [17]. Thus when applying game-theoretical
analysis to real divisible good auctions it is often necessary to consider mixed
strategies. For restrictive market assumptions Anwar [2] shows the existence of
a special type of mixed-strategy equilibrium in a uniform-price multi-unit auc-
tion with independent increasing o¤ers.1 With this exception, previous mod-

1Anwar analyses a uniform-price auction where an o¤er is submitted for each discrete pro-
duction unit. For constant marginal costs and uniformly distributed demand, he shows that
there exists a mixed strategy NE with increasing o¤ers that are independently chosen for each
production unit.
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els of mixed strategy equilibria are limited to one-dimensional mixtures in dis-
criminatory auctions where each producer o¤ers its entire capacity at one price.
These are essentially Bertrand-Edgeworth Nash equilibria [1] [10] [22] [23] with
the added complexity that the auctioneer�s demand [2], [12], [14] [24] or bid-
ders�costs/valuations [7] are uncertain. In this paper we generalise these results
by considering general cost functions and general distributions of the auction-
eer�s demand. We are the �rst to characterise equilibria with mixtures over
increasing o¤er curves. Our focus is on discriminatory electricity auctions, where
non-existing pure-strategy Nash equilibria are a major concern, but our novel
approach is general enough to be applied to other types of auctions.
We use the concept of a market distribution function [4], which implicitly

determines the contour of the residual demand for each probability level, to derive
optimality conditions of discriminatory divisible good auctions. This allows us to
derive more general conditions for discriminatory divisible-good auctions than in
the past; ours are valid for any uncertainty in the seller�s residual demand curve,
i.e. for any combination of demand uncertainty and uncertainty in competitors�
o¤ers (e.g. when competitor costs are unknown or when they randomize their
o¤er curves). These general conditions also have applications in Bertrand games
and in the theory of non-linear pricing [26][29]. In the latter case, the seller
faces a continuous distribution of consumers with di¤erent demand curves, which
can be represented by the market distribution function. Ex-ante it is di¢ cult
to determine whether a particular discriminatory auction will have a mixed- or
pure-strategy equilibrium, so in an empirical study it is useful that our optimality
conditions work for both types of strategies. Given �rms� cost functions, our
methodology also enables one to test the hypothesis that �rms are bidding to
maximize expected pro�ts. But a restriction is that bidders are assumed to know
their own costs, so the results are not directly applicable to settings with common
[28] [7] [27] or a¢ liated uncertain values/costs [6].
The optimality conditions we derive enable us to calculate Nash equilibria

for auctions where supplier costs are common knowledge and the exogenous non-
strategic demand is uncertain. Nash equilibria in such settings are referred to
as supply function equilibria (SFE) [20]. A corresponding sales auction version
has been used to analyze how strategic bidding in treasury auctions is in�uenced
by an uncertain amount of non-competitive bids [27]. It has been shown that
pure-strategy SFE in pay-as-bid auctions with positive mark-ups do not exist
if there is any output level for which both marginal costs are su¢ ciently �at
and the hazard rate of the demand shock is increasing [17]. In this paper, we
generalise this second-order condition and make it more precise: the mark-up
times the hazard rate of the demand shock must be non-increasing, otherwise
pure-strategy SFE cannot exist in pay-as-bid auctions. In electricity markets,
marginal costs are approximately stepped, i.e. locally constant, and demand
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shocks are approximately normally distributed, which have an increasing hazard
rate, so the existence of pure-strategy SFE in discriminatory electricity auctions
is very much in doubt.
While the optimality conditions are valid for any number of heterogeneous

agents, we restrict attention to games with two players when calculating Nash
equilibria. To work with mixed strategy equilibria, we introduce the concept of
an o¤er-distribution function. Such a function implicitly de�nes the contour of a
producer�s supply function for each probability level. This enables us to de�ne a
market distribution function and characterize the best response of the supplier�s
rival, which allows the calculation of mixed-strategy SFE for cases when pure-
strategy Nash equilibria can be ruled out.
The type of equilibria that are observed in these duopoly games depends on

whether producers are pivotal or not. A pivotal producer is one for which the
sum of capacities of rival �rms is less than demand with positive probability.
In a market with inelastic demand the removal of a pivotal producer from the
market would create a supply shortage with positive probability. Hence, a pivotal
producer has monopoly power when all its rivals are at capacity. We �nd that
mixed-strategy equilibria essentially divide into two classes depending on the
presence or absence of pivotal producers.
In markets with inelastic demand, no price cap and non-pivotal producers,

equilibrium mixtures over strictly increasing supply functions can be found. They
might be representative for other markets, but we do not expect them to occur
in electricity markets, which typically have pivotal producers and price caps.
We show that these more realistic circumstances lead to mixtures over supply
functions that are horizontal and slope-constrained for low output levels. For low
mark-ups, o¤er curves in the mixture may be upward sloping for high outputs, so
that the o¤er curve gets a hockey-stick shape. Mixtures over such �hockey-stick�
bids are a new feature of models representing equilibria in pay-as-bid markets.
For high mark-ups, the whole curve is slope-constrained and we get mixtures over
horizontal (one-dimensional) bid curves. The slope-constrained mixed-strategy
equilibria are uniquely determined by the price cap.
The slope-constrained equilibria can be intuitively explained as follows. Ex-

post, after the demand shock has been realized, it is always optimal to o¤er all
accepted bids horizontally in a pay-as-bid auction, so that the maximum price
is obtained for all the quantity supplied. Hence, unless the demand density is
su¢ ciently decreasing or marginal costs are su¢ ciently steep relative to mark-
ups (in which case pure-strategy SFE can be found), producers have incentives
to o¤er the very �rst unit at the same price as some of the units with a higher
marginal cost. Hence, the lowest part of the o¤er curve becomes horizontal and
producers have incentives to slightly undercut each other�s lowest o¤ers down
to the marginal cost, as in a Bertrand game. With constant marginal costs and
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non-pivotal producers there is a pure-strategy Bertrand Nash equilibrium [27] [12]
(which may not be unique if the demand density is su¢ ciently decreasing). But
similar to a Bertrand-Edgeworth game there will be pro�table deviations from
such an outcome if producers are pivotal [14] [17] or costs are increasing, so the
equilibrium must be a mixed one. Increasing marginal costs may become steep
relative to mark-ups for higher outputs so that the producer will have incentives
to increase the o¤ers of more expensive units. In this case the o¤er gets a hockey-
stick shape.
The paper is laid out as follows. In the next section we de�ne the market

distribution function and derive optimality conditions for agents o¤ering in a
general discriminatory divisible-good setting. In Section 3, we restrict the analysis
to pure-strategy supply function equilibria in pay-as-bid auctions. In Section 4,
we study mixed-strategy equilibria over strictly increasing supply functions, and
we rule out pivotal producers, price caps and elastic demand for this case. In
Section 5 we analyze pivotal producers and a price cap, and we show that there
can be slope-constrained mixed-strategy equilibria in this case. The highest bids
in the mixture are horizontal. When the price cap is su¢ ciently low, we show
that mixed strategies will contain hockey-stick bids that have both horizontal and
increasing sections.

2 Optimality conditions for pay-as-bid auctions

The optimality conditions we derive here are valid for situations in which a sup-
plier is facing an uncertain residual demand curve and is o¤ering a divisible
homogeneous good with a discriminatory price-schedule. We assume that the
level curves of the residual demand distribution (the market distribution func-
tion) are smooth, but otherwise we do not impose any restrictive assumptions
on the uncertainty of the residual demand curve: it can be caused by demand
uncertainty and uncertainty in competitors�o¤er curves (e.g. when competitor
costs are unknown or when they randomize their o¤er curves). The producer may
be a monopolist in the market or in the most general case, face competition from
other producers o¤ering di¤erentiated goods (as long as product di¤erentiation
does not introduce any non-smoothness in the residual demand distribution). The
optimality conditions also consider cases where a monotonicity constraint in the
price-schedule binds. This provides useful �rst-order conditions for cases when
the discriminatory price schedule is partly horizontal or vertical, including a �rst-
order condition that is valid for any Bertrand game where the level curves of the
residual demand distribution are smooth. In Section 2.1 we show the applicability
of the optimality conditions to non-linear pricing.
Having emphasized the generality of the conditions we now turn our focus
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back to the standard setting where producers o¤er homogeneous goods with a
price-schedule to a discriminatory divisible-good auction. Each agent o¤ers a
supply curve that indicates the amount they are prepared to supply at any given
price. The market then clears when supply equals demand and each agent is paid
according to their supply function. In particular if an agent with cost function
C(q) o¤ers quantity q at price p(q), and the market clears the agent at quantity
�q, then the agent is paid

R �q
0
p(q)dq, and achieves a pro�t ofZ �q

0

p(q)dq � C(�q):

This objective function is to be maximized over monotonic functions p(q): p
may not be continuous and it may not be strictly monotonic (so that there can
be horizontal segments). We will also make use of the inverse of the o¤er curve
which we call a supply function q(p); again these are monotonic and may have
discontinuities or horizontal sections. For convenience, we choose all the supply
functions to be right-continuous with respect to the price, and we use notation
like q(p�) to denote the appropriate limit: lim�&0 q(p � �). Throughout this
paper we will assume that each agent has some maximum capacity, which we
write as qm.
Following [4] we de�ne the market distribution function  (q; p) to be the

probability that a supply o¤er of quantity q at price p is not fully cleared by the
market. The expected payo¤ of a supplier o¤ering a curve p(t) into a pay-as-bid
market can be written as

� =

Z qm

0

�Z q

0

(p(t)dt� C(q)

�
d (q; p(q)) (1)

+ (1�  (qm; p(qm)))

�Z qm

0

(p(t)dt� C(q)

�
:

The integral with respect to  could be interpreted in the Lebesgue-Stieltjes sense
since this formulation would apply even if  was not continuous. However, we
will assume that  is well-behaved and in fact di¤erentiable at every point where
 (q; p) 2 (0; 1): we only allow the market distribution function to be non-smooth
at the ends of this interval. We will assume that C is di¤erentiable with C(0) = 0.
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Then integrating by parts gives

� =

��Z q

0

(p(t)� C 0(t))dt

�
 (q; p(q))

�qm
0

�
Z qm

0

(p(q)� C 0(q)) (q; p(q))dq

+ (1�  (qm; p(qm)))

�Z qm

0

(p(t)� C 0(t))dt

�
=  (qm; p(qm))

Z qm

0

(p(t)� C 0(t))dt�
Z qm

0

(p(q)� C 0(q)) (q; p(q))dq

+ (1�  (qm; p(qm)))

�Z qm

0

(p(t)� C 0(t))dt

�
whence

� =

Z qm

0

(p(q)� C 0(q))(1�  (q; p(q)))dq: (2)

This formula has another interpretation. We may consider each increment of
capacity dq o¤ered to the market to earn a marginal pro�t of (p(q) � C 0(q))dq.
The probability of this increment being dispatched is (1�  (q; p(q))), and so (2)
represents the expected pro�t.
Now consider the problem of choosing a curve p(q), q 2 [0; qm] to maximize �.

In some cases this will not have an optimal solution, but where there is a price cap
in operation this existence question can be dealt with using the same approach as
was used by Anderson and Hu [5] for the uniform price version of this problem. We
can model a supply function using a continuous curve s = f(x(t); y(t)); 0 � t �
Tg, in which the components x(t) and y(t) are continuous monotonic increasing
functions of a parameter t, and x(t) and y(t) trace, respectively, the quantity and
price components. An agent will have an o¤er curve that starts at some point
(0; y(0)) and �nishes at (qm; y(T )). The clearing price is determined as though
the o¤er curve began with a vertical segment from the origin to (0; y(0)), thus
without loss of generality we may take x(0) = y(0) = 0 and we write 
 for the
set of feasible o¤er curves (continuous monotonic curves s starting at the origin
and ending with x(T ) = qm).

Proposition 1 If there is a price cap P and both  (q; p) and C 0(q) are continuous
for q 2 [0; qm] and p 2 [0; P ], then there exists an optimal solution for the problem
of maximizing pro�t � over o¤er curves in 
.

Proof. A result of Anderson and Hu [5] (with the roles of price and quantity
reversed) demonstrates that if 
 is the set of monotonic continuous curves starting
at the origin and ending on the closed line segment, L, from (qm; 0) to (qm; P ),
then 
 is compact under the Hausdor¤ metric:

js1 � s2jH = max
(x1;y1)2s1

min
(x2;y2)2s2

p
(x1 � x2)2 + (y1 � y2)2
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which measures the maximum Euclidean distance between these two curves.
The next step is to show that when  is continuous then � de�ned from (2)

is a continuous function of the o¤er curve using the Hausdor¤ metric. When
s = f(x(t); y(t)); 0 � t � Tg we let

h(s) = f(x(t); (y(t)� C 0(x(t)))(1�  (x(t); y(t)))); 0 � t � Tg:
Then �(s1) � �(s2) is the area between h(s1) and h(s2) (taking account of the
right-hand boundary where x(t) = qm). This area is bounded by the length of
the curve h(s1) multiplied by jh(s1)� h(s2)jH . Since s1 is monotonic the length
of h(s1) is bounded by P + qm, and so we can deduce that the pro�t from using
an o¤er curve s is a continuous function of the curve h(s). Now if  (q; p) and
C 0(q) are continuous then they are uniformly continuous with Euclidean metrics
and this is enough to establish that h is a continuous function in the Hausdor¤
metric. Hence in this case we have the required continuity property for � which
together with compactness of 
 establishes the result.
In the absence of any constraints an optimal p(q) must satisfy the Euler equa-

tion
@

@p
(p(q)� C 0(q))(1�  (q; p(q))) = 0;

which may be rewritten

1�  (q; p(q))�  p(q; p(q))(p(q)� C 0(q)) = 0: (3)

In our case we require p(q) to be monotonically non-decreasing (i.e. a supply
curve). In the next lemma we establish that the Euler curve formula applies
whenever the supply curve is neither horizontal or vertical.

Lemma 2 On any section of an optimal curve with 0 < p0(q) <1 we have

1�  (q; p(q))�  p(q; p(q))(p(q)� C 0(q)) = 0:

Proof. Consider a vertical perturbation of the curve by � > 0, between limits
q1 and q2 with 0 < p0(q) <1 throughout [q1; q2]. This gives a new curve

r(q) =

8<:
p(q) + �; q1 � q � q2

maxfp(q); p(q2) + �g; q2 � q
p(q); otherwise.

Then

�(r)� �(p) =
Z qm

0

(r(q)� C 0(q))(1�  (q; r(q))dq

�
Z qm

0

(p(q)� C 0(q))(1�  (q; p(q))dq

= �

Z q2

q1

(1�  (q; p(q))dq � �

Z q2

q1

 p(q; p(q))(p(q)� C 0(q))dq + o(�):
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Since p(q) is optimal we must have �(r)� �(p) � 0, and so we obtainZ q2

q1

(1�  (q; p(q))�  p(q; p(q))(p(q)� C 0(q))dq � 0:

A similar perturbation by � < 0 yieldsZ q2

q1

(1�  (q; p(q))�  p(q; p(q))(p(q)� C 0(q)))dq � 0:

Since this holds on any section of the curve we have

1�  (q; p(q))�  p(q; p(q))(p(q)� C 0(q)) = 0;

which gives the result.
We write

Z (q; p) =
@

@p
(p(q)� C 0(q))(1�  (q; p(q))) (4)

= 1�  (q; p)�  p(q; p)(p� C 0(q)):

We may deduce from the proof of Lemma 2 that for an optimal increasing supply
curve it is necessary that Z(q; p) � 0 for p > p(q) and su¢ ciently close to p(q).
Also Z(q; p) � 0 for p < p(q) and su¢ ciently close to p(q). Note that Z (q; p)
gives the marginal expected pro�t increase if we increase the price of unit q from
p to p + dp. This follows from observing that [1�  (q; p)] dp, the increase of
mark-up times the probability that this bid is accepted, is the marginal revenue
from this perturbation. But the probability that the bid is accepted is reduced
by  p(q; p)dp. Multiplying the reduction in the acceptance probability by the
mark-up gives the expected loss of an increase in the mark-up. On an optimal
increasing supply curve these two terms will be equal and Z (q; p) = 0. To ensure
a local pro�t maximum Z (q; p) needs to be decreasing in p for a �xed q. Thus
Z(q; p) is negative for (q; p) above and to the left of the increasing o¤er curve
(and positive for (q; p) below and to the right of the o¤er curve). We can express
this in terms of the partial derivative of Z. If we let qi(p) be the o¤er curve of
the analyzed �rm, then,

@Z (q; p)

@q

����
q=qi(p)

� 0: (5)

Now if the Euler curve decreases at some point then it cannot be a candidate
supply curve. In this case part of p(q) will be horizontal. Similarly if the Euler
curve bends back on itself then p(q) will have a vertical segment. The following
results characterize these situations.

9



Lemma 3 Suppose an optimal curve is increasing at q1 and horizontal at q2 > q1.
Then Z q2

q1

(1�  (q; p(q))�  p(q; p(q))(p(q)� C 0(q)))dq � 0:

Proof. Consider a vertical perturbation of the curve downwards by � > 0,
between limits q1 and q2, to give a new curve

r(q) =

8<:
p(q)� �; q1 � q � q2

minfp(q); p(q1)� �g; q � q1
p(q); otherwise.

Then

�(r)� �(p) =
Z qm

0

(r(q)� C 0(q))(1�  (q; r(q))dq

�
Z qm

0

(p(q)� C 0(q))(1�  (q; p(q))dq

= ��
Z q2

q1

(1�  (q; r(q))dq + �

Z q2

q1

 p(q; p(q))(p(q)� C 0(q))dq + o(�):

This must give �(r)� �(p) � 0, and so we obtainZ q2

q1

(1�  (q; p(q))�  p(q; p(q))(p(q)� C 0(q)))dq � 0;

which gives the result.
Similarly we can prove

Lemma 4 Suppose an optimal curve is horizontal at q1 and increasing at q2 > q1.
Then Z q2

q1

(1�  (q; p(q))�  p(q; p(q))(p(q)� C 0(q)))dq � 0:

Combining these results gives the following lemma.

Lemma 5 Suppose an optimal curve is horizontal between q1 and q2 and these
quantities are the end points of the horizontal segment. ThenZ q2

q1

(1�  (q; p(q))�  p(q; p(q))(p(q)� C 0(q)))dq = 0:
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Proof. Choose q0 < q1 with p(q) increasing in (q0; q1). Then Lemma 2 and
Lemma 3 combine to show thatZ q2

q1

(1�  (q; p(q))�  p(q; p(q))(p(q)� C 0(q)))dq � 0:

But by choosing q0 > q2 with p(q) increasing in (q2; q0) and using Lemma 2 and
Lemma 4 we establish the reverse inequality, hence giving the result we require.

