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Abstract

Transport constraints limit competition and arbitrageurs’possibilities of
exploiting price differences between goods in neighbouring markets, espe-
cially when storage capacity is negligible. We analyse this in markets where
strategic producers compete with supply functions, as in wholesale electric-
ity markets. For networks with a radial structure, we show that existence
of supply function equilibria (SFE) is ensured if demand shocks are suffi -
ciently evenly distributed, and solve for SFE in symmetric radial networks
with uniform multi-dimensional nodal demand shocks. An equilibrium offer
in such networks is identical to an SFE offer in an isolated node where the
symmetric number of firms has been scaled by a market integration factor,
the expected number of nodes that are completely integrated with a node
in the symmetric network. The analysis can be extended to mesh networks
(as in electricity systems) although the resulting models do not simplify as
in the radial case.
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1 Introduction

Transport constraints limit trade, which makes production and consumption less
effi cient. Moreover, transport constraints reduce competition between agents situ-
ated in separated markets, which worsens market effi ciency even further. Conges-
tion is of particular importance for markets with negligible storage possibilities,
such as wholesale electricity markets. Then demand and supply must be instantly
balanced and temporary congestion in the network can result in large local price
spikes. The same market can at times exhibit very little market power and, at
other times, suffer from the exercise of a great deal of market power. Borenstein
et al. [13] show that standard concentration measures such as the Herfindahl-
Hirschman index (HHI) work poorly to assess the degree of competition in such
markets. Thus competition authorities who need to predict market prices under
various counterfactuals —what might happen if a merger or acquisition is accepted
or transport capacity is expanded, need more detailed analytical tools.
We analyze the network’s influence on an oligopoly market where producers

sell a homogeneous commodity. We assume that firms compete with supply func-
tions and that each node of the radial network has a local demand shock. The
slope of the residual demand curve1 is important in the calculation of a firm’s
optimal offer. However, this curve is uncertain due to the demand shocks. This
uncertainty is characterized using Anderson and Philpott’s [4] and Wilson’s [43]
market distribution function approach. We show that the optimal output of a
producer is proportional to its mark-up and the expected slope of the residual
demand curve that it is facing.2 Thus a more elastic residual demand results in a
more competitive offer.
We assume that transports along an arc of the network are costless, as long

as it is uncongested. We say that two nodes are completely integrated when they
are connected via uncongested arcs. A node is always completely integrated with
itself. The flow through arcs with a strictly binding transport capacity is fixed
on the margin. Thus on the margin, a firm’s residual demand is only influenced
by nodes that are completely integrated with the firm’s node. For symmetric
equilibria we find it useful to define a market integration factor, which equals the
expected number of nodes that are completely integrated with a node in the net-
work. Firms can influence the market integration factor with their offer curves, so
it is endogenous. We use our optimality conditions to solve for symmetric equilib-
ria in two-node and star networks3 with multi-dimensional uniformly distributed
demand shocks. In this case, the market integration factor is found to be con-
stant for a given network with given transmission capacities and total production
capacities. The factor does not depend on production costs nor on the number of

1The residual demand at a specific price is given by demand at that price less competitors’
sales as that price.

2Note that the output of the firm influences congestion in the network, which in its turn
influences its residual demand curve. Thus with the slope of residual demand we here mean the
slope of residual demand conditional on a fixed output.

3There are no strategic producers in the center node of the star network. Thus the network
is symmetric from the producers’perspective.

2



symmetric firms.We show that an equilibrium offer in a node of such a network is
identical to the equilibrium offer in an isolated node where the number of symmet-
ric firms has been scaled by the market integration factor. Thus previous results
for symmetric SFE in single node networks [5][20][24][27][34] become applicable to
symmetric SFE in symmetric radial networks with transport constraints.
We focus on characterising supply function equilibrium (SFE) in radial net-

works, but we also show how our optimality conditions can be generalized to
consider meshed networks with loop flows, although the resulting models do not
simplify as in the radial case. Moreover, we describe how our conditions can be
modified to calculate SFE in networks with discriminatory pricing and Cournot
Nash equilibrium in networks with uncertain demand. Normally nodes represent
a geographical location, and with transport we normally mean that the commod-
ity is moved from one geographical location to another location. But nodes and
transports could be interpreted in a more general sense. For example, a node could
represent a point in time or a geographical location at a particular point in time.
Moreover, storage at a geographical location can be represented by arcs that allow
for transports of the commodity to a later point in time. The transport capacity
of such arcs would then correspond to the local storage capacity.
The supply function equilibrium for single node markets was originally devel-

oped by Klemperer and Meyer [27]. This equilibrium represents a generalized form
of competition in oligopoly markets, in-between the extremes of the Bertrand and
Cournot equilibrium. The setting of the SFE is particularly well-suited for markets
where producers submit offer curves to a uniform-price auction before demand has
been realized, as in wholesale electricity markets [12][20][24]. This has also been
confirmed qualitatively and quantitatively in several empirical studies of bidding
in electricity markets.4 But the SFE model is of more general interest. Klem-
perer and Meyer [27] argue that although most markets are not explicitly cleared
by uniform-price auctions, firms typically face a uniform market price and they
need predetermined decision rules for lower-level managers to deal with changing
market conditions. Thus, in general, firms implicitly commit to supply functions.
Vives [38] notes that competition in supply functions has also been used to model
bidding for government procurement contracts, management consulting and airline
pricing reservation systems.
Klemperer and Meyer’s model has only one uncertain parameter, a demand

shock. In equilibrium there is a one to one mapping between the price and shock.
Thus each firm can choose its supply function such that its output is optimal
for every realized shock. As noted by Anderson et al [6], this ex-post optimal-
ity feature is diffi cult to translate into a network with multi-dimensional demand
shocks. They investigate a two-node transmission network with both independent
and correlated demand at the nodes. Anderson et al derive formulae to repre-
sent the market distribution function for a producer when its network becomes

4Empirical studies of the electricity market in Texas (ERCOT) show that offers of the two
to three largest firms in this market match Klemperer and Meyer’s first-order condition [25][36].
Further empirical support is provided by Wolak [44] who verifies that electricity producers in
Australia choose their offers in order to maximize profits; at least observed data does not reject
this hypotehesis.
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interconnected to a previously separate grid under the assumption that the inter-
connection does not change competitors’offers.
By requiring that each firm’s offer is optimal only in expectation, the recent

paper by Wilson [42] takes a different approach, which enables him to extend
Klemperer and Meyer’s [27] model to consider the network’s influence on bidding
strategies.5 This ex-ante optimality requirement is adopted in our paper, and so
our work follows the same approach as [42]. Wilson, however, does not provide
any second-order conditions in his paper, and so his analysis of SFE is missing a
fundamental component.
Previous research has shown that second-order conditions are often violated in

a network with strategic producers. The reason is that transport constraints can
introduce nonsmoothness in a producer’s residual demand curve which becomes
discontinuously less price sensitive when net imports to its market are congested.
Thus, in a market where imports are nearly congested it will be profitable for
a producer to withhold production in order to push the price above the next
breakpoint in its residual demand curve. This type of deviation will often rule
out pure-strategy Nash equilibria.6 Borenstein et al. [14] for example rule out
Cournot NE when the transport capacity between two symmetric markets is suf-
ficiently small and demand is certain. Downward et al. [16] analyse existence of
Cournot equilibria in general networks with transport constraints. Neuhoff et al’s
[31] analysis of the northwestern European electricity market illustrates that non-
existence of Cournot NE is a problem also in practice. We verify that monotonic
solutions to our first-order conditions are Supply Function Equilibria (SFE) when
the shock density is suffi ciently evenly distributed, i.e. close to a uniform multi-
dimensional distribution. In this case the demand shocks will smooth the residual
demand curve, so that its breakpoints disappear in expectation. But existence of
SFE cannot be taken for granted. Perfectly correlated shocks or steep slopes and
discontinuities in the shock density will not smooth the residual demand curve
suffi ciently well, and then profitable deviations from the first-order solution will
exist.7

Our paper also differs from Wilson [42] in the source of randomness. In his
model, local demand is certain in all markets but one, and transmission capaci-
ties are uncertain. This simplifies the problem in an elegant way, especially for
meshed networks. Nevertheless, even if our calculations are less straightforward,
we find it important to also analyze the multi-market case with local net-demand
shocks/variations and known transmission capacities. We believe that our model

5Lin and Baldick [29] and Lin et al [30] also calculate first-order conditions for transmission
networks with supply function offers, but their model is limited to cases with certain demand.

6But Escobar and Jofre [17] show that there is normally a mixed-strategy NE in those cases.
Adler et al. [1] and Hu and Ralph [26] show that existence of pure-strategy Cournot NE depends
on the assumptions made about the rationality of the players. Hobbs et al [21] bypasses the
existence issue by using conjectural variations instead of a Nash equilibrium. Willems [41] analyse
how a network operator’s rule to allocate transmission capacity influences the Cournot NE. Wei
and Smeers [40] calculate Cournot NE in transmission networks with regulated transmission
prices. Oren [33] calculates Cournot NE in a network with transmission rights.

7Note that a discontinuity in a node’s shock density is fine as long as it occurs when transport
capacities in all arcs to the node are binding.
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is of particular relevance for markets with long-lived bids, such as PJM8, where
producers’ offers are fixed during the whole day to meet a wide range of local
demand outcomes. Also large local net-demand shocks can occur on short notice,
especially in electricity networks with significant amounts of wind power, so our
model is also relevant for markets with short lived bids.

2 The model

We shall consider markets for a single commodity that is traded over a network
consisting of M nodes that are connected by N directed transport arcs. We
assume that each pair of nodes are connected by at most one arc. The network is
connected, so that there is at least one chain of arcs between every two nodes in
the network. Thus we have that N ≥M − 1. As is standard in graph theory, the
topology of the network can be described by a node-arc incidence matrix A [11].9

This matrix A has a row for every node and a column for every arc, and ik−th
element aik defined as follows10:

aik =


−1, if arc k is oriented away from node i,

1, if arc k is oriented towards node i,
0, otherwise.

Every arc starts in one node and ends in another node, so by definition we have
that the rows of A add up to a row vector with zeros. Thus the rows are linearly
dependent. It can be shown that the incidence matrix A of a connected network
has rank M − 1 [11].
The transported quantity in arc k is represented by the variable tk which can

be positive or negative, the latter indicating a flow in the opposite direction from
the orientation of the arc. Thus the ith row of At represents the flow of the
commodity into node i from the rest of the network. Transportation is assumed
to be lossless and costless, but each arc k has a capacity Kk, so the vector t of arc
flows satisfies

−K ≤ t ≤ K. (1)

At each node i there are ni suppliers who play a simultaneous move, one shot
game. Each supplier offers a nondecreasing differentiable supply function

Qig (p) , g = 1, 2, . . . , ni,

that defines how much each firm is prepared to supply at price p. There can be
many firms in each node, but for simplicity we assume that each firm is only active

8PJM is the largest existing deregulated wholesale electricity market. Originally PJM coor-
dinated the movement of wholesale electricity in Pennsylvania, New Jersey and Maryland. Now
PJM has expanded to also cover all or parts of Delaware, Illinois, Indiana, Kentucky, Michigan,
North Carolina, Ohio, Tennessee, Virginia, West Virginia and the District of Columbia.

9This is different to Wilson [42] who describes the network with power transfer distribution
factors (PTDFs).
10Many authors adopt a different convention in which aik = 1 if arc k is oriented away from

node i.
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in one node. Non-strategic net-demand at each node i isDi(p)+εi,11 whereDi(p) is
a nonincreasing function of p and εi is a random local shock having a known proba-
bility distribution with joint density f(ε1, ε2, . . . , εM). The demand shocks are re-
alized after firms have committed to their offers. We denote the total deterministic
net-supply in each node by Si (pi) =

∑ni
g=1 Qig (pi)−Di(pi) and the vector with such

components by s(p). We also introduce Si,−g (pi) =
∑ni

h=1,h6=gQih (pi) − Di(pi),
which excludes the supply of firm g from the deterministic net-supply in node i.
We assume that there are many small price-taking traders active in the net-

work. After the demand shocks have been realized, they buy in some nodes,
transport the commodity through the network without violating its physical con-
straints, and then sell it in other nodes. The market is cleared when all profitable
feasible trades have been exhausted. Equivalently it can be assumed that the net-
work is cleared by a price-taking operator, i.e. it chooses demand and output in
each node in order to maximize the stated12 social welfare of market participants
without violating the network’s technical constraints. Similar to a uniform-price
auction, we assume that accepted offers are paid the local clearing price at their
node. In electric power networks this is called nodal pricing [15][22][35]. Hence,
for each realization ε the market will be cleared by a set of prices that defines how
much each supplier produces and what is transported through the network. The
clearing prices ensure that net-demand equals net-imports in every node, i.e.

