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Abstract

Criminals are embedded in a network of relationships. Social ties among criminals are modeled by means

of a graph where criminals compete for a booty and benefit from local interactions with their neighbours.
Each criminal decides in a non-cooperative way how much crime effort he will exert. We show that the
Nash equilibrium crime effort of each individual is proportional to his equilibrium Bonacich-centrality in
the network, thus establishing a bridge to the sociology literature on social networks. We then analyze a
policy that consists of finding and getting rid of the key player, that is, the criminal who, once removed,
leads to the maximum reduction in aggregate crime. We provide a geometric characterization of the key
player identified with an optimal inter-centrality measure, which takes into account both a player’s centrality
and his contribution to the centrality of the others. We also provide a geometric characterization of the
key group, which generalizes the key player for a group of criminals of a given size. We finally endogeneize
the crime participation decision, resulting in a key player policy, which effectiveness depends on the outside

opportunities available to criminals.
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1 Introduction

Polls show that people regard crime as the number one social problem. As such, identifying the root causes
of criminal activity and designing efficient policies against crime are two natural scopes for the economics
profession. About thirty years ago, the major breakthrough in the economic analysis of crime was the work of
Gary Becker (1968) in which criminals are rational individuals acting in their own self-interest. In deciding to
commit a crime, criminals weigh the expected costs against the expected benefits accruing from this activity.
The goal of the criminal justice system is to raise expected costs of crime to criminals above the expected

benefits. People will commit crimes only so long as they are willing to pay the prices society charges.
There is now a large literature on the economics of crime. Both theoretical and empirical approaches

have been developed over the years in order to better understand the costs and benefits of crime (see, for
instance, the literature surveys by Nuno Garoupa, 1997, and Mitchell A. Polinsky and Steven Shavell, 2000).
In particular, the interaction between the “crime market” and the other markets has important general
equilibrium effects that are crucial if one wants to implement the most effective policies.1 The standard
policy tool to reduce aggregate crime that is common to all these models relies on the deterrence effects of
punishment, i.e., the planner should increase uniformly punishment costs.
It is however well-established that crime is to a large extent a group phenomenon, and the source of crime

and delinquency is located in the intimate social networks of individuals (see e.g. Edwin H. Sutherland,

1947, Jerzy Sarnecki, 2001 and Mark Warr, 2002). Indeed, criminals often have friends who have themselves
committed several offences, and social ties among criminals are seen as a means whereby individuals exert
an influence over one another to commit crimes. In fact, not only friends but also the structure of social
networks matters in explaining individual’s own criminal behavior. In adolescents’ friendship networks,
Dana L. Haynie (2001) shows that individual Bonacich centrality (a standard measure of network centrality)
together with the density of friendship links condition the delinquency-peer association. This suggests that
the underlying structural properties of friendship networks must be taken into account to better understand
the impact of peer influence on criminal behavior and to address adequate and novel crime-reducing policies.
In a first paper (Antoni Calvó-Armengol and Yves Zenou, 2004), we essentially generalized the Beckerian

incentives approach to crime behavior by providing a model of networks and crime, where the expected

cost to commit criminal offenses is, in part, shaped by the network of criminal mates. We showed that
multiple equilibria can be sustained for ex ante identical agents because the network structure connecting
them generally yields to ex post heterogeneous costs.
In the present paper, we further develop this approach. However, the focus is now methodological and

policy oriented, and we pursue two different objectives. First, we aim at providing a bridge between the
economics of crime and the sociology literature on social networks. Second, we wish to design optimal
network-based policies against crime.
The sociology literature on social networks is well-established and extremely active (see, in particular,

Stanley Wasserman and Katherine Faust, 1994). One of the focus of this literature is to propose different
measures of network centralities and to assert the descriptive and/or prescriptive suitability of each of these

1For example, Ken Burdett et al. (2003) and Chien-Chieh Huang et al. (2004) study the interaction between crime and
unemployment, while Thierry Verdier and Yves Zenou (2004) analyze the impact of the land market on criminal activities.
Others have focused on the education market (Lance Lochner, 2003) or on political economy aspects of crime (Ayse İmrohoroğlu
et al., 2004). Most of these models generate multiple equilibria that can explain why identical areas may end up with different
amounts of crime.
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measures to each particular situation.2 While these measures are mainly geometric in nature, our paper

provides a behavioral foundation to the famous Bonacich’s centrality measure3 that we derive from a non-
cooperative game in crime efforts on the network. More precisely, we show that the Nash equilibrium efforts
of the crime-network game are proportional to the individual Bonacich centrality indexes, and we refer to it
from now on as the equilibrium Bonacich-centrality measure.
In network games, the payoff interdependence is, at least in part, rooted in the network links across

players (see, in particular, the recent literature surveys by Sanjeev Goyal, 2004 and Matthew O. Jackson,
2004). In general, at the Nash equilibria of a game, players’ strategies subsume the payoff interdependence
in a consistent manner. In the particular case of network games, equilibrium strategies should thus naturally
reflect the players’ network embededdness. For the crime network game we analyze, this relationship between
equilibrium strategic behavior and network topology is straightforward and captured by the equilibrium

Bonacich-centrality measure. This measure is an index of connectivity that not only takes into account the
number of direct links a given criminal has but also all his indirect connections.4 In our crime game, the
network payoff interdependence is restricted to direct network mates. But, because clusters of direct friends
overlap, this local payoff interdependence spreads all over the network. At equilibrium, individual decisions
emanate from all the existing network chains of direct and indirect contacts stemming from each player, a
feature characteristic of Bonacich centrality.
Because network chains of contacts often overlap, the values of individual centrality indexes are interre-

lated, which further translates into the interdependence of individual crime outcomes, and between individual
and group (average) outcomes. This dependence of individual on group behavior is usually referred to as peer
effects in the literature.5 Peer effects are an intragroup externality, homogeneous across group members,

that captures the average influence that members exert on each other. In our model, though, the peer effect
influence varies across criminals with their equilibrium-Bonacich centrality measure. The intragroup exter-
nality we obtain is heterogeneous across criminals, and this heterogeneity reflects asymmetries in network
locations across group members.
The standard policy tool to reduce aggregate crime relies on the deterrence effects of punishment. By

uniformly hardening the punishment costs borne by all criminals, the distribution of crime efforts shifts
to the left and the average (and aggregate) crime level decreases. This homogeneous policy tackles average
behavior explicitly and does not discriminate among criminals depending on their relative contribution to the
aggregate crime level. Our previous results, though, associate a distribution of crime efforts to the network
connecting them. In particular, the variance of crime efforts reflects the variance of network centralities. In

this case, a targeted policy that discriminates among criminals depending on their relative network location,
and removes a few suitably selected targets from this network, alters the whole distribution of crime efforts,
not just shifting it. In many cases, it may yield to a sharper reduction in aggregate crime than standard
deterrence efforts.
To characterize the network optimal targets, we propose a new measure of network centrality, the optimal

inter-centrality measure, that does not exist in the social network literature. This measure solves the plan-
2See Steve P. Borgatti (2003) for a discussion on the lack of a systematic criterium to pick up the “right” network centrality

measure for each particular situation.
3Which has been proposed for nearly two decades ago in sociology by Phillip Bonacich (1987).
4There are, of course, other measures of centrality (for example the class of betweenness measures; see Wasserman and Faust,

2000).
5The empirical evidence collected so far suggests that peer effects are, indeed, very strong in criminal decisions. See, for

instance, Anne Case and Larry Katz (1991), Jens Ludwig et al. (2001) and Patrick Bayer et al. (2003).
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ner’s problem that consists in finding and getting rid of the key player, i.e., the criminal who, once removed,

leads to the highest aggregate crime reduction.. We show that the key player is, precisely, the individual with
the highest optimal inter-centrality in the network. Contrary to the equilibrium-Bonacich centrality index,
this new centrality measure does not derive from strategic (individual) considerations, but from the planner’s
optimality (collective) concerns. The equilibrium Bonacich-centrality measure fails to internalize all the net-
work payoff externalities criminals exert on each other, while the optimal inter-centrality measure internalizes
them all. The optimal inter-centrality measure accounts not only for individual Bonacich centralities but
also for cross-contributions to these equilibrium centralities. As such, the ranking of criminals according to
their individual optimal inter-centrality measures, relevant for the selection of the optimal network target,
need not always coincide with the ranking induced by individual equilibrium-Bonacich centralities. In other
words, the key player is not necessarily the most active criminal. Indeed, removing a criminal from a network

has both a direct and an undirect effect. First, less criminals contribute to the aggregate crime level. This
is the direct effect. Second, the network topology is modified, and the remaining criminals adopt different
crime efforts. This is the indirect effect. The key player is the one with the highest overall effect.
At this point, it is important to note that, to implement the key-player policy, one does not need to have

all the information about the exact structure of the network. Indeed, the planner does not need to know all
the links each individual has but only needs to be able to rank criminals according to their inter-centrality
measure.6 This is less demanding in terms of information and it implies, in particular, that two different
networks can lead to the same policy implication, i.e., the same key player to remove. Take for example a
star-shaped network. Then it does not matter how many links has the central criminal, or whether some
peripheral criminals have some direct link with each other, or even how large the network is. In all these

cases, the planner will remove the central criminal because this is the key player −the criminal with the
highest optimal inter-centrality measure. This is obviously an extreme case and in other networks one may
need more information to identify the key player. But this simple example highlights the advantages of
implementing a key-player policy.
We extend our characterization of optimal single player network removal for crime reduction crime, the

key player, to optimal group removal, the key group. For this purpose, we generalize the optimal inter-
centrality measure to groups of players. For a given group size, the key group is precisely the one with the
highest value for such centrality measure among groups of exactly this size. Given that the individual optimal
inter-centrality captures both direct and indirect effects on equilibrium Bonacich-centrality measures, the
generalization to a group of the optimal inter-centrality measure needs to account (once and only once) for all

the cross-contributions that arise both within and outside the group. For this reason, and contrarily to most
centrality measures found in the literature, the group centrality index is not a straightforward aggregation
of its members centrality indexes.
Because the geometric intricacies of the crime network are explicitly taken into account in the character-

ization of optimal network targets, the implications of our policy prescriptions are quite different from the
standard deterrence-based policies, where both the apprehension probability and punishment are increased