From Lemma 5 it is straightforward to show that a general �rst-order condition
for Bertrand games, where suppliers are restricted to o¤er their capacity at one
price, is given by:Z qm

0

(1�  (q; p)�  p(q; p)(p� C 0(q)))dq = 0:

Finally we can establish the equivalent result for the case of a vertical segment.

Lemma 6 Suppose an optimal curve is vertical at �q between p1 and p2, and these
prices are at the end points of the vertical segment. Then

(p2 � C 0(�q))(1�  (�q; p2)) = (p1 � C 0(�q))(1�  (�q; p1))

Proof. Consider a horizontal perturbation of the curve by � > 0, between
limits p1 and p2, to give a new curve

r(q) =

�
p1; �q � q � �q + �
p(q); otherwise.

Then

�(r)� �(p) =
Z qm

0

(r(q)� C 0(q))(1�  (q; r(q)))dq

�
Z qm

0

(p(q)� C 0(q))(1�  (q; p(q)))dq

= ��((p2 � C 0(�q))(1�  (�q; p2))� (p1 � C 0(�q))(1�  (�q; p1))) + o(�)

This must give �(r)� �(p) � 0, and so we obtain
(p2 � C 0(�q))(1�  (�q; p2))� (p1 � C 0(�q))(1�  (�q; p1)) � 0:

Similarly a horizontal perturbation of the curve by � > 0, between limits p1 and
p2, to give a new curve

r(q) =

�
p2; �q � � � q � �q
p(q); otherwise,

yields
(p2 � C 0(�q))(1�  (�q; p2))� (p1 � C 0(�q))(1�  (�q; p1)) � 0;

which gives the result.
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2.1 Non-linear pricing

In this Section we make a brief excursion from the main topic to illustrate that
the optimality conditions are also of relevance for non-linear pricing. Consider a
monopolist who uses non-linear pricing to discriminate between a continuum of
types with individual demand curves [26][29]. Let � be a taste parameter indi-
cating the type of consumer. The distribution of the types is given by a density
function h (�) = H 0 (�) with the support

�
�; �
�
: For simplicity we normalize the

problem so that the number of consumers integrates to 1, i.e. H (�) = 0 and
H
�
�
�
= 1: The monopolist charges in total T (q) =

R q
0
p(t)dt from any consumer

buying q units. For simplicity, we assume that consumers have quasi-linear pref-
erences. This is a good approximation when the consumers�expenditure on the
good is small in comparison to their income [26]. Hence, a consumer�s utility is
given by U = v (q; �)+Q, where q is the good sold with a non-linear price-schedule
T (q) and Q is the numeraire, the price of which is normalized to 1. Let w be the
income of the consumer. Hence, from the budget constraint it follows that

U = v (q; �) + w �
Z q

0

p (t) dt;

so the consumer maximizes its utility when

@U

@q
=
@v (q; �)

@q
� p (q) = 0:

Thus the consumer�s demand is given by the condition that the marginal price
p (q) = T 0 (q) equals the consumer�s marginal value of the good @v(q;�)

@q
. We note

that the demand is independent of income, so the demand curve is a function
of the type and the marginal price, i.e. D (p; �) : We assume that the types are
ordered such that @D(p;�)

@�
> 0: Analogous to Section 2 we now de�ne the market

distribution function  (q; p) to be the fraction of consumers buying less than q
units when the marginal price T 0 (q) equals p. Thus

 (q; p) = H (�c(q; p)) ;

where D (p; �c) = q: Analogous to (2) the pro�t of the monopolist is given by:

� =

Z q

0

(p(q)� C 0(q))(1�  (q; p(q)))dq;

where D
�
p (q) ; �

�
= q:

12



Many applications require that T (q) is a concave function of the purchased
quantity. This precludes customers from making arbitrage by opening multiple
accounts and purchasing a small amount from each one [29]. Concavity of T (q)
is equivalent to the requirement that the price schedule p (q) is non-increasing �
allowing quantity discounts but never imposing quantity premia. It is straight-
forward to verify that the �rst-order condition in Lemma 2 is directly applicable
to non-linear pricing, also when the price-schedule is strictly decreasing. The
second-order condition in (5), however, would be reversed to @Z(q;p)

@q

���
q=qi(p)

� 0

when the price-schedule must be non-increasing. Similarly, the inequalities in
Lemma 3 and 4 would be reversed. Lemma 5 also applies to situations where
o¤er curves are slope-constrained due to a non-increasing constraint. Imposing
such slope constraints in the non-linear pricing literature is referred to as �iron-
ing�[29].

3 Supply function equilibrium

In this section we use the optimality conditions to derive necessary conditions for
pure-strategy supply function equilibria. Now, we assume that costs are common
knowledge and that demand is uncertain; a standard assumption for electricity
auctions [15]. Supply function equilibria in the pay-as-bid auction, have been
studied in the context of electricity markets by Holmberg [17]. He shows that
symmetric supply function pure-strategy equilibria can be ruled out if the shock
distribution has a locally increasing hazard rate when marginal costs are locally
su¢ ciently �at. We re-examine this in the context of market distribution func-
tions.
In the model we discuss, demand is elastic, being represented by a di¤er-

entiable demand curve D(p), and an additive demand shock " with probability
distribution F having a well-de�ned density function f with support ["; "]. At
this point we should also point out that the pay-as-bid formulation creates some
di¢ culties in circumstances in which there is elastic demand. Similar to Bertrand
models [23], the question is how much of the excess demand at lower o¤ered prices
will remain at higher prices. As in Federico and Rahman [13], we assume that
demand depends on the highest accepted o¤er in the market and we refer to this
price as the clearing price - though much of the demand is met at lower prices,
because of the pay-as-bid mechanism. The corresponding assumption in Bertrand
models is called parallel rationing [23], which is equivalent to the assertion that
demand of the good does not depend on income [22].2 Moreover, as in other mod-

2The other common assumption in Bertrand models is called proportional rationing [23],
and was used in the original work by Edgeworth on price competition between pivotal �rms
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els of electricity markets and Bertrand models we assume that the consumers�bid
curves are simply determined by their marginal value of the commodity. We know
from the derivation in Section 2.1 that this will be the case when consumers have
quasi-linear preferences and pay the average of the producers�accepted o¤ers.
The latter assumption implies that consumers�total expenditures equal produc-
ers�total revenue, which would not be the case if consumers paid according to
their bids and producers were paid according to their o¤ers.
Now consider a producer i; who submits a supply curve qi(p): Suppose that

its competitors�total quantity o¤ered at price p is given by qj(p). It is easy to
see that

 (q; p) = F (q + qj(p)�D(p)):

Thus, when qj is di¤erentiable, the Euler curve (3) can be rewritten

1� F (q + qj(p)�D(p))� (p� C 0(q))f(q + qj(p)�D(p))(q0j(p)�D0(p)) = 0:

Then for q = qi(p) to be an optimal increasing o¤er in response to qj(p) we require
that

(1� F (q + qj(p)�D(p)))�

(p� C 0(q)) f(q + qj(p)�D(p))(q0j(p)�D0(p))

8<:
� 0; q < qi(p)
= 0; q = qi(p)
� 0; q > qi(p)

(6)

In the region where F (q + qj(p)�D(p)) < 1 we can rewrite the equality in
(6) as

1� (p� C 0(q))H(q + qj(p)�D(p))(q0j(p)�D0(p)) = 0

where H(x) = f (x) =(1� F (x)) is the hazard rate of the demand shock. More-
over, the inequalities in (6) imply that

@

@q
[(p� C 0(q))H(q + qj(p)�D(p))]

����
q=qi(p)

� 0; (7)

provided that q0j(p) > 0 (and hence q
0
j(p)�D0(p) > 0).

This generalizes a previous result by Holmberg [17], who shows that ifH 0(x) >
0, and costs are close to linear, then there is no pure-strategy supply function
equilibrium in the pay-as-bid auction. Note that both the �rst-order and second-
order condition need to be satis�ed at each level of output. Marginal costs in
electricity markets are approximately stepped, i.e. locally constant, so that the
second-order condition (7), which is required for pure-strategy SFE in such mar-
kets, is close to a requirement that H 0(x) � 0. This is a very strong restriction

[11]. The two rationing assumptions are identical for perfectly inelastic demand.
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on the form of F . It means that the density of the demand shock must decrease
faster than e�x throughout its range which rules out most demand shocks that
one would encounter in practice.
We can gain some intuition for what is going on here by considering the e¤ect

of one player raising the price as much as possible for the initial quantity � that
it o¤ers. So p(q) becomes horizontal over a range (0; �). If this player ends up
supplying an amount more than � then it improves its pro�t due to the higher
price received for this �rst part of its output. The only loss occurs when demand
is very low and the player ends up supplying less than �. For a supply function
that is not horizontal to occur, these considerations must balance. This can only
happen when there is approximately equal probability of supplying an amount
less than or greater than �. This demonstrates that we will need a demand
function weighting low demand values very highly, and hence the very steeply
decreasing density functions implied by H 0(x) � 0.

4 Mixtures with non-binding slope constraints

In the previous section we concluded that pure-strategy SFE can be ruled out
for many pay-as-bid markets that we encounter in practice. Now we begin the
main task of this paper which is an analysis of mixed-strategy equilibria for pay-
as-bid markets. In this section we analyze cases where producers mix over a
range of o¤er curves each of which satis�es the Euler condition Z(q; p) = 0. We
call these supply functions with non-binding slope constraints. We will show that
equilibria of this form may occur, but the conditions for such an equilibrium are
very restrictive; they normally only exist when demand is inelastic and producers
are non-pivotal (so that demand can still be met even if the largest �rm exits
the market). A second class of equilibrium mixture with slope-constrained bids
is analyzed in Section 5.
We consider an equilibrium in which there is mixing over a whole range of

solutions each of which falls into a region � for which

Z(q; p) � 0; (q; p) 2 �: (8)

Moreover we suppose that the mixing takes place over a continuum of solutions
with no gaps, and thus we assume that fp : (q0; p) 2 �g is an interval for any
choice of q0 2 (0; qm). We also assume that �o, the interior of �, is a non-empty
connected set.
Substituting for Z using (4) implies that the function (p� C 0 (q)) (1�  (q; p))

is independent of p in the region �. Hence

(p� C 0 (q)) (1�  (q; p)) = � (q)
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for some arbitrary function �. Thus the market distribution function of a mixing
producer can be written

 (q; p) = 1� � (q)

p� C 0 (q)
=

p� k (q)

p� C 0 (q)
; (9)

where k (q) is some arbitrary function, such that C 0 (q) � k (q) � p.
In a mixed strategy equilibrium, each producer�s strategy can be expressed by

means of its o¤er distribution function G (q; p), which is de�ned as the probability
that the producer o¤ers strictly more than q units at a price p or less. Implicitly
this function determines the contours of the producer�s supply for each probability
level. In general there will be many di¤erent ways to produce the same o¤er
distribution function by mixing over complex sets of o¤er curves. However the
simplest way for a producer to generate a mixture of o¤er curves corresponding
to G is to o¤er contours G (q; p) = 
 where 
 has a uniform distribution on (0; 1).
This is the only way to obtain G if the mixture is taken over supply functions
that do not cross.
As supply functions are monotonic by assumption, we have that @

@p
G � 0

and @
@q
G � 0, where these derivatives exist. We will assume that all quantities

supplied are non-negative. We write qL (p) for the in�mum of quantities o¤ered
by any supply function at price p for producer i. If the mixture has a �nite mass
on the lowest supply function then G will be discontinuous at this point. But if
G is continuous (in its �rst argument) then from the de�nition of G we will have
G
�
qL (p) ; p

�
= 1.

Without loss of generality we can assume that the lower boundary of � is
included in � and corresponds to the highest supply function. We write qU (p) for
this highest supply function in the mixture. Then by de�nition G

�
qU (p) ; p

�
= 0

even if G has a discontinuity there.

4.1 Mixed supply function equilibria

For simplicity we limit our analysis to a symmetric equilibrium in a symmetric
duopoly market. We consider the o¤er of producer i and we denote the o¤er dis-
tribution function of its competitor by Gj(q; p). The accepted output of producer
i at price p is given by the di¤erence between two independent random variables:
the shock outcome " and qj (p) ; the supply of the competitor at the price p:
Hence, the probability that an o¤er of qi by producer i is not fully dispatched if
o¤ered at the price p is

 i (qi; p) =

1Z
�1

f (")Gj ("+D (p)� qi; p) d":
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Making the substitution t = "+D (p)� qi yields

 i(q; p) = F (q �D (p)) +

1Z
0

f (t+ q �D (p))Gj (t; p) dt; (10)

since Gj (t; p) = 1 for t < 0. Here we have assumed that F is continuous and
f is well-de�ned, but we could clearly write the equivalent formulae with sums
instead of integrals in the case that the demand distribution is discrete.
We let p be the in�mum of clearing prices with a positive output. For a given

demand, the lowest clearing price will occur when the producers o¤er the largest
amount i.e. when the o¤ers are qUi (p): Thus p can be de�ned explicitly as

p = inffp : qU1 (p) + qU2 (p) � D(p) + " > 0 for some " 2 ["; "]g: (11)

Analogously we introduce a highest clearing price p; which is de�ned by

p = supfp : qL1 (p) + qL2 (p) � D(p) + "g: (12)

Our main purpose with this section is to show that mixed-strategy equilibria
with non-binding slope constraints can only occur under very restricted condi-
tions. Thus, our focus is on deriving necessary conditions for such equilibria.
Su¢ cient conditions are only provided for some special cases. Our analysis will
proceed in stages. The lowest clearing price with a positive output, i.e. p , will
be very important in this development. The �rst result in this section establishes
that in a mixed-strategy equilibrium with non-binding slope constraints it is nec-
essary for the most competitive supply curve qUi (p) in the mixture to o¤er at
least the minimum possible demand at this lowest price. In other words the �rst
units of any producer cannot be accepted with certainty, because then it would
be optimal to increase the price of these units, and this shows that the highest
o¤ered quantity in the mixture must be at least as large as the lowest demand at
p. This means that in the case with deterministic demand neither producer can
be pivotal if there is to be a mixed-strategy equilibrium with non-binding slope
constraints. In the case of uncertain demand, it will later be shown that both
producers in a mixed-strategy equilibrium o¤er the maximum demand at p, and
so neither can be pivotal in this case as well. As established in Proposition 8, one
implication of this is that demand must be inelastic for mixtures without slope-
constraints, because if demand were elastic non-pivotal suppliers could increase
their pro�ts by postponing the crossing of the maximum demand curve, so they
would o¤er all their supply at p; i.e. they would not mix.

Lemma 7 Any Nash equilibrium with mixtures over supply functions with non-
binding slope constraints has qUi (p) = qLi (p) = 0 for p < p and qUi

�
p
�
� "+D

�
p
�
.
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In addition, if p > C 0(max(0; "+D
�
p
�
)), then qLi

�
p
�
= 0 and Gi

�
q; p
�
= 0; for

q > 0.

Proof. In a pay-as-bid auction, it can never be best to o¤er a positive output
below p (since raising all prices to p will increase revenue without altering any
clearing prices that occur). Hence qUi (p) = qLi (p) = 0, for p < p.
Next we prove the inequality for qUi

�
p
�
by assuming that "+D

�
p
�
> qUj

�
p
�
=

qUi
�
p
�
and deriving a contradiction. To do this de�ne wi = " +D

�
p
�
� qUj

�
p
�
,

which is the minimum value of the residual demand faced by �rm i at price p,
and suppose that wi > 0. From (11) we have qUi

�
p
�
� wi, and so qUi

�
p
�
>

0. Observe that since we use mixtures with non-binding slope constraints, we
have Zi = 0 in the interior of the section of the qUi o¤er curve which may be
intersected by some realization of residual demand (this is true even if the region
� is at a higher price than p). Thus if wi < qUi

�
p
�
we have Zi(q; p) = 0 for

q 2
�
wi;min

�
qUi
�
p
�
; "+D

�
p
���
.

Now consider perturbing qUi upwards by an amount � > 0 along the entire
horizontal section at p: thus we change qUi (p) to ri(p) with ri(p) = 0 for p 2
[p; p + �), and ri(p) = qUi (p) otherwise. If wi < qUi

�
p
�
, then there is a section

where Zi is zero and the associated change in pro�t for this section is of order �2.
Otherwise wi = qUi

�
p
�
and this section vanishes. In either case, since  i(q; p) = 0

for q � wi, we can deduce from (2) that the pro�t �i increases by

�wi +O(�2):

This is positive for � chosen small enough, contradicting the optimality of qUi
as part of the mixture played by �rm i. Hence wi � 0, i = 1; 2 and we have
established the result for qUj

�
p
�
, and hence for qUi

�
p
�
by symmetry.

To show that Gi
�
q; p
�
= 0 we suppose otherwise and assume that Gi

�
t; p
�
�


 > 0 for t 2 (0; T ) with T > 0 and T chosen small enough that p > C 0(T ).
In other words player i is o¤ering a curve with a horizontal section at p with
a nonzero probability, and from the de�nition of G, we have qUi

�
p
�
� T . By

symmetry qUj
�
p
�
� T . Let q0 = max

�
T; "+D

�
p
��
and observe that from the

�rst part of the Lemma that qUi
�
p
�
� q0.

In equilibrium all supply functions in the mixture return the same expected
pro�t and are all optimal; we will show that qUj (p) can be improved which gives
a contradiction. Speci�cally consider the change from qUj (p) to another supply
function given by rj(p) = q0 for p 2 [p� �; p) and rj(p) = qUj (p) otherwise. Note
that rj is non-decreasing. The deviation will never decrease the production of �rm
j, and for "+D

�
p
�
in the range R =

�
max

�
0; "+D

�
p
��
;min

�
"+D

�
p
�
; 2q0

��
the �rm produces at least an amount of min(q0; " + D

�
p
�
) rather than having
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to share demand. It follows that there is a �xed positive probability of demand
" +D(p) exceeding q0 (which is at least the probability of demand being in the
upper half of the range R), and so there is a lower bound on the increase in
production for j by moving from qUj to rj. The exact amount of increase will
depend on the sharing rule (which we assume is symmetric between the two
players).
Since p > C 0(max(0; " + D

�
p
�
)) by assumption and p > C 0(T ), we have

p > C 0(q0). Hence if � is su¢ ciently small this gives an improvement in pro�t.
Any reduced pro�ts made in other circumstances through o¤ering at a price p��
rather than p are dependent on �. Hence by taking � small enough we will ensure
that the pro�t for player j with rj is higher than the pro�t for player j with qUj
which contradicts the optimality of qUj for �rm j. Hence, we can conclude that
Gi
�
q; p
�
= 0, for q > 0.