At+ s(p) = ε. (2)

We assume that each producer is risk-neutral and chooses its supply curve in
order to maximize its expected profit. Ex-post, after demand shocks have been
realized and prices and firm’s output have been determined, the pay-off of firm g
in node i is given by:

Πig(p, q) = pq − Cig (q) , (3)

where p is the local price in node i, q is the output of the firm and Cig (q) is
the firm’s differentiable, convex and increasing production cost up to its capacity
constraint qig.
We let p be the highest realized price in the market. For networks with inelastic

demand we let p > C ′ig
(
qig
)
be a reservation price that puts a cap on the monopoly

price.
The residual demand curve of a firm is the market demand that is not met by

other firms in the industry at a given price. The slope of this curve is important
in the calculation of a firm’s optimal offer. The demand shocks are additive, so
they will not change the slope of a firm’s residual demand, as long as the same set
of arcs are congested in the cleared market. Thus similar to Wilson [42] we find
it useful to group shock outcomes for which the same set of arcs are congested
in the cleared market. If two market outcomes for different ε realizations have
exactly the same arcs with tk = −Kk and the same arcs with tk = Kk then we
say that they are in the same congestion state ω. For each congestion state, we

11Note that this is net-demand, so it is not necessarily non-negative. For example, fluctuating
wind-power from small non-strategic firms can result in negative net-demand shocks.
12The operator acts as if submitted offers reflect true marginal costs.
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denote by L(ω), B(ω), and U(ω) the sets of arcs where flows are at their lower
bound (i.e. congested in the negative direction), between their bounds or at their
upper bound, respectively.

2.1 Optimality conditions

In monopoly and Cournot markets without transport constraints the first-order
condition is:

C ′ (q) = p− q

−D′ (p) ,

i.e. the output is chosen such that the marginal cost equals the marginal revenue.
Alternatively, the same condition can be written as:

q = (p− C ′ (q)) (−D′ (p)) ,
i.e. the optimal output is proportional to the firm’s mark-up and (the absolute
value of) the slope of the demand. The condition is similar in a market with
supply function competition and no transport constraints. But in this case the
slope of firm i’s residual demand is also influenced by the slope of its competitors’
supply, Q′−i (p), i.e. [27]

qi = (p− C ′i (qi))
(
Q′−i (p)−D′ (p)

)
.

Another difference with supply functions in isolated nodes is that firm i can choose
its offer so that the output becomes optimal for every price. Thus even if there is
an additive shock in the demand, firm i can still choose its supply function such
that the resulting output is optimal for every shock realization. This property of
the supply function equilibrium is referred to as ex-post optimality.
Solving for the equilibrium in our model is more complicated than for the

standard SFE model, because there are many different vectors of shock realiza-
tions that can result in the same local price in a firm’s node. Moreover, different
transmission lines may be congested for the same price in a firm’s node. Thus the
slope of a firm’s residual demand is typically not pinned down by its nodal price,
so supply function equilibria in our setting are not ex-post optimal. Instead we
will in the next section show that firm i’s ex-ante optimal output is given by its
mark-up times the expected slope of its residual demand conditional on the firms
output. We need to condition the slope of the residual demand on firm i’s output
as congestion in the network depends on this output.
As in Anderson and Philpott [4], we use the market distribution function

ψig(p, q) to characterize the uncertainty in the residual demand curve of firm g in
node i. For given offers of the competitors this function returns the probability
that an offer (p, q) from the firm is rejected.13 The expected pay-off is given by
the line-integral [4]:

13Note that the market distribution function is analogous to Wilson’s [43] probability distribu-
tion of the market price, which returns acceptance probabilities for offers. The main contribution
of Anderson and Philpott’s analysis is that it provides a global second-order condition for opti-
mality.
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∫
Qig(p)

Πig(p, q)dψig(p, q). (4)

Thus, for any offer curve Qig (p), the market distribution function contains all
information of the residual demand that a firm needs to calculate its expected
profit. It does not matter whether the rejection probability is driven by properties
of the demand, competitors’offers or the network. As long as the firm’s accepted
offers are paid a (local) uniform-price, we can still apply Anderson and Philpott’s
optimality condition. We define

Z (p, q) =
∂Πig

∂q

∂ψig
∂p
−
∂ψig
∂q

∂Πig

∂p
=
(
p− C ′ig(q)

) ∂ψig
∂p
− q

∂ψig
∂q

. (5)

It can be shown that an offer curve Qig(p) is globally optimal if it satisfies [4]:
Z (p, q) ≥ 0 if q < Qig(p)
Z (p, q) = 0 if q = Qig(p)
Z (p, q) ≤ 0 if q > Qig(p).

(6)

Intuitively we can explain the first-order condition Z (p, q) = 0 as follows. The
same market distribution function (rejection probability) can be generated by
different randomizations of the residual demand curve. In particular the same
market distribution function can be generated by randomizing over crossing or
non-crossing residual demand curves. Still, it follows from (4) that as long as
the market distribution function is the same, expected profits and the optimal
offer for firm g do not change. Thus, even if our randomization is different, we
can simplify the derivation of first- and second-order conditions by considering a
simpler equivalent case, where ψig (p, q) has been generated by a randomization
over non-crossing residual demand curves forming the contours of ψig (p, q). In this
case, it is obvious that the expected profit of firm g in node i is globally maximized
if the payoff is globally optimized for each outcome of its residual demand curve,
i.e. the offer is ex-post optimal. Thus it follows from the equivalence argument
that the expected profit of firm g in node i is globally maximized if the payoff
is globally optimized for each contour of ψig (p, q) irrespective of how the market
distribution function was generated. A necessary condition for this is that the
supply curve Qig (p) crosses each contour of ψig (p, q) at a point where the latter
is tangent to the firm’s isoprofit line. This is illustrated in Figure 1.
Hence, the following conditions must be satisfied at every point along the

optimal supply curve.

dq

dp

∣∣∣∣
ψig(p,q)=const

=
dq

dp

∣∣∣∣
Πig(p,q)=const

. (7)

From (3) we have

dq

dp

∣∣∣∣
Πig(p,q)=const

= −
∂Πig
∂p

∂Πig
∂q

∣∣∣∣∣
Πig(p,q)=const

= − q
p−C′ig(q)

. (8)
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q

p

Figure 1: Contours of ψig(q, p) (thin) and isoprofit lines for πig(q, p) (dashed).
The optimal curve q = Qig(p) (solid) passes through the points where these curves
have the same slope.

Similarly,

dq

dp

∣∣∣∣
ψig(p,q)=const

= −
∂ψig
∂p

∂ψig
∂q

∣∣∣∣∣
ψig(p,q)=const

. (9)

Now (7), (8) and (9) together imply that

∂ψig
∂p

∂ψig
∂q

=

∂Πig
∂p

∂Πig
∂q

= q
p−C′ig(q)

, (10)

which is identical to the first-order condition given by (5) and Z (p, q) = 0. The
global second-order condition in (6) ensures that profits increase to the right of
each contour of ψig (p, q).
In order to apply the first- and second-order conditions we need to calculate the

derivatives
∂ψig
∂p

and
∂ψig
∂q
, which depend on competitors’offers, the joint density

f(ε1, ε2, . . . , εM) and the properties of the network. In the next section we calculate
these derivatives for radial networks.

3 Radial networks

We begin our analysis by focusing on radial networks (i.e. trees with M nodes
and N = M − 1 arcs forming an acyclic connected graph). The generalization to
meshed networks with N > M − 1 is presented in Section 4. In radial networks
there is a unique transport route between any two nodes in the network. Thus
network flows are straightforwardly determined by net-supply in the nodes, which
simplifies the clearing process of the market.

We start this section by exploring some special properties of the node-arc
incidence matrix A for a radial network. Let Ai be row i of matrix A, and let

9



A−i be matrix A with row i eliminated. For connected radial networks, it can be
shown that A−i is non-singular with determinant +1 or -1 [10]. We also have the
following technical results.

Lemma 1 Suppose A is the node-arc incidence matrix for a radial network with
M nodes. If j < M then detA−j = − detA−(j+1)

Proof. Introduce a new matrix Z which is identical to A−j, except that row
j of A−j, which is equal to Aj+1, has been replaced by the sum of all rows in
A−j. Such manipulations are allowed without changing the determinant [37], so
det (Z) = detA−j. Node-arc incidence matrices are such that the sum of all rows
in A−j is equal to −Aj (row j of A). Thus Z is identical to A−(j+1) except that
elements have opposite signs in row j. In the calculation of the determinants we
can expand them along row j of both Z and A−(j+1), which gives the stated result
[37].

By applying Lemma 1 |k − j| times we get the following result.

Corollary 2 If A is the node-arc incidence matrix for a radial network then
(−1)j detA−j = (−1)k detA−k

Next we analyse the market clearing conditions for radial networks. We define
ρ to be the vector of non-negative shadow prices (one for each arc) for flows in the
positive direction. Similarly, we define σ to be the vector of non-negative shadow
prices (one for each arc) for flows in the negative direction. Hence, the market
clearing conditions for a radial network are14

A>p = ρ− σ
0 ≤ ρ ⊥ K− t ≥ 0
0 ≤ σ ⊥ K+ t ≥ 0
At+ s(p) = ε.

(11)

The first condition states that the shadow price for the arc gives the difference in
nodal prices between the endpoints. The second and third set of conditions are
called complementary slackness. They imply that the shadow price of an arc can
only be strictly positive if the arc is congested in the direction associated with the
shadow price. Hence, if two nodes are connected by a congested arc then the price
at the importing end will be at least as large as the price in the exporting end,
which ensures that there are no feasible profitable arbitrage trades in the radial
network. Another implication of the complementary slackness conditions is that
nodes connected by uncongested arcs will form a zone with the same market price.
We say that such nodes are completely integrated. The fourth condition ensures
that net-demand equals net-imports in every node.
Recall that for a given ω, L(ω), B(ω), and U(ω) are the sets of arcs where

flows are at their lower bound (i.e. congested in the negative direction), between

14We derive these Karush-Kuhn-Tucker conditions formally for more general cases in Section
4.
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their bounds or at their upper bound, respectively. Thus we realize that the
complementary slackness conditions can be equivalently written as follows:

tk = Kk, σk = 0, ρk ≥ 0, k ∈ U(ω),
tk ∈ (−Kk, Kk) σk = 0, ρk = 0, k ∈ B(ω),
tk = −Kk, σk ≥ 0, ρk = 0, k ∈ L(ω).

Observe that given a congestion state ω and arc k, there is at most one variable
tk, ρk or σk that is not at a bound.
As in Wilson [42], we choose an arbitrary node i to be a “trading hub”with

nodal price p. In the following we will express the other nodal prices p−i in terms
of p and the shadow prices. Let 1M−1 be a column vector ofM −1 ones and 0M−1

be a column vector of M − 1 zeros. We know that the columns of AT sum to a
column vector of zeros. Hence,(

A−i
)T
1M−1 +AT

i = 0M−1((
A−i

)T)−1

AT
i = −1M−1.

Using this result, we can write the market clearing condition A>p = ρ− σ as
follows: (

A−i
)T
p−i+pA

T
i = ρ− σ

p−i =
((
A−i

)T)−1 (
ρ− σ−pAT

i

)
p−i = p1M−1 +

((
A−i

)T)−1

(ρ− σ) .