6Note that an undirected unweighted network is fully characterized by n(n− 1)/2 values −the list of actual network links.
We show that two n−dimensional vector aggregate this information in an enough informative manner for our purposes: first,
to identify crime behavior − equilibrium-Bonacich centrality− and second, to identify optimal policy targets −optimal inter-
centality. We further show that the only valuable information to identify the optimal target provided by the vector of optimal-
inter-centralities is of ordinal nature, which further reduces the informational requirements on the network structure to effectively
implement this policy.
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uniformly. We show that the key player (group) policy displays amplifying effects, and the gains following

the judicious choice of the key player (group) go beyond the differences in optimal inter-centrality mea-
sures between the selected targets and any other criminals in the network. We also show that the relative
gains from targeting the key player (group) instead of operating a selection at random of a criminal in the
crime network increase with the variability in optimal inter-centrality measures across criminals. In other
words, the key player (group) prescription is particularly well-suited for networks that display stark location
asymmetries across nodes. Also, our policy prescriptions rely on centrality measures particularly robust to
mispecifications in network data, and thus open the door to relatively accurate estimations of these measures
with small samples of network data.
In the last part of the paper, we endogeneize the network connecting criminals by allowing players to

join the labor market instead of commiting criminal offenses. The model is now richer since, apart from

punishment, the outside wage is an additional crime-reducing policy tool available to the planner. We show
that the key player policy prescription now depends both on network features and on the wage level.

2 Crime network outcomes

2.1 The crime network game

The network There are n criminals. Some criminals know each other, and some do not. The collection
of interpersonal relationships among criminals constitutes a crime network g. When i and j are directly
connected, we set gij = gji = 1. When there is no direct connection between them, then gij = gji = 0. By
convention, gii = 0. Let ni(g) denote the number of vertices which are direct neighbors of i in the network

g.

The crime decision game Consider some crime network g. Criminals in the network decide how much
effort to exert. We denote by ei the crime effort level of criminal i, and by e = (e1, ..., en) the population
crime profile.
Following Becker (1968), we assume that criminals trade off the costs and benefits of criminal activities

to take their crime effort decision. The expected crime gains to criminal i are given by:

ui(e,g) = yi(e)| {z }
proceeds

− pi(e, g)| {z }
apprehension

f|{z}
fine

(1)

The individual proceeds yi(e) correspond to the gross crime payoffs of criminal i. Individual i gross payoff
positively depends on i’s crime involvement ei, and on the whole population crime effort e. The sign of the

global7 payoff interdependence may reflect either complementarities or substitutabilities in individual efforts.
Substitutabilities may arise, for instance, in the case of property crime where individual criminals compete
against each other for the same victims and booty. Complementarities are to be expected in conspiracy or
terrorist activities, where individual criminals are part of a network organization pursuing a common goal.
The cost of committing crime pi(e, g)f is also positively related to ei as the apprehension probability

increases with one’s involvement in crime, hitherto, with one’s exposure to deterrence. Moreover, and consis-
tent with standard criminology theories (see e.g. Sutherland, 1947, Sarnecki, 2001, Warr, 2002), we assume

7That is, across all criminals in the network.
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that criminals improve illegal practice while interacting with their direct criminal mates. In words, pi(e, g)

reflects local complementarities in crime efforts across criminals directly connected through g.8

For sake of tractability, we restrict to the following simple expressions. More precisely, we set: yi (e) = ei

h
1− γ

Pn
j=1 ej

i
pi(e,g) = p0ei

h
1− λ

Pn
j=1 gijej

i . (2)

With these expression, we have:

∂2yi
∂ei∂ej

= −γ and − ∂2pif

∂ei∂ej
= πλgij ,

where π = p0f is the the marginal expected punishment cost for an isolated criminal.
The parameter −γ < 0 measures the intensity of the global interdependence on gross crime payoffs. Here,

individual crime efforts are global strategic substitutes. The optimal crime effort of a given criminal thus
decreases with the crime involvement of any other criminal in the network. The expression πλ > 0 captures
the local strategic complementarity of efforts on the apprehension probability. This expression is non-zero
only when gij = 1, that is, when criminals i and j are directly linked to each other.

Criminals choose their crime effort in [0, e], where nemax {λ, γ} = 1. This last technical condition on
the parameters guarantees that yi (e) and pi(e,g) are well-defined quantities.

2.2 Equilibrium and network centrality

The network adjacency matrix To any network g we can associate its adjacency matrix, that we
denote by G. The adjacency matrix is simply a matrix representation of a network. The coefficients of the
matrix G are the gijs, 1 ≤ i, j ≤ n. By definition, each cell in G takes on values zero or one, and the cell
with coordinates (i, j) is equal to one if and only if i and j are directly linked in g, that is, gij = 1. Given
our convention that gii = 0, the diagonal of G consists on zeros. Since gij = gji, the matrix G is symmetric.
The matrix G keeps track of the direct connections on the network g. Denote by Gk =G(k times)... G the

kth power of the adjacency matrix G, where k is some non-zero integer, and let g[k]ij be the (i, j) cell of this
matrix. The matrix Gk keeps track of the indirect connections on the network g. We say that there is an
indirect connection, also denominated a path, between i and j on the network g if there exists a sequence of
direct links on g connecting i to j.9 The number of links in the sequence determines the length of the path
between i and j. The coefficient g[k]ij in the (i, j) cell of Gk gives the number of paths of length k on the
network g between i and j. Note that, by definition, a path between i and j needs not follow the shortest
possible route between those agents. For instance, suppose that i and j are directly linked in g. Then, the
sequence of direct links ij → ji→ ij constitutes a path of length three between i and j.

Characterization of the equilibrium Denote by I the n−identity matrix, by 1 the n−dimensional
column vector of ones, and by 1T its transpose. Then, J = 1 · 1T is the n−dimensional matrix of ones.
Define φ = πλ/γ. This ratio measures the relative strength of the local strategic complementarity of

efforts with respect to the global strategic substitutability on criminals’ payoffs.10

8See also William Brock and Stephen Durlauf (2001) for a global/local dichotomy in capturing social interactions and Yannis
Ioannides (2002) for an exhaustive analysis of the effects of network topology in the Brock and Durlauf setting.

9Formally, a path between i and j is a sequence i0, ..., ik, k ≥ 1 such that i0 = i, ik = j, and gipip+1 = 1, for all 0 ≤ p ≤ k−1.
10All proofs of propositions and lemmata are given in the Appendix.
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Proposition 1 The interior Nash equilibria in pure strategies of the crime network game e∗ are the solutions
to the following system of n linear equations with n unknowns in matrix form:

[J+ I−φG] · e =1− π

γ
1 (3)

There exists a unique 0 < φ ≤ 1 and a finite set Z ∈ IR such that, for all 0 ≤ φ < φ and φ /∈ Z, the set of
interior Nash equilibria in pure strategies of the crime network game exists and is unique.

The previous result characterizes the Nash equilibria in pure strategies of the crime network game, and
provides conditions for their existence and uniqueness.

At equilibrium, the marginal gross crime gains equal the marginal punishment cost for each criminal,
that is,

1− γ
nX
j=1

ej − γei = π

1− λ
nX
j=1

gijej

 , for all i = 1, ..., n.
This is equivalent to the following vectorial equality:

1−γ [J+ I] · e =π1−πλG · e,

which, in turn, corresponds to (3). The matrix J captures the global payoff interdependencies, while the
matrix G stands for the local network synergies.
The condition φ /∈ Z guarantees that the system (3) has a unique solution. We refer to the situations in

which φ /∈ Z as generic situations. Since Z is a finite set, the whole set of nongeneric situations has Lebesgue
measure of zero.
From now on, we restrict to generic situations. The condition 0 ≤ φ < φ guarantees that criminals exert

a non-negative crime effort at this unique equilibrium with values in (0, e).

