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Abstract

The paper studies the role of communication in facilitating collu-
sion. The situation of infinitely repeated Cournot competition in the
presence of antitrust enforcement is considered. Firms observe only
their own production levels and a common market price. The price
is assumed to have a stochastic component, so that a low price may
signal either deviations from collusive output levels or a ’downward’
demand shock. The firms choose between tacit collusion and collusion
with communication. Communication implies that the firms meet and
exchange information about past outputs and is assumed to be the
only legal proof of cartel behavior. The antitrust enforcement takes
the form of an exogenous probability to detect the meetings, in which
case the firms are sued for cartel behavior and pay a fine. Tacit collu-
sion is assumed to provide no grounds for the legal action but involves
inefficiencies due to the lack of complete information about individual
output levels. It is shown that there exists a range of discount factors
where collusion with communication constitutes the most profitable
collusive strategy.

Keywords: Collusion, Communication, Private Information.

JEL Classification: D82, L41.

∗I am especially grateful to Patrick Rey for skillful research assistance. I also thank
Johan Stennek and the participants of the Brown Bag Seminar at the Research Institute of
Industrial Economics for helpful comments and discussions. The paper was partly written
when the author was visiting the Institute within the project “Competition Policy in
International Markets”. Financial support from the European Commission (RTN/CPIM)
is highly acknowledged.

†Université Toulouse 1, IDEI, Manufacture des Tabacs, 21, allée de Brienne, F-31000
Toulouse, France and the Research Institute of Industrial Economics, P.O. Box 55665,
SE-102 15 Stockholm, Sweden.

1



1 Introduction

The paper explores the role of communication in facilitating collusion in an
infinite-horizon setting, where firms’ individual actions are private informa-
tion and each firm can make only statistical inference about the behavior
of its rivals. Communication is assumed to allow firms to share private in-
formation about their individual actions and thus helps sustain collusion.
This type of communication, however, may not be always beneficial because
it often generates an incontestable proof of collusive behavior which can be
revealed by competition authorities (CA). In the situation where firms can
choose between tacit collusion and collusion with communication, the paper
shows that the most profitable collusive strategy may involve communication
for a range of intermediate values of the discount factor.

The conventional economic analysis of collusive behavior implicitly as-
sumes that firms form a tacit agreement about each other’s actions1 based
on information which is commonly observed and readily available to every
party. Firms cannot sign any legal contract2 aimed to sustain collusion be-
cause it is per se prohibited, yet they may enforce a cartel agreement in the
context of an infinitely repeated competition game. Tacit collusion thus im-
plies that there is no need for collusive firms to communicate and, therefore,
requires no explicit accounting of their actions.

In practice, however, there is a strong evidence that collusive firms do
communicate.3 Despite the fact that communication does not allow them
to legally sign a collusive contract, so that the sustainability of collusion
is still an issue, it has been found that they explicitly collude by holding
regular meetings and keeping records of each other’s actions. Thus, the role
of communication in collusion needs further clarification.

In their excellent study of the Sugar Institute Case, Genesove and Mullin
(2001) highlight the deficiencies in the classical theory of collusion and stress
the reasoning behind firms’ regular meetings. They find that communica-
tion mainly serves two purposes. First, it enhances the efficiency of a cartel
outcome and, second what is more important, it strengthens the sustainabil-
ity of the cartel. In the latter case, communication facilitates detection of
cartel deviators and eliminates mistakes in establishing the fact of cheating.

The recent paper by Athey and Bagwell (2001) on price collusion with
private information about unit costs touches upon the issue of efficiency.
They find that the optimal collusion scheme involves a sophisticated mech-
anism design aimed to elicit the true type of each firm and, thus, implies

1 In other words, the firms agree once and forever on a particular equilibrium strategy
from the set of all possible equilibrium strategies of the supergame.

2For example, an agreement to set the monopoly price or collectively produce the
monopoly output every period would be legally prohibited.