(12)

To simplify this further we introduce

E =
((
A−i

)T)−1

We partition t, A, E and the shadow prices σ and ρ into (tL, tB, tU), (AL, AB,
AU), (EL, EB, EU), (σL, 0B, 0U) and (0L, 0B, ρU) corresponding to flows at their
upper bounds, strictly between their bounds, and at their lower bounds. Now (12)
can be written as follows:

p−i = p1M−1 + EU(ω)ρU(ω) − EL(ω)σL(ω). (13)

For any index set Υ of columns of A (or equivalently any set Υ of arcs) we will
find it useful to define the volume that feasible flows and shadow prices associated
with arcs in Υ can span. Thus we define the sets

T (Υ) = {tΥ | −KΥ ≤ tΥ ≤ KΥ},
U(Υ) = {ρΥ | 0 ≤ ρΥ},
L(Υ) = {σΥ | 0 ≤ σΥ},

(14)

where tΥ, ρΥ, σΥ, and KΥ are the vectors of components of t, ρ, σ and K
corresponding to Υ. In particular we are interested in S(ω) ⊆ RM−1, which we
define by

S(ω) = L(L(ω))× U(U(ω))× T (B(ω)). (15)
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As defined in (14), L(L(ω)) and U(U(ω)) are the volumes in σ and ρ space
spanned by the shadow prices of congested transmission lines for a congestion
state ω. T (B(ω)) is the volume in t space that is spanned by flows in uncongested
lines in the state. Hence, S(ω) is the total volume in t, σ and ρ space that is
spanned for a congestion state ω.

3.1 Optimality conditions for radial networks

In order to apply the optimality conditions in (5) and (6), we need to derive the
market distribution function ψig (q, p). It is the probability that an offer q at price
p from firm g in node i is rejected. Thus the calculation of this function involves
determining a market outcome for every realization of the vector ε, and then
integrating the density function f over the volume in ε-space that corresponds
to firm g’s offer not being fully accepted. In the general case this volume is
complicated and it is even more complicated to differentiate ψig (q, p) (we need
such derivatives in our optimality conditions) if one follows this direct approach.
Like Wilson [42], we avoid this by transforming the problem into one where we
instead integrate over the flows and shadow prices that arise in each congestion
state. In the following we take supply functions Qjh (p) of the competitors as given
and we want to calculate the best response of firm i in node g. For notational
convenience we let node i, the node under study, be the trading hub with price
p. The trading hub is moved when optimality conditions are derived for a firm in
another node.
When calculating

∂ψi,g(p,q)

∂p
we keep the output of firm g fixed while the price p

at node i is free to change. Thus we set

Qjh (p) =

{
q, j = i, h = g
Qjh (p) , otherwise ,

(16)

i.e. firm g in node i submits a Cournot offer. For any price p in node i, and
shadow prices ρU(ω) and σL(ω) we denote by p(p,ρ,σ) the vector of nodal prices
defined by (13), and by s(p(p,ρ,σ)) the corresponding vector of net-supply at
the nodes including Qjh (p) defined by (16), where we choose to suppress the
dependence on ω for notational convenience. We want to transform the volume
in ε−space into a corresponding volume in t, σ and ρ space for variables that
are not at a bound. To make this substitution of variables when computing the
multi-dimensional integral, we need the following factor to represent the change
in measure [8, p. 368].

Jp(ω) =

∣∣∣∣∣ ∂ε

∂
(
tB(ω),ρU(ω),σL(ω),π

)∣∣∣∣∣ , (17)

the absolute value of the determinant of the Jacobian matrix representing the
change of variables. Thus the rejection probability, i.e. the probability that the
market clearing price π at node i is less than p can be calculated from

ψi,g (p, q) =
∑
ω

∫ p

π=−∞

∫
S(ω)

f (At+ s(p(π,ρ,σ))) Jp(ω)dtB(ω)dρU(ω)dσL(ω)dπ,

(18)

12



where S(ω) is defined in (15). It is now straightforward to show that:

∂ψi,g (p, q)

∂p
=
∑
ω

∫
S(ω)

f (At+ s (p(p,ρ,σ))) Jp(ω)dtB(ω)dρU(ω)dσL(ω). (19)

When calculating
∂ψi,g(p,q)

∂q
we keep p fixed in node i, while r, the output of firm

g is free to change. Thus producer g makes a Bertrand offer at p. To compute this
derivative, we define s (p(p,ρ,σ),r) to be the (vector) net-supply function with
jth component {

r +
∑ni

h=1,h6=g Sih (p)−Di(p), j = i,∑nj
h=1 Sjh (pj)−Dj(pj), j 6= i.

(20)

In this case the substitution factor is given by:

Jq(ω) =

∣∣∣∣∣ ∂ε

∂
(
tB(ω),ρU(ω),σL(ω),r

)∣∣∣∣∣ . (21)

Thus the rejection probability, i.e. the probability that the market clearing quan-
tity r for generator g at node i is less than q can be calculated from

ψi,g (p, q) =
∑
ω

∫ q

r=−∞

∫
S(ω)

f (At+ s (p(p,ρ,σ), r)) Jq(ω)dtB(ω)dρU(ω)dσL(ω)dr

(22)
and

∂ψi,g (p, q)

∂q
=
∑
ω

∫
S(ω)

f (At+ s (p(p,ρU ,σL), q)) Jq(ω)dtB(ω)dρU(ω)dσL(ω).

(23)
Next we want to derive explicit expressions for Jp(ω) and Jq(ω). We start by

introducing some new notation. For each state ω we partition the nodes into the
sets Ξ (ω) and z (ω). Ξ (ω) includes all nodes that are completely integrated with
node i, the arbitrarily picked trading hub, through some uncongested chain of arcs.
The set z (ω) contains all other nodes in the network. Similarly we partition the
shock vector into εΞ(ω) and εz(ω).
Given a state ω, the price in node i and all nodes j ∈ Ξ (ω) is π (irrespective

of ρU(ω) and σL(ω)). Thus it follows from (2) and (16) that

∂εj
∂ρk

= s′j (pj)
∂pj
∂ρk

= 0, if j ∈ Ξ (ω) and k ∈ U (ω) (24)

∂εj
∂σk

= s′j (pj)
∂pj
∂σk

= 0, if j ∈ Ξ (ω) and k ∈ L (ω) (25)

∂εj
∂π

=

{
S ′j (π) if j ∈ Ξ (ω) \i
S ′j,−g (π) if j = i.

(26)

The arcs are partitioned as follows. We let tΞ(ω) be the flows in the uncongested
arcs between nodes in the set Ξ (ω) and we let tz(ω) be the vector of flows in the
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other arcs. In particular, the vector tzB(ω) denotes uncongested flows in the other
arcs. Here MΞ(ω) is the number of nodes in Ξ (ω) and we note that they must
be connected by MΞ(ω) − 1 arcs. We use the node-arc incidence matrix AΞ(ω) to
describe the connected radial network with nodes in Ξ (ω) and arcs with flows
tΞ(ω) connecting nodes in this set. We let Az(ω) be a node-arc incidence matrix
with M −MΞ(ω) rows/nodes and M −MΞ(ω) columns/arcs, describing the rest of
the network. 15 Using this notation, the nodal flow balance in (2) can be written
as follows:

AΞ(ω)tΞ(ω) + sΞ(ω)(p) = εΞ(ω)

Az(ω)tz(ω) + sz(ω)(p) = εz(ω).

Thus

∂
(
εΞ(ω)

)
k

∂
(
tΞ(ω)

)
j

=
(
AΞ(ω)

)
kj

(27)

∂
(
εΞ(ω)

)
k

∂
(
tzB(ω)

)
j

= 0 (28)

and

∂
(
εz(ω)

)
k

∂
(
tz(ω)

)
j

=
(
Az(ω)

)
kj

(29)

∂
(
εz(ω)

)
k

∂
(
tΞ(ω)

)
j

= 0. (30)

We can now show the following:

Lemma 3 Jp(ω) =
(
S ′i,−g (π) +

∑
k∈Ξ(ω)\i S

′
k (π)

)
Jz(ω), where

Jz(ω) =

∣∣∣∣∣ ∂εz(ω)

∂(tzB(ω),ρU(ω),σL(ω))

∣∣∣∣∣ . (31)

Proof. From (24)-(30) we realize that

∂ε

∂
(
tB(ω),ρU(ω),σL(ω),π

) =

 AΞ(ω) 0
∂εΞ(ω)

∂π

0 ∂ε

∂
(
tz
B(ω)

,ρU(ω),σL(ω)

) ∂εz(ω)

∂π

 (32)

Let

B =

[
AΞ(ω) 0
0 ∂ε

∂
(
tz
B(ω)

,ρU(ω),σL(ω)

)
]
. (33)

15Note that the remainder of the network has at least one arc that is lacking its start or end
node. Also the remainder of the network is not necessarily connected.
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When calculating Jp(ω), we will expand the determinant along the Mth column
in (32) with entries ∂εk

∂π
giving the net-supply slopes as shown in (26). It follows

from the definition of the determinant that [37]:

Jp(ω) =

∣∣∣∣∣(−1)i+M S ′i,−g (π) det (B−i) +
∑
k 6=i

(−1)k+M S ′k (π) det (B−k)

∣∣∣∣∣ .
AΞ(ω) is the node arc incidence matrix of a connected radial network. This matrix
has linearly dependent rows and has rank MΞ(ω) − 1. Thus it follows from (33)
that det (B−k) = 0 if k ∈ z(ω). If k ∈ Ξ(ω) then B−k is a block matrix with

determinant
∣∣∣(AΞ(ω)

)
−k

∣∣∣ Jz(ω). Thus Jp(ω) can be written as

Jz(ω)
∣∣∣(−1)i+M S ′i,−g (π) det

(
AΞ(ω)

)
−i +

∑
k∈Ξ(ω)\i (−1)k+M S ′k (π) det

(
AΞ(ω)

)
−k

∣∣∣
= Jz(ω)

(
S ′i,−g (π) +

∑
k∈Ξ(ω)\i S

′
k (π)

) ∣∣∣(−1)MΞ(ω) det
(
AΞ(ω)

)
−i

∣∣∣
by Corollary 2 and the monotonicity of net-supply functions. Now, since AΞ(ω) is
the node-arc incidence matrix of a connected radial network, it follows from Bapat
[10] (p. 13) that

∣∣∣(−1)MΞ(ω) det
(
AΞ(ω)

)
−j

∣∣∣ is 1.

We now show that Jz(ω) =

∣∣∣∣ ∂εz(ω)

∂(tz
B(ω)

,ρU(ω),σL(ω))

∣∣∣∣ can be calculated from the

following result.

Lemma 4 Row k of the Jacobian matrix
∂εz(ω)

∂
(
tz
B(ω)

,ρU(ω),σL(ω)

) can be constructed as
follows for the state ω: ∂εz(ω)

∂
(
tzB(ω),ρU(ω),σL(ω)

)

k

=
[ (
AB(ω)

)
k
S ′k (pk)

(
EU(ω)

)
k
−S ′k (pk)

(
EL(ω)

)
k

]
(34)

for k ∈ z (ω).

Proof. We partition the columns of Az(ω) into Az
L(ω), A

z
B(ω) and A

z
U(ω), cor-

responding to flows tz being at their lower bounds, strictly between their bounds,
and at their upper bounds. Thus the flow balance in (2) can be written as follows

Az
B(ω)t

z
B(ω) +Az

U(ω)tU(ω) +Az
L(ω)tL(ω)+sz(ω) (p) = εz(ω). (35)

Observe that (13) implies that

∂εzk
∂ρj

=
∂εzk
∂pk

∂pk
∂ρj

= S ′k (pk)
(
EU(ω)

)
kj

and
∂εzk
∂σj

=
∂εzk
∂pk

∂pk
∂σj

= −S ′k (pk)
(
EL(ω)

)
kj

which gives the result.
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Lemma 5 Jq(ω) = Jz(ω).

Proof. We have from (2) and (20) that

∂εk
∂r

=

{
0 if k 6= i
1 if k = i.

Similar to (32) we have

∂ε

∂
(
tB(ω),ρU(ω),σL(ω),r

) =

 AΞ(ω) 0
∂εΞ(ω)

∂r

0 ∂ε

∂
(
tz
B(ω)

,ρU(ω),σL(ω)

) ∂εz(ω)

∂r

 . (36)

As in the proof of Lemma 3, we expand the determinant

∣∣∣∣ ∂ε

∂(tB(ω),ρU(ω),σL(ω),r)

∣∣∣∣ along
the Mth column, which has zeros in rows k 6= i and a one in row i. We use the
definition of B in (33), so it follows from the definition of the determinant that
[37]:

Jq(ω) =
∣∣∣(−1)i+M det (B−i)

∣∣∣ = |det (B−i)|

=
∣∣∣(AΞ(ω)

)
−i

∣∣∣ Jz(ω)

because B−i is a block matrix with determinant
∣∣∣(AΞ(ω)

)
−k

∣∣∣ Jz(ω). AΞ(ω) is a
node-arc incidence matrix of a connected radial network. Thus it follows from
Bapat [10] (p. 13) that

∣∣∣det
(
AΞ(ω)

)
−i

∣∣∣ is 1, which gives the stated result.
The following can be shown from our results in Lemmas 3 and 5.