Now that we have shown Gi
�
q; p
�
= 0, so that there is no accumulation of

o¤ers at any point (q; p), then we have also established that qLi
�
p
�
= 0, since

otherwise we would have such an accumulation of horizontal o¤ers at p in the
output range

�
0; qLi

�
p
��
, giving a contradiction.

The statement in this Lemma that Gi is zero when p = p is equivalent to
observing that, in a symmetric equilibrium, there cannot be an accumulation
of horizontal o¤ers at this lowest mixing price p. The reason is that if this
were true then one player would be better o¤ by deviating to o¤er instead at a
marginally lower price. In fact the same argument can be used to establish that
in a symmetric equilibrium there can never be a positive probability of o¤ering
an o¤er curve with a horizontal section, if this is at a price where the market
may clear. If one player does this at a price p0 that is higher than its marginal
cost then it can be shown that the other player can improve pro�ts by moving
the section of the o¤er curve at price p0 to the lower price p0 � " for " chosen
small enough. This result holds regardless of the sharing rule. Notice that in our
discussion of expected payo¤ in section 2 we assumed a di¤erentiable  which
would not occur if one of the players had a positive probability of o¤ering a curve
with a horizontal section.

The condition Z(q; p) = 0 in the region (q; p) 2 � implies that a unit q will
return the same expected pro�t even if the price at which it is o¤ered varies.
But it is not possible to maintain constant expected pro�t for a unit if demand
is elastic and a supply curve in the mixture crosses q = " + D (p) ; because the
expected pro�t is surely zero when q > "+D (p) : The following proposition makes
this precise.

Proposition 8 In a Nash equilibrium with mixtures over supply functions with
non-binding slope constraints, if qUi

�
p
�
� " + D

�
p
�
and p > C 0(max(0; " +
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D
�
p
�
)), then p =1, D(p) is constant for p � p and qLi (p) = 0 for all p.

Proof. We consider the line of maximum residual demand for �rm i given by
"+D(p)�qLj (p) and let pU be a price at which this maximum residual demand line
crosses a supply function in the interior of the mixture, so

�
"+D(pU)� qLj (pU) ; pU

�
2

�o and one of the supply functions in the mixture has qi(pU) = "+D(pU)�qLj (pU).
Now the de�nition of qi(pU) implies that  (qi(pU); pU) = 1. Inside the region �
we have from (9)

 i(q; p) = 1�
� (q)

p� C 0 (q)
;

and so � (qi(pU)) = 0. Hence  (qi(pU); p) = 1 for all p with (qi(pU); p) 2 �. Hence
for small enough � the maximum dispatch quantity for i at pU � � is the same as
at pU , i.e.

"+D(pU � �)� qLj (pU � �) = "+D(pU)� qLj (pU) .

Since D is a non-increasing function and qLj is non-decreasing, D(pU��) = D(pU)
and qLj (pU � �) = qLj (pU). This establishes that bothD(p) and q

L
j (p) are constant

for any p where
�
"+D(p)� qLj (p) ; p

�
2 �o.

We now show that
�
"+D(p)� qLj (p) ; p

�
2 �o at prices p 2

�
p; p
�
where

D(p) � qLj (p) is strictly decreasing. By assumption q
U
i

�
p
�
� " + D

�
p
�
, Lemma

7 implies qLi
�
p
�
= 0. Thus qUi

�
p
�
� " + D(p) � qLj

�
p
�
and

�
q; p
�
2 � for all

q 2 (0; D
�
p
�
+ "� qLj (p)). Consider any pZ < p at which D(p)� qLj (p) is strictly

decreasing. Since by de�nition p is the supremum of prices at which a solution
crosses the maximum residual demand curve, we can choose a solution qi(p) in
the mixture crossing the maximum residual demand line at a price pi strictly
between pZ and p. The monotonicity of qi(p) implies that this solution remains
above or on the horizontal line (q; pi) for all q 2 (D(pi)+"�qLj (pi); qm). So for all
q 2 (D(pi)+"�qLj (pi); D

�
p
�
+"�qLj (p)) the points (q; p) are in-between the curves

qi(p) and qUi
�
p
�
when p 2 (p; pi). Our assumption on the form of � now shows

that (q; p) 2 �o for all q 2 (D(pi) + "� qLj (pi); D
�
p
�
+ "� qLj (p)) and p 2 (p; pi):

Since D(pZ)� qLj (pZ) > D(pi)� qLj (pi), we thus have
�
D(pZ) + "� qLj (pZ); pZ

�
2

�o.
The argument above shows that D(p) and qLj (p) are constant for p 2 [p; p).

Moreover from Lemma 7 and symmetry of the equilibrium qLi (p) = 0, p 2 [p; p). It
only remains to show that p =1: Suppose that this is not the case and �p <1: If
qLi (p) = 0 then every o¤er in the mixture has zero pro�t. However, this contradicts
the observation that the expected pro�t from the most competitive curve qUi is
positive, because o¤ers from the most competitive curve qUi (p) are accepted with
a positive probability and the mark-ups of the accepted o¤ers are positive. Thus
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qLi (p) > 0, so this implies a horizontal section at p with q 2 [0; qLi (�p)]. From
the discussion below Lemma 7 we also know that there cannot be a horizontal
accumulation of o¤ers at p: Hence, o¤ers at this price must be almost surely
rejected, i.e.  i(q; p) = 1 for q 2

�
0; qLi (�p)

�
. However, observe from (9) that

 i(q; p) can only equal 1 when � (q) = 0 and hence can never approach 1 as p
approaches �p from below. So we have a contradiction if �p <1:
Now consider the special case with certain demand, so that " = ". Lemma 7

implies that in a mixed-strategy equilibrium with non-binding slope constraints
qUi
�
p
�
� " + D

�
p
�
, so that each producer�s capacity is su¢ cient to meet the

highest demand at the lowest price. In other words producers must be non-pivotal
for this to happen. From Proposition 8 it now follows that D(p) is constant and
qLi (p) = 0 for p > p: Without loss of generality we assume that D(p) = 0: The
form of the equilibrium with certain demand can now be derived from (10), which
gives

 i (u; p) = Gj ("� u; p) if u 2 (0; ") :
Thus setting q = "� u, it follows from (9) that Gj (q; p) must satisfy

Gj (q; p) =
p� k ("� q)

p� C 0 ("� q)
if (p; q) 2 �:

When p > C 0("), we know from Lemma 7 that Gj
�
q; p
�
= 0 if q 2 (0; "), so

k ("� q) = p. Thus we have established that any symmetric Nash equilibrium
has the form

Gj (q; p) =
p� p

p� C 0 ("� q)
if p � p and q 2 (0; ") : (13)

Example 1: Symmetric duopoly with certain demand
Suppose C (q) = q2=2 and " = 1 and assume both �rms have capacity greater

than 1. This gives

G (q; p) =
p� p

p� (1� q)
; (14)

the contours of which are plotted in Figure 1 for p = 2.
It is easy to verify that G de�nes an o¤er distribution function since 0 �

G � 1, @
@p
G � 0 and @

@q
G � 0. By virtue of its derivation, every o¤er in the

mixing region has the same pro�t (in this case 3
2
). Moreover, if the competitor

follows the outlined strategy, o¤ers at p are accepted with the same probability
as o¤ers at lower prices, so it is never pro�table to undercut p. Using (14) we
can calculate a NE for any p > 1; so we have a continuum of mixed-strategy NE.
This is not surprising as similar results have been shown for Bertrand games with
non-pivotal producers and unbounded prices [9][16][19].
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Figure 1: Contours of G for mixed strategy equilibrium, where p = 2.

We now turn our attention to the question of whether an equilibrium with
mixtures over supply functions with non-binding slope constraints can occur in a
market with uncertain demand. Except for cases with constant marginal costs,
we have not been able to �nd such an equilibrium when demand is uncertain and
" + D

�
p
�
> 0: The problem is that discontinuities in the shock density or in

its derivatives gives discontinuities in Z(q; p) and its derivatives, and this can be
used to rule out the existence of such equilibria. Thus we will now focus on cases
with "+D

�
p
�
� 0: Outcomes with "+D

�
p
�
< 0 are only possible if demand is

elastic; in this case the minimum demand curve may intersect producers�vertical
segment at zero output at a price below p.
For certain demand we showed that qUi

�
p
�
� " + D

�
p
�
, so the lowest o¤er

of the mixture starts with a horizontal section. Otherwise, the �rst unit would
be accepted with certainty and the producer would have an incentive to increase
the o¤er price of this unit relative to later units. When demand is uncertain,
we expect mixed-strategy equilibria to arise in a similar way to those for certain
demand, i.e. whenever lower demand outcomes combined with the competitor�s
o¤er do not provide su¢ cient elasticity in the residual demand distribution to
counteract the incentive to markup the price on the �rst unit. We are able to
show that qUi

�
p
�
� " + D

�
p
�
for all outcomes of the demand shock, under the

following condition on its distribution:

@

@q

�
p� C 0 (q)

�
f (q + ")

1� F (q �D(p))

�����
q=0+

> 0, for each " 2
�
�D(p); "

�
: (15)

Here we use the notation @
@q

���
q=0+

for the right hand derivative at q = 0 and the

assumption implies that these partial derivatives exist for each " in the range�
�D(p); "

�
.
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Proposition 9 Suppose the distribution on the demand shock satis�es (15), and
" +D

�
p
�
� 0. Then any mixed-strategy equilibrium with non-binding slope con-

straints needs to satisfy qUi
�
p
�
� "+D(p).

Proof. We calculate the value of Z when the price is p. Observe that
f (t+ q �D(p)) = 0 for t > "� q +D

�
p
�
, and so (10) becomes

 i (q; p) = F (q �D(p)) +

"�q+D(p)Z
0

f (t+ q �D(p))G (t; p) dt: (16)

Di¤erentiating (16) with respect to p and evaluating at p yields:

 p
�
q; p
�
= �f(q �D

�
p
�
)D0 �p�� "�q+D(p)Z

0

f 0
�
t+ q �D

�
p
��
D0 �p�G �t; p� dt

+

"�q+D(p)Z
0

f
�
t+ q �D

�
p
��
Gp
�
t; p
�
dt+ f (")G

�
"� q +D

�
p
�
; p
�
D0 �p� ;
(17)

where Gp (t; p) = @G (t; p) =@p. From Lemma 7 we know that G
�
t; p
�
= 0 for

any t > 0, so we obtain for q < "+D
�
p
�
that

Z(q; p) � 1�  
�
q; p
�
�  p(q; p)

�
p� C 0 (q)

�
= 1� F (q �D

�
p
�
) +

�
p� C 0 (q)

�
f(q �D

�
p
�
)D0 �p�

�
�
p� C 0 (q)

� "�q+D(p)Z
0

f
�
t+ q �D

�
p
��
Gp
�
t; p
�
dt:

Notice that for any t > qUj
�
p
�
we have G(t; p+ �) = 0 for � chosen small enough

and so Gp
�
t; p
�
= 0. Now, suppose qUj

�
p
�
< "+D

�
p
�
: Then for any q > 0 and

chosen close enough to 0, we will have qUj
�
p
�
< "� q +D

�
p
�
. For such a q, we

can replace the upper limit of the integral in this expression for Z and write

Z(q; p) =
�
1� F (q �D

�
p
�
)
�
[1 + E1(q) + E2(q)]

E1(q) =
�
p� C 0 (q)

� f(q �D
�
p
�
)

1� F (q �D
�
p
�
)
D0 �p�

E2(q) = �
�
p� C 0 (q)

� qUj (p)Z
0

f
�
t+ q �D

�
p
��

1� F (q �D
�
p
�
)
Gp
�
t; p
�
dt:
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We are interested in the (right-hand) derivative of Z(q; p) with respect to q at
q = 0. Since Z(0; p) = 0; D0 �p� � 0, p > C 0 (0) (implied by Assumption 1) and
Gp
�
t; p
�
� 0, Assumption 1 implies that Z(q; p) is decreasing with respect to q

at q = 0. But this violates the condition that Z = 0 on the boundary of �. This
contradiction establishes that qUi

�
p
�
� "+D(p).

Observe that by Proposition 8, if p > C 0(max(0; " + D
�
p
�
)) then D(p) is

constant for (q; p) 2 �, p =1 and qLi (p) = 0 for all p.

Given this observation, we will now restrict attention in the remainder of
this section to the case of inelastic demand with " + D

�
p
�
� 0, which becomes

equivalent to taking D
�
p
�
= 0 and " = 0. So when (15) holds, qUi

�
p
�
� " and the

entire horizontal line (0; p) to ("; p) is the lower boundary of the region � where
mixing takes place. Thus using the equations (9) and (10) as well as G

�
q; p
�
= 0

from Lemma 7 we get

F (q) =  
�
q; p
�
=

p� k(q)

p� C 0 (q)
;

provided p > C 0("). This determines the function

k(q) = p�
�
p� C 0 (q)

�
F (q) (18)

and substitution back into (9) shows that

 i(q; p) =
p� p+

�
p� C 0 (q)

�
F (q)

p� C 0 (q)
for q 2 (0; ") and p > p.

If p � p, then any o¤er of (q; p) by producer i will be fully dispatched with
probability 1� F (q), so

 i(q; p) = F (q) for q 2 (0; ") and p � p.

It is easy to verify by substituting the expression for  i(q; p) into (10) that

"�qZ
0

f (t+ q)Gj (t; p) dt =
p� p+

�
p� C 0 (q)

�
F (q)

p� C 0 (q)
� F (q)

so
"�qZ
0

f (t+ q)Gj (t; p) dt =
(p� p)(1� F (q))

p� C 0 (q)
: (19)

In principle, at least, equation (19) can be solved forG. This is straightforward
when F has a uniform distribution. In this case we can characterize the form of
the mixture analytically.
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Proposition 10 Suppose that demand is inelastic and has a uniform distribution
with support [0; "]. If each producer has capacity qm > ", and for some p and every
q 2 [0; "]

(p� C 0 (q)) � C
00
(q) ("� q); (20)

and

2C 00 (q) � ( 2C
00 (q)2

p� C 0 (q)
+ C 000 (q))("� q); (21)

then there exists a unique symmetric mixed-strategy equilibrium with non-binding
slope constraints and lowest clearing price p. This is de�ned by the o¤er distrib-
ution function

Gj (q; p) =

(
0; p < p; q 2 (0; ");
(p� p) (p�C

0("�q))�qC00("�q)
(p�C0("�q))2 ; p � p; q 2 (0; "):

Proof. The formula for Gj (q; p) can be obtained by setting f (q) = 1
"
, and

F (q) = q
"
and di¤erentiating (19). This gives

�1
"
Gj ("� q; p) =

@

@q

�
(p� p)(1� q

"
)

p� C 0 (q)

�
= (p� p)

(1� q
"
)C 00 (q)� (p� C 0 (q))1

"

(p� C 0 (q))2

so

Gj ("� q; p) = (p� p)
(p� C 0 (q))� ("� q)C 00 (q)

(p� C 0 (q))2

as required.
Observe that

G("� q; p) =
p� p

p� C 0 (q)

(p� C 0 (q))� ("� q)C 00 (q)

p� C 0 (q)

so (20) implies

0 � G("� q; p) � 1; for every q 2 [0; "], and p > p.

We next check that Gj (q; p) is monotonic.

@

@p
Gj ("� q; p) =

@

@p

�
(p� p)

(p� C 0 (q))� ("� q)C 00 (q)

(p� C 0 (q))2

�
=
(p� C 0 (q))(p� C 0 (q)) + C

00
(q) ("� q)(p+ C 0 (q)� 2p))

(p� C 0 (q))3

25



which is nonnegative for every q 2 [0; "] when

(p� C 0 (q))(p� C 0 (q)) + C
00
(q) ("� q)(p+ C 0 (q)� 2p)) � 0:

The left-hand side of this inequality is increasing in p, and so this is equivalent
to requiring

(p� C 0 (q))(p� C 0 (q)) + C
00
(q) ("� q)(p+ C 0 (q)� 2p)) � 0;

which follows from (20).
We also require

@

@q
Gj ("� q; p) � 0

which is equivalent to

(p� C 0 (q)) 2C 00 (q) � (2C 00 (q)2 + (p� C 0 (q))C 000 (q))("� q)

or

2C 00 (q) � ( 2C
00 (q)2

p� C 0 (q)
+ C 000 (q))("� q):

The right-hand side of this inequality is decreasing in p, so this is equivalent to
(21).
It follows from the construction of G that every o¤er in the mixing region has

the same pro�t, and o¤ers at p are accepted with the same probability as o¤ers
at lower prices, so it is never pro�table to undercut p.
Example 2: Symmetric duopoly with uniform demand
As before we consider a symmetric duopoly market with C (q) = q2=2, and "

uniformly distributed on [0; 1]. Proposition 10 gives a mixture de�ned by

G (q; p) =
(p� 1)(p� p)

(p+ q � 1)2
,

as long as conditions (20) and (21) hold. It is easy to see that these correspond
to p � 1. Observe that condition (15) is equivalent to p > 1, which shows that
this is not necessary for a mixed strategy to exist. The contours of G correspond
to the o¤er curves over which mixing takes place, and are shown in Figure 2 for
p = 2.
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Figure 2: Contours of G for mixed strategy equilibrium for p = 2.

5 Mixtures over slope-constrained bid curves

We saw in Section 3 that pure-strategy SFE can be ruled out in markets where
(p� C 0(q))H(q + Sj(p)�D(p)) is locally increasing. In Section 4, we were able
to �nd equilibria with mixtures over supply functions with non-binding slope
constraints under such circumstances when demand is inelastic and �rms have
su¢ ciently large capacities. But under an assumption on the demand distribu-
tion, we show such mixed-strategy equilibria do not exist for markets with pivotal
producers, price caps, or with elastic demand. In this section we will show that
mixtures over slope-constrained o¤er curves can exist under such circumstances.
This takes us back to the discussion in section 2 in which we provided optimality
conditions for solutions having this type of structure. We no longer require Z = 0
over a region �: the conditions now involve an integral of the Z function. We
analyze two cases. We start with mixtures over horizontal bids, i.e. supply curves
are slope-constrained along the whole output. We show that there exist equilibria
where all o¤er curves in the mixture are of this type if the price cap is su¢ ciently
high. For lower price caps, there is another mixed-strategy equilibrium, which
we call a hockey-stick mixture. O¤ers in this mixture also start with horizontal
segments. But in this case, the supply slopes upwards at high outputs for the
lowest o¤er curves in the mixture.

