
Lindbeck, Assar; Persson, Mats

Working Paper

A Continuous Model of Income Insurance

IFN Working Paper, No. 763

Provided in Cooperation with:
Research Institute of Industrial Economics (IFN), Stockholm

Suggested Citation: Lindbeck, Assar; Persson, Mats (2008) : A Continuous Model of Income Insurance,
IFN Working Paper, No. 763, Research Institute of Industrial Economics (IFN), Stockholm

This Version is available at:
https://hdl.handle.net/10419/81430

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/81430
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

Research Institute of Industrial Economics 
P.O. Box 55665 

SE-102 15 Stockholm, Sweden
info@ifn.se
www.ifn.se

 

 
 
 
 
 
 
 
 
 
 
 
 
 
IFN Working Paper No. 763, 2008 
 
 
A Continuous Model of Income Insurance  

Assar Lindbeck and Mats Persson
 

 



2008-08-29 

 

 

 

A Continuous Model of Income Insurance∗ 
by 

Assar Lindbeck♣ and Mats Persson♠ 

 

 

 

Abstract: 

We develop a simple yet realistic model of income insurance, where the individual’s ability 
and willingness to work is treated as a continuous variable. In this framework, income 
insurance not only provides income smoothing, it also relieves the individual from 
particularly burdensome work. As a result, the individual adjusts his labor supply in a 
continuous fashion to the implicit tax wedge of the insurance system. Moral hazard, in the 
sense that an individual receives insurance benefits without actually being fully qualified, also 
becomes a matter of degree. Moreover, our continuous framework makes it easy to analyze 
both the role of administrative rejection of claims, and the role of social norms, for the 
utilization of insurance. 
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1. Introduction 

 

The modern literature on income insurance originates mainly from the seminal work of 

Rothschild and Stiglitz (1976) and Diamond and Mirrlees (1978), who develop models where 

an individual suffers an income loss due to an exogenous, binary event. This event may be 

interpreted as a health shock, which can take one of two values: the individual is either able to 

work (healthy) or unable to do so (sick), where the latter state implies that the individual will 

necessarily be absent from work.1 It is, however, more realistic to treat health as a matter of 

degree. For instance, Cochrane (1972) has emphasized that health is usually a continuous 

variable that cannot realistically be depicted in terms of two alternative states (sick and 

healthy). Moreover, an individual’s absence from work may depend on other factors which 

are not purely medical, but which should realistically also be regarded in terms of degree. 

Examples include attitudes towards work, leisure, and social interaction at the workplace, as 

well as aspects of the individual’s private life that may influence his ability and willingness to 

work (such as conflicts within the family).  

 

Against this background, we model the individual’s ability and willingness to work as a 

stochastic variable with a continuous distribution. This allows for a more comprehensive 

analysis of income insurance than the traditional approach based on a binary distribution of 

the individual’s state of health.  This may seem like a minor technical change in the model. 

However, the continuous approach substantially alters the character of insurance. In the 

binary model, the purpose of insurance is only to smooth income across two different states of 

health: when unable to work, the individual is (more or less) compensated for his income loss. 

In our approach, the purpose of insurance is both to smooth income and to make it feasible for 

the individual to stay home when work is particularly burdensome. For a given realization of 

the health variable, the individual has a choice of whether to go to work or to apply for 

benefits, and his actual choice depends on the generosity of the insurance system.  

                                                 
1 In the Diamond-Mirrlees tradition, Whinston (1983) has analyzed the case with ex ante heterogeneous agents, 
and Gosolov and Tsyvinski (2006) have elaborated on the multi-period aspects of the model. The Rothschild-
Stiglitz approach (as well as that of Wilson, 1977), can also be interpreted as dealing with binary stochastic 
health shocks. However, instead of studying a government insurance monopoly, these authors highlight the 
functioning, and weaknesses, of competitive insurance markets when individuals are heterogeneous (ex ante and 
not just ex post) in terms of risk. Prescott and Townsend (1984) also study a binary health shock; they show that 
with a representative agent, the social optimum can be achieved as the outcome of a decentralized, competitive 
market. (See Rees, 1989, Rees and Wambach, 2008, and Zweifel, 2007, for more recent expositions of the 
traditional binary approach in insurance theory.). 
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In addition to its realism, our approach has other advantages. It allows us to take 

administrative rejection of benefit claims into account in a coherent way. It is also well suited 

for analyzing the role of social norms in terms of the functioning of income insurance. 

Generally speaking, our approach enables us to capture a number of real-world phenomena 

within a simple analytical framework. The model is particularly suited for the analysis of 

temporary and permanent disability insurance, but after appropriate modifications also of 

other arrangements of income insurance. 

 

 

2. The Individual 

 

To build an insurance theory that accommodates a continuous approach to an individual’s 

ability and willingness to work, we write utility as a linearly separable function of 

consumption c and labor supplyl : ( )u u c θ= + ⋅l , where θ  is a taste parameter that may be 

negative as well as positive. We apply the standard assumptions 0)(' >⋅u  and 0)('' <⋅u . We 

also assume that l  can take only the values 0 and 1. Thus utility when working is 

( )Wu u c θ= + , while utility when absent from work is ( )Au u c= .2 Hence we assume that the 

consumption utility is the same regardless of whether the individual goes to work or not. The 

basic reason is that we want to avoid distractions from our ambition to investigate the 

consequences of a continuous treatment of θ. Moreover, it is not clear whether the marginal 

utility of consumption should be assumed to be increasing or decreasing in θ . As we proceed, 

the implications of dropping the assumption of separability will be discussed in several 

footnotes. 

 

The parameter θ  is drawn from an arbitrary probability distribution;3 it takes negative values 

when the individual experiences disutility from work and positive values when he enjoys 

work per se. While in the traditional labor supply literature it is usually assumed that the 

                                                 
2 There is a literature on absence from work that uses a utility function with a continuous index variable 
reflecting the individual’s health status; see, for instance, Barmby et al. (1994) and the survey by Brown and 
Sessions (1996). However, this literature deals with efficiency wages rather than insurance theory. By contrast, 
Diamond and Sheshinski (1995), when studying the possibility of supplementing old-age pensions with 
disability pensions, assume a utility function with a continuous health parameter in an optimal insurance setting. 
3 Although we treat θ  as a continuous variable in this paper, our formal analysis also covers the case when the 
distribution of θ  is discrete. 
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individual always experiences disutility from work as compared to leisure (i. e., in the context 

of our framework θ < 0) this is an unnecessarily narrow view. It is more realistic to assume 

that individuals sometimes enjoy work more than leisure – partly due to social interaction 

with coworkers.4  

 

While we treat θ as a continuous variable, we follow the tradition in much of the income 

insurance literature and regard the choice between work and leisure as binary: the individual 

either works or stays home. Such a treatment of labor supply at the extensive margin not only 

simplifies the exposition; it is also highly relevant when studying income insurance, which 

mainly pays benefits to individuals who do not work at all. However, it is straightforward to 

extend the analysis to part-time work and part-time benefits. 

 

The case without insurance is a useful starting point for our analysis. The individual’s utility 

may now be written θ+= )1(uuW  when working, with the wage rate normalized to unity. 

Similarly, utility is )0(uu A =  when absent from work.5 Here, the “zero” does not necessarily 

mean that the individual is subject to starvation when not working. He may have other 

resources than labor income to support himself; these are suppressed in the notation )(⋅u . The 

cut-off point, at which he is indifferent between work and non-work in a world without 

insurance, obtained by setting AW uu = , is given by 

 

 )1()0(0 uu −≡∗θ .    (1) 

 

The individual stays home for all realizations ∗≤ 0θθ , and he goes to work otherwise.6  

 

Let us now introduce insurance into the model. We confine our discussion to a simple type of 

insurance that schematically reflects income insurance in the real world. More specifically, 

                                                 
4 An alternative to a stochastic taste parameter in the utility function would be a stochastic productivity 
parameter, expressing the relation between the individual’s effort and output (cf. Albanesi and Sleet, 2006). 
5 The stochastic variable θ  expresses the discomfort of going to work rather than staying home. Alternatively, 
we could have introduced two separate stochastic parameters in the utility function: 1)1( θ+= uuW  and 

2)0( θ+= uu A , respectively. With additive separability, our variable θ  could then be interpreted as 21 θθ − . 
6 With a general utility function ),( θcu , the cut-off corresponding to equation (1) is given by 

)0,0(),1( 0 uu =∗θ . Provided ),( θcu  is monotone in both arguments, the solution ∗
0θ  is unique. 
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we represent an insurance contract by the triplet )ˆ,,( θbp , where p is the premium paid by the 

individual, b is the benefit, and θ̂  is the insurer’s cut-off, i.e., the value of θ  below which the 

insurer is willing to pay a benefit when the individual does not work. (We use a hat (^) to 

denote cut-offs that are set by the insurer, and a star (*) for cut-offs chosen by the individual.) 