Proposition 6 In a radial network, the optimal output q of firm g at price p in
node i can be determined from the following Z function:

Z =
(
p− C ′ig(q)

)∑
ω

S ′i,−g (p) +
∑

k∈Ξ(ω)\i

S ′k (p)

P (p, q, ω)− q
∑
ω

P (p, q, ω)

(37)
where

P (p, q, ω) =
∫
S(ω)

f (At+ s (p(p,ρ,σ))) Jz(ω)dtB(ω)dρU(ω)dσL(ω). (38)

Proof. First we substitute results in Lemma 3 and Lemma 5 into (19) and
(23). Next, we get (37) and (38) by substituting (19) and (23) into (5).
Observe that P (p, q, ω) is a probability density in the sense that P (p, q, ω) dq

is the probability that g is dispatched in the interval (q, q+dq) and the congestion
state is ω given that the clearing price is p. The term

∑
ω P (p, q, ω) is then the

probability that g is dispatched in the interval (q, q + dq) given that the clearing
price is p. The first-order optimality condition is given by Z (p, q) = 0, so it
immediately follows from (37) that:
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Corollary 7 The optimal output q of firm g in node i at price p satisfies the
first-order condition:

q =
(
p− C ′ig(q)

)∑
ω

S ′i,−g (p) +
∑

k∈Ξ(ω)\i

S ′k (p)

P (ω|p, q) ,

where

P ($|p, q) :=

∫
S($)

f (At+ s (p(p,ρ,σ))) Jz($)dtB(ω̄)dρU(ω̄)dσL(ω̄)∑
ω

∫
S(ω)

f (At+ s (p(p,ρ,σ))) Jz(ω)dtB(ω̄)dρU(ω̄)dσL(ω̄)

is the conditional probability that the network is in state $ given that the price in
node i is p and firm g has output q.

Recall that in a single-node network, the optimal output of a producer is
proportional to its mark-up and the slope of the residual demand that it is facing
[27]. In a network with multiple connected nodes, producer g in node i only faces
the slope of the net-supply in nodes that are completely integrated with its own
node. Thus according to Corollary 7, the slope of net-supply in each other node is
scaled by the conditional probability that this node is completely integrated with
node i. Hence, for multi-dimensional shocks, Klemperer and Meyer’s condition
generalizes to saying that the optimal output of a producer is proportional to its
mark-up and the expected slope of the residual demand that it is facing. This
first-order condition is consistent with Wilson’s results [42]. We notice that in
case all transmission-lines have unlimited capacities, we get the Klemperer and
Meyer condition for a completely integrated network. The other extreme when
all transmission-lines have zero capacity, yields the Klemperer-Meyer equation for
the isolated node i.

Definition 8 For firm g in node i we define the market integration factor by

µig (p, q) =
∑
ω

MΞ(ω)P (ω|p, q) .

Thus, the market integration factor is equal to the expected number of nodes
(including node i itself) that are completely integrated with node i given that
firm g has output q and node i has the market price p. As we will see in the next
section, this factor is useful when characterizing SFE in symmetric networks.

3.2 Examples

By means of Corollary 7 we are able to construct a first-order condition for each
firm in the radial network. The supply function equilibrium (SFE) can be solved
from a system of such first-order conditions. The global second-order condition
of an available first-order solution can be verified by (6). In this section we use
these optimality conditions to derive SFE for two-node and star networks with
symmetric firms.
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3.2.1 Two node network

Consider a simple network with two nodes connected by one transmission-line from
node 1 to node 2 with flow t1 ∈ [−K1, K1]. We derive the optimality condition for
a firm in node 1, and pick node 1 as being the trading hub with price p. Below we
list the congestion states of the network and how we partition the nodes for each
state:

State t1 ρ1 σ1 Ξ z
ω1 ∈ (−K1, K1) 0 0 {1, 2} ∅
ω2 K1 ∈ [0,∞) 0 {1} {2}
ω3 −K1 0 ∈ [0,∞) {1} {2} .

We have from (2) that [
ε1

ε2

]
=

[
S1 (p1)
S2 (p2)

]
︸ ︷︷ ︸

s(p)

+

[
−1
1

]
︸ ︷︷ ︸

A

t1. (39)

It can be shown that:

Lemma 9 In a two-node network, firm g’s optimality condition in node 1 is given
by:

Z(q, p) = (p− C ′ig(q))(S ′j(p) + S ′i,−g (p))P (p, q, ω1)
+(p− C ′ig(q))S ′i,−g (p) (P (p, q, ω2) + P (p, q, ω3))
−q(P (p, q, ω1) + P (p, q, ω2) + P (p, q, ω3)) = 0,

(40)

where
P (p, q, ω1) =

∫ K1

−K1
f (q + S1,−g (p)− t1, S2 (p) + t1) dt1

P (p, q, ω2) =
∫∞
S2(p)+K1

f (q + S1,−g (p)−K1, ε2) dε2

P (p, q, ω3) =
∫ S2(p)−K1

−∞ f (q + S1,−g (p) +K1, ε2) dε2.

(41)

Proof. We have from (39) that

A−1 = 1 = (A−1)T =
(

(A−1)T
)−1

= E.

We set p1 = π, so it follows from (12) that

p2 = π + ρ1 − σ1. (42)

We also have:
State Az

B EzU EzL
ω1 ∅ ∅ ∅
ω2 ∅ 1 ∅
ω3 ∅ ∅ 1
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The network is completely integrated in state ω1, so εz(ω1) is empty. We only need
the substitution factor Jz(ω) for states ω2 and ω3. It follows from (34) and (42)
that

Jz(ω2) =

∣∣∣∣ ∂εz(ω2)

∂(ρU(ω2))

∣∣∣∣ = S ′2 (p2) = S ′2 (π + ρ1)

Jz(ω3) =

∣∣∣∣ ∂εz(ω3)

∂(σL(ω3))

∣∣∣∣ = |−S ′2 (p2)| = S ′2 (π − σ1) .

(38) now yields:

P (p, q, ω1) =

∫ K1

−K1

f (At1+s (p)) dt1 =

∫ K1

−K1

f (q + S1,−g (p)− t1, S2 (p) + t1) dt1,

P (p, q, ω2) =
∫∞

0
f (At1+s (p)) Jz(ω2)dρ1

=
∫∞

0
f (q + S1,−g (p)−K1, S2 (p+ ρ1) +K1)S ′2 (p+ ρ1) dρ1

and
P (p, q, ω3) =

∫∞
0
f (At1+s (p)) Jz(ω3)dσ1

=
∫∞

0
f (q + S1,−g (p) +K1, S2 (p− σ1)−K1)S ′2 (p− σ1) dσ1.

This gives us (41) after the substitutions ε2 = S2 (p+ ρ1)+K1 and ε2 = S2 (p− σ1)−
K1, respectively, have been applied to the two integrals. The equation (40) follows
from (37) and that the two nodes are only completely integrated in state ω1. Fig-
ure 2 gives a geometric view of the probabilities in (41) for the special case when
S1,−g(p) = 0.

Figure 2: Computation of P (p, q, ω) when S1,−g(p) = 0. The probability mass
in the shaded area is equal to the rejection probability ψ1,g(q, p). The values of
P (p, q, ω) are integrals along the right-hand boundary of this region as shown.

It follows from Corollary 7 that

Q1g = (p− C ′(Q1g))
(
S ′1,−g (p) + P (ω1|p,Q1g)S

′
2(p)

)
, (43)

where S ′1,−g (p) is the slope of the net-supply from competitors and demand in
node 1, and S ′2(p) is the slope of net-supply in node 2.
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Below we consider symmetric NE for symmetric firms and symmetric shock
densities. The existence of an equilibrium depends on the partial derivatives
fi (ε1, ε2), i = 1, 2, of the shock density which must be suffi ciently small. It
can be shown that symmetric solutions to (43) are equilibria under the following
circumstances.

Proposition 10 Consider a two-node network with n symmetric firms in each
node, each firm having identical marginal costs that are either constant or strictly
increasing. If demand is inelastic up to a price cap p > C ′(q), and has a bounded
shock density that satisfies 2nq |fi (ε1, ε2)| ≤ (3n− 2) f (ε1, ε2) when (ε1, ε2) ∈
[−K1, q +K1] × [−K1, q +K1] : {ε1 + ε2 ≤ 2q}, then there exists a unique sym-
metric supply function equilibrium in the network, where each firm’s monotonic
offer, Q (p), can be calculated from:

Q′(p) = (P (p,Q,ω1)+P (p,Q,ω2)+P (p,Q,ω3))Q
(p−C′(Q))((2n−1)P (p,Q,ω1)+(n−1)P (p,Q,ω2)+(n−1)P (p,Q,ω3)) (44)

for p ∈ (C ′ (0) , p] with the initial condition Q (p) = q.

Proof. The differential equation in the statement follows from (43), inelastic
demand and symmetry of the network. Moreover, the equilibrium is symmetric,
so that S2 (p) = nQ (p) and S1,−g (p) = (n− 1)Q (p). In case that production
capacity binds at some price pb < p then Q(p) is inelastic in the range (pb, p),
and it follows from (40) that Z(q, p) < 0 when q < q and p ∈ (pb, p), which would
violate the second-order condition in (6). Thus the production capacity must bind
at the price cap, which gives our initial condition.
We first show that the solution is unique. To simplify notation let

α(p,Q) = P (p,Q, ω1) + P (p,Q, ω2) + P (p,Q, ω3) , (45)

β(p,Q) = (2n− 1)P (p,Q, ω1) + (n− 1)P (p,Q, ω2) + (n− 1)P (p,Q, ω3) .(46)

It follows from the assumptions for f (ε1, ε2) and our definitions of P (p,Q, ω1),
P (p,Q, ω2) and P (p,Q, ω3) in (41) that

α(p,Q(p))

β(p,Q(p))
> 0

is continuous in p and Lipschitz continuous in q. Consider a price p̃ ∈ (C ′ (0) , p).
We now want to show that p− C ′(Q (p)) is bounded away from zero in the range
[p̃, p]. This is obvious for constant marginal costs, as we then have that p̃ −
C ′ (Q (p̃)) = p̃− C ′ (0) > 0. For strictly increasing marginal costs we can use the
following argument. It follows from Picard-Lindelöf’s theorem and p > C ′(q) that
a unique solution to (44) must exist for some range [p0, p]. In this price range the
mark-up, p− C ′(Q (p)), is smallest at some price p∗ where the supply function is
at least as steep as the marginal cost curve, i.e. Q′(p∗) ≤ 1

C′′(Q(p∗)) . Thus it follows
from (44) that

p∗ − C ′(Q(p∗)) ≥ Q(p∗)C′′(Q(p∗))α(p∗,Q(p∗))
β(p∗,Q(p∗)) ,
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which is bounded away from zero whenever Q(p∗) and C ′′ (Q(p∗)) are bounded
away from zero. In case Q(p∗) = 0 for some price p∗ > C ′ (0), it follows from (44)
that Q′(p) = 0 for p ∈ (p̃, p∗). Thus it follows from Picard-Lindelöf’s theorem and
the properties of (44) that a unique monotonic symmetric solution will exist for
the price interval [p̃, p].
We now verify the global second order conditions. We know from (6) that the

solution is an equilibrium if Z(q, p) ≥ 0 when q ≤ Q (p) and Z(q, p) ≤ 0 when
q ≥ Q (p). We have from (40) that

Z(q, p) = (p− C ′(q))β(p, q)Q′ (p)− qα(p, q).