5.1 Mixtures over horizontal bids

In this subsection we will consider mixtures over horizontal bid curves, i.e. the
supply curves are slope constrained for the whole output. We consider the
case with two players, with capacities qmi , i = 1; 2; where demand may exceed
max (qm1 ; q

m
2 ) but not q

m
1 + qm2 . As before we let p be the lowest clearing price

27



and p be the highest clearing price, where this exists. We consider a situation in
which producer j 6= i o¤ers its capacity at a price p or below with probability
Gj(p). From (10) we have the resulting market distribution function of �rm i :

 i (qi; p) = F (qi �D (p)) +

qmjZ
0

f (t+ qi �D (p))Gj (p) dt

= (1�Gj(p))F (qi �D (p)) +Gj (p)F (qi + qmj �D(p)): (22)

Note that F (") = 1 for " > ": The payo¤ of a horizontal o¤er at price p is given
by (2)

�i(p) =

Z qmi

0

(p� C 0i(q))(1�  i(q; p))dq:

In equilibrium we require the o¤er of qmi at any price p in the support of Gj to
yield the same expected pro�t, and we let Ki be the value of �i(p) in this region.
After substituting for  i this gives

Ki =

Z qmi

0

(p�C 0i(q))(1� (Gj(p)F (q + qmj �D(p)) + (1�Gj(p))F (q �D(p)))dq:

After rearranging we get

Gj(p) =

R qmi
0
(p� C 0i(q))(1� F (q �D(p)))dq �KiR qmi

0
(p� C 0i(q))(F (q + qmj �D(p))� F (q �D(p)))dq

: (23)

This generalizes the necessary �rst-order condition for mixed-strategy Nash equi-
libria in discriminatory auctions given by Anwar [2], Fabra et al. [12] and Son et
al. [24], who consider cases with constant marginal costs and vertical demand.3

In Bertrand-Edgeworth games, demand is often assumed to equal D(p) with
certainty, i.e. " = " = 0. In this case, and under the assumption that qmi � D(p)
for prices that occur, (23) can be simpli�ed to

Gj(p) =

R qmi
0
(p� C 0i(q))dq �KiR qmi

D(p)�qmj
(p� C 0i(q))dq

(24)

=
pqmi � Ci(q

m
i )�Ki

p(qmi + qmj �D(p))� Ci(qmi ) + Ci(D(p)� qmj )
: (25)

3Unlike us, Fabra et al. [12] consider a strategy space in which o¤ers are constrained to
be horizontal. Still our and their �rst-order condition are identical, because pay-o¤s for the
horizontal o¤ers are the same at any price p in the support of Gj in both models. Note that
our �rst-order condition needs to be partially integrated to become similar to their condition.
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Since Gj(p) = 0 we have

Gj(p) =
(p� p)qmi

p(qmi + qmj �D(p))� Ci(qmi ) + Ci(D(p)� qmj )
: (26)

The choice of p gives di¤erent possible mixtures. This condition generalizes the
previous conditions that have been used to calculate mixed-strategy Nash equi-
libria in Bertrand-Edgeworth games, which assume zero marginal costs and linear
demand [10], [22]. Another di¤erence is that we consider the case with parallel
rationing rather than proportional rationing.
Now we give a simple example illustrating (26).
Example 3: Symmetric duopoly with elastic demand
To illustrate such an equilibrium consider a symmetric duopoly market with

C (q) = 0. We assume that D (p) = 1� p
10
; and " = " = 0. Suppose qmi = qmj =

3
4
,

and p = 5
24
. Thus

G(p) =
5

16

24p� 5
p (5 + p)

, p 2 [ 5
24
;
5

4
].

This gives

 (q; p) =

8<:
0; q < (1� p

10
� 3

4
)

5
16

24p�5
p(5+p)

; (1� p
10
� 3

4
) < q < (1� p

10
)

1; q > (1� p
10
)

and an expected payo¤ofK = 5
32
for any horizontal o¤er of 3

4
at a price p 2 [ 5

24
; 5
4
].

It is easy to see that there is no incentive to deviate outside this mixture. For

example an o¤er of 3
4
at a price p = 5

4
+� will be dispatched a quantity 1�

5
4
+�

10
� 3
4

and earn

(1�
5
4
+ �

10
� 3
4
)(
5

4
+ �) =

5

32
� 1

10
�2 < K:

We note that this is the unique equilibrium without imposing a price cap.
Any equilibrium mixture must have p � 5

24
, because G(p) is bounded away from

1 if p is chosen outside this range. Moreover any mixture over a price range with
p < 5

24
will have K < 5

32
, and a price P less than 5

4
where G(P ) = 1, so we must

impose a price cap at P to prevent a player deviating to an o¤er at p = 5
4
which

will yield a certain pro�t of 5
32
.

Finally we point out that this example is special in that deterministic elastic
demand implies that  (q; p) is discontinuous across the line q = 1

4
� p
10
, and so the

equilibrium that we have derived above does not satisfy the optimality conditionZ qm

0

Z(q; p)dq = 0
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as stated in Lemma 5. We must add a term to the optimality condition, because
of the jump in  (q; p) as the horizontal o¤er crosses the line q = 1

4
� p

10
.

In the remainder of this Section we will focus on cases with inelastic de-
mand. Without loss of generality we assume that D (p) = 0. In a discriminatory
divisible-good auction, we can more or less eliminate the possibility of a horizontal
mixture when the smallest producer is non-pivotal, i.e. when max (qm1 ; q

m
2 ) > "

at prices that occur. The only exception is when marginal costs are constant.

Proposition 11 In an equilibrium where a player i mixes over horizontal bid
curves in some price interval (p1; p2) and D(p) = 0, it must be the case that
" � qmj for every p 2 (p1; p2), unless there are constant marginal costs.

Proof. From Lemma 3 we know that a necessary characteristic of an optimal
horizontal o¤er is that Z(q; p) is non-negative for small values of q, otherwise we
can obtain an improvement by reducing the �rst section of the o¤er. We will
show that this property fails for player i when " is less than the competitor�s
capacity. In this case F (qmj ) = 1 and hence we can write (23) as

Gj(p) = 1�
Ki

W (p)
;

where

W (p) =

Z qmi

0

(p� C 0i(q))(1� F (q))dq;

and we have

W 0(p) =

Z qmi

0

(1� F (q))dq: (27)

Observe that if p is in the mixture then W (p) > 0 and so p > C 0i(0). Now,
from (22)

 i (q; p) = (1�Gj(p))F (q) +Gj (p)

and thus it follows from (4)

Z(q; p) = (1�Gj (p))(1� F (q))� (p� C 0i(q))gj(p)(1� F (q)):

From the above relations we have

Z(0; p) = (1� F (0))[(1�Gj(p))� (p� C 0i(0))gj(p)] (28)

= (1� F (0))[
Ki

W (p)
� (p� C 0i(0))

KiW
0(p)

W (p)2
]

=
Ki(1� F (0))

W (p)2
[W (p)� (p� C 0i(0))W

0(p)]:
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Substituting for W (p) and W 0(p) we can show

Z(0; p) =
Ki(1� F (0))

W (p)2

Z qmi

0

(C 0i(0)� C 0i(q))(1� F (q))dq � 0: (29)

If marginal costs are not constant then C 0i(0) < C 0i(qi) and inequality (29) is
strict, which gives the contradiction we need.
This proposition shows that the special case in which Ci(x) = cx is the only

case in which we can have a mixture over horizontal bids when qmj > ". In this
case we can simplify (23) to

Gj(p) = 1�
Ki

(p� c)
R qmi
0
(1� F (q))dq

= 1�
p� c

p� c
;

because Gj(p) = 0: Combined with (22) this gives

 i (qi; p) = (1�Gj(p))F (qi) +Gj (p)

= 1�
�
p� c

�
(1� F (q))

p� c

which satis�es the condition in (9) ensuring that this situation has Z = 0 through-
out the region in which o¤ers are made. Thus we are again in the non-slope-
constrained case, even though the equilibrium o¤ers are horizontal. As was the
case for the non-slope-constrained mixtures in Section 4, there is a new horizontal
mixture for every p > c; and here it is identical to the mixed-strategy Bertrand
NE in markets with non-pivotal producers and constant marginal costs [9]. An-
other similarity with Section 4 is that the highest o¤er needs to be unbounded, so
the equilibrium over horizontal mixtures does not exist for �nite price caps when
producers are non-pivotal.
Although �rst-order conditions for mixtures over horizontal bids are similar in

our framework and in the game analyzed by Fabra et al. and Bertrand-Edgeworth
games, our strategy space is less constrained as it allows for strictly increasing
supply functions. Thus one would expect su¢ ciency conditions to be di¤erent
in our framework. For example, there would be pro�table deviations from any
potential equilibrium with p < C 0 (qm). Genc [14] analyzes a supply function
auction similar to ours, and shows that su¢ ciency conditions for mixtures over
horizontal bids are satis�ed if marginal costs are constant, and demand is inelastic
and uniformly distributed. Anwar [2] provides su¢ ciency conditions that are more
general than Genc, but they are also limited to constant marginal costs.
Our analysis is in a more general setting than [2] and [14], but we will restrict

attention to the case where �rms are symmetric, so that C 01(q) = C 02(q) = C 0(q)
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and qm1 = qm2 = qm, and we look for an equilibrium in which both �rms o¤er the
same mixture of o¤ers; G1(p) = G2(p) = G(p).
It will be convenient to introduce some notation to shorten the expressions

we deal with. We let

A =

Z qm

0

(1� F (q))dq; B =

Z qm

0

(1� F (q + qm))dq; (30)

and

L(p) =

Z qm

0

(p� C 0(q))(F (q + qm)� F (q))dq: (31)

It is also convenient to de�ne

J = �L(0) =
Z qm

0

C 0(q)(F (q + qm)� F (q))dq: (32)

Under these assumptions we can rewrite (22) and (23) as

 (q; p) = F (q) +G(p)(F (q + qm)� F (q)) (33)

and

G(p) =

R qm
0
(p� C 0(q))(1� F (q))dq �K

L(p)
; (34)

where

K =

Z qm

0

(p� C 0(q))(1� (G(p)F (q + qm) + (1�G(p))F (q)))dq (35)

=

Z qm

0

(p� C 0(q))(1� F (q))dq (36)

=

Z qm

0

(p� C 0(q))(1� F (q + qm))dq; (37)

because K is equal to the pay-o¤ for all price levels, including the highest and
lowest clearing price: Hence,

G(p) =
(p� p)A

L(p)
: (38)

Writing g(p) = G0(p) for the density function, we obtain

g(p) =
L(p)A

[L(p)]2
; (39)
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which implies that g (p) � 0 as long as p � p � C 0 (qm) : Moreover,

g0(p) =
�2L(p)A(A�B)

[L(p)]3
� 0 (40)

if p � p � C 0 (qm) : Thus the density of the mixture is weighted towards lower
prices.
A relation between the minimum and maximum prices in the horizontal mix-

ture can be calculated from (36) and (37)

p = (pB + J)=A: (41)

Observe that the existence of p de�ned by this expression guarantees that there
is a �nite maximum price (at which G(p) reaches 1) if �rms are pivotal so that
B > 0.
We can establish the following general result for equilibria with mixtures over

horizontal bids, when there is a price cap, P . As in Genc [14] and Fabra et al.
[12] the existence of a price cap singles out a unique equilibrium.

Proposition 12 When D (p) = 0 and "=2 � qm < " then an equilibrium where
producers mix over horizontal bids can only exist if the price cap P satis�es

P � 1

B2

�
A2C 0 (qm)� (A+B) J

�
: (42)

Moreover, the equilibrium is uniquely determined by (38), (41) and p = P . The
condition

@

@q

�
(p� C 0 (q))

(F (q + qm)� F (q))

1� F (q)

�
> 0; for q 2 [0; "� qm) (43)

is su¢ cient to ensure that this is an equilibrium.

Proof. By means of (33) and (4) we can calculate

Z(q; p) = 1� F (q)� [G(p) + (p� C 0 (q))g(p)] (F (q + qm)� F (q)) (44)

= [1� F (q)] � (q; p) ;

where

� (q; p) = 1� [G(p) + (p� C 0 (q))g(p)]
(F (q + qm)� F (q))

1� F (q)
: (45)

We begin by establishing the �rst part of the proposition relating to the nec-
essary conditions for an equilibrium. It follows from Lemma 5 that a necessary
condition for an equilibrium with horizontal mixtures is:Z qm

0

Z(t; p)dt = 0; (46)
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so that the marginal pro�t from increasing the bid of the whole segment is zero.
This implies that (38) is satis�ed, since this is the condition to ensure the same
payo¤ for horizontal bids at any price p 2

�
p; p
�
. Due to Lemma 3 we also require

that R q
0
Z(t; p)dt � 0; q � qm: (47)

Otherwise the producer would �nd it pro�table to deviate by reducing the price
of the �rst part of the segment.
Now suppose p > p then from (44) we get

Z(q; p) = 1� F (q + qm); (48)

because g (p) = 0 and G (p) = 1. Hence,
R qm
0

Z(t; p+)dt > 0 and producers have
incentives to raise their highest bids unless it is prevented by the price cap: so
we require that p = P:
Using (41) we can show (after some algebra) that the condition (42) is equiv-

alent to

p � p� =
C 0 (qm)A� J

B
;

which we will now prove. Note that since 2qm � " we have from (45) that

�
�
qm; p

�
= 1� (p� C 0 (qm))g(p) (49)

= 1�
(p� C 0 (qm))A

p(A�B)� J
:

When p = p� we obtain

�
�
qm; p

�
= 1� (C 0 (qm) (A�B)� J)A

(C 0 (qm)A� J) (A�B)�BJ
= 0:

Also it is easy to see from (49) that �
�
qm; p

�
is decreasing in p. Hence if p <

p� then �
�
qm; p

�
> 0 and hence Z

�
qm; p

�
> 0. But this would imply thatR q

0
Z(t; p)dt is increasing in q as q approaches qm from below, which leads to a

contradiction from either (46) or (47). Thus we have established the condition
we require that p � p�, which in turn leads to the condition (42).
Now we want to establish that under (43) this mixture over horizontal bids is

a Nash equilibrium. Our assumption (43) implies that, for q 2 [0; "� qm),

(p� C 0 (q))
@

@q

�
(F (q + qm)� F (q))

1� F (q)

�
> C 00 (q)

(F (q + qm)� F (q))

1� F (q)
:
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As the right hand side is non-negative this establishes that p > C 0 ("� qm) and

that @
@q

n
(F (q+qm)�F (q))

1�F (q)

o
> 0 in this interval. Observe that

�q (q; p) = �
@

@q

�
[G(p) + (p� C 0 (q))g(p)]

(F (q + qm)� F (q))

1� F (q)

�
= �G(p) @

@q

�
(F (q + qm)� F (q))

1� F (q)

�
� @

@q

�
(p� C 0 (q))g(p)

(F (q + qm)� F (q))

1� F (q)

�
= �

�
G(p) + g(p)(p� p)

� @
@q

�
(F (q + qm)� F (q))

1� F (q)

�
� g(p)

@

@q

�
(p� C 0 (q))

(F (q + qm)� F (q))

1� F (q)

�
:

Thus �q (q; p) < 0 for p � p and q 2 [0; "� qm). On the other hand, from (45)
we note that �q (q; p) = C 00 (q) g(p) � 0 if q > "� qm.
The results for �q (q; p) imply that Z(q; p) cannot be always zero. We know

that Z (0; p) � 0; Z (qm; p) � 0 and
R qm
0

Z(q; p)dq = 0 for p � p . As the
derivative of � changes from negative to positive at "� qm we can deduce that �
(and therefore Z) has a single zero crossing moving from positive to negative at
some point q�(p) 2 (0; "� qm) for p � p .
Suppose that one player uses the mixture we have de�ned and consider the

optimal choice of o¤er by the other player. It is clear that the lowest price used
is p. Now an optimal o¤er cannot contain a section with 0 < p0(q) < 1 since
from Lemma 1 this only happens when Z = 0 and the optimal solution cannot
follow q�(p) since this would contradict the second-order condition (5). Hence an
optimal solution can only consist of horizontal and vertical segments. However
we know that the integral of Z on the �rst horizontal segment will be positive if
it �nishes before qm, and hence the solution can only be improved by raising this
�rst horizontal section which is not admissible. Thus any optimal solution must
consist of a single horizontal section, and thus is in the set of solutions already
considered as part of our Nash equilibrium.
In the special case that there are constant marginal costs c and uniform de-

mand we can deduce that there is always a solution of this form for pivotal
producers and any price cap larger than c:

Corollary 13 When C(x) = cx and demand is inelastic and uniformly distrib-
uted on the interval [0; 1] then there is a mixed-strategy SFE with horizontal o¤ers
for any P > c and qm 2 (1=2; 1].
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Proof. In this case we can rewrite the condition (42) as

P � c

B2

�
A2 � (A+B) (A�B)

�
= c:

From (41) we have

p = c+ (P � c)
B

A
> c:

The su¢ cient condition is satis�ed, since

@

@q

�
(p� C 0 (q))

(F (q + qm)� F (q))

1� F (q)

�
=

@

@q

�
(p� c)qm

1� q

�
=
(p� c)qm

(1� q)2
> 0, for q 2 [0; 1� qm) :

Thus we have checked all the conditions of Proposition 12.

5.2 Mixtures with hockey stick o¤ers

For increasing marginal costs, Proposition 12 shows that the price cap needs to be
su¢ ciently high for mixtures over horizontal bids to exist. The problem for low
price caps is that Z (q; p) increases steeply in the interval q 2 ("� qm; "], so that
Z (q; p) crosses zero at some point qA 2 ("� qm; "]. Hence, we get Z (qm; p) > 0;
and the producer would have incentives to increase the price for the segment in
the output interval (qA; qm] : The proposition below shows that in this case we
can get another type of equilibrium where the lowest o¤er curves in the mixture
are horizontal and slope-constrained in the interval [0; qA (p)) and then strictly
increasing and unconstrained along the curve qA (p) where Z (qA (p) ; p) = 0: We
call this a hockey-stick bid. The highest bids in the mixture are still horizontal
along the whole output.