Such a contract permits the individual to enjoy utility θ+−= )1( puuW when working. If his 

realization of θ  is smaller than or equal to the cut-off θ̂  specified in the contract, he may 

instead stay home and enjoy utility )(buu A = . We assume that the stochastic taste parameter 

θ  is drawn from a general probability distribution )(θF  with density )(θf . The probability 

that the individual will live on benefit now is  

 

 )ˆ()ˆPr( θθθπ F≡≤≡ .  

 

We interpret the model as describing the behavior of a large number of ex ante identical 

individuals, with i. i. d. stochastic taste parameters θ  drawn from the distribution )(θF . With 

this interpretation, individuals differ ex post, i.e., after realization of the stochastic taste 

parameters, and the variable )ˆ(θπ F≡  denotes the total absence rate in society. The reason 

for assuming ex ante identical individuals is that we want to study issues related to ex post 

moral hazard, rather than problems of adverse selection and cream-skimming, as thoroughly 

analyzed by Rothschild and Stiglitz (1976).7  

 

Whether the insurer can observe the individual realization of θ  or not is crucial for the 

functioning of insurance contracts. We therefore organize the subsequent analysis along the 

dimension of the insurer’s ability to observe θ , starting with the polar cases when θ  is 

either fully observable or entirely non-observable. Subsequently, we consider the more 

realistic case of partial observability.  

 

 

 

 

                                                 
7 In an earlier version of this paper (Lindbeck and Persson, 2006) we allowed for ex ante different individuals; 
the difficulties of establishing pooling and separating equilibria in a competitive market were similar to those of 
Rothschild and Stiglitz (1976).  
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3. Market Equilibrium Under Full Observability 

 

When the realization of θ  is fully observable, we could conceive of very elaborate insurance 

contracts. For instance, both the premium p and the benefit b could be made contingent on the 

realization of θ . Such a contract may then state that if θ  takes a particular value iθ , the 

individual pays an amount ip , while if θ  takes a value jθ , the individual receives an 

amount jb  – regardless of whether he works or not at that particular realization of θ . 

However, we are not going to study contracts of this general type. The reason is that the only 

purpose of the present section (on full observability of θ ) is to provide a benchmark for the 

subsequent analysis, which deals with more realistic types of contracts. We therefore confine 

the analysis in this section to insurance contracts for which the triplet )ˆ,,( θbp  is independent 

of each individual’s realization of θ , and where the individual pays a premium only when 

working, and where benefits are received when not working. It can be shown that individuals 

in this framework will either support themselves from labor earnings or live on benefits. We 

thus have the following lemma, which turns out to be useful in the subsequent analysis:  

 

Lemma 1: Under full observability, an optimal contract )ˆ,,( FFF bp θ  implies that no one will 

choose to stay home without benefits. 

 

Proof: See Appendix 1.  

 

Due to this Lemma, the expression for the individual’s expected utility has only two terms: 

 

 ( ) ( ))ˆ()1()ˆ(1)()ˆ( θθθθθ >+−⋅−+⋅≡ EpuFbuFEU ,  (2) 

 

where the first term represents the utility of those who stay home with benefit b and the 

second term the utility of those who work and earn a net wage 1 – p. An optimal contract 

maximizes the expected utility with respect to )ˆ,,( θbp , subject to the insurer’s budget 

constraint 

 

 ( ) 0)ˆ()ˆ(1 =⋅−⋅− bFpF θθ ,   (3) 
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and the non-negativity constraints 

 

 0≥p  and 0≥b .   (4) 

 

The Lagrangean is 

 

( ) ( )
( )[ ] bpbFpF

EpuFbuFL

⋅+⋅+⋅−⋅−⋅+

+>+−⋅−+⋅≡

νμθθλ

θθθθθ

)ˆ()ˆ(1

)ˆ()1()ˆ(1)()ˆ(
  (5) 

 

with the first-order conditions 

 

     w. r. t. p:     ( ) ( ) 0)ˆ(1)1(')ˆ(1 =+−⋅+−⋅−− μθλθ FpuF , (6) 

     w. r. t. b:     0)ˆ()(')ˆ( =+⋅−⋅ νθλθ FbuF ,   (7) 

     w. r. t. θ̂ :     0)(ˆ)1()( =+⋅−−−− bppubu λθ .   (8) 

 

From these three conditions, we can derive a number of properties of an optimal insurance 

system when θ  is fully observable by the insurer. Some of the properties are wellknown from 

the traditional (binary) insurance literature. The most obvious example is that if insurance is 

desirable at all, full insurance is optimal (abstracting from administrative costs).8 The intuition 

is that if an individual’s health status is fully observable, moral hazard in the sense that people 

misrepresent their health condition (θ ) cannot emerge. An insurance that permits full income 

smoothing is therefore optimal – as in the traditional, binary insurance models (provided the 

health variable enters additively in the utility function). 9 

 

                                                 
8 Proof: With an interior solution 0,0 >> FF bp , the multipliers associated with the non-negativity 
constraints (4) are zero, and thus (6) and (7) can be written as λ=− )1(' pu  and λ=)(' bu , respectively. We 
therefore have )(')1(' bupu =− , which implies that 1 – p = b.  Q. E. D. 
9 With a non-separable utility function ),( θcu , full insurance is generally not optimal. The expression 

corresponding to )(')1(' bupu =−  then is )0,()ˆ),1(( 11 bupuE =>− θθθ . This expression has a 

simple intuitive interpretation: the expected marginal utility of income should be the same across the two states 
of working and not working. It can be satisfied for full, less-than-full and overfull insurance, depending on the 
cross derivative 12u  and the distribution of θ . 



 7

An attractive property of our model is that it allows a simple explicit solution for the optimal 

contract )ˆ,,( FFF bp θ . From (6)-(8) and the budget constraint (3), we obtain 

 

 )ˆ( FF Fp θ= ,     (9a) 

 )ˆ(1 FF Fb θ−= ,    (9b) 

( ))ˆ(1'ˆ
FF Fu θθ −−= .    (9c) 

 

This system is recursive. Since the right-hand side of (9c) is monotonically decreasing in Fθ̂ , 

it has a unique solution. Inserting this solution into (9a) and (9b), we obtain closed-form 

expressions for Fp  and Fb . 

 

Such a contract maximizes the individual’s expected utility ex ante, hence before a specific θ  

has been realized. However, after the realization of θ , the individual might want to stay home 

and receive benefits even for some realizations of θ  above Fθ̂ . Indeed, the individual’s 

subjective cut-off ∗θ  in the case of insurance is the point at which he is indifferent between 

working and living on benefits: 

 

 )1()( pubu −−≡∗θ .    (10) 

 

Since full insurance ( FF pb −= 1 ) is optimal under full observability, we conclude that 

0)1()( ≡−−≡∗
FFF pubuθ . Hence, individuals would like to stay home and receive benefits 

for all negative realizations of θ . However, since θ  is fully observable, they will, in fact, 

receive benefits only if θ  is smaller than or equal to the cut-off Fθ̂ , as stipulated in the 

contract.  