As β(p,Q(p)) ≥ 0 we can equivalently verify that

X(q, p) ≡ Z(q, p)

β(p, q)
≡ (p− C ′(q))Q′ (p)− α(p, q)

β(p, q)
q

is non-increasing with respect to q. This follows since Xq(q, p) ≤ 0 implies that
Zq(q, p) ≤ 0 whenever Z(q, p) = 0. Since Z(Q (p) , p) = 0, we must have Z(q, p) ≥
0 when q ≤ Q (p) and Z(q, p) ≤ 0 when q ≥ Q (p).
As C ′′ ≥ 0, demand is inelastic, and Q′(p) ≥ 0, the contribution from the first

term of Xq (when we differentiate C ′(q)) is non-positive and we can conclude that

Xq ≤ −
d

dq

(
α(p, q)

β(p, q)
q

)
= −

β(p, q)(α(p, q) + qαq(p, q))− qα(p, q)βq(p, q)

β2(p, q)

To show that Xq ≤ 0, it suffi ces to show that

β(p, q)α(p, q) + qβ(p, q)αq(p, q)− qα(p, q)βq(p, q) ≥ 0. (47)

To show this observe that the assumption

2nq |fi (ε1, ε2)| ≤ (3n− 2) f (ε1, ε2)

implies from (41) that

2nq |Pq (p, q, ω1)| = 2nq

∣∣∣∣∫ K1

−K1

∂

∂q
f (q + S1,−g (p)− t1, S2 (p) + t1) dt1

∣∣∣∣
≤ 2nq

∣∣∣∣∫ K1

−K1

∂

∂q
f (q + S1,−g (p)− t1, S2 (p) + t1) dt1

∣∣∣∣
≤

∫ K1

−K1

2nq |f1 (q + S1,−g (p)− t1, S2 (p) + t1)| dt1

≤ (3n− 2)

∫ K1

−K1

f (q + S1,−g (p)− t1, S2 (p) + t1) dt1

= (3n− 2)P (p, q, ω1) .
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Similarly 2nq |Pq (p, q, ω3)| ≤ (3n− 2)P (p, q, ω3) and 2nq |Pq (p, q, ω2)| ≤ (3n− 2)P (p, q, ω2).
It follows that

qβ(p, q)αq(p, q)− qα(p, q)βq(p, q)

= qn (P (p, q, ω1) (Pq(p, q, ω2) + Pq (p, q, ω3))− qnPq (p, q, ω1) (P (p, q, ω2) + P (p, q, ω3)))

≥ qn

(
2− 3n

2nq
P (p, q, ω1) (P (p, q, ω2) + P (p, q, ω3))

)
−qn

(
3n− 2

2nq
P (p, q, ω1) (P (p, q, ω2) + P (p, q, ω3))

)
= (2− 3n)P (p, q, ω1) (P (p, q, ω2) + P (p, q, ω3))

It follows from (45) and (46) that

β(p, q)α(p, q) ≥ (3n− 2)P (p, q, ω1) (P (p, q, ω2) + P (p, q, ω3)).

Thus (47) is satisfied and thus Xq ≤ 0, which is suffi cient for an equilibrium.
In the next step we will explicitly solve for symmetric SFE in the two-node

network. To simplify the optimality conditions we consider the case where demand
shocks follow a uniform multi-dimensional distribution.
Assumption 1: Consider a network with two nodes connected by a transmission-

line with capacity K1 and with n symmetric firms in each node. Demand in
each node is given by εi + D (p). Without loss of generality we let D (C ′(0)) =
0.16 We assume that shocks are uniformly distributed with a constant density,
1
V1
, on the surface (ε1, ε2) ∈ [−K1, nq −D (p) +K1] × [−K1, nq −D (p) +K1] :
{0 ≤ ε1 + ε2 ≤ 2nq − 2D (p)} and zero elsewhere.

Proposition 11 Make Assumption 1, then the symmetric first-order condition
for firm i in node g is given by:

Q = (p− C ′(Q)) ((µn− 1)Q′ − µD′) , (48)

where the market integration factor is given by

µ = 1 + P (ω1|p, q) =
4K1 + nq −D (p)

2K1 + nq −D (p)
. (49)

For inelastic demand, solutions to (48) are SFE, and the inverse symmetric supply
functions can be calculated from:

p (Q) = Q−1 (Q) =
pQµn−1

qµn−1 + (µn− 1)Qµn−1

∫ q

Q

C ′ (u) du

uµn
. (50)

For linear demand εi + a− bpi, a, b > 0, in each node and constant marginal costs
c, solutions to (48) are SFE and given by:

Q (p) =
b (p− c)
(µn−2)

(
(µn−1)

(
p− c
p− c

)(µn−2)/(µn−1)

− 1

)
, (51)

where p = q
µb
.

16Note that this is just a normalization of the demand shock.
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Proof. It follows from the definitions of P (p, q, ω1), P (p, q, ω2) and P (p, q, ω3)
in (41) that under Assumption 1 we get:

P (p, q, ω3) =
S2(p)−K1∫
−∞

f (q + S1,−g (p) +K1, ε2) dε2 =
S2(p)−K1∫

−K1−D(C′(0))

dε2
V1

= S2(p)
V1

P (p, q, ω2) =
∞∫

S2(p)+K1

f (q + S1,−g (p)−K1, ε2) dε2 =
nq−D(p)+K1∫
S2(p)+K1

dε2
V1

= nq−D(p)−S2(p)
V1

P (p, q, ω1) =
K1∫
−K1

f (q + S1,−g (p)− t1, S2 (p) + t1) dt1 =
K1∫
−K1

dt1
V1

= 2K1

V1
.

(52)
Thus

P (ω1|p, q) =
P (p, q, ω1)∑
ω P (p, q, ω)

=
2K1

nq −D (p) + 2K1

. (53)

Now, by substituting S2 (p) = nQ (p)−D (p) and S1,−g (p) = (n− 1)Q (p)−D (p)
into (43) we get

Q = (p− C ′(Q)) ((n− 1)Q′ (p)−D′(p) + P (ω1|p, q) (nQ′(p)−D′(p))) , (54)

which together with (53) gives (48) and (49). Next, we note the similarities with
the first-order condition for single-node networks with m symmetric firms [27].17

Q = (p− C ′(Q)) (Q′ (m− 1)−D′) . (55)

By comparing (48) and (55) we can conclude that the first-order solution of a firm
in a symmetric two-node network with n firms per node is the same as for a firm
in an isolated node with µn symmetric firms and demand µD′+ε. Thus analytical
solutions to (55) are also solutions to (48) when m = µn. For example, for single
node networks, we know that explicit solutions can be derived for symmetric firms
facing an inelastic demand and that these solutions are monotonic [5][23][34],
which gives us (50). Moreover, we know that monotonic closed-form solutions
exist for symmetric firms with identical constant marginal costs that face a linear
demand [24], which gives us (51). It follows from Proposition 10 that both of these
monotonic solutions constitute SFE.
Recall that the market integration factor µ is the expected number of nodes

that are completely integrated with a node in the network and that a node is always
completely integrated with itself. Firms can influence congestion and the market
integration factor with their offer curves. Still it is a constant in equilibrium.
It does not depend on costs, the market price nor the number of firms when
demand shocks are uniformly distributed. It follows from Proposition 11 that
the equilibrium offer of a firm in the two-node network with n symmetric firms
per node is identical to the equilibrium offer of a firm in an isolated node with
µn symmetric firms. Fig. 3 illustrates how the total supply function in a node
depends on µn if the total production capacity in each node is kept fixed.

17Note that P (ω1|p, q), which is calculated in (52), and accordingly the optimal output in
(54) depend on the shock distribution, while ex-post optimal offers in a single node network do
not depend on the shock distribution.
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Figure 3: Total supply curve in one node with inelastic demand and constant
marginal costs up to a fixed total production capacity, nq. Here n is the number
of firms per node and µ is the expected number of nodes that are completely
integrated with a node in the network.

From the single node case [23][24], we know that solutions to (50) and (51)
behave as expected:

Corollary 12 (i) Mark-ups are positive for a positive output, and (ii) for a given
total nodal output and nodal production cost function, mark-ups decrease with
more elastic demand and with more firms in the market (or with more market
integration).

Proposition 10 ensures existence of equilibria when slopes in the shock density
are suffi ciently small. However, existence is problematic for steep slopes in the
shock density and especially so when it has discontinuities. This is illustrated by
the non-existence example below.

Example 13 Shock densities with discontinuities: Assume that the support
of the shock εi, i ∈ {1, 2} is given by [0, ε]. The density is differentiable inside
the support set, but decreases discontinuously by ∆f (ε2) < 0 when ε1 = ε and
ε2 ∈ [0, ε]. Consider a potential symmetric NE of a duopoly market with one
firm in each node with identical costs C (q). Assume that the symmetric supply
functions Q (p) are monotonic, that demand is inelastic and that q+K1 > ε > 2K1.
Thus unlike the distribution in Assumption 1, the demand shock can reach its
discontinuity even if the transport capacity is non-binding. In the following we will
show that firm 1 will have a profitable deviation from the potential symmetric pure-
strategy NE. In particular we will consider the point (q0, p0) where q0 = Q (p0) =
ε−K1. From (41) we have:

P (p, q, ω3) =

∫ Q(p)−K1

−∞
f(q +K1, t)dt

and accordingly

lim
q↑ε−K1

P (p, q, ω3) = P (ω3, p, ε−K1) > lim
q↓ε−K1

∫ Q(p)−K1

−∞
f(q +K1, t)dt = 0. (56)
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However, P (p, q, ω1) and P (p, q, ω2) are still continuous at the point (q0, p0). Re-
call

P (ω1, p0, q0) =

∫ Q(p)+K1

Q(p)−K1

f(q0 +Q(p0)− t, t)dt =

∫ ε

ε−2K1

f(2q0 − t, t)dt > 0

P (ω2, p0, q0) =

∫ ∞
K1+Q(p)

f(q0 −K1, t)dt = 0.

We know from (6) that a necessary condition for the solution being an equilibrium
is that lim

q↑ε−K1

Z (q, p0) ≥ 0, but together with (40) this would imply that

lim
q↓ε−K1

Z(q, p0) = (p− C ′(q0))Q′(p0)P (ω1, p0, q0)− q0( lim
q↓ε−K1

∑
ω

P (ω, p0, q))

> (p− C ′(q0))Q′(p0)P (ω1, p0, q0)− q0( lim
q↑ε−K1

∑
ω

P (ω, p0, q))

≥ 0,

which would locally violate the local second-order condition in (6), and accordingly
there is a profitable deviation from the symmetric solution Q (p).

The next example illustrates that existence of SFE is also problematic if shocks
are perfectly correlated. Wilson [42] outlines a solution of the first-order condition
for this case, but he did not verify the second-order conditions for his setting.
The example below illustrates why such a first-order solution is normally not an
equilibrium in our setting.

Example 14 Perfectly correlated shocks: Consider two nodes connected by
one transmission-line. Demand shocks in the two nodes are perfectly correlated.
This means that market prices are driven by a one-dimensional uncertainty and
as in Klemperer and Meyer’s [27] model of single markets, one would expect SFE
in such a two-node network to be ex-post optimal. Wilson [42] provides a set
of first-order conditions, from which a potentially ex-post optimal SFE can be
derived. Following him we assume that the line is congested for prices above p∗

and uncongested for lower prices. Assume that the first-order condition results
in a well-behaved monotonic solution for each firm, where mark-ups are strictly
positive at p∗. We also assume that D′i < 0, i ∈ {1, 2}, so that the slope of residual
demand is always strictly negative. Consider a firm g in the importing node, which
we without loss of generality denote node 1, with the first-order solution Q1g (p).
We use (40) and consider the ratio

X1g(q, p) := Z1g(q,p)∑
ω

P (p,q,ω)

= (p− C ′1g(q))(S ′j(p) + S ′1,−g (p))P (ω1|p, q)

+(p− C ′1g(q))S ′1,−g (p)P (ω2 ∪ ω3|p, q)− q,

where P (ω1|p, q) = P (p,q,ω1)
P (p,q,ω1)+P (p,q,ω2)+P (p,q,ω3)

is the conditional probability that the
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Figure 4: Star network example.

line is uncongested and P (ω2 ∪ ω3|p, q) = P2(p,q,ω3)+P2(p,q,ω2)
P (p,q,ω1)+P2(p,q,ω2)+P2(p,q,ω3)

is the con-
ditional probability that the line is congested. Consider a price p0 < p∗. We
know that X1g(Q1g (p0) , p0) = Z1g(Q1g (p0) , p0) = 0, that P (ω1|p0, Q1g (p0)) = 1
and that P (ω2 ∪ ω3|p0, Q1g (p0)) = 0. Now, assume that firm g withholds a suf-
ficient amount of power ∆Q > 0 such that P (ω1|p0, Q1g (p0)−∆Q) = 0 and
P (ω2 ∪ ω3|p0, Q1g (p0)−∆Q) = 1. Less withholding is needed to congest the line
for prices p0 suffi ciently close to p∗. We have D′i < 0 and Q′ih ≥ 0, so S ′j(p) > 0,

which implies that ∂X1g(q,p0)

∂q

∣∣∣
q=Q1g(p0)

> 0 and that ∂Z1g(q,p0)

∂q

∣∣∣
q=Q1g(p0)

> 0 for p0

suffi ciently close to p∗. Thus the second-order condition is not locally satisfied at
such points. The intuition is that a producer in an importing node always has an
incentive to unilaterally deviate from the first-order solution by withholding power
in order to congest the transmission-line at lower prices than p∗, which increases
the price of the importing node.