Proposition 14 Assume that D (p) = 0, "=2 < qm < " and C 0 (qm) � P . Then
an equilibrium where producers mix over hockey stick bids has the following form:

1. There is some pm such that for p 2 [pm; P ] producers mix over horizontal
bids and the mixture is de�ned from

G(p) =
Ap� J �BP

Ap� J �Bp
: (50)
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2. There is some p such that for p 2
�
p; pm

�
producers mix over hockey stick

bids, where the individual o¤er, which can be parameterized by a price p; is
de�ned by p(q) = p, for q 2 [0; qA(p)] and p(q) = q�1A (q) for q 2 [qA(p); qm].
Moreover the functions G(p) (de�ning the mixture) and qA(p) in the range�
p; pm

�
satisfy the linked di¤erential equations:

g(p) = G0(p) =
1�G(p)

(p� C 0 (qA (p)))
, (51)

q0A (p) =

R qA(p)
0

1� F (q)� [p�C0(q)�G(p)(C0(qA(p))�C0(q))]
(p�C0(qA(p))) (F (q + qA (p))� F (q))dq

G(p)
R qA(p)
0

(p� C 0 (q))f(q + qA (p))dq
;

(52)

provided that qA
�
p
�
> "=2. The initial conditions for these di¤erential

equations are

p =

R qA(p)
0

�
C 0
�
qA
�
p
��
(1� F (q))� C 0(q)(F (q + qA

�
p
�
)� F (q))

�
dqR qA(p)

0 (1� F (q + qA
�
p
�
))dq

;

(53)

G(p) = 0; (54)

and, in addition,

q0A
�
p
�
=

2
R qA(p)
0

�
C 0
�
qA
�
p
��
� C 0 (q)

�
(F (q + qA

�
p
�
)� F (q))dq�

p� C 0
�
qA
�
p
��� R qA(p)

0

�
2(p� C 0 (q))f(q + qA

�
p
�
)

+ (1� F (q))C 00
�
qA
�
p
�� �

dq

:

(55)

3. The value of p is chosen so that a solution to the di¤erential equations
satis�es

G(pm) =
Apm � J �BP

Apm � J �Bpm
(56)

qA(pm) = qm: (57)

A su¢ cient condition for a mixture satisfying conditions 1-3 above to be a
Nash equilibrium is that

@

@q

�
(p� C 0 (q))

f(q + u)

1� F (q)

�
> 0; (58)

for every pair (u; q) 2 fu � 0; 0 � q � qm : u+ q < "g : Under this condi-
tion any mixed hockey stick equilibrium has qA

�
p
�
> "=2:
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Proof. We begin by showing that the conditions of the Proposition statement
are necessary for a hockey stick mixture to be an equilibrium. We start by
considering the range above pm (the �rst condition) where we have from (33)

 (q; p) = F (q) +G(p)(F (q + qm)� F (q))

and from (44) and (45) that Z(q; p) = [1� F (q)] � (q; p) where

� (q; p) = 1� [G(p) + (p� C 0 (q))g(p)]
(F (q + qm)� F (q))

1� F (q)
:

Now we note from our previous discussions that we can derive the equation for
G in (50) from (34) and (37)

G(p) =

R qm
0
(p� C 0(q))(1� F (q))dq �KR qm

0
(p� C 0(q))(F (q + qm)� F (q))dq

where

K =

Z qm

0

(P � C 0(q))(1� F (q + qm))dq;

which is the pro�t achieved by o¤ering at the price cap. Thus the competitor mix-
ing in this way is exactly what is required to ensure that all the horizontal o¤ers
with p � pm achieve the same pro�t for a producer, and hence, by construction,R qm
0

Z(t; p)dt = 0 for p 2 [pm; P ].
We also have P as the highest price o¤ered, as in Proposition 12 : Otherwise

producers would have incentives to increase their highest bid, because of the result
in (48).
Now we turn to the part of the solution below pm. We will show that the di¤er-

ential equations (51) and (52) arise from the requirement that
R qA(p)
0

Z(t; p)dt = 0
and Z(qA(p); p) = 0 for p 2

�
p; pm

�
. We have

 (q; p) = F (q) +G(p)(F (q + qA (p))� F (q))

for p 2
�
p; pm

�
. This follows from the fact that with probability G(p) the other

player o¤ers one of the hockey stick o¤ers with price below p, and each of these
o¤er curves coincides at the quantity qA(p) at price p. By means of (4), we can
now calculate

Z(q; p) = 1�  (q; p)� (p� C 0 (q)) p(q; p)

= 1� F (q)� [G(p) + (p� C 0 (q))g(p)] (F (q + qA (p))� F (q)) (59)

� (p� C 0 (q))q0A (p) f(q + qA (p))G(p)

= [1� F (q)] � (q; p) ;
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where

� (q; p) = 1� [G(p) + (p� C 0 (q))g(p)]
(F (q + qA (p))� F (q))

1� F (q)
(60)

� (p� C 0 (q))q0A (p)
f(q + qA (p))

1� F (q)
G(p):

As we assume that qA
�
p
�
> "=2, we also have qA (p) > "=2 and we can simplify

(59) at q = qA (p) to obtain

Z(qA (p) ; p) = 1�F (qA (p))� [G(p) + (p� C 0 (qA (p)))g(p)] (1�F (qA (p))): (61)

Since increasing supply functions must follow a Z(q; p) = 0 curve, we require
Z(qA (p) ; p) = 0. This implies (51), as required for p 2

�
p; pm

�
.

From (51) and (59) we also have

Z (q; p) = 1� F (q)�
�
p� C 0 (q)�G(p)(C 0 (qA (p))� C 0 (q))

p� C 0 (qA (p))

�
(F (q + qA (p))� F (q))

(62)

� (p� C 0 (q))q0A (p) f(q + qA (p))G(p):

Since
R qA(p)
0

Z(t; p)dt = 0 we can deduce (52) as required.
By de�nition the lowest price p has G(p) = 0. So, we can deduce from (51)

that
g(p) =

1

(p� C 0
�
qA
�
p
��
)
: (63)

Thus, (59) can be simpli�ed to

Z(q; p) = 1� F (q)�
(p� C 0 (q))

p� C 0
�
qA
�
p
��(F (q + qA

�
p
�
)� F (q)):

Hence, the condition
R qA(p)
0

Z(t; p)dt = 0 yields:

0 =

Z qA(p)

0

"
1� F (q)�

(p� C 0 (q))

p� C 0
�
qA
�
p
��(F (q + qA

�
p
�
)� F (q))

#
dq: (64)

from which we obtain (53).
Now consider the value of q0A

�
p
�
as given by the expression (52) evaluated at

p. Using (64) and the fact that G(p) = 0 shows that both the numerator and
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denominator are equal to zero. Hence, we must calculate q0A
�
p
�
from (55) by

means of l�Hôpital�s rule. Let q0A (p) = N (p) =M(p) where

N (p) = (p� C 0 (qA (p)))

Z qA(p)

0

[1� F (q)] dq

�
Z qA(p)

0

(p� C 0 (q)�G(p) [C 0 (qA (p))� C 0 (q)]) (F (q + qA (p))� F (q))dq

and

M (p) = (p� C 0 (qA (p)))G(p)

Z qA(p)

0

(p� C 0 (q))f(q + qA (p))dq:

In order to apply l�Hôpital�s rule we calculate N 0 �p� and M 0 �p� using G(p) = 0,
Z(qA

�
p
�
; p) = 0 and Leibniz�rule. Note that the contribution from di¤erentiat-

ing the integration limits are zero in both cases.

N 0 �p� = (1� C 00
�
qA
�
p
��
q0A
�
p
�
)

Z qA(p)

0

(1� F (q)) dq

�
Z qA(p)

0

�
1� g(p)

�
C 0
�
qA
�
p
��
� C 0 (q)

��
(F (q + qA (p))� F (q))dq

� q0A
�
p
� Z qA(p)

0

(p� C 0 (q))f(q + qA
�
p
�
)dq

and

M 0(p) = (p� C 0
�
qA
�
p
��
)g(p)

Z qA(p)

0

(p� C 0 (q))f(q + qA
�
p
�
)dq:

Since q0A
�
p
�
= N 0 �p� =M 0 �p� and using (63) we have
q0A
�
p
� Z qA(p)

0

(p� C 0 (q))f(q + qA
�
p
�
)dq = N 0 �p� :

We can now collect all terms with q0A (p)) and use (63), so that

q0A
�
p
�
=

R qA(p)
0

�
[1� F (q)]�

�
1� C0(qA(p))�C0(q)

p�C0(qA(p))

�
(F (q + qA

�
p
�
)� F (q))

�
dqR qA(p)

0

�
2(p� C 0 (q))f(q + qA

�
p
�
) + [1� F (q)]C 00

�
qA
�
p
��	

dq
:

(65)
The relationship (55) now follows from (64).
The condition (56) follows from (50) and the fact that G(p) is continuous at

pm which is the price at which the curve qA(p) hits the right-hand boundary qm.
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Now we consider the second part of the Proposition. We begin by showing that
qA(p) > "=2 follows from the assumption @

@q

�
(p� C 0 (q))f(q + u)= (1� F (q))

�
>

0. Under this assumption we can deduce

@

@q

�
(p� C 0 (q))

(F (q + qA (p))� F (q))

1� F (q)

�
=

@

@q

"
(p� C 0 (q))

1� F (q)

Z qA(p)

0

f(q + u)du

#

=

Z qA(p)

0

@

@q

�
(p� C 0 (q))

f(q + u)

1� F (q)

�
du > 0

(66)

if q + qA
�
p
�
� ": Hence, if 2qA

�
p
�
� " then (60) and G(p) = 0 implies

�q
�
q; p
�
= �g(p) @

@q

(
(p� C 0 (q))

(F (q + qA
�
p
�
)� F (q))

1� F (q)

)
< 0

if q < qA
�
p
�
. This would imply that Z

�
q; p
�
reaches 0 from a positive Z-value

as q ! qA
�
p
�
. But it would violate the necessary conditions from Lemma 5 and

Lemma 3, respectively, that
R qA
0
Z(t; p)dt = 0 and

R q
0
Z(t; p)dt � 0 for q � qA (p) :

Hence, we have established 2qA (p) � 2qA
�
p
�
> "; as required.

In order to show su¢ ciency we will need to establish a number of di¤erent
things, and we start with the case p 2

�
p; pm

�
. First we show that the conditions

are enough to guarantee that G(p) and qA(p) are non-decreasing as functions of
p. First observe from (53) that

p �
C 0
�
qA
�
p
�� R qA(p)

0

�
(1� F (q))� (F (q + qA

�
p
�
)� F (q))

�
dqR qA(p)

0 (1� F (q + qA
�
p
�
))dq

= C 0
�
qA
�
p
��
:

Note that the condition (58) of the Proposition statement can be written more
explicitly as

(p� C 0 (q))
@

@q
[f(q + u)= (1� F (q))]� f(q + u)= (1� F (q))C 00 (q) > 0

for u � 0, 0 � q � qm with u + q < ". This assumption would be violated
for q = qA

�
p
�
� qm < " if p = C 0

�
qA
�
p
��
: Hence, we can establish that p >

C 0
�
qA
�
p
��
; so that the above inequality is strict. So G0(p) > 0; because of (51),

and from (55) we observe that q0A
�
p
�
� 0. Now consider di¤erentiating the

identity
R qA(p)
0

Z(t; p)dt = 0 with respect to p under the assumption that q0A (p) =
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0 and we make use of (51) and (62).Z qA(p)

0

(p� C 0 (q))q00A (p) f(q + qA (p))G(p)dq

= �
Z qA(p)

0

@

@p

�
(p� C 0 (q)) +G(p)(C 0 (q)� C 0 (qA (p)))

(p� C 0 (qA (p)))

�
(F (q + qA (p))� F (q))dq

=

Z qA(p)

0

�
2 [1�G(p)] (C 0 (qA (p))� C 0 (q))

(p� C 0 (qA (p)))2

�
(F (q + qA (p))� F (q))dq � 0:

Hence, q00A (p) � 0 whenever q0A (p) = 0. Thus the derivative q0A (p) can move from
negative to positive but not the other way around as p increases. Since q0A

�
p
�
� 0

and this value is de�ned by continuity from above, there can be no changes of
sign in q0A between p and pm and so qA is increasing throughout this range.
We know that Z(qA(p); p) = 0. Now we will analyze other potential zero-

crossings where Z(q; p) = 0 in the interval q 2 (0; qA(p)). From (60) we note
that �q (q; p) = C 00 (q) g(p) � 0 if q > " � qA(p), and so � is non-decreasing in
this range and zero at q = qA(p); which implies that

R qA(p)
"�qA(p) Z(q; p)dq � 0 and

Z(" � qA(p)+; p) � 0. Together with the condition
R qA(p)
0

Z(q; p)dq = 0 this
implies that there must be at least one q� 2 [0; "� qA(p)] with Z(q�; p) = 0.
From (60) we have

�q (q; p) = �
@

@q

�
[G(p) + (p� C 0 (q))g(p)]

(F (q + qA (p))� F (q))

1� F (q)

�
� q0A (p)G(p)

@

@q

�
(p� C 0 (q))

f(q + qA (p))

1� F (q)

�
:

Notice that the �rst term can be rewritten

@

@q

�
[G(p) + (p� C 0 (q))g(p)]

(F (q + qA (p))� F (q))

1� F (q)

�
(67)

=

�
G(p)

p� C 0 (q)
+ g(p)

�
@

@q

�
(p� C 0 (q))

(F (q + qA (p))� F (q))

1� F (q)

�
+

G(p)

p� C 0 (q)
C 00 (q)

(F (q + qA (p))� F (q))

1� F (q)
:

It is straightforward to show that condition (58) is satis�ed for all prices p >
p > C 0 (q) if it is satis�ed for p = p. Thus we can conclude from (66) and (67)
that the �rst term in �q (q; p) is negative for q < " � qA(p). As q0A (p) � 0 the
second term in �q (q; p) is non-positive from (58) and so we have established that
�q (q; p) < 0 for q < " � qA(p). This implies that there is exactly one point at
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which � (q; p) = 0 in this range. Since � changes sign at q� the same must be
true for Z.
But there might be a range of points where Z (q; p) = 0 for q > "�qA(p): The

relations Z(qA(p); p) = 0 and �q (q; p) = C 00 (q) g(p) if q > " � qA(p) imply that
if C 00 (q) = 0 for q in some range (qB; qC) and qA(p) 2 [qB; qC ] then Z(q; p) = 0
for q 2 (max [qB; "� qA(p)] ; qC). In cases where marginal costs are non-constant
around qA (p) we let qB = qC = qA (p) ; and we can sum up the situation as
follows:

Z(q; p) > 0, for q 2 (0; q�) and q 2 (qC ; qm);
Z(q; p) < 0, for q 2 (q�;max [qB; "� qA(p)]);

Z(q; p) = 0, for q = q� and q 2 (max [qB; "� qA(p)] ; qC):

Now we want to establish that this mixture over hockey stick bids is a Nash
equilibrium. Suppose that one player uses the mixture we have de�ned and
consider the optimal choice of o¤er by the other player. As in Proposition 12 it
is clear that the other player has no incentives to bid below p. We know that
Z has a single zero crossing in the interval [0; "� qA(p)] moving from positive to
negative at some point q�(p) 2 (0; " � qA(p)) for p 2 (p; pm). Now an optimal
o¤er cannot follow the q�(p) curve since this would contradict the condition (5).
So the only place where an optimal o¤er can have 0 < p0(q) < 1 is along the
curve qA(p) (or in a region surrounding qA(p) where Z = 0 in the case when
marginal costs are constant). We can change the o¤er curves within the region
where Z = 0 without changing their optimality. Hence we may suppose that an
optimal reponse is adjusted to lie along the curve qA(p) as much as possible. Thus
where 0 < p0(q) <1 it follows the curve qA(p) and it does not begin a horizontal
segment or end a vertical segment within this Z = 0 region. Apart from the
section along the curve qA(p), an optimal o¤er can only consist of horizontal and
vertical sections. Consider the �nal horizontal section, say from qX to qY at price
p. Since there are no more horizontal segments we must have either qY = qm if
p � pm, or qY � qA(p) if p 2 (p; pm). Suppose that this horizontal section does
not start at zero, so qX > 0.
Now, consider the case p 2 (p; pm) and suppose that qY = qA(p). ThenR qA(p)

qX
Z(t; p)dt < 0 since

R qA(p)
0

Z(q; p)dq = 0 and either Z(t; p) < 0 throughout
the interval t 2 (qX ; qD) or Z(t; p) > 0 for t 2 (0; qX). Hence this solution can
be improved by moving the horizontal section slightly downwards (as in Lemma
3) contradicting the claimed optimality. Thus we must have qY > qA(p): But
we know that Z(q; p) � 0 below the qA(p) curve, so without lost pro�t we can
increase the price of the units q 2 (qA(p); qY ) up to this curve. Thus it can never
be a pro�table deviation to have qY > qA(p):
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The argument for the case when p � pm is easier. As in Proposition 12 we
simply establish that

R qm
qX

Z(t; p)dt < 0 when qX > 0 and hence use Lemma 3 to
show the deviation is not optimal.
Thus we have established that there is exactly one horizontal section starting

at zero and �nishing on the qA curve or at qm. So any optimal response is already
represented in the mixture and this is enough to show that the solution is a Nash
equilibrium.
The proposition below provides su¢ cient conditions for a hockey-stick mixture

to exist.

Proposition 15 Assume that D (p) = 0, "=2 < qm < " and p 2
�
pmin; pmax

�
;

where

pmin =

R �"=2
0
[C 0 (�"=2) (1� F (q))� C 0(q)(F (q + �"=2)� F (q))] dqR �"=2

0
(1� F (q + �"=2))dq

(68)

and

pmax=
C 0 (qm)A� J

B
: (69)

Then there is a price cap value P > pm for which a mixed hockey stick equilibrium
exists if for some � > 0

@

@q

�
(p� C 0 (q))

f(q + u)

1� F (q)

�
> �

for (u; q) 2 fu � 0; 0 � q � qm : u+ q < "g :

Proof. From the result of Proposition 14 it is enough to �nd a set of price
cap values P such that there will be choices of p and pm and a solution of the
di¤erential equations (51) and (52) with initial conditions (53), (54) and (55) sat-
isfying the conditions (56) and (57). We will generate these solutions by showing
that each of a range of possible starting points is matched to a �nal price cap
value P . We do this by starting with one of the initial points given by (53), (54)
and constructing a solution to the di¤erential equations (51) and (52) from this
point (which will automatically satisfy (55) ).
We need to establish that the set of possible starting points is non-empty.