 

Some properties of the optimal insurance contract are illustrated in Figure 1. Since ∗< FF θθ̂ ,  

only a fraction of those who would like to stay home and live on benefits are actually allowed 

to do so (i.e., those for whom Fθθ ˆ≤ ).10  

 
                                                 
10 Proof that ∗< FF θθ̂ : 0ˆ <Fθ  by (9c). With full insurance, 0=∗

Fθ  by (10). Thus ∗< FF θθ̂ . 
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 (Figure 1) 

 

In general, insurance in a model with a continuous taste parameter achieves two goals: income 

smoothing and relief from particularly burdensome work. The cost is a loss in average 

production and hence consumption. While with an additively separable utility function 

( , ) ( )u c u cθ θ= +  the first goal is driven to its extreme in the sense that complete income 

smoothing (full insurance) is optimal,11 there is a trade-off between the second goal (relief 

from burdensome work) and average consumption. We state this insight by the following 

proposition. 

 

Proposition 1: With additive separability, hence ( , ) ( )u c u cθ θ= + , optimal insurance implies 

a trade-off between relief from particularly burdensome work, on the one hand, and average 

consumption on the other hand.  

 

Proof: By Lemma 1, ∗∗> θθF
ˆ

0(0) (1 ) (0) (1)u u p u u θ ∗≡ − − > − ≡ . Thus ∗> 0
ˆ θθF  in the case of 

a continuous distribution of θ , which means that the individual will be absent more often with 

insurance than without. Q. E. D. 

 

As we would expect, insurance thus makes the individual choosier when deciding whether to 

work or not, and the insurer also allows him to stay home (with benefit) more often. There is a 

corresponding loss in production (and consumption) as compared to the case with no 

insurance.12 

 

So far, we have discussed a number of properties of an optimal insurance system, provided 

insurance is desirable in the first place. The next question is whether insurance actually is 

desirable. In traditional analysis, insurance is always desirable if the utility function is 

concave (abstracting from administrative costs). It turns out that our model has stricter 

conditions for insurance to be desirable. To see this we define the lower and upper support of 

the distribution of θ : 

                                                 
11 As pointed out in footnote 9, this property depends on the assumption of additive separability. In the case of a 
non-separable utility function ( , )u c l , insurance implies a simultaneous trade-off between income smoothing 
and pain relief on one hand, and consumption on the other hand. 
12 The size of the loss in production would be expected to depend on how much the individual’s productivity is 
harmed by negative outcomes of θ  - an issue that we do not model. 
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).0)(1sup(

),0)(inf(

>−≡

>≡

θθθ

θθθ

F

F

upper

lower  

 

We then have 

 

Proposition 2: Assuming a concave consumption utility function, and abstracting from 

administrative costs, insurance is desirable under full observability if and only if the 

distribution of θ  is such that (i) ∗≡−> 0)1()0( θθ uuupper  and (ii) )1('ulower −<θ . 

 

Proof: See Appendix 2. 

 

Whether insurance is desirable or not under full observability thus depends on whether the 

distribution of θ  has positive density (i) above )1()0( uu −  and (ii) below )1('u− , where 

)1(')1()0( uuu −<−  by concavity. Proposition (2) can be equivalently phrased in the following 

way: Insurance is never desirable if either )1()0( uuupper −<θ  or )1('ulower −>θ , regardless of 

whether consumption utility is concave or not. The intuition is straightforward for our non-

traditional conclusion that concavity of the consumption utility function is not sufficient for 

insurance to be desirable. Condition (i) says that insurance can be financed only if θ  can take 

sufficiently high values for the individual to be willing to work (and pay an insurance 

premium) at least some time. Condition (ii) says that it is worthwhile to pay an insurance 

premium, and hence to abstain from some consumption, only if θ  can take sufficiently 

negative values. Intuitively speaking, insurance is desirable only if the reduction in pain from 

burdensome work ( θ ) more than compensates for the reduced consumption when paying a 

premium with the utility cost )1('u . 

 

A graphical representation of the optimal interior solution ( 0,0 >> FF bp ) may be 

instructive. First, the insurer’s budget constraint (3) can be written 

 

p
F

Fb
F

F ⋅
−

=
)ˆ(

)ˆ(1
θ
θ ,    (11) 
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depicted by the straight line OF in Figure 2 for a given cut-off Fθ̂ . 

 

 (Figure 2) 

 

Second, the slope of an indifference curve is  

 

 
)('

)1('
)ˆ(

)ˆ(1
. bu

pu
F

F
db
dp

F

F

constEU F

−
⋅

−
=

= θ
θ .   (12) 

 

Clearly, the curve is upward-sloping and convex, as illustrated by the indifference curves in 

Figure 2. The obvious intuition is that the individual is willing to pay a higher premium only 

if he receives a higher benefit. Moreover, the required benefit increases progressively. 

Assuming that the conditions in Proposition 2 are satisfied, the optimal insurance contract is 

represented by point F in the figure, located on the “full insurance line” b = 1 – p.  

 

In conclusion, income insurance provides two advantages: income smoothing and “pain 

avoidance”. The latter, which is not dealt with in the traditional literature, means that the 

individual can afford to stay home from work during periods when working is particularly 

painful (formally, when Fθθ ˆ≤ ). The cost of enjoying these two benefits is a reduction in 

average production and hence consumption, as compared to the case with no insurance.  

 

 

 

 

 

 

 

4. Market Equilibrium Under Non-Observability 

 

We now turn to the opposite extreme, where the realization of the taste parameter is 

completely non-observable for the insurer. In this case, the insurer’s cut-off in the triplet 

)ˆ,,( θbp  must be incentive compatible, i.e.,  

 



 11

ˆ ( ) (1 )u b u pθ θ ∗= = − − .     (13) 

 

The reason why the contract has to be incentive-compatible is straightforward. If θθ ˆ>∗ , the 

individual would have an incentive to misrepresent his realization of θ , hence mimicking 

individuals with low realizations. If instead θθ ˆ<∗ , the latter would be irrelevant for the 

individual’s behaviour. In principle, our restriction (13) corresponds to the “moral hazard 

constraint” in Diamond and Mirrlees (1978).13 

 

From (13) we immediately see that ∗∗ > 0θθ  for all 0,0 >> bp . In other words, Proposition 1 

holds also when θ  is not observable. Introducing insurance will necessarily impose a cost in 

the form of lower aggregate labor supply and production. Optimal insurance will trade off  

this loss against the gain in terms of income smoothing and relief from burdensome work 

(pain avoidance).  

 

The optimal insurance contract under non-observability is obtained by maximizing expected 

utility (2) subject to both the budget constraint (3) and the incentive-compatibility constraint 

(13). As a result, expected utility in the optimal contract is lower than (or, as a special case, 

the same as) under full observability: FN EUEU ≤ . The first-order conditions with respect to 

p and b are (after some rearranging)14  

 

       w. r. t. p: ( ) ( ) μλθλθ −−−⋅−=+⋅⋅−⋅− ∗∗ )1(')(1)()1(')( puFbppuf , (14) 

       w. r. t. b: ( ) νλθλθ −−⋅=+⋅⋅⋅− ∗∗ )(')()()(')( buFbpbuf ,  (15) 

 

where ∗θ  is shorthand for )1()( pubu −− . It can be shown that, just as in traditional theory of 

income insurance, less than full insurance is optimal under non-observability: NN pb −< 1  

(see Appendix 3 for proof). However, our model also generates some new insights. For 

instance, we have 

 

                                                 
13 We may alternatively write the same contract as a duplet (p, b) and drop the incentive-compatibility constraint 
(13), replacing θ̂  in equations (2) and (3) by ∗θ . 
14 Here we have substituted (13) into (2) and (3), instead of entering equation (13) as a separate constraint. 
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Proposition 3: Assuming a concave consumption utility function, and abstracting from 

administrative costs,  

(i) a necessary condition for insurance to be desirable under non-observability is that 
∗≡−> 0)1()0( θθ uuupper ; 

(ii) given (i), a sufficient condition for insurance to be desirable under non-observability is 

that ∗≡−< 0)1()0( θθ uulower . 

 

Proof: See Appendix 4. 

 

Thus, while both Proposition 3 and Proposition 2 convey the same basic message, namely that 

concavity is not sufficient for insurance to be desirable, they differ in other respects. 15 

Conditions (i) are identical in the two Propositions, but conditions (ii) imply different critical 

values for lowerθ . Morever, the two Propositions differ as to whether the conditions are 

necessary or sufficient. 