Comparative statics In Proposition 1, the individual and aggregate crime levels depend on the un-
derlying network g connecting them through the adjacency matrix G in (3). The next result establishes a
positive relationship between the equilibrium aggregate crime level and the network pattern of connections.

Proposition 2 Let g and g0 such that g ⊂ g0. At equilibrium, the total crime level under g0 is strictly higher
than that under g.

Consider two nested networks g and g0 such that g ⊂ g0. Then, either g and g0 connect the same number
of criminals but there are more direct links between them in g0 than in g, or g0 brings additional individuals
into the pool of criminals already connected by g, or both. Proposition 2 shows that the density of network
links and the network size (or boundaries) affect positively aggregate crime, a feature often referred to as
the social multiplier effect.11

A network centrality measure In a game setting, payoffs are interdependent, and the individual
equilibrium strategies adopted at any equilibrium of such game subsume this interdependence in a consistent
manner.
11See, for instance, Edward Glaeser, Bruce Sacerdote and José Scheinkman (2003), and references therein.
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In the crime network game, the payoff interdependence is, in part, rooted in the network links through

which know-how is being shared. We should thus expect the individual equilibrium crime levels to reflect
the criminals’ network embededdness. To clarify this relationship between network location and equilibrium
outcomes,12 we first define a useful network centrality measure.
Let G be the adjacency matrix of a crime network g. Recall that the coefficients of Gk give the number

of paths of length k in g between any two pair of criminals connected by g. For all k ≥ 0, define:

βk(g) = Gk · 1.

By definition, the ith coordinate of βk(g) is equal to βki (g) =
Pn

j=1 g
[k]
ij , and counts the number of direct

and indirect paths of length k in g starting from i.
For sufficiently low values of φ, we can define the following vector:

β(g, φ) =
+∞X
k=0

φkβk(g) =
+∞X
k=0

φkGk · 1 = [I−φG]−1 · 1, (4)

Now, the ith coordinate of β(g, φ) is equal to βi(g, φ) =
P+∞

k=0 φ
kβki (g), and counts the total number of

direct and indirect paths in g starting from i for all possible paths lengths. In this expression, the paths of
length k are weighted by the geometrically decreasing factor φk.
The vector β(g, φ) is a variation of the network centrality measure due to Philipp Bonacich (1987).13

Because it is derived from a Nash equilibrium, it is referred to as the equilibrium Bonacich-centrality measure.
Over the past years, social network theorists have proposed a number of centrality measures to account for
the variability across network locations.14 Roughly, these indices encompass two dimensions of network
centrality: connectivity and betweenness. The simplest index of connectivity is the number of direct links
stemming from each node in a network, while betweenness centrality keeps track of the number of optimal
paths across (or from) every node.15

Our centrality measure β(g, φ) is an index of connectivity (and not betweenness). It counts the number

of any path stemming from a given node, not just optimal paths. These numbers are then weighted by a
factor φk that decays geometrically with the path length. If φ is low enough, the infinite sum in (4) takes
on a finite value. For very small values of φ, the coordinates of β(g, φ) are an affine function of the number
of direct links of every criminal in the network. The higher the value of φ, the higher the contribution of
indirect and distant links to the centrality measure of any criminal in the network.

From network structure to crime outcomes The following result establishes that the equilibrium
individual effort levels of the crime network game are proportional to the equilibrium Bonacich-centrality
measure of each criminal. It thus relates strategic equilibrium behavior to network topology.
12Recall that the network geometry is explicitly present in the system of equations (3) that characterize the equilibria of the

crime network game through the adjacency matrix G of the crime network g.
13 In fact, β(g, φ) is obtained from Bonacich’s measure by an affine transformation. More precisely, Bonacich defines the

following network centrality measure:
ψ(g, a, b) = a [I− bG]−1G · 1.

Therefore, β(g, φ) = 1+φψ(g, 1, φ) = 1+ κ(g, φ), where κ(g, φ) is an early measure of network status introduced by Leo Katz
(1953). See also Roger Guimerà et al. (2001) and Mark Newman (2003) for related network centrality measures.
14 See Wasserman and Faust (1994) and references therein.
15 See Linton Freeman (1979) for an example of betweenness centrality, equal to the mean of the shortest-path distance

between some given node and all the other nodes that can be reached in the network. Different concepts of path optimality
(shortest-path, maximal-flow, etc.) lead to different betweenness measures.
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Define β(g, φ) = 1T · β(g, φ). This is the sum of the centrality measures for all criminals connected

through g.

Proposition 3 There exists a unique 0 < bφ ≤ 1 such that, for all 0 ≤ φ < bφ, the unique Nash equilibrium
strategies of the crime network game are given by:

e∗i =
1− π

γ

βi(g, φ)

1 + β(g, φ)
, for all i = 1, ..., n. (5)

The equilibrium Bonacich-centrality measure β(g, φ) is thus the relevant network characteristic that
shapes equilibrium behavior. This measure of centrality reflects both the direct and the indirect network
links stemming from each criminal. In (1), though, the local payoff interdependence is restricted to direct
network mates, and equilibrium behavior should only integrate this local interdependencies. Yet, because
clusters of direct friends overlap, the local payoff interdependence spreads all over the network.16 As a
result, at equilibrium, individual decisions emanate from all the existing network chains of direct and indirect

contacts. Because individual decisions feed into each other along any network path, every such path (not
only shortest-paths, for instance) shapes the equilibrium behavior of criminals.
Observe that, when criminals hold different location in the network, they will exert different crime efforts.

Equation (5) then implies that the ranking of equilibrium crime efforts across criminals reflects exactly the
ranking of their network centrality measures. Network structure is thus a determinant of criminal outcomes.
Denote by e∗ = 1T · e∗ the equilibrium aggregate crime level. Together with (5), we get:

e∗i =
βi(g, φ)

β(g, φ)
e∗.

In words, the individual contribution of each player to aggregate crime is proportional to his network
centrality measure. The dependence of individual outcomes on group behavior is usually referred to as
peer effects.17 In a standard peer effect model, though, the dependence of individual to group outcomes
is the same for all individuals. The intragroup externality is homogeneous across group members, and
corresponds to a group average influence that members exert on each other. Here, the strength of the
peer effect influence varies across criminals according to their location in the network, where the relevant
index for network position is (a variation of) the Bonacich centrality measure. More central players have

higher exposure to the rest of the group and experience a higher involvement in crime, and vice-versa. The
intragroup externality is thus heterogeneous across criminals, and this heterogeneity reflects asymmetries
in network locations across group members. Network centrality indicates how peer effects are distributed
within the group and thus captures the variance of this intragroup externality.
Consistent with the predictions of our model, a recent empirical study by Haynie (2001) shows that

structural properties of friendship networks indeed condition the association between friends’ delinquency
and an individual’s own delinquent behavior. More precisely, she finds that Bonacich centrality, net of
other individual effects, accounts for 21 percent of the observed differences in adolescents delinquency-peer
association.18 Also, by analyzing the network organization of conspiracy, Wayne Baker and Robert Faulkner
16At equilibrium, i0s effort decision depends on j’s effort decision, for all j such that gij = 1. But j’s effort decision depends,

in turn, on k’s effort decision, for all k such that gjk = 1. Therefore, i’s decision depends (indirectly) on k’s decision, for all k
such that g[2]ik = 1. And so on.
17The empirical evidence collected so far suggests that peer effects are, indeed, very strong in criminal decisions. See, for

instance, Anne Case and Larry Katz (1991), Jens Ludwig et al. (2001) and Patrick Bayer et al. (2003).
18Data from the National Longitudinal Study of Adolescent Health, United States, 1994-1995.
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(1993) show that a measure of network centrality based on direct links predicts the individual probability to

be apprehended and convicted, and the magnitude of the fine.

Example To illustrate the previous results, consider the following crime network g with three criminals,
where agent 1 holds a central position whereas agents 2 and 3 are peripherals.

t t t
2 1 3

Figure 1.

The adjacency matrix for this crime network is the following:

G =

 0 1 1

1 0 0

1 0 0

 .
Its is a straightforward algebra exercise to compute the powers of this matrix, which are:

G2k =

 2k 0 0

0 2k−1 2k−1

0 2k−1 2k−1

 and G2k+1 =

 0 2k 2k

2k 0 0

2k 0 0

 , k ≥ 1.
For instance, we deduce from G3 that there are exactly two paths of length three between criminals 1 and
2, namely, 12 → 21 → 12 and 12 → 23 → 32. Obviously, there is no path of this length (and, in general,
of odd length) from any criminal to himself. We can now compute the criminals’ centrality measures using
(4). We obtain:19

β1(g, φ) =
+∞X
k=0

h
φ2k2k + φ2k+12k+1

i
=
1 + 2φ

1− 2φ2

β2(g, φ) = β3(g, φ) =
+∞X
k=0

h
φ2k2k + φ2k+12k

i
=

1 + φ

1− 2φ2

According to intuition, criminal 1 has the highest centrality measure. All centrality measures βis increase
with φ, and so does the ratio β1/β2 of agent 1’s centrality with respect to any other criminal, as the
contribution of indirect paths to centrality increases with φ. Then, using expressions (5) in Proposition 3,
we obtain the following crime efforts at equilibrium:

e∗1 =
1− π

γ

1 + 2φ

3 + 4φ
and e∗2 = e∗3 =

1− π

γ

1 + φ

3 + 4φ
.