First recall the de�ning relationship for qA
�
p
�
in (64)

0 =

Z qA(p)

0

"
1� F (q)�

(p� C 0 (q))

p� C 0
�
qA
�
p
��(F (q + qA

�
p
�
)� F (q))

#
dq: (70)
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We can di¤erentiate both sides of (70) with respect to p. The calculations are
simpli�ed since the integrand is Z

�
q; p
�
and Z

�
qA
�
p
�
; p
�
= 0:

0 = �
Z qA(p)

0

(F (q + qA
�
p
�
)� F (q))

p� C 0
�
qA
�
p
�� dq

+

Z qA(p)

0

"
(p� C 0 (q))(F (q + qA

�
p
�
)� F (q))�

p� C 0
�
qA
�
p
���2

#
dq

�
Z qA(p)

0

(p� C 0 (q))f(q + qA
�
p
�
)
@qA(p)
@p

p� C 0
�
qA
�
p
�� dq

=

Z qA(p)

0

"
(C 0

�
qA
�
p
��
� C 0 (q))(F (q + qA

�
p
�
)� F (q))�

p� C 0
�
qA
�
p
���2

#
dq

�
Z qA(p)

0

(p� C 0 (q))f(q + qA
�
p
�
)
@qA(p)
@p

p� C 0
�
qA
�
p
�� dq;

which implies that
@qA(p)
@p

� 0; because C 0
�
qA
�
p
��
� C 0 (q) � 0: So the highest

value of p occurs when qA
�
p
�
is qm. With this value we get (69) from (53).

Moreover, the lowest value of p occurs when qA
�
p
�
= "=2, which gives us (68).

We show that the capacity constraint qm must bind at some price pm where
G (pm) < 1: We know from (51) that

G0(p)

1�G(p)
=

1

(p� C 0 (qA (p)))
:

Since G(p) = 0, integration gives

� ln(1�G(p)) =

Z p

p

dp

p� C 0 (qA (p))
= �(p);

so
G(p) = 1� e��(p):

The assumption that the inequality (58) holds for

(u; q) 2 fu � 0; 0 � q � qm : u+ q < "g

shows that p�C 0 (q) is bounded away from zero as q approaches qm. Hence there
exists some � such that

p� C 0 (qA (p)) � p� C 0 (qm) � � > 0
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for every p 2
�
p; pm

�
. Thus �(p) is �nite for �nite p; whence G(p) < 1, i.e. a

hockey stick mixture never reaches G(p) = 1 at a �nite price.
Next we will show that qA(p) > qm as p ! 1. We make the contradictory

assumption that qA(p) � qm in this limit: For p > p we then have from (52) that

q0A (p) =

R qA(p)
0

1� F (q)�
h
G(p) + (p�C0(q))[1�G(p)]

(p�C0(qA(p)))

i
(F (q + qA (p))� F (q))dqR qA(p)

0
(p� C 0 (q))f(q + qA (p))G(p)dq

>

R 1�qm
0

[1� F (q + qm)] dq

p
+O

�
1

p2

�
=
k

p
+O

�
1

p2

�
;

where k is some positive constant. Thus

qA(p) = qA(p) +

Z p

p

q0A (p) dp > qA(p) + k ln p+O

�
1

p

�
:

Hence, qA(p) > qm for su¢ ciently large p; which is a contradiction. Hence, the
capacity constraint qm must bind at some �nite price pm where G (pm) < 1:
Finally we de�ne the price cap P from (56).
Now we are ready to establish the following:

Theorem 16 Assume that D (p) = 0, "=2 < qm < " and that for some � > 0

@

@q

�
(pmin � C 0 (q))

f(q + u)

1� F (q)

�
> �

for (u; q) 2 fu � 0; 0 � q � qm : u+ q < "g :

Then a unique hockey stick mixture exists for each price cap P 2 [Pmin; Pmax]
where Pmin is determined from the mixture starting at pmin and

Pmax =
1

B2

�
A2C 0 (qm)� (A+B) J

�
.

Proof. It follows from Proposition 15 that a hockey-stick mixture will exist
for some price cap for any p2

�
pmin; pmax

�
: The necessary equations outlined in

Proposition 14 ensures that the hockey-stick solution (G (p) ; qA (p)) is di¤eren-
tiable, and hence continuous, with respect to p: Proposition 24 in Appendix 2
proves that there is a unique continuous hockey-stick solution for each p. Lemma
28 and Theorem 30 in Appendix 3 prove that the price cap is continuous and
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strictly increasing with respect to p: Thus the lowest price cap for which a hockey-
stick mixture occurs can be calculated from the initial value pmin: Moreover, the
highest price cap occurs when p = pmax; i.e. when qA

�
p
�
= qm: Using G

�
p
�
= 0,

(56), and (69) we see that this value corresponds to a price cap at

Pmax =
1

B2

�
A2C 0 (qm)� (A+B) J

�
:

Note that according to Proposition 12, P = 1
B2
(A2C 0 (qm)� (A+B) J) is the

lowest price cap for which a mixture over horizontal o¤ers can exist. Thus there
is no price cap for which both types of slope-constrained mixtures exist.
It can also be shown that:

Lemma 17 For a hockey-stick mixture satisfying p > C 0
�
qA
�
p
��
we must have

C 0
�
qA
�
p
��
> C 0 (0) :

Proof. This follows directly from (53).
Genc [14] proves that mixed-strategy equilibria over partly increasing supply

functions do not exist for pivotal producers and constant marginal costs when
demand is uniformly distributed. Our �ndings do not contradict this result.
Lemma 17 implies that the su¢ ciency condition for hockey-stick mixtures in (58)
is never satis�ed for constant marginal costs. Hence, non-constant marginal costs
are necessary to satisfy this su¢ ciency condition. We also know from Proposition
15 that hockey-stick mixtures satisfying (58) have a horizontal mixture at the top,
i.e. P > pm: By means of Proposition 11 we can therefore rule out hockey-stick
mixtures satisfying (58) for non-pivotal producers.

5.3 Examples

We conclude this section with two examples of equilibria with mixed strategies. In
both examples we assume a symmetric duopoly with each player having capacity
qm 2 (12 ; 1) and C(q) =

1
2
q2, and inelastic demand that is uniformly distributed

on [0; 1].
Example 4: Horizontal bids
With a uniform demand shock and quadratic costs we get

A =
1

2
qm(2� qm);

B =
1

2
(1� qm)

2;
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and
J =

1

6
(�1 + 3qm � q3m):

This gives

P � 1

B2

�
A2C 0 (qm)� (A+B) J

�
=
13q3m � 12q4m + 3q5m + 1� 3qm

3 (1� qm)
4

for an equilibrium. We can see that this is su¢ cient because using this value of
P gives

p =

R qm
0

C 0(q)(1� F (q))dq +
R qm
0
(P � C 0(q))(1� F (q + qm))dqR qm

0
(1� F (q))dq

=

R qm
0

q(1� q)dq +
R 1�qm
0

(P � q)(1� (q + qm))dqR qm
0
(1� q)dq

=
�2q3m + 6q2m � 3qm + 1

3 (1� qm)
2

which is easily seen to be strictly greater than 1 for qm 2 (12 ; 1). This means that

@

@q

�
(p� C 0 (q))

(F (q + qm)� F (q))

1� F (q)

�
= qm

p� 1
(q � 1)2

> 0; for q 2 [0; 1� qm)

which is su¢ cient for an equilibrium by Proposition 12. So for every value of
qm 2 (1

2
; 1) and price cap P � 1

3
13q3m�12q4m+3q5m+1�3qm

(1�qm)4
there is a mixed-strategy

equilibrium with horizontal bids. The equilibrium can be uniquely determined
by

p =
�1
6
q3m � 1

6
+ 1

2
qm +

1
2
P � Pqm +

1
2
Pq2m

qm � 1
2
q2m

and

G(p) =
3qm (2� qm)

�
p� p

�
�3p� 3qm + 12pqm + q3m � 6pq2m + 1

:

In this example we have assumed that demand is inelastic. Using the same
approach, we are able to construct similar examples in which D(p) 6= 0, as long
as qm < D(P ) + ��.

Example 5: Hockey-stick bids
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Figure 3: Mixed-strategy equilibrium for p = 1 and P = 10:734, showing hockey-
stick bids.

The choice qm = 3
4
gives

1

3

13q3m � 12q4m + 3q5m + 1� 3qm
(1� qm)

4 = 98
1

12
:

If we choose a price cap P < 98 1
12
, then by Proposition 12 there does not

exist a mixed-strategy equilibrium in horizontal bids. However for every P 2
(10:734; 98 1

12
) there are equilibria with mixtures over hockey-stick bids and hor-

izontal bids. The most competitive equilibrium where qA
�
p
�
= 1

2
is plotted in

Figure 3. The lines shown are at contours of G taking values 0, 0:1, 0:2, up to
1:0. It has qA(p) starting at p = 1, and shows a typical hockey-stick o¤er using a
solid line. All the hockey-stick curves in the mixture meet qm = 0:75 at pm = 4:5
(approximately), and correspond to a price cap P = 10:734. Observe that the
o¤ers in the mixtures are horizontal for p > pm = 4:5. As a comparison, the most
competitive mixture is compared with another mixture in Figure 4. The higher
priced equilibrium starts at p = 29

15
, and gives qA(p) = 6

10
and pm approximately

5.54. The lowest priced hockey stick o¤er in this mixture is shown as a dashed
line in Figure 4, along with the lowest priced horizontal o¤er in this mixture (at
pm =5.54). The highest priced o¤er in this mixture (at P = 24:6) is not shown.

6 Conclusions

In this paper we derive general optimality conditions for pay-as-bid procurement
auctions that are valid for any uncertainty in a producer�s residual demand curve,
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Figure 4: Comparison of two hockey-stick mixtures with p = 1 (solid) and p = 29
15

(dashed). The price cap (24.6) for the dashed mixture is not shown.

i.e. for any combination of demand uncertainty, uncertainty in competitors�costs
or randomization of competitors�o¤er curves. It is our belief that these condi-
tions can also be useful in the theory of Bertrand games and non-linear pricing.
We use the conditions to derive necessary conditions for pure-strategy equilibria
in electricity auctions, i.e. when costs are common knowledge and demand un-
certain. We show that they fail to exist whenever the market clears at a point
where a producer�s mark-up times the hazard rate of the demand shock is in-
creasing. Hence, it is of great interest to analyze mixed strategy equilibria under
those circumstances. As far as we know we are the �rst to analyze mixed-strategy
equilibria in multi-unit/divisible good auctions with o¤er curves that are not nec-
essarily horizontal. We consider a symmetric duopoly market. It is shown that
mixtures over strictly increasing supply functions can occur in markets with non-
pivotal producers, inelastic demand and no price cap. With pivotal producers we
get mixtures over slope-constrained supply curves with horizontal segments, and
the equilibria are uniquely determined by the price cap when demand is inelastic.
When price caps are su¢ ciently high all o¤er curves of the producers are slope-
constrained along the whole output. These one-dimensional mixtures correspond
to mixed-strategy equilibria previously analyzed by Anwar [2], Fabra et al. [12],
Genc [14] and Son et al. [24], and they are also Nash equilibria in corresponding
Bertrand-Edgeworth games with uncertain demand. For lower price caps, so that
the mark-up for the lowest o¤ers becomes small relative to the curvature of the
cost curve, we get a new type of mixture where the lowest bids are hockey-stick
shaped. They are slope-constrained and horizontal for low outputs and strictly
increasing for high outputs. The highest bids in the mixture are still horizontal
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along the whole output. We show that there are no mixed-strategy equilibria of
these types when the market has a price cap and producers are non-pivotal.
Mixed-strategy equilibria are a nuisance for agents in the market, as they

cause additional uncertainty. Another disadvantage is that mixed strategies will
lead to welfare losses due to ine¢ cient production. With symmetric producers
and convex increasing costs, production is most e¢ cient if all producers have the
same output. But with randomized o¤er curves, the realized production will typ-
ically be asymmetric. On the other hand, mixed-strategies reduce the problem
with multiple equilibria, because all bids are accepted with a positive probability.
So there are no out-of-equilibrium bids which could otherwise support very non-
competitive equilibria. Similarly, collusion is harder in pay-as-bid auctions com-
pared to uniform-price auctions, because bids can not be used as costless threats
and signals [21]. Hence, in spite of the potential problems with mixed-strategy
equilibria, the pay-as-bid auction may still be attractive for market designers.
With our model it becomes possible to quantitatively compare strategic bid-

ding in uniform-price and pay-as-bid electricity auctions for previously unexplored
but still very relevant cases, for example when producers are pivotal, marginal
costs are stepped and demand shocks are normally distributed. Moreover, the
use of market distribution functions and o¤er distribution functions should be of
general interest, since they can be applied to characterize mixed-strategy equilib-
ria in any multi-unit or divisible-good auction, including uniform-price auctions.
We believe that the optimality conditions that we derive will be useful in empir-
ical work, for example to test whether producers maximize their expected pro�t
in discriminatory divisible-good auctions. As it is very di¢ cult to tell before-
hand what type of equilibria will occur in such auctions, it is helpful that the
conditions can be applied in general circumstances, including both mixed and
pure-strategies.
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7 Appendix 1: Some technical lemmas

In this appendix we de�ne some notation and prove some technical lemmas that
are used in Appendix 2 and Appendix 3. We begin by de�ning

�(q; p) = 1�F (q)� [p� C 0 (q)�G(p)(C 0 (qA (p))� C 0 (q))]

(p� C 0 (qA (p)))
(F (q+qA (p))�F (q)),

(71)
which is the integrand in the numerator of the expression for q0A (p) in Proposition
14. We also set

�(q; p) = (1� F (q)) (p� C 0 (qA(p)))� (p� C 0 (q))(F (q + qA (p))� F (q)): (72)

Observe that

(p� C 0 (qA (p))) �(q; p) = (1� F (q)) (p� C 0 (qA(p)))

� (p� C 0 (q)) (F (q + qA (p))� F (q))

+G(p)(C 0 (qA (p))� C 0 (q))(F (q + qA (p))� F (q))

= �(q; p) +G(p)(C 0 (qA (p))� C 0 (q))(F (q + qA (p))� F (q))

so it follows from (59) and (63) that�
p� C 0

�
qA
�
p
���

�(q; p) = �(q; p) =
�
p� C 0

�
qA
�
p
���

Z(q; p) (73)

since G(p) = 0. Thus (64) yields

Z qA(p)

0

�(q; p)dq = 0. (74)

It follows directly from the de�nitions of �(q; p) and �(q; p) that

�(qA (p) ; p) = 0 (75)

and

�(qA (p) ; p) = 0 (76)

whenever qA (p) > "=2. Moreover, Z(qA (p) ; p) = 0; (59) and (51) implies that
Inside the proof of Proposition 14 we showed that q0A (p) � 0, but as we show

below the inequality is actually strict.

Lemma 18 Assume that D (p) = 0, "=2 < qm < " and C 0 (qm) � P then q0A (p) >
0 if p > p.
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Proof. We have shown in Proposition 14 that q0A (p) � 0, for p � p. If
C 0 (qA (p)) = C 0 (0)) then C 0 (qA (p)) = C 0 (q)) for every q 2 [0; qA (p)], so

�(q; p) = (1� F (q + qA (p));

giving

q0A (p) =

R qA(p)
0

�(q; p)dq

G(p)
R qA(p)
0

(p� C 0 (q))f(q + qA (p))dq

=

R qA(p)
0

(1� F (q + qA (p)))dq

G(p)
R qA(p)
0

(p� C 0 (q))f(q + qA (p))dq

> 0,

since G(p) > 0 if p > p and qA (p) 2 ("=2; ").
If for some p > p, C 0 (qA (p)) > C 0 (0)) and q0A (p) = 0, then we can use the

following relation (derived in Proposition 14)Z qA(p)

0

(p� C 0 (q))q00A (p) f(q + qA (p))G(p)dq

=

Z qA(p)

0

�
2 [1�G(p)] (C 0 (qA (p))� C 0 (q))

(p� C 0 (qA (p)))2

�
(F (q + qA (p))� F (q))dq

to show that q00A (p) > 0, which rules out q
0
A (p) = 0 if p > p.

Lemma 19
R qA(p)
0 �(q; p)dq = 0 and

R qA(p)
0

�(q; p)dq > 0 if p > p:

Proof. When p = p, the result follows directly from (73) and (74). When
p > p we have from Proposition 14 that

q0A (p) =

R qA(p)
0

�(q; p)dq

G(p)
R qA(p)
0

(p� C 0 (q))f(q + qA (p))dq

so the result follows directly from q0A (p) > 0, and G(p) > 0.

Lemma 20 For hockey-stick mixtures satisfying "=2 < qA
�
p
�
� qm < " we have

for every p � p Z qA(p)

0

�(q; p)dq � 0:

The inequality is strict when p > p > C 0
�
qA
�
p
��
:
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Proof. It follows from (74) that
R qA(p)
0 �(q; p)dq = 0. So to prove the state-

ment for p > p, it is enough to show that

@

@p

Z qA(p)

0

�(q; p)dq � 0

for p � p whenever Z qA(p)

0

�(q; p)dq = 0: (77)

Since qA (p) > "=2 we have �(qA (p) ; p) = 0 so

@

@p

Z qA(p)

0

�(q; p)dq =

Z qA(p)

0

@

@p
�(q; p)dq (78)

=

Z qA(p)

0

[1� F (q + qA (p))] dq

� q0A(p)

Z qA(p)

0

[(1� F (q))C 00 (qA(p)) + (p� C 0 (q))f (q + qA (p))] dq

�
Z qA(p)

0

[1� F (q + qA (p))] dq

� q0A(p)

Z qA(p)

0

(p� C 0 (q))f (q + qA (p)) dq

since C 00 (qA(p)) � 0 and q0A(p) � 0. We note that @
@p

R qA(p)
0

�(q; p)dq is continuous
at p since q0A(p) and qA(p) are continuous at that point. It has been shown in
Lemma 17 that p > C 0

�
qA
�
p
��
implies C 0

�
qA
�
p
��
> C 0 (0) : Hence, the inequal-

ity above is strict when p > C 0
�
qA
�
p
��
:We know from Proposition 14 that when

G(p) > 0,

q0A (p) =

R qA(p)
0

�(q; p)dq

G(p)
R qA(p)
0

(p� C 0 (q))f(q + qA (p))dq
;

so

@

@p

Z qA(p)

0

�(q; p)dq �
Z qA(p)

0

(1� F (q + qA (p))) dq �
R qA(p)
0

�(q; p)dq

G(p)

=

Z qA(p)

0

�
1� F (q + qA (p))�

�(q; p)

G(p)

�
dq:

Recall

(p�C 0 (qA(p)))�(q; p) = �(q; p)+G(p)(C 0 (qA (p))�C 0 (q))(F (q+qA (p))�F (q)),
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which gives

(p� C 0 (qA(p)))

�
(1� F (q + qA (p)))�

�(q; p)

G(p)

�
= (p� C 0 (qA(p))) (1� F (q + qA (p)))�

�(q; p)

G(p)

� (C 0 (qA (p))� C 0 (q))(F (q + qA (p))� F (q))

= (p� C 0 (qA(p))) (1� F (q))� (p� C 0 (q))(F (q + qA (p))� F (q))� �(q; p)

G(p)

= �(q; p)� �(q; p)

G(p)
:

So for every p > p for which (77) holds

(p� C 0 (qA(p)))
@

@p

Z qA(p)

0

�(q; p)dq �
Z qA(p)

0

�
�(q; p)� �(q; p)

G(p)

�
dq

= 0

demonstrating that @
@p

R qA(p)
0

�(q; p)dq � 0 for every p > p for which (77) holds.