 

In Section 3 we pointed out that the consequences for labor supply differ between the binary 

and the continuous models in the case when θ  is fully observable: introducing optimal 

insurance will never cause a fall in labor supply in the binary model, but may cause such a fall 

in our model. These properties carry over to the non-observability case when individuals are 

identical ex ante:  

 

Proposition 4:  

      Assume that insurance is desirable by Proposition 3, i.e., that upperlower θθθ << ∗
0 . It then  

      holds that 

(i) if the distribution function )(θF  is such that θ  can take only two values, )(1 lowerθθ =  

and )(2 upperθθ = , the introduction of optimal insurance will not cause any production 

loss. 

                                                 
15 Why, then, is concavity sufficient for insurance to be desirable in the Diamond-Mirrlees binary model? The 
reason is simply that in such a model, the individual can only experience two health states: 1 2θ θ<  . 

Furthermore, 1θ  has to be so negative that the individual is simply unable to work, which means that 1 0θ θ ∗<  

(as a special case, −∞→1θ ). Thus the conditions in Proposition 3 are, in fact, automatically satisfied in the 
binary model, and insurance will always be desired provided u(c) is concave. 
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(ii) By contrast, if the distribution )(θF  is continuous and connected, the introduction of 

optimal insurance will always cause a production loss (provided insurance is desirable).16 

  

Proof:  

(i) If insurance is warranted by Proposition 3, it must be incentive-compatible. This means 

that there is no production loss: people work when 2θθ =  and stay home when 1θθ = , 

regardless of whether there is insurance or not. Q. E. D. 

(ii) In the case of a distribution that is continuous and connected the optimal cut-off with 

insurance is )1()( NNN pubu −−≡∗θ . By definition, this is larger than )1()0(0 uu −≡∗θ  for all 

0, >NN bp . Thus, the introduction of insurance will always cause a production loss in this 

case. Q. E. D. 

 

The main differences between our approach and the traditional binary approach to income 

insurance may be summarized as follows. As a result of our treatment of the individual’s 

willingness and ability to work as a continuous stochastic variable, θ , the introduction of 

income insurance induces the individual to reduce his labor supply. The reason is the 

emergence of an implicit tax wedge, which is the sum of the insurance premium and the 

benefit rate, hence p + b.17 (Indeed, this incentive effect also emerges if the realization of θ  is 

fully observable for the insurer.)  

 

By contrast, in the static version of the Diamond-Mirrlees’ model, where individuals (as in 

our model) are ex ante identical, labor supply is unaffected by the introduction of optimal 

insurance. The explanation is that the “moral hazard constraint”, which is basically an 

incentive-compatibility constraint, will bind in the case of an optimal social-insurance 

contract: sick individuals cannot work under any circumstances, and the optimal insurance 

arrangement implies that healthy individuals will not gain anything by pretending to be unable 

to work. Indeed, in a binary model with ex ante identical individuals, aggregate labor supply 

                                                 
16 While (ii) holds for all continuous and connected distributions, it is easy to show that an optimal insurance 
contract may cause production losses  also in the case of discrete distributions, if there are more than two 
outcomes – depending on how the realizations are located relative to the cut-off points ∗

0θ  and ∗
Nθ . 

17 The implicit tax wedge may be derived from the difference in disposable labor earnings and social-insurance 
benefits: [ ](1 ) 1 ( )w t p wb w t p b− − − = − + + , where w is labor income, t the tax rate for labor income 
(outside the social insurance system), p the compulsory insurance fee and b the (after-tax) replacement rate. 
While the implicit tax wedge in the insurance system is p + b, the total tax wedge is t + p + b. For many 
European countries, realistic figures are t=0.25, p=0.10, and b=0.5, which altogether add up to 0.85. 
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will in optimum always be determined by the number of individuals who are objectively able 

to work.  

 

In Whinston’s (1983) disaggregated version of the Diamond-Mirrlees model, with a number 

of ex ante different “types” of individuals, a utilitarian optimum requires redistributions of 

income in favour of types of individuals with particularly large probabilities of becoming sick 

(unable to work). In this disaggregated framework, it may (for certain parameter 

constellations) be optimal to lift the moral hazard constraint for some of these types.18   

 

Hence, the introduction of an optimal insurance arrangement may result in a fall in aggregate 

labor supply in models with both a continuous and a binary treatment of the individual’s 

health status. However, in the latter type of model, this can occur only if it includes ex ante 

different types of individuals in terms of the probability of becoming unable to work. 

Moreover, the mechanisms are fundamentally different in these two kinds of models. In a 

model with a continuous treatment of the individual’s willingness and ability to work, people 

will adjust their behavior to the implicit tax wedges of the insurance system, in the sense that 

they will abstain from work more often than when there is no insurance. No such adjustments 

take place in binary models, since people are either fully able or wholly unable to work. In 

such models, labor supply will not be affected unless the authorities remove the moral hazard 

constraint for some types of individuals, hence allowing such types to stay home regardless of 

whether they are able to work or not. Thus, while in binary models with heterogeneous 

individuals, income insurance implies that certain groups of individuals may withdraw 

completely from the labor market, in our continuous model the incentives to supply labor are 

reduced for everyone 19 We believe that such a “gradual” treatment of individuals’ willingness 

and ability to work, and hence a gradual adjustment of labor supply to income insurance, is 

much more realistic than the notion that the insurer lifts the moral hazard constraint for some 

particular ex ante type of individual, who then drops out of the labor market entirely. 

 

                                                 
18 In a continuous-time version of their model, where each age group is regarded as a separate ” type”, Diamond 
and Mirrlees reached a similar conclusion as Whinston. If the probability of becoming unable to work increases 
by age, an optimal insurance policy in a continuous-time model with a binary health variable may be to abolish 
the moral hazard constraint for all individuals above a certain age. As pointed out by Diamond and Mirrlees, this 
is equivalent to introducing a pension system that permits both unhealthy and healthy elderly to live on benefits.  
19 A more technical way of stating the difference between the models is to point out that the consequences for 
aggregate labor supply can occur in the binary model only if we assume ex ante different types. In our 
continuous model, it is sufficient that individuals are different ex post as a result of different realizations of the 
stochastic parameter θ . 
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Let us end this section with a geometrical representation of the optimum insurance contract 

under non-observability. By differentiating (2) with respect to p and b, taking (13) into 

account, and making appropriate substitutions, the slope of the indifference curve in the (p, b) 

plane becomes 
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∗

= θ
θ .   (16) 

 

Although it looks similar to (12) (with Fθ̂  replaced by ∗θ ), equation (16) describes a different 

function in the (p, b) plane than (12) since ∗θ  is endogenous. Since the marginal utility of 

consumption is always positive, the indifference curve is again upward-sloping in the (p, b) 

plane for all )1,0(∈π .20 While the slope of the indifference curve is thus unambiguous, its 

curvature is not. Indeed, the indifference curves may have both concave and convex segments 

(although we have chosen to depict a well-behaved, convex curve in Figure 3).21 

 

 (Figure 3) 

 

The budget constraint now looks as follows: 

 

p
F

Fb ⋅
−

= ∗

∗

)(
)(1

θ
θ ,    (17) 

 

Rather than a straight line as in Figure 2, the budget constraint (17) forms a non-linear curve 

in the (p, b) plane. Such a curve necessarily passes through the origin (p = 0, b = 0), since that 

point trivially satisfies (17). It can be shown that for a wide class of distribution functions 

)(θF , the budget constraint (17) generates a well-behaved “Laffer-type” curve in the (p, b) 

plane; see Figure 3. For this class of distribution functions, we can state 

 

Proposition 5: For all distributions for which ))(1/()( θθ FF −  is convex in θ , the insurer’s 

budget constraint under non-observability is a single-peaked curve in the (p, b) plane. 

                                                 
20 This also holds for the case of a non-separable utility function. 
21 This property contrasts with the strict convexity of the indifference curves in the full-information case (12). 
The observation that indifference curves in insurance models may contain both concave and convex segments 
has been made earlier in a different analytical framework; cf. Stiglitz (1983) and Arnott (1992). 
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Proof: Expression (17) can be written in the form pFFb =−⋅ ∗∗ ))(1/()( θθ . The right-hand 

side of this equation is a linear, positively sloped function of p. If the left-hand side is a 

convex, positively sloped function of p, the two functions can intersect at most twice. Thus, 

for a given b, the equation can have at most two roots p. A sufficient condition for this to hold 

is that ∗θ  is an increasing, convex function of p (which obviously is the case) and that 

))(1/()( ∗∗ − θθ FF  is an increasing, convex function of ∗θ .  Q. E. D. 