As expected, the crime effort exerted by criminal 1, the most central player, is the highest one.
19Note that this centrality measures are only well-defined when φ < 1/

√
2. This upper bound, which guarantees that the

infinite sums converge, can be obtained by inspection and, more generally, can be deduced from the general expression in the
proof of Proposition 3.
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3 Crime network policies

3.1 Finding the key player

A network-based policy The standard policy tool to reduce aggregate crime relies on the deterrence
effects of punishment (see for example Becker, 1968). Formally, an increase in π, which translates into an
increase in φ, amounts to hardening punishment costs borne by criminals. Our previous results associate a
distribution of crime efforts across criminals to any crime network connecting them. In this case, an increase
in φ affects all criminal decisions simultaneously and shifts the whole crime efforts distribution to the left,

thus reducing the average (and the aggregate) crime level.
In our model, though, crime behavior is tightly rooted in the network structure. When all criminals

hold homogeneous positions in the crime network, they all exert a similar crime effort. In this case, the
abovementioned policy, that tackles average behavior and does not discriminate among criminals depending
on their relative contribution to the aggregate crime level, may be appropriate. However, if criminals hold
very heterogeneous positions in the crime network, they contribute very differently to the aggregate crime
level. The variance of efforts is higher. In this case, we could expect a sharp reduction in average crime
by directly removing a criminal from the network and thus altering the whole distribution of crime efforts,
not just shifting it. A targeted policy that discriminates among criminals depending on their location in the

network may then be more appropriate.20

In what follows, we first provide a simple geometric criterium to identify the optimal target, and then
compare the new policy with the more standard one.

The planner’s problem Denote by e∗(g, φ) = 1T · e∗ the equilibrium aggregate crime level corre-
sponding to a network g. The planner’s problem is to reduce the overall equilibrium crime level e∗(g, φ) with
the policy tools available. Standard policy tools consist on increasing the deterrence effort φ.
Here, we examine an alternative policy that consists on manipulating the network g that connects crim-

inals. We first consider the simple case where the planner can eliminate only one criminal i from the crime
network. By eliminating criminal i, the network g changes its shape as all the direct links in g stemming
from i also disappear. We denote by g−i the resulting network, where g−ijk = 1 if and only if both gjk = 1

and j 6= i 6= k. When i is eliminated, the resulting overall crime level is e∗(g−i, φ).
The planner’s objective is to generate the highest possible reduction in aggregate crime level by picking

the appropriate criminal. Formally, the planner’s problem is the following:

max{e∗(g, φ)− e∗(g−i, φ) | i = 1, ..., n},

which, when the original crime network g is fixed, is equivalent to:

min{e∗(g−i, φ) | i = 1, ..., n} (6)

This is a finite optimization problem, that admits at least one solution. Let i∗ be a solution to (6). We
call criminal i∗ the key player. Removing criminal i∗ from the initial crime network g, instead of picking
20See Réka Albert et al. (2000) for a heuristical and numerical analysis of the relative network disruption effects of a

coordinated attack versus random failures in large systems networks, such as the World Wide Web or the internet network,
as a function of the underlying network topology. Béla Bollobás and Oliver Riordan (2003) provide a thorough mathematical
account of these results.
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any other criminal, has the highest overall impact on the aggregate crime level. Identifying the key player

requires the comparison of the maximal aggregate equilibrium outcomes across n different crime network
games, where the games differ in that a different criminal is removed each time from the initial network,
each removal leading, in turn, to a different network setting.
In what follows, we provide a simple geometric characterization of the key player in the original crime

network g.

A geometric characterization of the key player When criminal i is removed from g, the new crime
network is g−i. By (5), the aggregate crime level becomes:

e∗(g−i, φ) =
1− π

γ

β(g−i, φ)
1 + β(g−i, φ)

Given that the function f(x) = x/(1+x) is increasing in x, the planner’s problem (6) can be reformulated
as:

min{β(g−i, φ) | i = 1, ..., n} (7)

Thanks to Proposition 3 that relates network structure to crime outcomes, the planner’s original objective
of reducing crime translates into a geometric problem of decreasing the network aggregate centrality measure
β(g−i, φ).
When one criminal is eliminated from the current crime pool, the impact on the overall crime level is

twofold. First, aggregate crime decreases as one criminal −the one being eliminated− does not contribute
anymore to the group outcome. This is a direct effect. Second, with the removal of this criminal, the

topology of the network connecting the remaining set of criminals is altered. As a result, the centrality
measure accruing to each of them is modified, and their individual involvement in crime changes accordingly.
This is an indirect effect.
The key player is the one inducing the highest aggregate crime reduction. Given that criminal removal has

both a direct and an indirect on the group outcome, the choice of the key player results from a compromise
between both effects. In particular, the key player need not necessarily be the one exerting the highest crime
effort or, equivalently, the one with the highest centrality measure.
We now define a new network centrality measure θ(g, φ) that will happen to solve this compromise. This

measure of centrality, that we refer to as optimal inter-centrality measure, reflects both one’s centrality and
one’s contribution to the others’ centrality.

For all i 6= j and non-zero integer k define:

βkij(g, φ) =
kX

p=1

g
[p]
ij β

k−p
j (g, φ).

Recall that βk−pj (g) is equal to the number of paths in g of length k−p starting from j. Also, g[p]ij ≥ 1 if and
only if there exists at least one path in g of length p between i and j. Altogether, g[p]ij β

k−p
j (g, φ) is equal to

the number of paths of length k that start from i and cross through j after p links. Therefore, βkij(g, φ) is the
total number of paths of length k that start at i and cross through j (at least once) or end at j. Summing
across all weighted path lengths leads to the following expression:

βij(g, φ) =
+∞X
k=1

φkβkij(g, φ).
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By definition, it is readily checked that:

βij(g, φ) = βi(g, φ)− βi(g
−j , φ). (8)

In words, the contribution of criminal j to criminal i’s centrality in g is equal to the difference of criminal
i’s centrality in g and in g−j , where criminal j has been removed.

Definition 1 For all network g and for all i, let θi(g, φ) = βi(g, φ)| {z }
direct

+
P

j 6=i βji(g, φ)| {z }
indirect

.

The inter-centrality measure θi(g) of criminal i is the sum of i’s centrality measures in g, and i’s contri-
bution to the centrality measure of every other criminal j 6= i also in g. It accounts both for one’s exposure
to the rest of the group and for one’s contribution to every other exposure.
The following result establishes that inter-centrality captures, in an meaningful way, the two dimensions

of the removal of a criminal from a network, namely, the direct effect on crime and the indirect effect on
others’ crime involvement.

Proposition 4 A player i∗ is the key player that solves (7) if and only if i∗ is a criminal with the highest
inter-centrality in g, that is, θi∗(g, φ) ≥ θi(g, φ), for all i = 1, ..., n.21

The previous result provides a geometric characterization of the key player.

Example Consider the network g in Figure 2 with eleven criminals.
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Figure 2.

We distinguish three different types of equivalent actors in this network, which are the following:

Type Players

1 1
2 2, 6, 7 and 11
3 3, 4, 5, 8, 9 and 10

From a macro-structural perspective, type−1 and type−3 criminals are identical: they all have four direct
links, while type −2 criminals have five direct links each. From a micro-structural perspective, though,
criminal 1 plays a critical role by bridging together two closed-knit (fully intraconnected) communities of
five criminals each. By removing criminal 1, the network is maximally disrupted as these two communities
21Note that there may be more than one key player as different criminals may display the same value for their inter-centrality

measure.
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become totally disconnected, while by removing any of the type−2 criminals, the resulting network has the
lowest aggregate number of network links.
We identify the key player in this network of criminals. If the choice of the key player were solely

governed by the direct effect of criminal removal on aggregate crime, type−2 criminals would be the natural
candidates. Indeed, these are the ones with the highest number of direct connections. But the choice of the
key player needs also to take into account the indirect effect on aggregate crime reduction induced by the
network restructuring that follows the removal of one criminal from the original network. Because of his
communities’ bridging role, criminal 1 is also a possible candidate for the preferred policy target.
Table 1 computes, for criminals of types 1, 2 and 3 the value of crime efforts e∗i , centrality measures

βi(g, φ) and inter-centrality measures θi(g, φ) for different values of φ and with γ = λ = 1. In each column,
a star identifies the highest value.22

φ 0.1 0.2

Player Type e∗i βi θi e∗i βi θi

1 0.077 1.75 2.92 0.072 8.33 41.67∗

2 0.082∗ 1.88∗ 3.28∗ 0.079∗ 9.17∗ 40.33

3 0.075 1.72 2.79 0.067 7.78 32.67

First note that type−2 criminals always display the highest β−centrality measure. These criminals have
the highest number of direct connections. Besides, they are directly connected to the bridge criminal 1,

which gives them access to a very wide and diversified span of indirect connections. Altogether, they are the
most β−central criminals.
For low values of φ, the direct effect on crime reduction prevails, and type−2 criminals are the key players

−those with highest optimal inter-centrality measure θ. When φ is higher, though, the most active criminals
are not anymore the key players. Now, indirect effects matter a lot, and eliminating criminal 1 has the
highest joint direct and indirect effect on aggregate crime reduction.
When the punishment cost φ is low, criminals transfer their know-how only at a very local level, with

their direct criminal mates. When φ increases, criminals counter the higher deterrence they face by spreading
their know-how further away in the network and establishing synergies with criminals located in distant parts

of the social setting. In this latter case, the optimal targeted policy is the one that maximally disrupts the
crime network, thus harming the most its know-how transferring ability.
Note that the network g−1 has twenty different links, while g−2 has nineteen links. In fact, when φ is

small enough, the key player problem minimizes the number of remaining links in a network, which explains
why type−2 criminals are the key player when φ = 0.1 in this example.
Formally, let ni(g) =

P
j gij . This is the number of direct contacts of criminal i in the network g. Let

n(g) = 1
2

P
i ni(g). This is the total number of links in g. We denote by o(x) a function that converges to

zero when x tend to zero at a rate faster than x. Formally, limx→0 o(x)/x = 0.