Continuity of @
@p

R qA(p)
0

�(q; p)dq at p ensures that the inequality is satis�ed also
in the limit. The inequality is strict when p > C 0

�
qA
�
p
��
:

8 Appendix 2: Hockey-stick uniqueness result

In this appendix we prove that the set of di¤erential equations de�ned in Proposi-
tion 14 has at most one solution qA (p) ; G (p) given initial conditions qA

�
p
�
; G
�
p
�
.

This is not self-evident, because of a singularity at p. We assume that (qA (p) ; G(p))
is a valid solution and study perturbations of this solution. Let (qA (p) + u (p) ; G(p) + v (p))
be another solution with both u and v approaching zero as p! p. We will show
that u and v must be identically zero, so that the original solution is unique.
Using the di¤erential equations de�ned in Proposition 14 we have

G0(p) + v0 (p) =
1� (G(p) + v(p))

p� C 0 (qA (p) + u(p))

=
1�G(p)

p� C 0 (qA (p))
+

@

@qA

�
1�G(p)

p� C 0 (qA (p))

�
u(p)

+
@

@G

�
1�G(p)

p� C 0 (qA (p))

�
v(p) + o(u) + o(v):
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So
v0 (p) = A (p)u(p)�B (p) v(p) + o(u) + o(v)

where

A (p) =
(1�G(p))C 00 (qA (p))

(p� C 0 (qA (p)))2
; (79)

B(p) =
1

p� C 0 (qA (p))
: (80)

Next we establish a similar identity for u0(p). We have

u0(p) = �D (p)u(p) + E (p) v(p) + o(u) + o(v);

where

D(p) = � @

@qA

8<:
R qA(p)
0

h
1� F (q)� [p�C0(q)�G(p)(C0(qA(p))�C0(q))]

(p�C0(qA(p))) (F (q + qA (p))� F (q))
i
dq

G(p)
R qA(p)
0

(p� C 0 (q))f(q + qA (p))dq

9=; ;

E (p) =
@

@G

8<:
R qA(p)
0

h
1� F (q)� [p�C0(q)�G(p)(C0(qA(p))�C0(q))]

(p�C0(qA(p))) (F (q + qA (p))� F (q))
i
dq

G(p)
R qA(p)
0

(p� C 0 (q))f(q + qA (p))dq

9=; :

The calculations are simpli�ed because "=2 < qA (p) ; so that F (2qA(p)) = 1 and
f (2qA(p)) = 0. We also note that because of (76) the integrands are zero at
the upper limit and we have no contributions from di¤erentiating the integration
limits. This gives

D(p) =

R qA(p)
0

@
@qA

n
[p�C0(q)�G(p)(C0(qA(p))�C0(q))]

(p�C0(qA(p))) (F (q + qA (p))� F (q))
o
dq

G(p)
R qA(p)
0

(p� C 0 (q))f(q + qA (p))dq

+

Z qA(p)

0

(p� C 0 (q))f 0(q + qA (p))dq�R qA(p)
0

h
1� F (q)� [p�C0(q)�G(p)(C0(qA(p))�C0(q))]

(p�C0(qA(p))) (F (q + qA (p))� F (q))
i
dq

G(p)
�R qA(p)

0
(p� C 0 (q))f(q + qA (p))dq

�2
=

R qA(p)
0

@
@qA

n
[p�C0(q)�G(p)(C0(qA(p))�C0(q))]

(p�C0(qA(p))) (F (q + qA (p))� F (q))
o
dq

G(p)
R qA(p)
0

(p� C 0 (q))f(q + qA (p))dq

+
q0A (p)

R qA(p)
0

(p� C 0 (q))f 0(q + qA (p))dqR qA(p)
0

(p� C 0 (q))f(q + qA (p))dq
:
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Observe that

lim
p!p

@

@qA

�
[p� C 0 (q)�G(p)(C 0 (qA (p))� C 0 (q))]

(p� C 0 (qA (p)))
(F (q + qA (p))� F (q))

�
> 0

(81)
because

@

@qA

�
[p� C 0 (q)�G(p)(C 0 (qA (p))� C 0 (q))]

(p� C 0 (qA (p)))
(F (q + qA (p))� F (q))

�
(82)

=
p� C 0 (q)

p� C 0 (qA (p))
f(q + qA (p))

� G(p)(C 0 (qA (p))� C 0 (q))

p� C 0 (qA (p))
f(q + qA (p))

+ C 00 (qA (p))
p� C 0 (q)

(p� C 0 (qA (p)))
2 (F (q + qA (p))� F (q))

� C 00 (qA (p))
G(p)(C 0 (qA (p))� C 0 (q))

(p� C 0 (qA (p)))
2 (F (q + qA (p))� F (q))

� G(p)C 00 (qA (p))

(p� C 0 (qA (p)))
(F (q + qA (p))� F (q))

!
p� C 0 (q)

p� C 0
�
qA
�
p
��f(q + qA

�
p
�
)

+ C 00
�
qA
�
p
�� p� C 0 (q)�

p� C 0
�
qA
�
p
���2 (F (q + qA

�
p
�
)� F (q)) (83)

> 0

as p! p because G(p) = 0. We can then expect the �rst term of D(p) to become
large and positive as p! p, while the second term remains bounded which gives
D(p) > 0 for p su¢ ciently close to p.
Similarly using the de�nitions of �(q; p) and �(q; p) introduced in Appendix 1

E(p) =

R qA(p)
0

(C 0 (qA(p))� C 0 (q)) (F (q + qA (p))� F (q))dq

(p� C 0 (qA(p)))G(p)
R qA(p)
0

(p� C 0 (q))f(q + qA (p))dq

�
R qA(p)
0

(p� C 0 (qA(p)))�(q; p)dq

(p� C 0 (qA(p)))G2(p)
R qA(p)
0

(p� C 0 (q))f(q + qA (p))dq

= �
R qA(p)
0

�(q; p)dq

G2(p)(p� C 0 (qA(p)))
R qA(p)
0

(p� C 0 (q))f(q + qA (p))dq

� 0
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for p � p by virtue of Lemma 20. By means of l�Hôpital�s rule, (74) and (78), it
straightforward to show that

lim
p!p

R qA(p)
0

�(q; p)dq

G(p)
=

@
@p

R qA(p)
0

�(q; p)dq
���
p=p

g(p)

is �nite, so like D(p), E(p) is unbounded when p ! p. From (83) we know that
lim
p!p

D (p)G (p) > 0 and we have just shown that lim
p!p

E (p)G (p) is �nite. We can

deduce from this that lim
p!p

E(p)
D(p)

is �nite.

In summary, the system of di¤erential equations for the perturbations v (p)
and u (p) is �

u0

v0

�
=

�
�D (p) E (p)
A (p) �B (p)

� �
u
v

�
(84)

where D (p) > 0 and E (p) � 0 are unbounded near the singularity at p, while
A (p) � 0 and B (p) � 0 are bounded. The following result proves that diagonal
terms dominate the o¤-diagonal terms at p =p.

Lemma 21 B
�
p
�
� E(p)A(p)

D(p)
> 0 for hockey-stick mixtures satisfying "=2 <

qA
�
p
�
� qm < ".

Proof. We write
Erel = lim

p!p

E (p)

D (p)
:

In the limit we can ignore the second term in the expression for D(p) and hence

Erel = lim
p!p

�
R qA(p)
0

[(1� F (q)) (p� C 0 (qA))� [p� C 0 (q)] (F (q + qA (p))� F (q))] dq

(p� C 0 (qA))G(p)
R qA(p)
0

@
@qA

��
G(p) + (p�C0(q))[1�G(p)]

(p�C0(qA(p)))

�
(F (q + qA (p))� F (q))

�
dq

:

Using the expressions for A, B and � (q; p) in (79), (80) and (72) gives

B
�
p
�
� A

�
p
�
Erel = lim

p!p

�
1

(p� C 0 (qA (p)))
+

(1�G(p))C 00 (qA (p))
R qA(p)
0

� (q; p) dq

(p� C 0
�
qA
�
p
��
)3G(p)

R qA(p)
0

@
@qA

��
G(p) + (p�C0(q))[1�G(p)]

(p�C0(qA(p)))

�
(F (q + qA (p))� F (q))

�
dq

9>>=>>; :
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After rearrangement, and using the fact that lim
p!p

h
G(p)
1�G(p)

i
= 0, we can establish

that the inequality we want to prove is

	
�
p
�
= (p� C 0

�
qA
�
p
��
)2
Z qA(p)

0

@

@qA

(
(p� C 0 (q))

p� C 0
�
qA
�
p
��(F (q + qA (p))� F (q))

)
dq

(85)

+ C 00
�
qA
�
p
��
lim
p!p

R qA(p)
0

� (q; p) dq

G(p)

> 0:

Now

@

@qA

(
(p� C 0 (q))

(p� C 0
�
qA
�
p
��
)
(F (q + qA (p))� F (q))

)
(86)

=
C 00
�
qA
�
p
��
(p� C 0 (q))

(p� C 0
�
qA
�
p
��
)2

(F (q + qA
�
p
�
)� F (q)) +

(p� C 0 (q))

(p� C 0
�
qA
�
p
��
)
f(q + qA

�
p
�
):

From (74) we see that the limit in the second term of 	
�
p
�
is of the type 0

0
and it

can be calculated using l�Hôpital�s rule. Thus we have from
R qA(p)
0 �(q; p)dq = 0

and (78) that

lim
p!p

@

@p

Z qA(p)

0

�(q; p)dq

=

Z qA(p)

0

�
1� F (q + qA

�
p
�
)
�
dq

� q0A(p)

Z qA(p)

0

�
(1� F (q))C 00

�
qA(p)

�
+ (p� C 0 (q))f

�
q + qA

�
p
���

dq:

Using l�Hôpital�s rule, and combining the result above with the expressions for
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q0A(p) and g (p) in Proposition 14 we now get

lim
p!p

R qA(p)
0

� (q; p) dq

G(p)
=

lim
p!p

@
@p

R qA(p)
0

�(q; p)dq

g
�
p
�

=
�
p� C 0

�
qA
�
p
��� Z qA(p)

0

�
1� F (q + qA

�
p
�
)
�
dq

�
2
R qA(p)
0

�
C 0
�
qA
�
p
��
� C 0 (q)

�
(F (q + qA

�
p
�
)� F (q))dqR qA(p)

0

�
2(p� C 0 (q))f(q + qA

�
p
�
) + (1� F (q))C 00

�
qA
�
p
���

dq

�
Z qA(p)

0

�
(1� F (q))C 00

�
qA(p)

�
+ (p� C 0 (q))f

�
q + qA

�
p
���

dq

�
�
p� C 0

�
qA
�
p
��� Z qA(p)

0

�
1� F (q + qA

�
p
�
)
�
dq

� 2
Z qA(p)

0

�
C 0
�
qA
�
p
��
� C 0 (q)

�
(F (q + qA

�
p
�
)� F (q))dq:

Combining the result above with (85) and (86) yields:

	
�
p
�
�
Z qA(p)

0

(p� C 0 (q))(p� C 0
�
qA
�
p
��
)f(q + qA

�
p
�
)dq

+ C 00
�
qA
�
p
�� Z qA(p)

0

(p� C 0 (q))(F (q + qA
�
p
�
)� F (q))dq

+ C 00
�
qA
�
p
�� Z qA(p)

0

�
p� C 0

�
qA
�
p
��� �

1� F (q + qA
�
p
�
)
�
dq

� 2C 00
�
qA
�
p
�� Z qA(p)

0

�
C 0
�
qA
�
p
��
� C 0 (q)

�
(F (q + qA

�
p
�
)� F (q))dq:

Dropping the �rst term and rearranging the others we have

	
�
p
�
> C 00

�
qA
�
p
�� Z qA(p)

0

(p� C 0
�
qA
�
p
��
)(1� F (q))dq

� C 00
�
qA
�
p
�� Z qA(p)

0

�
C 0
�
qA
�
p
��
� C 0 (q)

�
(F (q + qA

�
p
�
)� F (q))dq:
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Now using (64) and that p > C 0
�
qA
�
p
��
we get

	
�
p
�
> C 00

�
qA
�
p
�� Z qA(p)

0

�
p� C 0 (q)

�
(F (q + qA

�
p
�
)� F (q))dq

� C 00
�
qA
�
p
�� Z qA(p)

0

�
C 0
�
qA
�
p
��
� C 0 (q)

�
(F (q + qA

�
p
�
)� F (q))dq

> 0;

which implies that B
�
p
�
� A

�
p
�
Erel > 0:

Now, consider a price interval
�
p; p0

�
. Our proof will show that for su¢ ciently

small p0 > p, the only solution to (84) over
�
p; p0

�
is u = 0, v = 0. This will

establish that the set of di¤erential equations de�ned in Proposition 14 has at
most one solution
Let D be the smallest D (p) in the interval

�
p; p0

�
. Similarly, Erel and Erel

are the largest and smallest values of E (p) =D (p), respectively, in the interval.
We let A and B be the largest values of A (p) and B (p) ; respectively, and B is
the smallest B (p). For small enough p0 all these bounds, which are positive, are
close to their values at p and we can use continuity to show that B � ErelA > 0
from Lemma 21.
We divide the uv-plane into four regions as follows. In region 1 we have

u > Erelv and u > Erelv, so u > Erelv. In region 2 we have Erelv < u < Erelv;
which implies that v � 0. In region 3 we have u < Erelv and u < Erelv, so
u < Erelv. In region 4 we have Erelv < u < Erelv; which implies that v � 0. The
four regions are illustrated in Figure 5.

Figure 5: The four regions referred to in the proof of Lemma 22. The directions
of the arrows show the changes in u and v as p increases in each region.
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Lemma 22 If B � ErelA > 0; then we can make the following claims:
i) Either u0u < 0 or v0v < 0:
ii) u0 < 0 in region 1.
iii) v0 < 0 in region 2.
iv) u0 > 0 in region 3.
v) v0 > 0 in region 4.

Proof. First we note that the assumption B � ErelA > 0 implies that
B

A
> Erel:

Claim i). Make the contradictory assumption that u0u � 0 and v0v � 0: Thus
it follows from (84) that �u2 + Ereluv � 0 and Auv � Bv2 � 0, respectively:
To satisfy both inequalities we need uv � 0: Thus together the two inequalities
imply B

A
� u

v
� Erel; which would violate the assumption that B � ErelA > 0.

Claim ii) The �rst equation in (84) implies that u0 = �Du+Ev = �D (u� Erelv) <
0; because u > Erelv in region 1.
Claim iii) Make the contradictory assumption that v0 � 0 in region 2, so that
Au�Bv � 0: In this region we have u < Erelv and v � 0. Thus AErelv�Bv � 0;
so AErel�B � 0: But this would contradict our assumption that B�ErelA > 0.
Claim iv) u0 = �Du+ Ev = �D (u� Erelv) > 0, because u < Erelv in region 3.
Claim v) Make the contradictory assumption that v0 � 0 in region 4, so that
Au�Bv � 0: In this region we have u > Erelv and v � 0. Thus AErelv�Bv � 0;
so AErel�B � 0; because v � 0: But this would contradict our assumption that
B�ErelA > 0.

Claim i) of the Lemma implies that whenever juj is increasing at some p then
jvj must be decreasing at that point. We now consider the interval

�
p; p0

�
, where

p0 is chosen su¢ ciently close to p; so that we can �nd a �nite k > Erel, such that

D
�
k � Erel

�
> k

�
kA+B

�
� 0: (87)

Such a p0 can always be found, because D is unbounded at p. We proceed to
show that the initial value problem qA

�
p
�
= q0 and G

�
p
�
= 0 of hockey-stick

mixtures has at most one continuous solution over the interval
�
p; p0

�
:

Lemma 23 Suppose that there are at least two di¤erent solutions to (84) with
the initial condition u(p) = v(p) = 0 over the price interval

�
p; p0

�
. Then for

every p 2
�
p; p0

�
either u(p) � 0, v(p) > 0 or u(p) � 0, v(p) < 0.