 

Is it then reasonable to assume that ))(1/()( ∗∗ − θθ FF  is convex? In fact, this ratio, which in 

the statistical literature is often called the odds function (the logarithm of which is the logit 

function), is convex for a wide class of distributions. It is easy to show this analytically for the 

rectangular distribution, and numerically for a number of other distributions, such as the 

normal, log-normal, Weibull etc. distributions.22 Thus the zero-profit constraint normally 

forms a well-behaved Laffer curve as in Figure 3.23  

 

The slope of the Laffer curve, obtained by differentiating (17), is:24 

 

 2
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))((')(
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bpbufp
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∗

θ
θ .   (18) 

 

In the case of an interior solution, ),( NN bp  is a tangency point like N in Figure 3 (where we 

have depicted the indifference curves as convex). Since less than full insurance is optimal, 

point N is located beneath the full insurance line.  

 

As emphasized earlier, the equilibrium point is incentive compatible: confronted with the 

insurance policy ( , )N Np b , the individual has no reason to pretend that his realization θ  is 

different from its true value. If there is no administrative rejection of claims, an incentive-
                                                 
22 It does not, however, hold for all distributions. An example where it does not hold is Student’s t distribution 
with less than one “degree of freedom”, i.e., with thick tails and an infinite mean. 
23 In the case of a distribution function )(θF  where the support has a limited domain (for instance, with a 
rectangular distribution), the Laffer curve intersects the horizontal axes at a finite value of p > 0, as illustrated in 
Figure 3. In the case of an unlimited domain (for instance, with the normal distribution), the curve instead 
approaches the horizontal axes asymptotically. 
24 It is easy to show that if we start at the origin and move to the right along the Laffer curve, the absence rate 

Nπ  increases. 
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compatible insurance contract means that the individual himself can choose whether to live on 

work or on benefits. This may seem to be quite an odd case, but it is a logical consequence of 

the assumption that θ  is unobservable for the insurer. Indeed, until recently, in some 

countries sick-pay insurance has functioned in approximately this way, since the authorities 

have been reluctant to reject individual claims. However, the analysis becomes more realistic 

if we assume that the insurer will, in fact, reject some benefit claims. We now turn to this 

case. 

 

 

5. Non-Observability with Administrative Rejection 

 

With administrative rejection of claims, the insurance contract would be characterized by a 

quadruplet ),ˆ,,( qbp ∗= θθ , rather than the triplet )ˆ,,( ∗= θθbp , where q is the probability of 

rejection.25 Can such a contract, with 0 < q < 1, constitute a welfare improvement?  

 

If the insurer cannot observe θ, rejection of claims has to be purely random. At first glace, it 

may seem impossible that welfare (expected utility) could increase if such randomness is 

introduced, since a new type of income risk would then emerge. However, on further 

reflection, the issue turns out to be rather complicated. The reason is that administrative 

rejection allows for a more generous insurance contract for those whose claims are accepted. 

To analyze this issue, we assume that an individual whose claim has been rejected can choose 

either to continue working or to stay home without receiving benefits. The individual is thus 

confronted with the following situation: 

 

  
{ }
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max (0), (1 ) ) . ,
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θ θ θ

θ θ
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∗

∗
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−⎧⎪≤ ⎨ − +⎪⎩

  

 

where the insurer’s cut-off must be incentive-compatible: )1()(ˆ pubu −−== ∗θθ . 

Individuals with a realization ∗> θθ  will not apply for benefits, but instead go to work. By 

contrast, all individuals with a realization ∗≤ θθ  will apply for benefits, and they will have to 

                                                 
25 Such lotteries have been extensively discussed in the literature on mechanism design; we return to that issue in 
Section 6. 
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participate in a kind of lottery where the probability of winning is 1 – q. If lucky, they enjoy 

utility u(b); otherwise they enjoy utility { }))1(),0(max θ+− puu . Total absence now consists 

of those whose claims were accepted plus those who chose to stay home even though their 

claims were rejected:   

 

 )()()1( ∗∗∗ ⋅+⋅−= θθπ FqFq ,   (19) 

 

where ∗∗θ  is the cut-off at which the individual is indifferent between staying home with no 

benefits and working: )1()0( puu −−≡∗∗θ . The welfare consequences of such insurance 

arrangements may be expressed as follows. 

 

Proposition 6: If, after a rejection, the individual can return to work, a positive q will increase 

expected utility for certain parameter constellations.26  

 

Proof: See Appendix 5. 

 

Naturally the introduction of a rejection rate q has different welfare consequences for different 

realizations of θ  and different outcomes of the “lottery”. However, the consequences also 

depend on the adjustments of p and b made by the insurer to maintain a balanced budget. 

Clearly, those with a bad realization of θ  and a bad outcome in the lottery are losers. The 

gainers are either those who have chosen to work (provided there will be a reduction in p), or 

those who have applied for, and received, benefits (provided there will be an increase in b). 

Due to these complications, the net effect on expected utility cannot, in general, be signed 

analytically. 

 

Owing to the ambiguous analytical consequences for expected utility, we simulated the model 

numerically. For this purpose, we assumed a utility function with constant relative risk 

aversion, i.e., )1/()1()( 1 γγ −−= −xxu . For u(0) to be defined, we introduced an exogenous 

non-wage income, k; this also has the advantage that we can study the consequences of 

variations in non-wage income. Consumption utility then is )1( kpu +−  when working, 

                                                 
26 An alternative assumption could be that the individual, after a rejection of his claim, is not able to return to 
work and thus has to be satisfied with utility u(0). It is easy to show that in such a case, the introduction of a 
positive rejection rate cannot increase expected utility. We consider such a setup as less realistic than the one 
where the individual can return to work. 
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)( kbu +  when absent from work and receiving benefits, and )(ku  when absent without 

benefits. For a normal distribution ),(~ σθ mN  of the taste parameter, the results of the 

simulations are reported in Figure 4. We chose the parameter values 4=γ , 0=m , and 

2=σ , but the results are qualitatively similar for a large set of values.  

 

 (Figure 4) 

 

Our simulations show that it is possible to find plausible parameter configurations for which a 

positive random rejection rate is optimal. By “plausible” we mean values that are of an order 

of magnitude similar to those observed in the real world.27  

 

In this context, how is the optimal rejection rate related to the level of non-labor income k? 

Intuitively, the optimal q might be expected to rise with k, since a relatively large k makes 

rejection of claims less harmful for the individual. However, a large k also means that the 

individual has less need for the higher b that could be financed as a result of introducing a 

rejection rate; this mechanism tends to make the relation between k and q negative. The net 

effect of these counteracting forces is rather complex. Somewhat surprisingly, in all our 

simulations, the parameter configurations used in Figure 4 give rise to a monotone negative 

relation between k and q. 

 

Summing up, the introduction of random administrative rejection into the model has two 

counteracting consequences for expected utility. On one hand, it is advantageous to have 

access to an additional policy instrument. On the other hand, the specific policy tool q is in 

conflict with the basic purpose of insurance, since it introduces a new type of income risk for 

the individual. It is therefore not surprising that the consequences for expected utility are 

ambiguous.  

 

 

6. Partial Observability With Administrative Rejection 

 

                                                 
27 For the simulations in Figure 4, the absence rate qπ  varies between 0.2 and 0.25. This is a realistic figure for 
many European countries, considering that it includes both sick-pay insurance and disability pensions. 
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So far, we have dealt with the polar cases when θ is either fully observable or wholly non-

observable for the insurer. The most realistic assumption is that θ is imperfectly observable. 

We model this case by assuming that an outsider (the insurer and/or a legal authority) can 

observe only a distorted signal εθ +≡s  rather than θ  itself. For simplicity, we further 

assume that the stochastic variable ε  is independent of θ, and that it has the cumulative 

distribution function )(εG . Clearly, this case nests the two special cases discussed earlier, 

since a distribution with 0)var( =ε  implies full observability (Section 3), while ∞→)var(ε  

implies non-observability (Sections 4-5). 