Lemma 1 When φ→ 0, we have βi(g, φ) = 1+φni(g)+o(φ). Then, the key player i∗ solves mini∈N n(g−i).

22From the proof of Proposition 3, we can compute the highest possible value for φ compatible with our definition of centrality
measures, equal to φ = 2

3+
√
41
' 0, 213.
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3.2 Comparing policies

The cost of finding the key player Given a crime network g and a punishment cost φ, the ranking of
criminals according to their individual inter-centrality measure θi(g, φ)s provides a criterium for the selection
of an optimal target in the network. Implementing such a network-based policy has obviously its costs.
Indeed, the computation of the inter-centrality measures relies on the knowledge of the adjacency matrix of
the crime network. This matrix is obtained from sociometric data that identifies the network links between
criminals. It is important to note that sociometric data on crime is available in many cases. For instance,
Haynie (2001) uses friendship data to identify delinquent peer networks for adolescents in 134 schools in
the U.S. that participated in an in-school survey in the 1990’s. Sarnecki (2001) provides a comprehensive

study of co-offending relations and corresponding network structure for football hooligans and right-wing
extremists in Stockholm. Baker and Faulkner (1993) reconstruct the structure of conspiracy networks for
three well-known cases of collusion in the heavy electrical equipment industry in the U.S. Finally, Valdis
Krebs (2002) maps the network of terrorist cells behind the tragic event of September 11th, 2001. In all
these cases, one may directly use the available data to compute the inter-centrality measures.23

In some other cases, though, ad hoc information gathering programs have to be implemented. Interest-
ingly, Elizabeth Costebander and Thomas Valente (2003) show that centrality measures based on connectivity
(rather than betweenness), such as β and θ, are robust to mispecifications in sociometric data, and thus
open the door to estimations of centrality measures with (relatively small) samples of network data.24 This,
obviously, reduces the cost of identifying the key player.

Key player versus random target To fully assess the relevance of the key player crime policy, we
also need to evaluate the relative returns from following this network targeted policy. For this purpose, we
compare the reduction in aggregate crime following the elimination of the key player with respect to the
expected consequences when the target is selected randomly.
For each criminal i in the crime network, define:

ηi(g, φ) = n
e∗(g, φ)− e∗(g−i, φ)Pn

j=1 [e
∗(g, φ)− e∗(g−j , φ)]

.

This is the ratio of returns (in crime reduction) when i is the selected target versus a random selection with
uniform probability for all criminals in the network.

Denote by θ(g, φ) the average of the inter-centrality measures in network g, and by σθ(g, φ) the standard
deviation of the distribution of this inter-centrality measures. The following result establishes a lower bound
on the ratio of returns in crime reduction when the key player is removed.

Proposition 5 Let i∗ be the key player in g for a given φ. Then,

ηi∗(g, φ) ≥ 1 +
σθ(g, φ)

θ(g, θ)
.

The relative gains from targeting the key player instead of operating a selection at random in the crime
network increase with the variability in inter-centrality measures across criminals as captured by σθ(g, φ).
23 In fact, Haynie (2001) conducts regressions where the Bonacich centrality measure is taken as an explanatory variable for

delinquent crime decisions.
24 See, also, Tami Carpenter, George Karakostas and David Shallcross (2002) for a discussion on algorithms that deals with

data uncertainty in terrorist networks.
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In other words, the key player prescription is particularly well-suited for networks that display stark location

asymmetries across nodes. In these cases, it is more likely than the relative gains from implementing such a
policy compensate for its relative costs.

Key player versus standard deterrence policy Of course, the planner can also reduce aggregate
crime by implementing a standard deterrence policy, that is, increasing punishment costs φ. The impact on
aggregate crime following an increase in φ, though, results from the combination of two effects that work
in opposite directions as can be seen in (5). First, the individual probability to be apprehended, and thus
the punishment costs borne by each criminal, increase with φ. This is a direct negative effect. Second,

when φ increases, criminals react strategically by acquiring a better crime technology to thwart the higher
deterrence they now face. The improvement in crime technology stems from more intense know-how inflows
and transfers in the crime network. Each criminal centrality measure βi(g, φ) increases, which translates
into a higher crime involvement for each criminal. This is an indirect positive effect on aggregate crime that
mitigates the direct negative effect.
On the contrary, the key player removal policy has a straightforward effect on crime reduction, with no

countervailing effect. Indeed, when a criminal is removed from the network, the inter-centrality measures
of all the criminals that remain active are reduced, that is, θj(g−i

∗
, φ) ≤ θj(g, φ), for all j 6= i∗, which

triggers a decrease in crime involvement for all of them. Moreover, when criminal i∗ is removed from the
crime network, the corresponding ratio of aggregate crime reduction with respect to the network centrality

reduction is an increasing function of the inter-centrality measure θi(g, φ) of this criminal. Formally,

∂

∂θi(g, φ)

·
e∗(g, φ)− e∗(g−i, φ)
β(g, φ)− β(g−i, φ)

¸
> 0.

In words, the target policy displays amplifying effects, and the gains following the judicious choice of the key
player (the one with highest inter-centrality measure) go beyond the differences in inter-centrality measures
between this player and any other criminal in the network.

3.3 From individual key player to key group

So far, we have characterized optimal single player removal from the network to reduce crime, a key player.
We now characterize optimal group removal from the network, a key group.

The general planner’s problem Given a group size 1 ≤ s ≤ n − 1, the planner’s objective is to
generate the highest possible reduction in aggregate crime level by picking a subset of criminals of exactly
this size.
Let N = {1, ..., n}. Formally, the planner’s problem is the following:

max{e∗(g, φ)− e∗(g−S , φ) | S ⊂ N, |S| = s}.

Of course, this is equivalent to minimizing the aggregate crime in the network g−S that results from the
removal of a set S of criminals. Given that aggregate crime increases with the aggregate network Bonacich
centrality, the planner’s problem becomes:

min{β(g−S , φ) | S ⊂ N, |S| = s}. (9)
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When s = 1, the planner’s problem (9) is equivalent to maximizing θi(g), i ∈ N . Indeed, β(g−i, φ) =
β(g, φ)− θi(g). Suppose now that s = 2. Reiterating this formula, it is plain to check that (9) is equivalent
to solving:25

max{θi1(g) + θi2(g
−i1) + θi3(g

−i1−i2) + ...+ θis(g
−i1−...−is−1) | {i1, ..., is} ⊆ N}, (10)

where i1, ..., is are different two by two. In words, the key group maximizes the sum of the individual
inter-centrality measures of its members across the networks obtained through sequential removal of these
members.26 The idea behind this expression is the following. We must eliminate a set of players S =

{i1, ..., is} in order to minimize the total number of (weighted) walks in the network, β(g−S , φ). After
deleting player i1, the resulting number of paths is β(g, φ) − θi1(g). Now, the expression θi2(g

−i1) counts
the number of walks that touch i2 once player i1 has been eliminated, so that we are not counting the same

path twice. Thus, β(g, φ)− θi1(g)− θi2(g
−i1) is the remaining set of walks after eliminating players i1 and

i2, keeping in mind that we only want to count each walk once. By the previous argument, also note that
the remaining set of weighted paths is the same if we change the order of deletion of these two players, that
is:

β(g, φ)− θi1(g)− θi2(g
−i1) = β(g, φ)− θi2(g)− θi1(g

−i2)

Extending this argument to the rest of the players in S, we obtain the expression for the number of paths
after deleting all players in S:

β(g−S , φ) = β(g, φ)− θi1(g)− θi2(g
−i1)− θi3(g

−i1−i2)− ...− θis(g
−i1−...−is−1)

so that, minimizing β(g−S , φ) is equivalent to (10).