3See, for example, the Commision decision on the choline chloride cartel (Case
COMP/E-2/37.533) or the citric acid cartel (Case COMP/E-1/36.604).
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communication. In particular, the paper shows that productive and pricing
efficiency necessarily requires consideration of asymmetric schemes:4 in or-
der to induce a high-cost firm to reveal its type truthfully and thus abstain
from making any sales “today” it should be promised a reward “tomorrow”.
This in turn implies that this firm should receive a higher market share
tomorrow provided that both firms are equally efficient.

A potential advantage of communication is explored in Compte (1998)
and Kandori and Matsushima (1998). Both papers develop basically the
same model in which the actions of players are private information and each
player observes private and imperfect signals of its rivals’ past play. The
latter fact causes a serious difficulty for the sustainability of collusion: since
the players receive diverse information about past history of the play they
may end up having different expectations about what might have happened.
Communication in such a setup allows the players to exchange information
of the private signals and thus aims to enhance the sustainability of collu-
sion. However, as the authors acknowledge, they are not able to characterize
the set of equilibria when there is no communication, and therefore to eval-
uate the potential benefits which the players derive from communication in
collusion.

The focus of the present paper is on the role of communication in fa-
cilitating collusion. Following the approach of Green and Porter (1984), I
develop a model where firms’ individual outputs constitute private informa-
tion. Firms receive an imperfect signal about each other’s behavior through
the realization of the stochastic market price which is publicly observable.
The main obstacle for collusion comes from the fact that a low price may
signal either deviations from collusive output levels or a ’downward’ demand
shock. I modify the Green and Porter approach by allowing firms to hold
meetings and exchange private information about each firm’ past behavior
before they produce their outputs. Communication thus helps resolve con-
fusion about the past play. Despite the benefits of communication, yet it is
not completely innocuous: cartel participants are under the constant threat
of legal prosecution because their meetings can be detected by competition
authorities, in which case they are sued and pay a fine.

There are many cartel cases in which firms have been found to exchange
private information of their past outputs during cartel meetings. In the
Choline Chloride Case, for example, the Decision of the European Commis-
sion states (paragraph 69):

Whether the agreed actions were being accomplished in prac-
4However, in their paper Athey et al. (1997) develope a model with continuum of

cost types and study optimal symmetric schemes. Their main result is that if the cost
distribution function is log-concave then the parties may find it more profitable to sacrifice
efficiency benefits by adopting the rigid-pricing scheme, i.e. in each period the firms
select the same price whatever their cost levels, and thus abandon per se communication
whatsoever.
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tice was regular checked. The parties agreed to meet every six
months to monitor, discuss and correct any problems. In these
follow-up meetings, the parties compared information on sales
actually made during the last period and discussed whether the
group’s goals were being achieved.5

As Kuhn (2001) notices, in the Green and Porter model the observation
of (dis)aggregate output(s) suffices to enhance the sustainability of collusion.
The present paper provides a formal analysis of the benefits which firms
can derive from the exchange of private information in the presence of the
antitrust enforcement.

Contrary to Athey and Bagwell (2001), where firms share information
about the current period in order to increase the profitability of collusion,
in the present model the purpose of communication is to establish compli-
ance with the collusive agreement and thus strengthen the sustainability of
collusion. Another difference is the nature of information transmitted dur-
ing a meeting. In their model individual cost types constitute a piece of
soft information and, therefore, its reference to the past has little, if any,
use for the collusive parties. Moreover, since such information has no direct
impact on firms’ current and future objectives, little can be done to elicit it
truthfully.

Similarly to Compte (1998) and Kandori and Matsushima (1998), in
the present model firms can communicate information about the past be-
havior. The difference, however, is that in their model firms exchange soft
information, while here they exchange hard information. Furthermore, in
contrast to their approach, it is possible to derive the best collusive strategy
when communication is absent and thus evaluate the potential benefits of
communication for collusive firms.