 

While rejection has to be completely random in the case of non-observability, the insurer can 

make the rejection rate conditional on the observed signal s when θ  is partially observable. 

As before, the individual applies for sick-leave benefits iff ∗≤ θθ , where, again, 

)1()( pubu −−≡∗θ . The insurer proclaims a cut-off θ̂  and accepts the benefit claim iff 

θ̂≤s . The probability of rejection then is 

 

 )ˆ()ˆ(1)ˆPr()ˆPr( θθθθθθεθ −≡−−≡−>≡>≡ qGsq . (20) 

 

Thus, q now becomes endogenous and a function of θ . Since all distribution functions are 

non-decreasing, it follows that q is also a non-decreasing function of the true θ: 0/ ≥∂∂ θq . 

This property has an intuitive appeal; the claim of an individual with severe health problems 

(i.e., a very low θ) is less likely to be rejected than a claim from someone who is more 

healthy.28  

 

With partial observability, the insurance contract may be written ))ˆ(,ˆ,,( θθθ −= qqbp . 

The expression for total absence from work in society is now a generalization of (19): 

 

 ( )ˆ ˆ1 ( ) ( ) ( ) ( )p q f d q f d
θ θ

π θ θ θ θ θ θ θ θ
∗ ∗∗

−∞ −∞

= − − + −∫ ∫   (21) 

 

where, as before, )1()0( puu −−≡∗∗θ .  
                                                 
28 This property is consistent with Diamond’s and Sheshinski’s (1995) assumption that the probability of 
rejection of a claim for disability pension (which is higher than the early retirement pension) is an increasing 
function of the individual’s true health status. 
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An important distinction between a constant rejection rate q (independent of θ ), as discussed 

in Section 5, and an endogenous one is that the distribution of absence across individuals will 

differ. Since an endogenous q implies that individuals with very low realizations of θ are less 

likely than others to be rejected, there will be a more efficient allocation between work and 

non-work among claimants than if q were exogenous. This also means that the income 

distribution will be more favorable for individuals with a relatively unfavorable outcome of 

the θ variable.  

 

As in the case of a constant q, we are not able to determine analytically whether the 

introduction of a rejection rate is desirable or not (see the Lagrangean in Appendix 4). We 

therefore, again, carried out a numerical simulation with the same utility and distribution 

functions as in Figure 4, but now with q defined by the function (20), with the disturbance 

)2,0(~ Nε ; see Figure 5. 

 

 (Figure 5) 

 

As in the case with an exogenous q (Figure 4), it is easy to find parameter configurations that 

yield realistic values of p and b. For most values of the non-wage income k, we also get 

values of the insurer’s cut-off point θ̂  that yield an endogenous rejection rate 

ˆ( ) 0q q θ θ= − > . Since a higher θ̂  implies a lower rejection rate, q falls with k, just as in the 

case of an exogenous q, illustrated in Figure 4. (With a normal distribution for the disturbance 

ε  , the rejection rate 0q →  as θ̂ → ∞ ). We may note that θ ∗  may be smaller or larger than 

θ̂ , depending on k. 

 

Exogenous and endogenous rejection of benefit claims may be regarded as two alternative 

types of “lotteries” among individuals who claim benefits. We could think of more elaborate 

lotteries. For instance, the lottery may not only determine whether the individual should 

receive a benefit, but also how large the benefit will be; the individual may receive 1b  with 

probability 1q , 2b  with probability 2q , etc. Although such elaborate lotteries may be worth 

further examination, we confine our discussion to the simple case of only two outcomes: 
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either rejection or approval of the claims.29 In fact, this simple type of lottery seems to reflect 

the way sick-pay insurance and disability pensions are usually constructed in the real world.30 

 

The variant of our model discussed in this section, with partial observability and an 

endogenous rejection rate, is much more realistic than the cases of full observability and non-

observability discussed in earlier sections. Clearly, in the real world, an individual’s health 

condition is partially observable, and some claims are rejected on the basis of imperfect 

signals.  

 

 

7. Tax Wedges and Moral Hazard 

 

We have emphasized that income insurance in our analytical framework not only provides 

income smoothing, but also relief from work when it would be particularly burdensome. 

These advantages come at a cost in the form of two disincentive problems. One is a direct 

consequence of the unavoidable tax wedge, which emerge regardless of whether the 

individual’s willingness and ability to work are observable or not for the insurer. Indeed, a 

reduction in labor supply is part of the purpose of income insurance in our framework, 

namely to make it more feasible for the individual to finance absence from work during 

periods when work is associated with severe discomfort. 

 

The other form of a disincentive effect on work is moral hazard. Clearly, there is no moral 

hazard problem at all in the case of full observability. Although there is such a problem if θ  is 

not fully observable, it takes different forms in the cases of non-observability and partial 

observability. With non-observability, the insurer has to offer an incentive-compatible 

                                                 
29 Presumably, the more elaborate the lottery, the more problematic it may be from the point of view of 
legitimacy. 
30 Prescott and Townsend (1984) have argued that quite another type of lottery is optimal in income insurance. 
More specifically, every individual who applies for benefits will receive them, but the applicant will be exposed 
to a lottery of whether he has to work or not. With probability ρ  he has to stay home, thereby enjoying utility 

)(bu , while with probability )1( ρ−  he has to work, although only receiving b, thus enjoying utility 
θ+)(bu . A lottery of this type cannot, however, be implemented in the real world. In a competitive labor 

market without slavery-like contracts, an insurer can hardly force an individual with an “unlucky” outcome of 
the lottery to work at the remuneration b (that is below what he can obtain in the market, 1 – p), or to stay home 
without benefits. And even if slavery-like contracts were allowed, such contracts cannot be implemented in a 
modern economy, where the production process is complex (often with strong complementarities among 
individual workers), and where the possibilities for shirking are abundant. 
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contract )ˆ,,( ∗= NNNN bp θθ  and the individual wants to work if the realization of θ is greater 

than the cut-off )1()( NNN pubu −−=∗θ . Clearly, with an optimal contract, the problem of 

moral hazard in the form of misrepresentation of θ  is solved in this case.31 However, the 

solution of the problem comes at a cost in the form of less than full income smoothing. Thus, 

such a contract is second-best in the special sense that a better contract could have been 

achieved if θ  had been observable. With a rejection rate q, the optimal contract 

),ˆ,,( qbp qqqq
∗= θθ  also precludes misrepresentation of θ (since q̂ qθ θ ∗= ). Although a positive 

rejection rate might increase expected utility, some “type 2 errors” (when eligible persons are 

denied benefits) are unavoidable.  

 

Under partial observability, with the contract ))ˆ(,ˆ,,( θθθ −= pppp qqbp , the insurer’s cut-off 

pθ̂  becomes an operative parameter, by contrast to the case of non-observability. The 

rejection rate )ˆ( θθ −pq , given by equation (20), implies a better targeting of benefits than the 

exogenous rejection rate q  in the case of non-observability. As with non-observability, the tax 

wedge is pp bp +  when the individual decides whether to claim benefits or not, while it is pp  

for an individual whose claim has been rejected. However, by contrast to the case of non-

observability, misrepresentation is not eliminated by the optimal contract. Everyone with a 

realization of θ  such that ∗≤ pθθ  will apply for benefits, and a fraction )ˆ(1 θθ −− pq  of 

individuals in the interval ∗≤< pp θθθ̂  will actually receive benefits, even though their true 

θ  is larger than the insurer’s cut-off ˆ
pθ . This may be labeled “type 1 errors” in the sense 

that these individuals will receive benefits because they appear to be more sick than they 

actually are. Thus, there will be some moral hazard also with an optimal insurance contract, in 

the form of type 1 errors. There will also be “type 2 errors” since a fraction )ˆ( θθ −pq  of 

individuals with realizations pθθ ˆ≤  will be denied benefits although they are actually 

qualified.  