Group inter-centrality In what follows, we provide a direct characterization of the key group on the
original network g that dispends with computing the nested sequence of networks resulting from sequential
node removal. The key group characterization relies on a generalization of the inter-centrality network
measure for groups. Given that individual inter-centrality captures both direct and indirect Bonacich-
centrality measures, the generalization to a group of the inter-centrality measure needs to account for all the
cross-countributions that arise both within and outside the group.
Consider some subset S ⊂ N of criminals, S 6= ∅. Denote by βi,S(g, φ) the contribution of this subset S

to the centrality of any individual player i /∈ S outside this set in the network g. This is equal to:

βi,S(g, φ) =
X
k≥|S|

φkβki,S(g),

where βki,S(g) counts the number of paths in g of length k starting from i and that go through all elements
in S at least once. Note that this quantity is well-defined for low enough values of φ. We define βki,S(g)
recursively as follows:

βki,{j}(g) = βkij(g), for all i 6= j,

and

βki,S(g) =
X
j∈S

kX
p=1

g
[p]
ij β

k−p
j,S\{j}(g), for all |S| > 1 and i /∈ S.

25As shown in the proof of Proposition 6. A heuristic argument follows after the proposition is stated.
26Note that this sum is independent of the order in which nodes are removed.
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By convention, we set βi,∅(g, φ) = βi(g, φ).

Consider now the following expression:

ξS(g, φ) =
X
i∈S

βi,S\{i}(g, φ) +
X
i/∈S

βi,S(g, φ).

This formula counts the number of weighted walks in the network g that go through all the elements in S

at least once. The expression adds up the walks stemming from nodes outside the set and those starting
from nodes inside the set. In particular, specializing to singletons, we get ξi(g, φ) = θi(g, φ), that is, the
individual inter-centrality measure of player i.
We now define the inter-centrality of a set S of players.

Definition 2 For all S ⊂ N , S 6= ∅, let θS(g, φ) =
P
Ω⊆S(−1)|Ω|+1ξΩ(g, φ).

Note that, when S is a singleton, this definition coincides with the individual inter-centrality measure
θi(g, φ). More generally, when |S| > 1, the intercentrality of S is equal to:

θS(g, φ) = θi1(g) + θi2(g
−i1) + θi3(g

−i1−i2) + ...+ θis(g
−i1−...−is−1),

for any given labelling {i1, ..., is} of elements in the subset S.

A geometric characterization of the key group The following result now characterizes key groups
of a given size s.

Proposition 6 Let 1 ≤ s ≤ n− 1. A group S∗ of size s is the key group that solves (9) if and only if S∗ is
a group with the highest group inter-centrality in g, that is, S∗ ∈ argmax{θS(g, φ) | S ⊂ N, |S| = s}.

This proposition provides a geometric characterization of the solution to (9) that generalizes the geometric
characterization of the key player (see Proposition 4) to key groups of arbitrary size.
We now illustrate this result with an example.
Consider the network with eleven players in Figure 2, and consider the case where the key group size

is s = 2. The next table shows the values of θS(g, φ) for each possible subset S of size two when φ = 0.2.

For the sake of simplicity, subsets that yield the same network when they are removed are considered as
equivalent:

Removed Group S θS(g, φ)

{2, 7}∗ 67.22

{2, 8} 64.01

{3, 8} 59.39

{1, 2} 56.66

{2, 6} 50.41

{2, 3} 46.96

{3, 4} 42.15

The key group is {2, 7}, that is, a set of two maximally connected nodes (with five direct contacts each),
both connected to the central player 1, and each at a different side of this central player. This subset solves
the following optimization problem:

max
i,j

θ{i,j}(g) = max
i,j
[θi(g) + θj(g

−i)]
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Suppose that we were to approximate the solution to this optimization problem with some greedy heuristics

that pick up sequentially the player that maximizes the individual inter-centrality at each step. Formally,
let

i∗1 = argmax
i∈N

θi(g)

and then, at each step t ≤ s, choose the player i∗t with maximum inter-centrality in the network where the
previous players have been deleted, that is,

i∗t ∈ arg max
i∈N\{i∗1,...,i∗t−1}

θi(g
−{i∗1,...,i∗t−1})

breaking possible ties arbitrarily. This greedy algorithm first eliminates player 1, and then any other re-
maining player. Thus, the algorithm returns a group which is far from being optimal: there are many other
groups that are better candidates than {1, 2}. Indeed, in this example, player 1 is not only very central, but
also its contribution to the inter-centrality of others is large. Hence, being greedy and eliminating it at the
first stage reduces the chance of finding highly central players at futher stages. And, in fact, player 1 is not

part of the key group when φ = 0.2.
A straightforward generalization of Lemma 1 establishes that the key group S∗ solves argmin{n(g−S) |

|S| = s} when φ is small enough. That is, for low values of φ, the key group minimizes the total number
of remaining links (when the key group has been removed). Note, here, that n(g−{2,7}) ≤ n(g−{i,j}), for all
i, j, and this alternative characterization thus applies for φ = 0.2.27

4 Joining crime networks

4.1 Equilibrium networks

The endogenous crime network game So far, we have assumed that the crime network was given.

In some cases, though, criminals may have opportunities outside the crime network. For instance, petty
delinquents may consider to enter the labor market and give up criminal activities. Here, we expand the
model and endogeneize the crime network by allowing criminals to take a binary decision on whether to stay
in the crime network or to drop out of it.28 Formally, we consider the following two-stage game.
Fix an initial network g connecting agents.
In the first stage, each agent i = 1, ..., n decides to enter the labor market or to become a criminal. This

is a simple binary decision. These decisions are simultaneous. Let ci ∈ {0, 1} denote i’s decision, where
ci = 1 (resp. ci = 0) stands for becoming a criminal (resp. entering the labor market), and denote by
c = (c1, ..., cn) the corresponding population binary decision profile. We assume that agents entering the

labor market earn a fixed wage w > 0. The payoff for criminals is determined in the second stage of the
game.
In the second stage, criminals in C(c) = {i ∈ {1, ..., n} | ci = 1} decide their crime effort level ei(c) > 0

that depends on the first-stage outcome c. Given a crime effort profile e(c) = [ei(c)]i∈C(c), the individual
27Recall that, for the case of a single player removal, this alternative characterization of the key player (namely, minimizing

the total number of remaining links) applies when φ = 0.1 but not anymore when φ = 0.2.
28 See Antoni Calvó-Armengol and Matthew O. Jackson (2004) for a similar endogenous game of network formation in the

context of the labor market, where the binary decision for agents is to enter the labor market network or to drop out.
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expected crime gains are equal to:

ui(e(c), g) = yi(e(c))− pi(e(c), g)f

Equilibrium networks Let c = (c1, ..., cn) ∈ {0, 1}n be a population binary decision profile, and C(c)
the corresponding set of active criminals, with cardinality c(c). Assume that C(c) 6= ∅. The network that
connects active criminals is determined by the collection of individual drop in decisions c. We denote this
network by g(c). This is the network induced by the original network g on the set of active criminals C(c).
Two criminals i, j ∈ C(c) are directly linked in g(c) if and only if a direct link between them pre-exists in g.
Formally, gij(c) = gijcicj .

We denote by G(c) = [gij(c)]i,j∈C(c) the reduced adjacency matrix corresponding to this network. By
definition, this is a c(c)−dimensional matrix.29
Denote by I(c) the identity matrix of size c(c), by 1(c) the c(c)−dimensional column vector of ones,

and by J(c) = 1(c) · 1T (c) the c(c)−dimensional square matrix of ones. From Proposition 1, the Nash
equilibrium e∗(c) of the second-stage game following the first-stage decision c is the unique solution to the
following matrix equation:

[J(c) + I(c)−φG(c)] · e(c) =1− π

γ
1(c)

Following Proposition 3, this unique Nash equilibrium is given by:30

e∗(c) =
1− π

γ

1

1 + β(g(c),φ)
β(g(c),φ). (11)

We now provide a general characterization of the subgame perfect equilibria of the full game. We first
introduce some useful notations.
For all c, c0 ∈ {0, 1}n, the join of c and c0, denoted by c ∨ c0, is the binary population profile defined by

(c ∨ c0)i = max{ci, c0i}, for all i = 1, ..., n. In words, c ∨ c0 “adds up” the criminal decisions in c and c0. In
particular, C(c ∨ c0) = C(c) ∪C(c0).
Let ν1, ....,νn be the canonical base of {0, 1}n, where the coordinates of νi are all zeros except a one

in the ith position. For instance, ν1 = (1, 0, ..., 0)T , ν2 = (0, 1, 0, ..., 0)T and νn = (0, ...0, 1)T . Then,

C(c ∨ νi) = C(c) ∪ {i}. In words, the set of criminals in c ∨ νi is deduced from that in c by adding agent i
to the active crime pool.
At the subgame perfect equilibria (c∗, e∗(·)) of the full game, the payoffs to workers are equal to w while

the payoffs accruing to criminals are given by the Nash equilibrium strategies of the second-stage game as
in (11). It is readily checked that the Nash equilibrium payoffs for active criminals at the second-stage game
are equal to the square of their crime efforts, that is,31

ui(e
∗(c∗), g) = γe∗2i (c), for all i ∈ C(c).