The main assumption of the model is that firms have hard evidence
about private actions. There is a rationale behind the fact that a firm may
not be able to distort or forge its report about its past behavior because,
say, verification of the report may be costless. For example, in the Choline
Chloride Case, it has been established that collusive firms verified the com-
mercially sensitive information through the European Trade Association for
the Chemical Sector (CEFIC). In other instances, it has been found that
collusive firms may resort to establishing interior auditing schemes at the
most senior levels of management to monitor individual volumes of sales,
as in the Vitamin Case,6 or they may ask an independent auditing com-
pany to perform a similar task. Taking this into account, the main question
the parties confront is whether to comply with the collusive agreement by
submitting a report about their past behavior.

5See the Commision Decision on Case COMP/E-2/37.533.
6See the Commision Decision on Case COMP/E-1/37.512.
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This type of communication, however, may leave incriminating evidence
of cartel behavior, which can be discovered by the CA.7 If the meeting is
detected, firms are sued and pay a fine. In contrast, if they choose tacit
collusion then there is eventually no way to incriminate them for cartel be-
havior. Indeed, the main proof of firms’ engagement in cartels often comes
from revealed notes, faxes, e-mails and other records of meetings. Moreover,
there is a strong belief among CA officials that if firms collude tacitly, they
can never be summoned to the court because of the lack of hard incrim-
inating evidence. As the case-law shows, such as in the EU Wood Pulp
Case, pure economic reasoning has been often found not sufficient from a
jurisdictional point of view to accuse undertakings in collusive behavior.

Although tacit collusion has the advantage of involving no legal action
from the CA, it is not completely innocuous for collusive firms. Since indi-
vidual actions are only privately observable, they have to incur informational
costs in designing a collusive scheme. In particular, there is more scope for
deviations, which, in turn, makes tacit collusion more fragile.

First, firms may deviate openly, that is they may optimally respond
to the collusive output and, thereby, clearly reveal cheating. This type of
deviation is common to both tacit and explicit collusive schemes. Second,
firms may cheat in a hidden way, that is they may opt for a suboptimal
response to the collusive output in order to induce the likelihood of being
detected.

The analysis is based on the comparison of the best payoffs obtained,
correspondingly, in the tacit and explicit collusion schemes. It is found that
in choosing the most profitable type of collusion, firms face the following
tradeoff. Without communication collusion always involves informational
costs due to imperfect knowledge of firms’ individual actions while with
communication collusive profits are reduced because of the fine imposed in
the event the meeting is detected. The central result of the paper is that as
long as the punishment for cartel behavior is not too large, there exists an
intermediate range of discount factors where collusion with communication
constitutes the best collusive strategy.

The intuition is as follows. In explicit collusion firms save on informa-
tional costs but always bear the risk of being fined for illegal behavior. In
contrast, in tacit collusion firms are never exposed to legal punishment but
instead incur informational costs which can vary with the value of the dis-
count factor. In particular, when the discount factor is large, information
costs are absent because firms can deter all deviations and sustain perfect
collusion. When the discount factor is small, there are no information costs
either because in this case a cheating firm would prefer the open deviation.

7For example, in the Carbonless Paper Case, cartel meetings were convened under the
cover of the official meetings of the trade association and during the course of investigation
the Commission received copies of the minutes of these meetings.
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It is thus only for intermediate values of the discount factor that informa-
tional costs may impede collusion and firms may face the tradeoff in choosing
between the tacit and explicit collusion schemes.

The rest of the paper is organized as follows. Section 2 develops the
model and derives the optimal collusive scheme. Conclusions and some
policy implications are presented in Section 3.

2 The Model

Two risk-neutral firms with identical unit costs of production c produce a
homogeneous product and repeatedly compete à la Cournot.8 Following the
Green and Porter approach, it is assumed that the firms can observe only
their own production levels. They face a common market price which is
inversely related to the total industry output Qt = q1t + q2t. The price is
assumed to include some stochastic component and in order to simplify the
exposition I confine to the linear price schedule with the intercept being a
random variable

ept = a+ eθt −Qt, (1)