 

 
                                                 
31 In the literature, moral hazard is often defined as “hidden action”. In our model, the individual’s action, i.e., 
going to work or not, is perfectly observable by the insurer, while the realization of the individual’s state θ  may 
not be observable. Hence, since the connotation of moral hazard as “hidden action” is too narrow, we suggest 
defining ex post moral hazard as “hidden action or hidden state”. 
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8. Social Norms 

 

So far, we have analyzed how traditional economic factors, such as prices (p and b) and 

rationing (administrative rejection) affect the utilization of income insurance. However, the 

functioning of such insurance also depends on social norms concerning the utilization of the 

benefit system. Our model turns out to be well suited for incorporating such considerations 

into the analysis. To clarify this issue in the simplest possible way,  we return to the basic 

model of non-observability (dropping the subscript “N”), without a rejection rate q.  

 

A simple way of incorporating social norms into our model is to add a “stigmatization 

variable” 0≥φ  to the individual’s utility when he is absent from work: ( )au u b φ≡ − . (We 

follow the formalization of the role of social norms for benefit dependency in Lindbeck, 

Nyberg and Weibull, 1999.32) One possible specification of this variable is to regard the norm 

as a constant: φφ ≡ , i. e., as exogenous (for instance, inherited from the past). Another 

possibility is to treat norms as endogenous, with the strength of the norm depending on the 

number of individuals who live on benefits: when a large number of individuals are absent 

from work, absence is likely to be more legitimate than if only a few individuals are absent. 

Hence, when the norm is endogenous, we have )(πφφ ≡  with 0/ <∂∂ πφ , where π  stands 

for the average absence rate in society.  

 

The individual’s cut-off point in the presence of norms, n∗θ , is the value of θ  for which 

φθ −=+− )()1( bupu : 

 

  
,

)1()(
φθ

φθ

−=

−−−=
∗

∗ pubun

   (22) 

 

where ∗θ  is the same cut-off point as in a model without social norms (2). From (22) it 

follows that both exogenous and endogenous social norms reduce the cut-off point: ∗∗ ≤ θθ n . 

Since the individual chooses to stay home whenever n∗≤ θθ , his absence rate with norms is 

                                                 
32 See Moffitt (1983) for an early analysis of stigmatization from living on welfare payments. Brock and Durlauf 
(2001) give a systematic discussion of alternative ways of specifying various types of social interaction among 
individuals, including the role of social norms.  
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)( φθπ −= ∗Fn , hence lower than without norms. In the case of exogenous norms, with 

φφ = , this expression yields the closed-form solution  

 

)( φθπ −= ∗Fn
ex .     (23) 

 

In the case of endogenous norms, we instead have ( )( )n
end Fπ θ φ π∗= − . Since the average 

absence rate π  is the same as the absence rate n
endπ of the representative individual, we may 

write 

 

 ( ))( n
end

n
end F πφθπ −= ∗ .    (24) 

 

The right-hand side of (24) is increasing in n
endπ  and may be non-linear. The equation may 

therefore have multiple solutions, as is often the case in models of social interaction. Hence 

there may be several alternative absence rates (for a given insurance system) in a society with 

endogenous social norms.  

 

We achieve a particularly simple analysis by looking at a linear version of the model, 

assuming that θ  is uniformly distributed on [ ]ss +− θθ , . For the case of endogenous norms, 

we further assume the linear stigmatization function ( ) (1 )n n
end endφ π γ π≡ ⋅ − , where γ  is a 

positive constant. With these functional forms, we obtain the following simple expressions for 

the absence rate in the cases of no norms, exogenous norms, and endogenous norms, 

respectively: 
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For n
endπ  to be non-negative, we assume that 02 ≥− γs . Substituting the expression for π  

into the last two functions, we obtain n
exπ  and n

endπ  as linear functions of π , i.e., of the 

absence rate without norms: 

 

2
n
ex s

φπ π= −      (25) 

2
2 2

n
end

s
s s

γπ π
γ γ

= ⋅ −
− −

    (26) 

  

We may summarize the properties of our linear model in the form of the following 

proposition. 

 

Proposition 7:   

(i) The absence level is lower with than without norms.  

(ii) Parameter changes in the insurance system (for instance, in p or b) will have the 

same effect on the aggregate absence rate in the case of exogenous norms as 

without norms.33 

(iii) Parameter changes in the insurance system (for instance, in p or b) will result in 

larger changes in aggregate absence in the case of endogenous norms than with 

exogenous norms or no norms at all. In other words, endogenous norms create a 

“social multiplier” as defined by Glaeser, Sacerdote and Scheinkman (2003). 

 

Proof: These properties follow immediately from the previous analysis. 

 

In policy discussions, the consequences of tax wedges and moral hazard are often measured in 

terms of either monetary costs (in our notation b⋅π ) or absence rates (π ). When measured 

by absence rates, one possibility is to look at the difference in absence rates with and without 

                                                 
33 This result relies on our simplifying assumption of  a rectangular distribution )(θF . For an arbitrary 

distribution, xxn
ex ∂∂<∂∂ // ππ   iff )()( ∗∗ <− θφθ ff . A sufficient condition for this to hold is that both 

cut-offs n∗θ  and ∗θ  are located on the upward-sloping part of the density function )(θf . 
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insurance. For instance, in the case of non-observability the cost in terms of absence rates of 

introducing optimal insurance is34 

 

01 ππ −≡ NC .     (27) 

 

Of course, such a measure could also be applied in the presence of norms: nnnC 01 ππ −= . In 

the case of exogenous norms, we have by (25) that  

 

 1,1 CCn
ex = , 

 

i.e., the cost (as defined here) is the same with and without norms. By contrast, it becomes 

different in the case of endogenous norms (by equation (26)): 

 

 1,1 2
2 C
s

sCn
end γ−

= .35 

 

Thus, the cost of introducing insurance is the same with exogenous norms as with no norms.36 

By contrast, the cost of introducing insurance is higher (due to the multiplier )2/(2 γ−ss ) in 

an economy with endogenous norms than in an economy without norms.37 

 

 

 

9. Concluding Remarks 

 

                                                 
34 An alternative quantification of the cost of insurance would use the absence rate under full observability as the 
benchmark: FNC ππ −≡2 . While 1C  reflects total behavioral adjustment due to the insurance arrangement, 

2C  reflects moral hazard as a result of non-observability. 
35 These expressions are easily obtained by noting that  

s
sn

ex 2
0

,0
φθθπ −+−

=
∗

   and   
γ

γπ
γ

π
−

−⋅
−

=
ss

sn
end 22

2
0,0 . 

36 The intuitive reason is that with a rectangular distribution, exogenous norms have the same consequences for 
π  as for 0π . 
37 As in the end of Section 7, we could also isolate the cost associated with the moral-hazard problem: 

FC ππ −=2 . 
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We have treated an individual’s ability and willingness to work as a continuous variable, 

rather than a binary variable as is usual in the literature on income insurance. What are then 

the gains from our continuous approach? Basically, there are three gains. First, we obtain a 

more realistic view of the purpose of income insurance. It is not only a question of income 

smoothing but also of pain avoidance. Insurance helps the individual to finance absence when 

work is particularly burdensome. Optimal insurance requires the best possible trade-off 

between income smoothing and pain relief on one hand, and a fall in average consumption on 

the other hand.  

 

Second, our broader view of the purpose of income insurance means that the conditions for 

insurance to be desirable turn out to be stricter than in the traditional theory. In addition to 

concavity, the desirability of insurance also depends on the relation between the distribution 

of the individual’s health shock and the loss in consumption utility tied to reduced labor 

supply. 

 

Third, our framework is conducive to the analysis of not only traditional incentives in income 

insurance (i.e., prices and incomes) but also the role of administrative rejection as well as the 

role of social norms. By treating an individual’s ability and willingness to work as a 

continuous variable, both these features can easily be integrated into the analysis. 

 

Other extensions also seem promising, although we have not pursued them in this paper. One 

is to consider whether part-time benefits should be allowed – a policy issue that has become 

increasingly important in recent years. Such a reform creates incentives for individuals to shift 

either from full-time benefits, or from full-time work, to part-time benefits. The net effect on 

total work absence would then be expected to depend on factors such as the distribution of the 

individual’s state of health, whether the insurer restores budget balance after the reform by 

changing the contribution rate or the benefit rate, etc. In such a framework, administrative 

rejection could take the form of granting part-time sickness absence for some individuals who 

apply for full-time benefits. 