29The adjacency matrix [gij(c)]1≤i,j≤n is a square matrix of size n. G(c) is obtained from this matrix by eliminating n−c(c)

rows and columns of 0s. It is thus of reduced size c(c).
30Whenever φ is smaller or equal than the reciprocal of the highest eigenvalue of G(c).
31 Indeed, we deduce from ∂ui(e∗(c∗))/∂ei = 0 that γe∗i (c) = 1 − π − γ j∈C(c)[1 − ρgij(c)]e∗j (c), for all i ∈ C(c). After

some manipulation,
ui(e

∗(c∗), g) = e∗i (c)[1− π − γ

j∈C(c)
[1− ρgij(c)]e

∗
j (c)] = γe∗2i (c).
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At the equilibria of the full game, no unilateral deviation is profitable, that is, no worker gains by

becoming a criminal, nor does any criminal gain by becoming a worker.

Proposition 7 There exists a unique 0 < eφ ≤ 1 such that, for all 0 ≤ φ < eφ, the binary decision profile
c∗∈{0, 1}n, c∗ 6= 0 is part of a subgame perfect equilibrium of the full game if and only if:32

βi(g(c
∗), φ)

1 + β(g(c∗), φ)
≥
√
γw

1− π
, for all i ∈ C(c)

βi(g(c
∗∨νi), φ)

1 + β(g(c∗∨νi), φ) <
√
γw

1− π
, for all i /∈ C(c)

The endogenous crime networks are thus characterized by a set of inequalities.
Existence of multiple equilibrium crime pools is illustrated in Figure 3 that draws the correspondence

between w and the total crime e∗ for all corresponding subgame perfect equilibria for the network in Figure 2
when φ = 0.2. Note that, as the wage rate w increases, the set of active criminals tends to shrink, producing
a decreasing trend in the total crime effort. For instance, when w = 0.004, there are three possible equilibria.

The first is “large” and consists of the whole network with eleven players, with a resulting total crime equal
to 0.7914. The second and the third are two equivalent “small” equilibria where either the fully connected
five players on the left side, or the ones on the right side, are the active criminals, with a total amount of
crime equal to 0.7785 in either cases.

Figure 3: Equilibrium correspondence of the two-stage game when φ = 0.2.

4.2 Finding the key player

Given that this game usually displays multiple subgame perfect equilibria in the endogenous crime network
game, we define e∗(g,w, φ) to be the maximum aggregate equilibrium crime level when the initial population
network is g, the labor market wage is w and the deterrence effort is φ. That is, this is equal to the total
amount of crime in the worst case scenario of maximum deliquency.
32Note that this characterization implies that, when a player is indifferent between becoming a criminal or a worker, we

assume that he becomes a criminal. This is without loss of generality.
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Consider some binary decision profile c. Let i be an active criminal, that is ci = 1. Suppose that criminal

i switches his current decision to ci = 0, that is, criminal i drops out from the crime pool and enters the
labor market instead. The binary decision profile then becomes c− νi, and the new set of active criminals
is C(c− νi) = C(c)\{i}. The drop out of criminal i from the crime pool also alters the network structure
connecting active criminals, as any existing direct link between i and any other criminal in C(c) is removed.
The new network connecting active criminals is then g(c)−i = g(c− νi), and the aggregate crime level
becomes:

e∗(c− νi) = 1− π

γ

β(g(c− νi), φ)
1 + β(g(c− νi), φ)

The key player problem acquires a different shape in the setting with endogenous formation of crime
pools. Initially, the planner must choose a player to remove from the network. Then, players play the two-
stage crime game. First, they decide whether to enter the crime pool or not. Second, criminals choose how
much effort to exert. In this context, there is an added difficulty to the planner’s decision. The removal of
a player from the network affects the rest of the players’ decisions to become active criminals. And this fact
should be taken into account by the planner in order to attain an equilibrium with minimum total crime.
The right choice of the key player should be based upon the resulting crime pool that will result from that
decision, that is, what the remaining players will decide regarding their criminal activities.
We show, with the help of an example, that there is no trivial geometric recipe for the key player problem

in this case.
Consider again the network in Figure 2 with eleven players. Recall that, when φ = 0.2 and the network

of criminals is exogenously fixed (or, equivalently, the outside option is w = 0), the key player was the player
acting as a bridge, player 1. If we consider endogenous crime network formation in the two-stage game, the
results may differ from the previous case. For low wages, player 1 is also the key player and the resulting
equilibrium network is the whole remaining network, that is, an equilibrium with ten criminals split into
two fully connected cliques of five criminals. When w is higher, though, type−2 criminals become the key
player33 and the equilibrium network now encompasses six different players. It consists of a clique of five
fully intraconnected players together with player 1.
These results are summarized in the following table, that gives, for two different values of w, the key

player, the highest aggregate crime that results from eliminating this key player, and the equilibrium crime
network.

w = 0.001 w = 0.003

e∗(g−1, w, φ) 0.7843 0.7843

e∗(g−2, w, φ) 0.7847 0.7785

Key Player 1 2

Final Crime pool
rr r rrH³³©JJPPA¢r r rrr¢A³³PPHJJ© r©Hr r rrr¢A³³PPHJJ©

Intuitively, when outside opportunities are high enough, all players from the same side of the player being
removed do not have enough incentives to enter the crime pool at the first stage of the game. Hence, we do
not get a “large” equilibrium with many players, and this constitutes an advantage for the planner, that will

choose to delete node 2. This example implicitly explains how one policy (providing a higher w) increases
the effectiveness of another policy (choosing the key player) in order to reduce crime. These policies are
33 In fact, any player except player 1 is the key player for w = 0.003.
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complementary from the point of view of their effects on total crime, although we are aware that they may

be substitutes from the natural point of view of a budget restricted planner who has to implement costly
policies.
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Appendix

Proof of Proposition 1: First, note that ∂2ui(e)/∂e2i = −2γ < 0. Therefore, if an interior equilibrium
exists, it is given by the unique solution to:

∂ui(e)

∂ei
= 1− π − γei − γ

X
j

ej + πλ
X
j

gijej = 0.

This is an n−dimensional linear system that we can write in matrix form:

[J+ I−φG] · e =1− π

γ
1.

Define M (g, φ) = J+ I−φG, and denote by det[M (g, φ)] its determinant. We show that there exists some
finite set Z ∈ IR such that det[M (g, φ)] 6= 0, for all φ /∈ Z and for all g on {1, ..., n}.
Consider some network g. It is readily checked that det[M (g, φ)] is a polynomial in φ of degree smaller

than n.34 Therefore, det[M (g, φ)] has at most n different roots
neφ1 (g) , . . . , eφm (g)o, m ≤ n, such that

det[M(g, eφi (g))] = 0 for all 1 ≤ i ≤ m. Given that there are exactly 2
n(n−1)

2 different networks g on
{1, ..., n}, the set of values Z of φ such that det[M (g, φ)] = 0 for some g is finite, with |Z| ≤ n2

n(n−1)
2 .

Next, when π = 0, the unique solution to (3) is (n + 1)e∗i γ = 1. Suppose that γ ≥ λ. Then, neγ = 1,
implying that e∗i ∈ (0, e). By continuity, there exists 0 < ε(g) ≤ 1 such that the solutions to this system
of equations are non-negative for all π ∈ (0, ε(g)). Let gN such that gNij = 1, for all i 6= j. Let π =

min
©
ε(g) | g ⊆ gN

ª
. Let φ = πλ/γ. Then, 0 < φ ≤ 1, and for all 0 ≤ φ < φ, the solutions to (3) are all

non-negative for all g on N .

Proof of Proposition 2. Given that I,J,G are all symmetric matrices, M(g, φ) = I + J−φG is also
symmetric, and M(g, φ) =MT (g, φ). Denote by e∗(g) the unique solution to (3) that we now write as

M(g, φ) · e =(1− π)/γ1.

Suppose that g and g0 are adjacent networks with g ⊂ g0. Without loss of generality, let g0 = g ∪ {12}.
Then,

M(g0, φ) =M(g, φ)−φ


0 1 0 . . . 0

1 0 0 . . . 0

0 0 0 . . . 0
...
...
...
. . .

...
0 0 0 . . . 0

 .

Premultiplying (3) by e∗T (g0) and noting that e∗T (g0) ·M(g0) =(1− φ)/γ1T , we have:

e∗T (g0) ·M(g) · e∗(g) = (1− φ)/γe∗T (g0) · 1
= (1− φ)/γ1T ·e∗(g)+φ[e∗2(g0)e∗1(g) + e∗1(g

0)e∗2(g)]

Hence, the total crime level under g0, is higher than the total crime level under g, that is,

e∗T (g0) · 1 > 1T · e∗(g)
34 Indeed, det[M (ρ, g)] is a polynomial of highest degree in ρ when gij = 1 for all i 6= j, in which case det[M (ρ, g)] =

(1 + ρ)n + n (1− ρ) (1 + ρ)n−1, which is a polynomial in ρ of degree exactly n.
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when g and g0 are adjacent networks. The inequality extends to any two nested networks by iterative

application of the inequality along any chain of adjacent networks between them.