Proof. One obvious solution is u(p) = v(p) = 0 for all p 2
�
p; p0

�
, but

suppose that there is at least one additional solution over the price interval
�
p; p0

�
.
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The system of di¤erential equations is Lipschitz continuous at every price in this
interval, and so any two solutions must di¤er at this price, otherwise they would be
identical throughout the interval

�
p; p0

�
. This means that there is no p� 2

�
p; p0

�
for which u(p�) = v(p�) = 0.
First we show that there is no p� 2

�
p; p0

�
, for which ju (p�)j > 0 and v (p�) =

0, by proving a stronger result, namely that there is no p� 2
�
p; p0

�
, with ju (p�)j >

k jv (p�)j. Suppose that such a p� exists. Then it follows from (87) that

D ju (p�)j � Ev (p�) � D ju (p�)j � E jv (p�)j > D
�
k � Erel

�
jv (p�)j

� D
�
k � Erel

�
jv (p�)j > 0:

Hence (84) implies that

�u0 (p�)u (p�) = D ju (p�)j2 � Ev (p�)u (p�) > 0;

which shows that u2(p) is strictly decreasing at p�. Since this deduction follows
for any p� with ju (p�)j > k jv (p�)j we cannot have ju (p)j > k jv (p)j near p for
this would contradict the fact that u2(p) = 0. So, by continuity, there is some
pX 2

�
p; p�

�
with ju (pX)j = k jv (pX)j > 0. We take the smallest such pX . Now

(84) implies that

ju0 (pX)j = jDu (pX)� Ev (pX)j
� D ju (pX)j � E jv (pX)j
= D (ju (pX)j � Erel jv (pX)j)
� D

�
ju (pX)j � Erel jv (pX)j

�
= D

�
k � Erel

�
jv (pX)j

> k
�
kA+B

�
jv (pX)j

= k
�
A ju (pX)j+B jv (pX)j

�
� k jv0 (pX)j :

As ju (p)j > k jv (p)j on some interval (pX ; pY ], ju (p)j is strictly decreasing on this
interval, and so we have d

dp
ju (p)j � 0 at p = pX and

d

dp
ju (pX)j = � ju0 (pX)j < �k jv0 (pX)j

� k
d

dp
jv (pX)j :

Thus ju (p)j � k jv (p)j is decreasing at pX which contradicts ju (pX)j = k jv (pX)j
and ju (p)j > k jv (p)j, p 2 (pX ; pY ].
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It remains to show that there is no p� 2
�
p; p0

�
, for which u (p�) v (p�) < 0. If

this inequality holds then, from (84),

u(p�)u0(p�) = �Du (p�)2 + Ev (p�)u (p�)

< 0

so juj is strictly decreasing at p�. So we cannot have u (p�) v (p�) < 0 near p for
this would contradict the fact that u(p) = 0. Thus, by continuity, there is some
pX 2

�
p; p�

�
with u (pX) v (pX) = 0, and we take the smallest such pX . Since, as

argued above, we cannot have u (pX) = v (pX) = 0 nor v (pX) = 0, this establishes
that u (pX) = 0 which contradicts juj strictly decreasing for p just above pX .

Proposition 24 The initial value problem qA
�
p
�
= q0 and G

�
p
�
= 0 of hockey-

stick mixtures has at most one continuous solution.

Proof. Suppose that there are at least two di¤erent solutions over the price
interval

�
p; p0

�
. From Lemma 23 we know that (u(p); v(p)) is either in the positive

or negative orthant and cannot move between them. We demonstrate the result
when u(p) � 0 and v(p) > 0. In this case from Lemma 22 when u(p) > Erelv(p)
(in region 1) u0 < 0 and when Erelv(p) > u(p) (in region 2 or 3) v0(p) < 0. When
u(p) = Erelv(p) we have u0(p) � 0 and v0(p) � 0. Thus max(u(p); Erelv(p)) is
non-increasing throughout

�
p; p0

�
and, since this is zero at p, we have established

that u(p) and v(p) are identically zero throughout
�
p; p0

�
. The argument when

(u(p); v(p)) is in the negative orthant is exactly similar with min(u(p); Erelv(p))
increasing throughout

�
p; p0

�
.

9 Appendix 3: P is strictly increasing with p
¯

We now consider a family of hockey-stick solutions with di¤erent lowest prices
p. We de�ne G(p; p) to be the mixing distribution and qA

�
p; p
�
to be the curved

part of the hockey stick curve corresponding to the solution with lowest price p,
and thus we write qA(p; p) for qA(p). We proceed to show that at any �xed p > p,
qA
�
p; p
�
and G

�
p; p
�
are decreasing in p. Throughout the Section we consider

hockey-stick mixtures satisfying p > C 0
�
qA(p)

�
:

The �rst result establishes that the curve describing the possible initial points,
qA(p; p), increases in p more slowly than the individual qA(p; p) curves at their
starting points.

Lemma 25 d
dp
qA(p; p) <

@
@p
qA(p; p)

���
p=p
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Proof. We write �(p) for d
dp
qA(p; p). From (53)

p

Z qA(p;p)

0

(1� F (q + qA
�
p; p
�
))dq

=

Z qA(p;p)

0

�
C 0
�
qA
�
p; p
��
(1� F (q))� C 0(q)(F (q + qA

�
p; p
�
)� F (q))

�
dq:

Taking derivatives with respect to p gives

p

Z qA(p;p)

0

�f(q + qA
�
p; p
�
)�(p)dq +

Z qA(p;p)

0

(1� F (q + qA
�
p; p
�
))dq

=

Z qA(p;p)

0

�
C 00
�
qA
�
p; p
��
�(p)(1� F (q))� C 0(q)f(q + qA

�
p; p
�
�(p)

�
dq

since the integrands are zero at the upper limit when "=2 < qA (p) : Thus

�(p) =

R qA(p;p)
0 (1� F (q + qA

�
p; p
�
))dqR qA(p;p)

0

�
C 00
�
qA
�
p; p
��
(1� F (q)) + (p� C 0(q))f(q + qA

�
p; p
��
dq
:

We want to compare this with @
@p
qA(p; p)

���
p=p

given by (55), but �rst we make

some derivations which are useful for this comparison. We have the following
relationship from (64)

�
p� C 0

�
qA
�
p; p
��� Z qA(p;p)

0

(1�F (q))dq =
Z qA(p;p)

0

(p�C 0 (q))(F (q+qA
�
p; p
�
)�F (q))dq:

So Z qA(p;p)

0

�
C 0
�
qA
�
p; p
��
� C 0 (q)

�
(F (q + qA

�
p; p
�
)� F (q))dq

=

Z qA(p;p)

0

(p� C 0 (q))(F (q + qA
�
p; p
�
)� F (q))dq

�
�
p� C 0

�
qA
�
p; p
��� Z qA(p;p)

0

(F (q + qA
�
p; p
�
)� F (q))dq

=
�
p� C 0

�
qA
�
p; p
��� Z qA(p;p)

0

(1� F (q + qA
�
p
�
))dq

67



Thus (55) can be simpli�ed to

@

@p
qA(p; p)

����
p=p

=

R qA(p;p)
0

�
1� F (q + qA

�
p; p
�
)
�
dqR qA(p;p)

0

�
(p� C 0 (q))f(q + qA

�
p; p
�
) + (1=2) (1� F (q))C 00

�
qA
�
p; p
���

dq

>

R qA(p;p)
0 (1� F (q + qA

�
p; p
�
))dqR qA(p;p)

0

�
(p� C 0(q))f(q + qA

�
p; p
�
+ (1� F (q))C 00

�
qA
�
p; p
���

dq
= �(p):

The next two lemmas are related. Roughly speaking they show that as we
vary the starting price p we have monotonicity in G and in qA provided we also
have monotonicity in the other.

Lemma 26 Suppose p
1
< p

2
. If qA(p; p2) � qA(p; p1) throughout the interval

p 2 (p
2
; p0) and p�C 0

�
qA(p; p1)

�
> 0 for p 2 [p

2
; p0], then G

�
p; p

1

�
> G

�
p; p

2

�
for p 2 [p

2
; p0]:

Proof. We write G�(p) = G
�
p; p

2

�
� G

�
p; p

1

�
. Observe that G�(p2) =

�G
�
p
2
; p
1

�
< 0. Now since C 0 is increasing, we have from (51) and the inequality

on qA

G0�(p) = g
�
p; p

2

�
� g

�
p; p

1

�
=

1�G(p; p
2
)

(p� C 0
�
qA(p; p2)

�
)
�

1�G(p; p
1
)

(p� C 0
�
qA(p; p1)

�
)

� � 1

(p� C 0
�
qA(p; p1)

�
)
G�(p);

for p 2 (p
2
; p0). Using Gronwall�s lemma we obtain

G�(p) � G�(p2) exp

0@Z p

p
2

� 1

(s� C 0
�
qA(s; p1)

�
)
ds

1A ;

for p 2 [p
2
; p0]. Since p�C 0

�
qA(p; p1)

�
> 0 throughout the closed interval [p

2
; p0]

and it is continuous, it is also bounded below by some constant. Thus the integral
is bounded and hence G�(p) < 0 and the result is established.
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Lemma 27 Suppose p
1
< p

2
. If G

�
p; p

1

�
> G

�
p; p

2

�
throughout the interval

p 2 [p
2
; p0), then qA(p; p1) > qA(p; p2) for p 2 [p2; p0) :

Proof. Suppose that for a given p
1
the claim of the lemma is not true for some

pair (p; p
2
) then we �x p

2
and choose the lowest p 2 [p

2
; p0) for which qA(p; p2) �

qA(p; p1). First consider the case when the lowest p is larger than p2. Since curves
qA(p; p) are continuous with respect to p this occurs when qA(p; p2) = qA(p; p1):
We suppose this occurs at pZ with qA(pZ ; p2) = qA(pZ ; p1) = T . Then from (52)

�
@

@p
qA

�
p; p

i

��
pZ

=

R T
0
1� F (q)� [pZ�C

0(q)�G(pZ ;pi)(C
0(T )�C0(q))]

(pZ�C0(T )) (F (q + T )� F (q))dq

G(pZ ; pi)
R T
0
(pZ � C 0 (q))f(q + T )dq

=

R T
0
1� F (q)� (pZ�C0(q))

(pZ�C0(T ))(F (q + T )� F (q))dq

G(pZ ; pi)
R T
0
(pZ � C 0 (q))f(q + T )dq

+

R T
0

(C0(T )�C0(q))
(pZ�C0(T )) (F (q + T )� F (q))dqR T
0
(pZ � C 0 (q))f(q + T )dq

(88)

for i = 1; 2. We know from Lemma 20 thatZ T

0

1� F (q)� (pZ � C 0 (q))

(pZ � C 0 (T ))
(F (q + T )� F (q))dq < 0;

because pZ > p
2
> C 0

�
qA(p2)

�
so G

�
pZ ; p1

�
> G

�
pZ ; p2

�
implies�

@

@p
qA

�
p; p

1

��
pZ

>

�
@

@p
qA

�
p; p

2

��
pZ

:

This gives a contradiction, since this implies that qA(p; p2) > qA(p; p1) for p
approaching pZ from below.
Now we consider the case that qA(p2; p2) = qA(p2; p1) (corresponding to pz =

p
2
) and we take the lowest value p

2
for which this is true. From Lemma 25 we know

that qA(p; p1) > qA(p; p) for p su¢ ciently close to p1. Since p2 is the lowest value
at which this inequality fails to hold, we have qA(p; p1) > qA(p; p) as p approaches
p
2
from below. Hence for small � > 0 we have qA(p2 � �; p

1
) > qA(p2 � �; p

2
� �)

and from Lemma 25 applied at p
2
� � we also have qA(p2; p2 � �) > qA(p2; p2) =

qA(p2; p1). Thus the curve qA(p; p2 � �) must cross the curve qA(p; p1) at some
price p 2 (p

2
� �; p

2
). But this case has already been ruled out by our discussion

above.
Next we establish that the monotonicity results we want apply throughout

the curved part of the hockey stick bids.
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Lemma 28 For �xed p, both G(p; p) and qA(p; p) are continuous decreasing func-
tions of p over the range where qA(p; p) � qm.

Proof. We begin by establishing that the functions are decreasing. Take
p
2
> p

1
. Since G(p; p) and qA(p; p) are only de�ned for p > p, it is enough to show

that G(p; p
1
) > G(p; p

2
) and qA(p; p1) > qA(p; p2) for p > p

2
. Since g(p; p

1
) > 0

for p > p
1
and G(p

2
; p
2
) = 0 we have G(p; p

1
) > G(p; p

2
) for p 2 [p

2
; p
2
+ �)

for � > 0 and small enough. Thus from Lemma 27 qA(p; p1) > qA(p; p2) for p 2
[p
2
; p
2
+ �). We can now use Lemmas 26 and 27 to show that G(p; p

1
) > G(p; p

2
)

and qA(p; p1) > qA(p; p2) for any p (provided qA(p; p1) < qm). Let pW be the
�rst value of p for which one of the inequalities fails; then from Lemma 26 we
have G(p; p

1
) > G(p; p

2
) for p 2 [p

2
; pW ]. Thus we may choose an " > 0 with

G(p; p
1
) > G(p; p

2
) for p 2 [p

2
; pW + "). But we can deduce from Lemma 27

that qA(pW ; p1) > qA(pW ; p2), which contradicts the de�nition of pW . Hence the
required inequalities hold throughout the range.
Now suppose that qA(p; p) is not continuous in p for some p = p� > p. Then

we have some p
0
and �n ! 0 with qA(p�; p0) not equal to limn!1 qA(p�; p0 + �n).

We may choose the sequence f�ng to be either increasing to zero or decreasing
to zero. We suppose the latter (the argument in the other case is similar).
By the monotonicity result we have just established we have qA(p; p0 + �n) and
G(p; p

0
+ �n) are increasing sequences for all p > p

0
, which therefore have limits

which we call q�A(p; p0) and G
�(p; p

0
) with qA(p�; p0) 6= q�A(p�; p0). Now observe

that for each n the functions (@=@p)qA(p; p0 + �n) and g(p; p0 + �n) satisfy the
di¤erential equations (52) and (51) and will be bounded. Moreover the derivatives
(@2=@p2)qA(p; p0 + �n) and (@=@p)g(p; p0 + �n) can also be obtained from these
equations. It is not hard to see that these second derivatives will also be bounded.
Choose K independent of n so that

���(@=@p)g(p; p
0
+ �n)

��� < K. Applying the
mean value theorem twice we have

G(p+ �; p
0
+ �n) = G(p; p

0
+ �n) + g(p+ x; p

0
+ �n)�

= G(p; p
0
+ �n) +

�
g(p; p

0
+ �n) + x

h
(@=@p)g(p; p

0
+ �n)

i
p+y

�
�

for some y < x < � Thus

G(p+ �; p
0
+ �n)�G(p; p

0
+ �n)� �g(p; p

0
+ �n) 2 (�K�2; K�2):

We can choose a subsequence in which g(p; p
0
+ �n) approaches a limit which we

write as g�(p; p
0
). Then taking limits in this subsequence we have

G�(p+ �; p
0
)�G�(p; p

0
)� �g�(p; p

0
) 2 [�K�2; K�2]:

70



ThusG� has a derivative at p which is equal to g�. Moreover since each g(p; p
0
+�n)

satis�es (51) this will also be satis�ed by g� in the limit. The same argu-
ment can also be used for q�A(p; p0) and so we have shown that q

�
A(p; p0) and

G�(p; p
0
). satisfy the di¤erential equations (51) and (52). So q�A(p; p0) and

G�(p; p
0
) is another solution to these di¤erential equations starting at p

0
, but

having qA(p�; p0) 6= q�A(p�; p0) which contradicts the uniqueness result of Appen-
dix 2. Thus we have established continuity.
The next lemma establishes that the derivative g(p; p) of G(p; p) has a positive

jump at the price pm satisfying qA (pm) = qm. Observe that the de�nition of g
changes at pm, since the mixtures at higher prices are over horizontal bids rather
than hockey-stick bids. Thus we write g(pm+; p) to represent the value that
satis�es

0 =

Z qm

0

Z (q; pm+) dq

=

Z qm

0

�
1� F (q)�

�
G(pm; p) + (pm � C 0 (q))g(pm+; p)

�
(F (q + qm)� F (q))

�
dq;

(89)

which follows from (44), and g(pm; p) to represent the value that satis�es

0 =

Z qm

0

Z (q; pm) dq

=

Z qm

0

�
1� F (q)�

�
G(pm; p) + (pm � C 0 (q))g(pm; p)

�
(F (q + qm)� F (q))

�
dq

�
Z qm

0

(pm � C 0 (q))q0A
�
pm; p

�
f(q + qm)G

�
pm; p

�
dq; (90)

which follows from (59).

Lemma 29 At the price pm satisfying qA (pm) = qm, g(pm+; p) > g(pm; p)

Proof. Observe thatZ qm

0

(pm � C 0 (q))q0A
�
pm; p

�
f(q + qm)G

�
pm; p

�
dq > 0

by Lemma 18. Thus combining (89) and (90) givesZ qm

0

�
1� F (q)�

�
G(pm; p) + (pm � C 0 (q))g(pm; p)

�
(F (q + qm)� F (q))

�
dq

>

Z qm

0

�
1� F (q)�

�
G(pm; p) + (pm � C 0 (q))g(pm+; p)

�
(F (q + qm)� F (q))

�
dq
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yielding

g(pm; p)

Z qm

0

(pm � C 0 (q))(F (q + qm)� F (q))dq

< g(pm+; p)

Z qm

0

(pm � C 0 (q))(F (q + qm)� F (q))dq

which gives the result.

Theorem 30 Hockey stick mixtures with a strictly higher p will have a strictly
higher p if "=2 < qA

�
p
�
� qm < " and p� C 0 (qA (p)) > 0.

Proof. We start by showing that G(p; p) is decreasing in p for �xed p = p� at
the point p = p

0
where qA(p�; p0) = qm (so p is chosen so pm = p� in our previous

notation). Suppose not, and

G(p�; p
0
) � G(p�; p

0
� ") (91)

for some " > 0. Let p�(") be the price at which the qA(p; p0 � ") curve hits qm so
qA(p

�("); p
0
�") = qm. By continuity (Lemma 28) p�(")! p� as "! 0. From the

same lemma we also have G(p�("); p
0
� ") > G(p�("); p

0
). But the only way this

can happen in combination with (91) is for g(p; p
0
� ") < g(p; p

0
) for some set of

p 2 (p�("); p�). This contradicts Lemma 29 for " chosen small enough. Thus for
small enough " > 0 we have

G(p�; p
0
) < G(p�; p

0
� "): (92)

We have already shown in Lemma 28 that G(p; p
0
) < G(p; p

0
� ") for p < p� and

" chosen small enough.
In (35) we have the following identity for mixtures over horizontal bids:

K �
Z qm

0

(p� C 0(q))(1� (G(p)F (q + qm) + (1�G(p))F (q)))dq (93)

�
Z qm

0

(p� C 0(q))(1� F (q + qm))dq: (94)

Thus if we write K(p) for the constant associated with the solution starting at p,
then from (92) we have

K(p
0
) =

Z qm

0

(p� � C 0(q))(1� (G(p�; p
0
)F (q + qm) + (1�G(p�; p

0
))F (q)))dq

> K(p
0
� "):

Hence applying (93) at any point p > p� establishes that G(p; p
0
) < G(p; p

0
� ").

Thus we have shown that G(p; p) is decreasing in p for all values of p. And
hence K(p) is increasing in p. Thus from (94) the value of p is also increasing in
p.
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