3.2.2 Star network

In our second case we will consider a star network with four nodes and three
radial lines with capacity K, as shown in Figure 4. We define all arcs to be
directed towards the center node 4. Each arc has the same number as the starting
node, i.e. 1, 2 or 3.
Local net-imports must equal net-demand in every node, so

ε1

ε2

ε3

ε4

 =


S1 (p1)
S2 (p2)
S3 (p3)
S4 (p4)


︸ ︷︷ ︸

s(p)

+


−1 0 0
0 −1 0
0 0 −1
1 1 1


︸ ︷︷ ︸

A

 t1
t2
t3


︸ ︷︷ ︸

t

. (57)

Thus

A−1 =

 0 −1 0
0 0 −1
1 1 1
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and

E =
(

(A−1)T
)−1

=

 1 −1 0
1 0 −1
1 0 0

 . (58)

Each line ti has three congestion states. In the uncongested state we have σi = 0,
ρi = 0 and ti ∈ [−K1, K1]. When the line is congested towards node 4 we have
ti = K, σi = 0, and ρi ≥ 0 and when the line is congested away from node 4 we
have ti = −K, σi ≥ 0, and ρi = 0. Altogether there are 3× 3× 3 = 27 congestion
states as shown in Table 1.
Demand shocks are defined on the following region Θ:

Θ =

{
(ε1, ε2, ε3, ε4) ∈ R4| −K ≤ εi ≤ nq −D (p) +K,−3K ≤ ε4 ≤ 3K,

0 ≤ ε1 + ε2 + ε3 + ε4 ≤ 3nq − 3D (p) ∀i ∈ {1, 2, 3} .

}
and we let V2 be the volume of this region.
Assumption 2. Consider a star network with four nodes and three radial lines

with capacity K directed towards the center node 4. There are n firms with identical
costs C (q) in each node 1−3. There are no producers in node 4 (the center node)
and demand is inelastic here, i.e. S4 (p4) ≡ 0. Demand in nodes i ∈ {1, 2, 3} is
given by εi + D (p). Without loss of generality we let D (C ′(0)) = 0.18 Demand
shocks are uniformly distributed such that:

f (ε) =

{
1
V2

if ε ∈Θ

0 otherwise.

Thus the shock density and network are symmetric with respect to nodes 1, 2, 3.
We can show the following under these circumstances:

Proposition 15 Make Assumption 2, then the symmetric first-order condition
for a firm in nodes i ∈ {1, 2, 3} is given by:

Q = (p− C ′(Q)) ((µn− 1)Q′ − µD′) , (59)

with the market integration factor

µ =
3 (nq −D (p))2 + 12K (nq −D (p)) + 12K2

3 (nq −D (p))2 + 8K (nq −D (p)) + 4K2
. (60)

For inelastic demand, solutions to (59) are SFE, and the unique inverse supply
function of each firm in nodes i ∈ {1, 2, 3} is given by (50). For linear demand
εi +a− bpi, a, b > 0, in each node and constant marginal costs c, solutions to (59)
are SFE and given by (51).

Proof. As before we will use node 1 as a trading hub. The price in node 4
can be calculated from (12) and (58)

p4 = p1 + ρ1 − σ1 = π + ρ1 − σ1.

18Note that this is just a normalization of the demand shock.
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Table 1: The 27 congestion states of the star network.

State t1(ω) t2(ω) t3(ω) P (ω, p, q)
ω1 K K K 0
ω2 K K −K 0

ω3 K K ∈ (−K,K)
K(S2(p)−S2(p))

V

ω4 K −K −K 0

ω5 K −K ∈ (−K,K) K(S(p)−S(p))2

V

ω6 K ∈ (−K,K) ∈ (−K,K) 8K2(S(p)−S(p))
V

ω7 −K K K 0
ω8 −K K −K 0

ω9 −K K ∈ (−K,K) KS2(p)
V

ω10 −K −K −K 0

ω11 −K −K ∈ (−K,K) KS(p)(2S(p)−S(p))
V

ω12 −K ∈ (−K,K) ∈ (−K,K) 8K2S(p)
V

ω13 ∈ (−K,K) K K 2KS2(p)
V

ω14 ∈ (−K,K) K −K 2KS(p)(S(p)−S(p))
V

ω15 ∈ (−K,K) K ∈ (−K,K) 4K2S(p)
V

ω16 ∈ (−K,K) −K −K 2K(S(p)−S(p))2

V

ω17 ∈ (−K,K) −K ∈ (−K,K) 4K2(S(p)−S(p))
V

ω18 ∈ (−K,K) ∈ (−K,K) ∈ (−K,K) 8K3

V

ω19 K −K K 0

ω20 K ∈ (−K,K) K
K(S2(p)−S2(p))

V

ω21 K ∈ (−K,K) −K K(S(p)−S(p))2

V

ω22 −K −K K 0

ω23 −K ∈ (−K,K) K KS2(p)
V

ω24 −K ∈ (−K,K) −K KS(p)(2S(p)−S(p))
V

ω25 ∈ (−K,K) −K K 2KS(p)(S(p)−S(p))
V

ω26 ∈ (−K,K) ∈ (−K,K) K 4K2S(p)
V

ω27 ∈ (−K,K) ∈ (−K,K) −K 4K2(S(p)−S(p))
V
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Similarly prices in the nodes k ∈ {2, 3} are given by:

pk = p1 + ρ1 − σ1 − ρk + σk = π + ρ1 − σ1 − ρk + σk.

In appendix we use (38) to calculate P (p, q, ω) for one state ω at a time. The
results are summarized in Table 1. Viewing the network from node 1 we realize
that it is symmetric with respect to nodes 2 and 3, and it is suffi cient to make
these calculations for the first eighteen states. Results for the last nine states
follow from symmetry of the problem. Each competitor is assumed to submit a
symmetric offer Q (p), so S2 (p) ≡ S3 (p) ≡ S (p) := nQ (p) − D (p). Adding the
results in Table 1 yields:∑

ω

P (p, q, ω) =
6KS2 (p)

V2

+
16K2S (p)

V2

+
8K3

V2

. (61)

Node 1 is completely integrated with either node 2 or 3 in states ω15, ω17, ω26,
ω27 and completely integrated with both nodes in state ω18. In the other states
node 1 is either isolated or only completely integrated with node 4, which does
not have any producers. We have

P (p, q, ω15) + P (p, q, ω17) + P (p, q, ω26) + P (p, q, ω27) + 2P (p, q, ω18)

= 4K2S(p)
V2

+ 4K2(S(p)−S(p))
V2

+ 4K2S(p)
V2

+ 4K2(S(p)−S(p))
V2

+ 16K3

V2
= 8K2S(p)+16K3

V2
,

(62)
and

P (ω15|p, q) + P (ω17|p, q) + P (ω26|p, q) + P (ω27|p, q) + 2P (ω18|p, q)
= P (p,q,ω15)+P (p,q,ω17)+P (p,q,ω26)+P (p,q,ω27)+2P (p,q,ω18)∑

ω P (p,q,ω)
= 4KS(p)+8K2

3S2(p)+8KS(p)+4K2 .
(63)

We can now use S (p) := nq −D (p) to calculate (60) from

µ = 1 + P (ω15|p, q) + P (ω17|p, q) + P (ω26|p, q) + P (ω27|p, q) + 2P (ω18|p, q) .

We now have from (6), (61) and (62) that

Z(q, p) = (p− C ′(q))
(
S ′1,−g (p)

(
6KS2(p)

V2
+ 16K2S(p)

V2

)
+ 8K2S(p)+16K3

V2
S ′ (p)

)
−q 2K

V2
[3S2 (p) + 8KS (p) + 4K2] ,

which gives (59) for Z(q, p) = 0, as S2 (p) ≡ S3 (p) ≡ S (p) := nQ (p)−D (p). We
note that ∂Z(q,p)

∂q
≤ 0, so if we find a monotonic stationary solution, then it is an

equilibrium. The two explicit equilibrium expressions and monotonicity of these
solutions can be established as in the proof of Proposition 11.
Figure 3 and Corollary 12 apply to the star network as well. It is only the

market integration factor that depends on whether the network has two nodes or
is star shaped.
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4 Meshed network with potential flows

So far we have studied radial networks, where there is a unique path between
every pair of nodes. Now we consider more complicated networks consisting of
M nodes and N arcs, where N ≥ M . This means that there will be at least one
cycle in the network and there will be at least two paths between any two nodes
in the cycle [11]. Thus we need to make assumptions of how the transport route is
chosen for cases when there are multiple possible paths. Here we assume that flows
are determined by physical laws that are valid for electricity and incompressible
mediums with laminar (non-turbulent) flows. Such flows are sometimes called
potential flows, because one can model them as being driven by the potentials φ
in the nodes. In case the commodity is a gas or liquid (e.g. oil), the potential is the
pressure at the node. In a DC network it is the voltage that is the potential. For
DC networks and laminar flows it can be shown that the electricity and flow choose
paths that minimizes total losses. For AC networks it is standard to calculate
electric power flows by means of a DC-load flow approximation, where φ is the
vector of voltage phase angles at the nodes [15].
In a potential flow model, the flow in the arc k is the result of the potential

difference between its endpoints. Given a vector of potentials φ, we have

tk =
−
(
A>φ

)
k

Xk

(64)

where −
(
A>φ

)
k
is the potential difference and Xk is the impedance resisting the

the flow through the arc. The impedance is determined by the geometrical and
material properties of the line/pipe that transports the commodity. Thus it is an
exogenous parameter and independent of the flow in the arc. In a DC network, the
impedance is given by the resistance of the line. In a DC-load flow approximation
of an AC network, Xk represents the reactance of the transmission line. The
matrix A has rank M − 1, so the potentials φ are not uniquely defined by (64).
Thus we can arbitrarily choose one node (say i) and set its potential φi arbitrarily.
Normally, the potential of this swing node is set to zero. This corresponds to
deleting row i from A to form the matrix A−i with rank M − 1 [37].
To simplify the analysis we rule out some unrealistic or unlikely cases: we

assume that the impedance is positive and that the capacities of the arcs and
impedance factors are such that for any feasible flow, the set of arcs with flows
at a lower or upper bound contains no cycles. The latter assumption precludes
certain degenerate solutions which can only arise if the values of the bounds and
impedances for arcs forming a loop L, satisfy equations of the form∑

k∈L

δkXkKk = 0

where δk = 1 if arc k is oriented in the direction that L is traversed and δk = −1
otherwise. We can preclude instances having such solutions by perturbing the line
capacities if necessary.
The market clearing conditions are less obvious in a meshed network. As

shown by [15], they can be constructed as the optimality conditions of an economic
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dispatch problem (EDP) formulated as follows:

EDP: minimize
∑M

i=1

∑ni
g=1

∫ qig
0

Q−1
ig (x)dx−

∑M
i=1

∫ yi
0
D−1
i (y)dy

subject to At+ q− y = ε, [p]

−K ≤ t ≤ K, [σ,ρ]

Xt = −A>φ. [λ],

The shadow prices for the constraints are shown on the right-hand side in brackets.
EDP seeks supply quantities q, demand y, and transported quantities t to max-
imize total producer and consumer welfare. The Karush-Kuhn-Tucker conditions
of EDP are

KKT: A>p+X>λ = ρ− σ
0 ≤ ρ ⊥ K− t ≥ 0
0 ≤ σ ⊥ K+ t ≥ 0
Aλ = 0
At+ s(p) = ε
Xt = −A>φ

In radial networks the columns of the matrixA correspond to network arcs defining
a tree, and so they are linearly independent (see [37]). This means that Aλ = 0
has a unique solution λ = 0, which allows λ to be removed from the market
clearing conditions. In this case the conditions become the same as those for
radial networks in (11).
We now return to discuss the general case. The prices p that satisfy the KKT

conditions in any congestion state ω must meet certain conditions. First observe
that since X is diagonal and nonsingular,

X−1A>p+ λ = X−1(ρ− σ) (65)

Multiplying by A and using the KKT condition that Aλ = 0 yields

AX−1A>p = AX−1(ρ− σ) (66)

In the context of power systems networks the matrix AX−1A> is called a network
admittance matrix, and when X is the identity it is a Laplacian matrix. The
matrix AX−1A> has rank M − 1, so the price p is not uniquely determined by
the choice of ρ and σ. Recall that Ai is row i of matrix A, and A−i is matrix A
with row i eliminated. As in section 3 we choose a node i, say, as trading hub and
assign its price to be p. The prices in the other nodes for congestion state ω are
then uniquely determined by

AX−1
(

(A−i)
T p−i + p (Ai)

T
)

= AX−1(ρ− σ).