 

Another extension could be to include the effects on production of so-called “presenteeism”, 

i.e., a situation when individuals go to work even when they have health problems that reduce 
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labor productivity at the workplace.38 Finally, the model may be modified to address problems 

connected with ex ante moral hazard, i.e., behavioral adjustment by the individual before the 

random health shock has been realized (for instance, when the insured individual chooses a 

less prudent lifestyle). In our framework, ex ante moral hazard can be analyzed in terms of 

induced changes in the probability distribution of the health shock. 

 

                                                 
38 See, for instance, Chatterji and Tilley (2002). 
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Appendix 1: Proof of Lemma 1 

 

To prove Lemma 1 by contradiction, we assume that at the optimum, there is a group of 

people who stay home from work although they do not receive any benefits. If such a group 

exists, there must be an interval ( )∗∗θθ ,ˆ , with ∗∗< θθ̂ , where θ̂  is the cut-off specified in the 

contract and )1()0( puu −−≡∗∗θ ; see figure A1. 

 

  Figure A1 

  

With a realization θθ ˆ≤ , the individual stays home and receives a benefit b. With a 

realization between θ̂  and ∗∗θ , the individual prefers to stay home even if he does not receive 

any benefit, while with a realization ∗∗≥ θθ , the individual chooses to work. The insurer’s 

budget constraint is ( ) pFbF ⋅−=⋅ ∗∗)(1)ˆ( θθ . The Lagrangean then is 

 

( ) ( ) ( )
( )[ ]bFpF

EpuFuFFbuFL

⋅−⋅−⋅+

+>+−⋅−+⋅−+⋅=
∗∗

∗∗∗∗∗∗

)ˆ()(1

)()1()(1)0()ˆ()()()ˆ(

θθλ

θθθθθθθ
 

 

and we obtain the first-order conditions with respect to p and b: 

 

 λ=)(' bu  and bubu ⋅=− λ)0()( . 

 

Hence, )(')0()( bububu ⋅=− , which is a contradiction of the assumption of a strictly concave 

utility function )(⋅u . Thus, no optimal contract )ˆ,,( FFF bp θ  exists such that ∗∗< θθ F̂ .

 Q. E. D. 

0∗∗θ  θ̂  
θ  

)(θf  
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Appendix 2: Proof of Proposition 2 

 

Condition (i) is necessary, since if )1()0( uuupper −≤θ  no one will work in the absence of 

insurance. Thus no one will work in the presence of insurance, either, and therefore insurance 

cannot be financed. Similarly, Condition (ii) is necessary, since if )1('ulower −≥θ  everybody 

will always work, and there is no need for insurance. To prove sufficiency, we note that, by 

definition, an interior solution Fθ̂  satisfies  

 

upperFlower θθθ << ˆ .    (A1) 

 

To prove that a solution to (9c) satisfying (i) and (ii) also must satisfy (A1), we write (9c) as 

( ) 0)ˆ(1'ˆ)ˆ( =−+≡ θθθφ Fu . We have )1(')( ulowerlower +=θθφ  which, by (ii), is negative. We 

also have )0()1()0(')( uuu upperupperupper −+>+= θθθφ , where the inequality follows from 

concavity. Thus, by (i), 0)( >upperθφ . The continuous and monotone function )ˆ(θφ  must 

therefore have a zero in the open interval ),( upperlower θθ . Q. E. D. 

 

 

Appendix 3: Proof that NN pb −<1  

 

Assume an interior solution ( 0,0,0,0 ==>> νμNN bp ). Dividing (14) by (15) then yields 

 

 
λ
λ

θ
θ

−
−−

⋅
−

−=
−

)('
)1('

)ˆ(
)ˆ(1

)('
)1('

bu
pu

F
F

bu
pu .   (A1) 

 

Since the left-hand side is always positive, the minus sign on the right-hand side, together 

with the fact that we have assumed an interior solution, means that the second term on the 

right-hand side is negative. We have three possible cases: (i) λ>− )1(' pu       and   λ<)(' bu ; 

(ii) λ<− )1(' pu    and   λ>)(' bu ; (iii) λ=− )1(' pu    and   λ=)(' bu . 
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Case (i) implies that bp <−1 , i.e., overfull insurance. Case (ii) implies that bp >−1 , i.e., 

less than full insurance, while case (iii) implies bp =−1  , i.e., full insurance. We now prove 

by contradiction that only case (ii) can apply. 

 

Assume that case (i) applies. Then the right-hand sides of (14) and (15) are positive (recall 

that 0==νμ ) which is inconsistent with the left-hand sides being negative. Thus overfull 

insurance cannot be optimal. Assume then that case (ii) applies. Then the right-hand sides of 

(14) and (15) are negative; no contradiction occurs in this case. Assume finally that case (iii) 

applies. Then the right-hand sides of (14) and (15) are zero, which is inconsistent with the 

left-hand sides being negative. Thus only less-than-full insurance can apply. Q. E. D. 

 

Let us instead assume a general, non-separable utility function ),( θcu . Instead of cases (i)-

(iii) under equation (A1), we now obtain 

 

 ( ) λθθθ <>− ˆ),1(1 puE    and   λ>)0,(1 bu  

 

as the only possible configuration. Thus at the optimum, the expected marginal utility of 

consumption should be lower when working than when living on benefits. If it had not been 

for the cross-derivative 12u , this would translate into the conclusion of less-than-full insurance 

being optimal. 

 

 

Appendix 4: Proof of Proposition 3 

 

Condition (i) is necessary for the same reason as in the proof of Proposition 2. To prove that 

condition (ii) is sufficient, given that (i) is satisfied, we note that sufficiency means that 

0,)1()0( >⇒−< bpuulowerθ . We will show by contradiction that this holds. Assume 

)1()0( uulower −<θ  and 0== bp . Since 0, ≥νμ  for such a corner solution, (14) and (15) can 

be written 0)1(' ≥− λu  and 0)0(' ≥− uλ . But these two inequalities imply )0(')1(' uu ≥ , 
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which is a contradiction in the case of a strictly increasing, concave utility function. 39

 Q. E. D. 

 

 

Appendix 5:Proof of Proposition 6 

 

With an exogenous q (Section 5), the Lagrangean  

 

      

( ) ( )
( ) ( )
( )[ ]{ } qbqFpFFqF

EpuqFFuqF

buqFEpuFL

⋅+⋅−⋅−⋅−⋅+−⋅+

+<<+−⋅⋅−+⋅⋅+

+⋅−⋅+>+−⋅−=

∗∗∗∗∗

∗∗∗∗∗∗∗∗

∗∗∗

ηθθθθλ

θθθθθθθ

θθθθθ

)1()()()()(1

()1()()()0()(

)()1()(()1()(1

 

 

is maximized with respect to p, b and q. From the first-order conditions, it is not possible to 

determine whether the optimal q should be zero or positive. To further clarify the issue, we 

simulated the model numerically (Figure 4).  

 

With an endogenous q (Section 6), the Lagrangean is 

 

     

( ) ( ) ( )

( )
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dqfEFpuFL

θθθθθθθθθλ

θθθθθθθθθ

θθθθθθθθθ

θθ

θ

θ θ

θ

θ

 

 

where )ˆ( θθ −q  is defined by equation (20). A maximization with respect to p, b and θ̂  yields 

three first-order conditions. Again, from these conditions, it is not possible to establish 

                                                 
39 With a non-separable utility function, the inequality corresponding to )0(')1(' uu ≥  becomes 

)),1(()0,0( 011
∗>≤ θθθuEu . Whether this inequality is consistent with a concave utility function depends 

not only on the distribution of θ , as in the case of a separable utility function, but also on the cross derivative 

12u  (which may be positive or negative). 
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whether the optimal q is zero or positive. Therefore, the model was numerically simulated 

(Figure 5).  
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 Figure 1: Location of the cut-offs under full observability: Fθθ ˆ,0
∗  and ∗

Fθ . 
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Figure 2: Equilibrium for the case of full observability 

 

 
 

 

Figure 3: Equilibrium for the case of no observability 
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Figure 4: Optimal values of p, b and q for different values of k. 
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Figure 5: Optimal values of p, b, θ̂  and ∗θ  for different values of k. 
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