Proof of Proposition 3. Given a crime effort profile e, denote by e = 1T · e the total crime effort
exerted by criminals. Noting that J = 1 · 1T , (3) can be written as:

[I−φG] · e =(1− π

γ
− e)1.

Suppose now that I−φG is invertible. Then, we get:

e = (
1− π

γ
− e)[I−φG]−1 · 1 = (1− π

γ
− e)β(g, φ).

Premultiplying by 1T and manipulating terms, we get:

e =
1− π

γ

β(g, φ)

1 + β(g, φ)
.

Plugging back into the first equality, we deduce the result.
Now, when φ is smaller or equal than the reciprocal of the largest eigenvalue of the adjacency matrix G

of the network g, I−φG is invertible and can be written as a Taylor expansion. Let n(g) =
P

i,j gij denote

the number of links in g (counted twice), δ(g) = min
nPn

j=1 gij | i = 1, ..., n
o
be the minimum degree or

number of direct links for the nodes of g, and µ0(g) be the largest eigenvalue of G. Then, we have (Kunfu
Fang et al. 2001):

µ0(g) ≤
1

2
[δ(g)− 1 +

p
(δ(g) + 1)2 + 4 [n(g)− nδ(g)]],

and this upper bound, denoted by µ(g), is sharp as equality is obtained, e.g., when either g is a regular

network, that is,
Pn

j=1 gij = δ(g), for all i, or when g is a network where degrees take on only two possible
values. Then, β(g, φ) is well-defined whenever 0 ≤ φ ≤ 1/µ(g).
Proof of Proposition 4. We compute β(g−i, φ). For all j 6= i, (8) implies that:

βj(g
−i, φ) = βj(g, φ)− βji(g, φ).

Therefore,

β(g−i, φ) =
X
j 6=i

βj(g
−i, φ) =

X
j 6=i

βj(g, φ)−
X
j 6=i

βji(g, φ)

=
X
j 6=i

βj(g, φ) + βi(g, φ)− θi(g, φ) = β(g, φ)− θi(g, φ),

and the result follows.

Proof of Lemma 1. The Bonacich’s centrality measure vector is defined as:

ψ(g, α, β) = α(I− βG)−1G · 1

Given the relation between ψ(g, α, β) and our variation β(g, φ):

β(g, φ) = 1+ φψ(g, 1, φ)
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it is obvious that the total centrality β(g, φ) is given by

β(g, φ) = n+ φ
nX
i=1

ψi(g, 1, φ)

Given the fact, that ψi(g, 1, φ)→ ni(g) as φ→ 0, the result follows.

Proof of Proposition 5. Simple algebra leads to:

ηi(g, φ) =

θi(g,φ)
1+β(g,φ)−θi(g,φ)

1
n

Pn
j=1

θj(g,φ)
1+β(g,φ)−θj(g,φ)

, for all i = 1, ..., n.

By definition, θi∗(g, φ) ≥ θi(g, φ), for all i = 1, ..., n. This implies that:

1 + β(g, φ)− θi∗(g, φ)

1 + β(g, φ)− θj(g, φ)
≤ 1, for all j = 1, ..., n,

and, thus ηi∗(g, φ) ≥ θi∗(g, φ)/θ(g, θ). Noting that θi∗(g, φ) ≥ θ(g, θ) + σθ(g, φ), we can conclude.

Proof of Proposition 6. We first establish two useful Lemmata.

Lemma 2 Suppose that n ≥ 2. For all S ⊂ N and for all i, j /∈ S, βj,S(g
−i, φ) = βj,S(g, φ)−βj,S∪{i}(g, φ).

Proof. For all i ∈ N and c ≥ 1, let:
P c
i (g) = {{i0, ..., ic} | i0 = i, ip+1 ∈ N, gipip+1 = 1,∀0 ≤ p ≤ c− 1}.

This is the set of paths of length c in g that start at i. We denote by ( a generic element of P c
i (g). This

is an ordered list of (at least two) nodes in g where each node (except the first one) is directly linked to its
predecessor. For all S ⊂ N , S 6= ∅, i /∈ S and k ≥ |S|, where |S| denotes the cardinality of S, we have:

βki,S(g) =
¯̄{( ∈ P k

i (g) | j ∈ S ⇒ j ∈ (}¯̄ .
Let i, j /∈ S and k ≥ |S|. We have, P k

j (g
−i) = P k

j (g)\{( ∈ P k
j (g) | i ∈ (}. Therefore,

βkj,S(g
−i) = βkj,S(g)−

¯̄{( ∈ P k
j (g) | i ∈ (, j0 ∈ S ⇒ j0 ∈ (}¯̄ .

But,

{( ∈ P k
j (g) | i ∈ (, j0 ∈ S ⇒ j0 ∈ (} = {( ∈ P k

j (g) | j0 ∈ S ∪ {i}⇒ j0 ∈ (},
implying that βkj,S(g

−i) = βkj,S(g)− βkj,S∪{i}(g). The result follows. Q .E .D.

Lemma 3 ξS(g
−i, φ) = ξS(g, φ)− ξS∪{i}(g, φ), for all S ⊂ N and all i /∈ S.

Proof. Let S ⊂ N and i /∈ S. By definition,

ξS∪{i}(g) =
X

j∈S∪{i}
βj,S∪{i}\{j}(g, φ) +

X
j /∈S∪{i}

βj,S∪{i}(g, φ).

By the Lemma above, this can be written as:

ξS∪{i}(g) =
X
j∈S
[βj,S\{j}(g, φ)− βj,S\{j}(g

−i, φ)] + βi,S(g, φ)

+
X
j /∈S
[βj,S(g, φ)− βj,S(g

−i, φ)]− βi,S∪{i}(g, φ)

= ξS(g)− ξS(g
−i) + βi,S(g, φ)− βi,S∪{i}(g, φ).
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But, by definition, βi,S(g, φ) = βi,S∪{i}(g, φ). The result follows Q .E .D.

To establish the proposition, we show that

β(g−S , φ) = β(g, φ)− θS(g, φ) = β(g, φ)−
X
Ω⊆S

(−1)|Ω|+1ξΩ(g, φ).

We establish the result by induction on the size of S. The case where |S| = 1 is clear. Let S ⊂ N such that
|S| ≥ 2, and suppose that the result is true for all S0 such that |S0| < |S|.
Let i ∈ S. Note that S\{i} 6= ∅. We have

β(g−S) = β(g−S\{i}−i) = β(g−S\{i})− θi(g
−S\{i}).

By the induction hypothesis, this becomes:

β(g−S) = β(g, φ)−
X

Ω⊆S\{i}
(−1)|Ω|+1ξΩ(g, φ)− θi(g

−S\{i}). (12)

We now compute θi(g−S\{i}). Recall that, by definition, θi(g−S\{i}) = ξi(g
−S\{i}). Consider one ordered

labelling of elements in S, that is, S = {i1, ..., is}, where i1 = i. The previous Lemma implies that:

ξi(g
−S\{i}) = ξi(g

−S\{i,i2})− ξ{i,i2}(g
−S\{i,i2})

= ξi(g
−S\{i,i2,i3})− ξ{i,i3}(g

−S\{i,i2,i3})− ξ{i,i2}(g
−S\{i,i2})

= ξi(g
−S\{i,i2,i3,i4})− ξ{i,i4}(g

−S\{i,i2,i3,i4})− ξ{i,i3}(g
−S\{i,i2,i3})− ξ{i,i2}(g

−S\{i,i2})

= ...

= ξi(g)−
sX

k=2

ξ{i,ik}(g
−S\{i,i2...,ik}).

Reiterating this process for ξ{i,ik}(g
−S\{i,i2...,ik}), we get, for all 2 ≤ k ≤ s− 1:

ξ{i,ik}(g
−S\{i,i2...,ik}) = ξ{i,ik}(g)−

sX
l=k+1

ξ{i,ik,il}(g
−S\{i,i2...,il}),

and, more generally, for all 2 ≤ k1 < k2 < ... < kq ≤ s− 1, we have:

ξ{i,ik1 ,ik2 ,...,ikq}(g
−S\{i,i2...,ikq}) = ξ{i,ik1 ,ik2 ,...,ikq}(g)−

sX
l=kq+1

ξ{i,ik1 ,...,ikq ,il}(g
−S\{i,i2...,il}).

Gathering all expressions together gives:

ξi(g
−S\{i}) = ξi(g)−

X
j∈S\{i}

ξ{i,j}(g) +
X

{j,k}⊆S\{i}
ξ{i,j,k}(g)− ...+ (−1)|S|ξS(g)

=
X

Ω⊆S\{i}
(−1)|Ω|ξΩ∪{i}(g, φ).

Plugging back into (12), we finally obtain:

β(g−S) = β(g, φ)−
X

Ω⊆S\{i}
(−1)|Ω|+1ξΩ(g, φ)−

X
Ω⊆S\{i}

(−1)|Ω|ξΩ∪{i}(g, φ)

= β(g, φ)−
X
Ω⊆S

(−1)|Ω|+1ξΩ(g, φ),

which concludes the proof.

Proof of Proposition 7. From Proposition 1 and (11) with eφ = min{bφ(c) | c ∈ {0, 1}n, c 6= 0}.
29
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