We can remove row i from this equation and multiply by (A−iX
−1A

>
−i)
−1, so that

p−i = −(A−iX
−1 (A−i)

T )−1A−iX
−1 (Ai)

T p (67)

+(A−iX
−1 (A−i)

T )−1A−iX
−1(ρ− σ) (68)

= p1M−1 + (A−iX
−1 (A−i)

T )−1A−iX
−1(ρ− σ), (69)
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because
(A−i)

T 1M−1 + (Ai)
T = 0M−1

A−iX
−1 (A−i)

T 1M−1 +A−iX
−1 (Ai)

T = 0M−1

1M−1 = −(A−iX
−1 (A−i)

T )−1A−iX
−1 (Ai)

T .

(70)

Similar to the radial case, we introduce

E (ω) = (A−iX
−1 (A−i)

T )−1A−iX
−1,

so that
p−i = p1M−1 + E (ω) (ρ− σ). (71)

Observe that when A−i is nonsingular then E (ω) = ((A−i)
T )−1 which gives the

expression we have in the radial case. More generally, A−i will have M − 1 rows
and N > M − 1 columns, and so it will not have an inverse. Define a matrix H
with N − (M − 1) rows forming a basis for the null space of A. For example, the
rows of H can be the orientation vectors of a set of N − (M − 1) cycles in the
network (see [37]). Since AH> = 0, it follows for any φ that

HA>φ = 0.

Now the optimality conditions of the dispatch problem amount to:

ε = At+ s(p1M−1+E(ω)(ρ− σ))

t ∈ [−K,K]

HXt = −HA>φ = 0

We seekM degrees of freedom in these equations that will specify a range over
which to integrate ε. When the integrand is f(At + s(π1M−1+E(ρ− σ))), the
variables of integration are π andM−1 variables from t, ρ, σ. When the integrand
is f (Ait+ r,A−it+ s−i(p1M−1+E(ρ− σ))), the variables of integration are r and
M − 1 variables from t,ρ,σ.
If every t ∈ (−K,K) then ρ = σ = 0, and we haveN variables andN−(M−1)

constraints from HXt = 0, so we are left with M − 1 variables to integrate with.
For every component of t that is at a bound, we get a non-negative component of
ρ or a component of σ that is free to leave its bound.
Let Y = HX. We partition this matrix into YL, YB and YU corresponding

to flows at the lower bound, between bounds and at the upper bound. We have
Yt = 0, so to integrate over a congestion state ω we fix constrained components
(tL = −K and tU = K) of t to get

YBtB = −YLtL −YUtU

and free unconstrained components of ρ and σ to get σL and ρU . We integrate
over

B (ω) = {tB : YBtB = −YLtL −YUtU , −KB ≤ tB ≤ KB}
and σL ≥ 0 and ρU ≥ 0, which is an M − 1 dimensional region.
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This gives two different formulae for ψi,g (p, q) in congestion state ω. These
are:

ψi,g (p, q) =
∑
ω

∫ p

π=−∞

∫
S(ω)

f (At+ s(π1M−1+E(ρ− σ))) (72)

Jp(ω)dtB(ω)dρU(ω)dσL(ω)dπ,

ψi,g (p, q) =
∑
ω

∫ q

r=−∞

∫
S(ω)

f (Ait+ r,A−it+ s−i(p1M−1+E(ρ− σ))) (73)

Jq(ω)dtB(ω)dρU(ω)dσL(ω)dr,

where S(ω) = L(ω) × U(ω) × B (ω). As for the radial case, Jp(ω) and Jq(ω) are

defined by (17) and (21), respectively. But these determinants do not simplify
as in the radial case. The expressions (72) and (73) can be differentiated and
substituted into (5) and (6) to give optimality conditions in a meshed network.
Unfortunately these are not as straightforward as the expressions obtained in the
radial case in which each agent effectively faces a probability-weighted residual
demand curve defined by Corollary 7. In the meshed case the residual demand
curve in a congestion state ω involves combinations of the slopes of competitors’
supply functions measured at different prices. In other words, nodes in a meshed
market may be integrated in a congestion state in the sense that transport between
their nodes is possible (with some adjustment in dispatch) but still experience
different prices. This makes the computation of equilibrium a lot more challenging.

5 Alternative market designs and strategies

Finally, we want to briefly note that our expressions in Section 3.1 for how market
distribution functions can be calculated in radial networks are not restricted to
SFE in networks with nodal pricing. They can also be used to calculate Cournot
NE in networks with additive demand shocks. We know from Anderson and
Philpott [4] that the optimality condition of a vertical offer q from firm g in node
i facing an uncertain residual demand is:∫ p

0

Z (p, q) dp = 0

with the second-order condition that
∫ p

0
Zq (p, q) dp ≤ 0. For radial networks with

Cournot competition Z (p, q) can be calculated as in Proposition 6 if one sets
S ′k (pk) = −D′k (pk) .
Our approach is not limited to cases with local uniform-prices. As long as the

network operator accepts feasible offers and bids in order to maximize stated social
welfare, it is often straightforward to adjust our optimality conditions to networks
with other auction formats. For example, consider networks with discriminatory
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pricing as in the electricity market of Britain. Anderson et al. [3] show that the
optimality condition of a firm’s offer in such an auction is given by 19

Z =
∂ψig
∂p

(p− C ′ig(q))− 1 + ψig (q, p) ,

and the same conditions as in (6). For a radial network,
∂ψig
∂p

and ψig (q, p) are
given by (18) and (19), respectively. Jp (ω) can be calculated as in (17), and
Lemma 3.

6 Conclusions

We derive optimality conditions for firms offering supply functions into a radial
transmission network with transport constraints and local demand shocks. We
verify that monotonic solutions to the first-order conditions are Supply Function
Equilibria (SFE) when the joint probability density of the local demand shocks is
suffi ciently evenly distributed, i.e. close to a uniform multi-dimensional distribu-
tion. But existence of SFE cannot be taken for granted. Perfectly correlated shocks
or steep slopes and discontinuities in the shock density will not smooth the kinks
in the residual demand curves suffi ciently well, and then profitable deviations from
the first-order solution will exist.
In an isolated node, the optimal output of a producer is proportional to its

mark-up and the slope of the residual demand that it is facing. We show that
in a network with multi-dimensional shocks, this generalizes: the optimal out-
put of a producer is proportional to its mark-up and the expected slope of the
residual demand that it is facing. Thus the probability with which the producer’s
node is completely integrated with other nodes, i.e. connected to other nodes via
uncongested arcs, is of great importance for the optimal offer.
For symmetric equilibria it is useful to define a market integration factor, which

equals the expected number of nodes that are completely integrated with particular
a node; a node is always completely integrated with itself. We use our optimality
conditions to solve for symmetric equilibria in two-node and star networks with
multi-dimensional uniformly distributed demand shocks. We show that an equi-
librium offer in a node of such a network is identical to the equilibrium offer in an
isolated node where the number of symmetric firms per node has been scaled by
the market integration factor. Firms can influence the market integration factor
with their offer curves, so it is endogenous. Still, in our symmetric equilibria, the
market integration factor is constant for a given network with given transmission
capacities and total production capacities. The factor does not depend on produc-
tion costs nor on the number of symmetric firms. We also show that the symmetric
equilibria are well-behaved: (i) mark-ups are positive for a positive output, and
(ii) for a given total production cost, mark-ups decrease with more elastic demand
and with more firms in the market (or with more market integration).

19Note that we have changed the sign of the Z function in Anderson et al [3] for pay-as-bid
markets to keep it consistent with the Z function used in this paper.
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We focus on characterising SFE in radial networks, but we also show how our
optimality conditions can be generalized to consider meshed networks, albeit with
a significant increase in complexity. We also present optimality conditions for
SFE in networks with discriminatory pricing and Cournot NE in networks with
uncertain demand. Typically each node in our network represents a geographical
location, and typically a commodity is transported between two geographical lo-
cations. But nodes and transports in our network could be interpreted in a more
general sense. For example, a node could represent a point in time or a geograph-
ical location at a particular point in time. Moreover, storage at a geographical
location can be represented by an arc that can transport the commodity to a later
point in time. The transport capacity of such an arc corresponds to the storage
capacity at the geographical location. Thus, in principle our approach could be
used to model producers’strategic behaviour in a network with local storage.
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Appendix

6.1 Calculations for star network

In the following we use Az
B (ω), EzU (ω) and EzL (ω) to denote submatrices of

AB (ω), EU (ω) and EL (ω) corresponding to nodes in the set z (ω).

6.1.1 State ω1

State t1(ω) t2(ω) t3(ω) Ξ z
ω1 K K K {1} {2, 3, 4}
In this state we have from (57) and (58) that:

Az
B = ∅ EzU =

 1 −1 0
1 0 −1
1 0 0

 EzL = ∅.

Thus it follows from (34) that

Jz(ω1) =

∣∣∣∣∣∣ ∂εz

∂
(
tzB(ω),ρU(ω),σL(ω)

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣det

 S ′2 (p2) −S ′2 (p2) 0
S ′3 (p3) 0 −S ′3 (p3)
S ′4 (p4) 0 0

∣∣∣∣∣∣ = 0,

because S ′4 (p4) = 0. Now, we have from (38) that

P (p, q, ω1) = 0.
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6.1.2 State ω2

State t1(ω) t2(ω) t3(ω) Ξ z
ω2 K K −K {1} {2, 3, 4}
With similar calculations as for state ω1, one gets

P (p, q, ω2) = 0.

6.1.3 State ω3

State t1(ω) t2(ω) t3(ω) Ξ z
ω3 K K ∈ [−K,K] {1} {2, 3, 4}
In this state we have from (57) and (58) that:

Az
B =

 0
−1
1

 EzU =

 1 −1
1 0
1 0

 EzL = ∅.

Thus it follows from (34) that

Jz(ω3) =

∣∣∣∣∣∣ ∂εz

∂
(
tzB(ω),ρU(ω),σL(ω)

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣det

 0 S ′2 (p2) −S ′2 (p2)
−1 S ′3 (p3) 0
1 S ′4 (p4) 0

∣∣∣∣∣∣ = S ′3 (p3)S ′2 (p2) ,

because S ′4 (p4) = 0. Now, we have from (38) that

P (p, q, ω3) =

∫ p−p

ρ1=0

∫ p+ρ1

ρ2=0

∫ K

t3=−K
f (At+ s (p(π,ρ,σ)))S ′3 (p3)S ′2 (p2) dt3dρ2dρ1

=
2K

V2

∫ p−p

ρ1=0

S ′3 (p+ ρ1)

∫ p+ρ1

ρ2=0

S ′2 (p+ ρ1 − ρ2) dρ2dρ1

=
2K

V2

∫ p−p

ρ1=0

S ′3 (p+ ρ1)S2 (p+ ρ1) dρ1

=
K (S2 (p)− S2 (p))

V2

,

where we have used that S2 (p) = S3 (p) = S(p).

6.1.4 State ω4

State t1(ω) t2(ω) t3(ω) Ξ z
ω4 K −K −K {1} {2, 3, 4}
With similar calculations as for state ω1, one gets

P (p, q, ω4) = 0.
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6.1.5 State ω5

State t1(ω) t2(ω) t3(ω) Ξ z
ω5 K −K ∈ [−K,K] {1} {2, 3, 4}
In this state we have from (57) and (58) that:

Az
B =

 0
−1
1

 EzU =

 1
1
1

 EzL =

 −1
0
0

 .
Thus it follows from (34) that

Jz(ω5) =

∣∣∣∣∣∣ ∂εz

∂
(
tzB(ω),ρU(ω),σL(ω)

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣det

 0 S ′2 (p2) S ′2 (p2)
−1 S ′3 (p3) 0
1 S ′4 (p4) 0

∣∣∣∣∣∣ = S ′2 (p2)S ′3 (p3) ,

because S ′4 (p4) = 0. Now, we have from (38) that

P (p, q, ω5) =

∫ p−p

ρ1=0

∫ p−p−ρ1

σ2=0

∫ K

t3=−K
f (At+ s (p(π,ρ,σ)))S ′2 (p2)S ′3 (p3) dt3dσ2dρ1

=
2K

V2

∫ p−p

ρ1=0

S ′3 (p+ ρ1)

∫ p−p−ρ1

σ2=0

S ′2 (p+ ρ1 + σ2) dσ2dρ1

=
2K

V2

∫ p−p

ρ1=0

S ′ (p+ ρ1) [S2 (p)− S2 (p+ ρ1)] dρ1

=
K

V2

[
2S (p)S (p+ ρ1)− S2 (p+ ρ1)

]p−p
0

=
K (S (p)− S (p))2

V2

,

where we have used that S2 (p) = S3 (p) = S(p).

6.1.6 State ω6

State t1(ω) t2(ω) t3(ω) Ξ z
ω6 K ∈ [−K,K] ∈ [−K,K] {1} {2, 3, 4}
In this state we have from (57) and (58) that:

Az
B =

 −1 0
0 −1
1 1

 EzU =

 1
1
1

 EzL = ∅.

Thus it follows from (34) that

Jz(ω6) =

∣∣∣∣∣∣ ∂εz

∂
(
tzB(ω),ρU(ω),σL(ω)

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣det

 −1 0 S ′2 (p2)
0 −1 S ′3 (p3)
1 1 S ′4 (p4)

∣∣∣∣∣∣ = S ′2 (p2)+S ′3 (p3) ,
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because S ′4 (p4) = 0. Now, we have from (38) that

P (p, q, ω6) =

∫ p−p

ρ1=0

∫ K

t3=−K

∫ K

t2=−K
f (At+ s (p(π,ρ,σ))) (S ′2 (p2) + S ′3 (p3)) dt2dt3dρ1

=
4K2

V2

∫ p−p

ρ1=0

2S ′ (p+ ρ1) dρ1

=
8K2 (S (p)− S (p))

V2

,

where we have used that S2 (p) = S3 (p) = S(p).

6.1.7 State ω7

State t1(ω) t2(ω) t3(ω) Ξ z
ω7 −K K K {1} {2, 3, 4}
With similar calculations as for state ω1, one gets

P (p, q, ω7) = 0.

6.1.8 State ω8

State t1(ω) t2(ω) t3(ω) Ξ z
ω8 −K K −K {1} {2, 3, 4}
With similar calculations as for state ω1, one gets

P (p, q, ω8) = 0.

6.1.9 State ω9

State t1(ω) t2(ω) t3(ω) Ξ z
ω9 −K K ∈ [−K,K] {1} {2, 3, 4}
In this state we have from (57) and (58) that:

Az
B =

 0
−1
1

 EzU =

 −1
0
0

 EzL =

 1
1
1

 .
Thus it follows from (34) that

Jz(ω9) =

∣∣∣∣∣∣ ∂εz

∂
(
tzB(ω),ρU(ω),σL(ω)

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣det

 0 −S ′2 (p2) −S ′2 (p2)
−1 0 −S ′3 (p3)
1 0 −S ′4 (p4)

∣∣∣∣∣∣ = S ′3 (p3)S ′2 (p2) ,
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because S ′4 (p4) = 0. Now, we have from (38) that

P (p, q, ω9) =

∫ p

σ1=0

∫ p−σ1

ρ2=0

∫ K

t3=−K
f (At+ s (p(π,ρ,σ)))S ′3 (p3)S ′2 (p2) dt3dρ2dσ1

=
2K

V2

∫ p

σ1=0

S ′ (p− σ1)

∫ p−σ1

ρ2=0

S ′ (p− σ1 − ρ2) dρ2dσ1

=
K

V2

∫ p

σ1=0

2S ′ (p− σ1)S (p− σ1) dσ1

=
KS2 (p)

V2

,

where we have used that S2 (p) = S3 (p) = S(p).

6.1.10 State ω10

State t1(ω) t2(ω) t3(ω) Ξ z
ω10 −K −K −K {1} {2, 3, 4}
With similar calculations as for state ω1, one gets

P (p, q, ω10) = 0.

6.1.11 State ω11

State t1(ω) t2(ω) t3(ω) Ξ z
ω11 −K −K ∈ [−K,K] {1} {2, 3, 4}
In this state we have from (57) and (58) that:

Az
B =

 0
−1
1

 EzU = ∅ EzL =

 1 −1
1 0
1 0

 .
Thus it follows from (34) that

Jz(ω11) =

∣∣∣∣∣∣ ∂εz

∂
(
tzB(ω),ρU(ω),σL(ω)

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣det

 0 −S ′2 (p2) S ′2 (p2)
−1 −S ′3 (p3) 0
1 −S ′4 (p4) 0

∣∣∣∣∣∣ = S ′2 (p2)S ′3 (p3) ,

because S ′4 (p4) = 0. Now, we have from (38) that

P (p, q, ω11) =

∫ p

σ1=0

∫ p−p+σ1

σ2=0

∫ K

t3=−K
f (At+ s (p(π,ρ,σ)))S ′2 (p2)S ′3 (p3) dt3dσ2dσ1

=
2K

V2

∫ p

σ1=0

S ′ (p− σ1)

∫ p−p+σ1

σ2=0

S ′ (p− σ1 + σ2) dσ2dσ1

=
2K

V2

∫ p

σ1=0

S ′ (p− σ1) (S (p)− S (p− σ1)) dσ1

=
K (2S (p)S (p)− S2 (p))

V2

,

where we have used that S2 (p) = S3 (p) = S(p).
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6.1.12 State ω12

State t1(ω) t2(ω) t3(ω) Ξ z
ω12 −K ∈ [−K,K] ∈ [−K,K] {1} {2, 3, 4}
In this state we have from (57) and (58) that:

Az
B =

 −1 0
0 −1
1 1

 EzU = ∅ EzL =

 −1
−1
−1

 .
Thus it follows from (34) that

Jz(ω12) =

∣∣∣∣∣∣ ∂εz

∂
(
tzB(ω),ρU(ω),σL(ω)

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣det

 −1 0 S ′2 (p2)
0 −1 S ′3 (p3)
1 1 S ′4 (p4)

∣∣∣∣∣∣ = S ′3 (p3)+S ′2 (p2) ,

because S ′4 (p4) = 0. Now, we have from (38) that

P (p, q, ω12) =

∫ p

σ1=0

∫ K

t2=−K

∫ K

t3=−K
f (At+ s (p(π,ρ,σ))) (S ′3 (p3) + S ′2 (p2)) dt3dt2dσ1

=
4K2

V2

∫ p

σ1=0

2S ′ (p− σ1) dσ1

=
8K2S (p)

V2

,

where we have used that S2 (p) = S3 (p) = S(p).

6.1.13 State ω13

State t1(ω) t2(ω) t3(ω) Ξ z
ω13 ∈ [−K,K] K K {1, 4} {2, 3}
In this state we have from (57) and (58) that:

Az
B = ∅ EzU =

[
−1 0
0 −1

]
EzL = ∅.

Thus it follows from (34) that

Jz(ω13) =

∣∣∣∣∣∣ ∂εz

∂
(
tzB(ω),ρU(ω),σL(ω)

)
∣∣∣∣∣∣ =

∣∣∣∣det

[
−S ′2 (p2) 0

0 −S ′3 (p3)

]∣∣∣∣ = S ′2 (p2)S ′3 (p3) .

Now, we have from (38) that

P (p, q, ω13) =

∫ p

ρ2=0

∫ p

ρ3=0

∫ K

t1=−K
f (At+ s (p(π,ρ,σ)))S ′2 (p2)S ′3 (p3) dt1dρ3dρ2

=
2K

V2

∫ p

ρ2=0

S ′ (p− ρ2) dρ2

∫ p

ρ3=0

S ′ (p− ρ3) dρ3

=
2KS2 (p)

V2

=
2KS2 (p)

V2

,

where we have used that S2 (p) = S3 (p) = S(p).
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6.1.14 State ω14

State t1(ω) t2(ω) t3(ω) Ξ z
ω14 ∈ [−K,K] K −K {1, 4} {2, 3}
In this state we have from (57) and (58) that:

Az
B = ∅ EzU =

[
−1
0

]
EzL =

[
0
−1

]
.

Thus it follows from (34) that

Jz(ω14) =

∣∣∣∣∣∣ ∂εz

∂
(
tzB(ω),ρU(ω),σL(ω)

)
∣∣∣∣∣∣ =

∣∣∣∣det

[
−S ′2 (p2) 0

0 S ′3 (p3)

]∣∣∣∣ = S ′2 (p2)S ′3 (p3) .

Now, we have from (38) that

P (p, q, ω14) =

∫ p

ρ2=0

∫ p−p

σ3=0

∫ K

t1=−K
f (At+ s (p(π,ρ,σ)))S ′2 (p2)S ′3 (p3) dt1dσ3dρ2

=
2K

V2

∫ p

ρ2=0

S ′ (p− ρ2) dρ2

∫ p−p

σ3=0

S ′ (p+ σ3) dσ3

=
2KS (p) (S (p)− S (p))

V2

=
2KS (p) (S (p)− S (p))

V2

,

where we have used that S2 (p) = S3 (p) = S(p).

6.1.15 State ω15

State t1(ω) t2(ω) t3(ω) Ξ z
ω15 ∈ [−K,K] K ∈ [−K,K] {1, 3, 4} {2}
In this state we have from (57) and (58) that:

Az
B = ∅ EzU = [−1] EzL = ∅.

Thus it follows from (34) that

Jz(ω15) =

∣∣∣∣∣∣ ∂εz

∂
(
tzB(ω),ρU(ω),σL(ω)

)
∣∣∣∣∣∣ = |[−S ′2 (p2)]| = S ′2 (p2) .

Now, we have from (38) that

P (p, q, ω15) =

∫ K

t3=−K

∫ p

ρ2=0

∫ K

t1=−K
f (At+ s (p(π,ρ,σ)))S ′2 (p2) dt1dρ2dt3

=
4K2

V2

∫ p

ρ2=0

S ′ (p− ρ2) dρ2

=
4K2S (p)

V2

,

where we have used that S2 (p) = S3 (p) = S(p).
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6.1.16 State ω16

State t1(ω) t2(ω) t3(ω) Ξ z
ω16 ∈ [−K,K] −K −K {1, 4} {2, 3}
In this state we have from (57) and (58) that:

Az
B = ∅ EzU = ∅ EzL =

[
−1 0
0 −1

]
.

Thus it follows from (34) that

Jz(ω16) =

∣∣∣∣∣∣ ∂εz

∂
(
tzB(ω),ρU(ω),σL(ω)

)
∣∣∣∣∣∣ =

∣∣∣∣det

[
S ′2 (p2) 0

0 S ′3 (p3)

]∣∣∣∣ = S ′2 (p2)S ′3 (p3) .

Now, we have from (38) that

P (p, q, ω16) =

∫ p−p

σ2=0

∫ p−p

σ3=0

∫ K

t1=−K
f (At+ s (p(π,ρ,σ)))S ′2 (p2)S ′3 (p3) dt1dσ3dσ2

=
2K

V2

∫ p−p

σ2=0

S ′ (p+ σ2) dσ2

∫ p−p

σ3=0

S ′ (p+ σ3) dσ3

=
2K (S (p)− S (p))2

V2

,

where we have used that S2 (p) = S3 (p) = S(p).

6.1.17 State ω17

State t1(ω) t2(ω) t3(ω) Ξ z
ω17 ∈ [−K,K] −K ∈ [−K,K] {1, 3, 4} {2}
In this state we have from (57) and (58) that:

Az
B = ∅ EzU = ∅ EzL = [0] .

Thus it follows from (34) that
Jz(ω17) = 0

and we have from (38) that
P (p, q, ω17) = 0.

6.1.18 State ω18

State t1(ω) t2(ω) t3(ω) Ξ z
ω18 ∈ [−K,K] ∈ [−K,K] ∈ [−K,K] {1, 2, 3, 4} ∅

In this state we have from (57) and (58) that:

Az
B = ∅ EzU = ∅ EzL = ∅.

Now, we have from (38) that

P (p, q, ω18) =

∫ K

t3=−K

∫ K

t2=−K

∫ K

t1=−K
f (At+ s (p(π,ρ,σ))) dt1dt2dt3 =

8K3

V2

.
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