where the shocks {eθt}∞t=0 are identically and independently distributed across
the time. It is assumed that eθt takes on two values, eθt ∈ Θ = {−σ, σ}
with equal probabilities and its realization is not directly observed by the
firms. Let P (Q) = {pL(Q), pH(Q)} denote the set of feasible price real-
izations given the total industry output Q, where pL(Q) = a − σ − Q and
pH(Q) = a+σ−Q. The firms are assumed to perfectly observe the realized
market price ept ∈ P (q1t + q2t). Since a firm observes neither the output of
its rival nor the true value of eθ, it may face a nontrivial inference dilemma:
for some realizations of ep 9 it cannot infer with probability one what level
of output the other firm has supplied on the market. The fact that it is im-
possible to make precise inference about privately taken actions constitutes
the core problem for the sustainability of collusion. As it will be shown
later, the firms have to sacrifice efficiency benefits in order to overcome this
informational gap.

The CA is assumed to have no information regarding the relevant eco-
nomic data of firms’ costs, consumer demand or market shares. Therefore
it cannot make any inference about market behavior from the mere price
observation. The only proof of cartel behavior is assumed to come from the

8A simillar analysis would hold in case of Bertrand competion with differentiated prod-
ucts, where demand realizations for each product are determined by a common stochastic
shock.

9 In particular, it will be shown for the low-demand state realization pL.
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detection of firms’ meetings.10 In this setup, tacit collusion thus implies that
cartel participants can never be sued and fined because of the lack of hard
incriminating evidence. In contrast, if the firms explicitly collude and the
meeting is discovered then the revealed evidence of exchange of information
about past outputs provides an incontestable proof of the illegal behavior.

The single period expected profit of firm i is defined as

πexpit (qit, qjt) = (p
exp(qit + qjt)− c) qit −K,

where j 6= i, K denotes fixed costs of production and A ≡ a − c > 0. It is
easy to verify that the Nash equilibrium implies

qi = qNash =
1

3
A and πexpi ≡ πNash =

1

9
A2 −K for i = 1, 2.

To define the stage game G the following notation is employed. Ξ =
{C,N} is the set of decision choices common to both firms, where C and N
imply communication and no communication, respectively. P = [0, pmax] is
the set of all feasible price realizations and S = [0, qmax] is the set of output
levels common to both firms.

The timing of the game G is thus as follows.

Stage 1. Each firm i = 1, 2 takes a decision ζi ∈ Ξ about whether to
hold a meeting. After the decisions having been made, they are assumed
to be known to every party. The meeting takes place if and only if both
firms agree to communicate, i. e., ζ1 = ζ2 = C and implies that the firms
disclose their private output levels produced in the past.11 In the event of
no meeting, no information about past outputs is available.

Stage 2. Each firm i = 1, 2 chooses its output level qi ∈ S, the shock eθ
is realized and the market price ep ∈ P is publicly observed.

Stage 3. The CA audits the industry. If communication has taken place,
it finds the incriminated evidence with probability ρ in which case each firm
is fined by the amount F , otherwise it finds nothing and no fine is imposed.

Stage 4. The payoffs of firms are realized.

The firms are supposed to play an infinitely repeated gameG∞(δ) defined
by the component game G and the discount factor δ ∈ (0, 1). A strategy Σi
of firm i specifies for each period of time t ≥ 0

(i) a decision variable ζit ∈ Ξ about the meeting at period t as a function
of both firms’ past decisions, the sequences of past prices and the firm’s own
past quantities:
10Here, the model abstracts from any reason to communicate other than to facilitate

collusion.
11Notice that in this setup the decision of whether to meet is equivalent to the decision

of whether to disclose private information because, by assumption, the firms cannot distort
their reports.
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ζit : Ξ
2(t−1) × P t−1 × St−1 → Ξ,

for t ≥ 1 and ζi0 is given,

(ii) an output qit ∈ S as a function of both firms’ past and current
decisions about communication, the sequences of past prices and the firm’s
own past quantities:

qit : Ξ
2t × P t−1 × St−1 → S,

for t ≥ 1 and qi0 is given.

The expected one-period payoff of firm i is thus defined as follows:

vit(ζit, qit; ζjt, qjt) =

½
πexpit (qit, qjt)− ρF, if ζit = ζjt = C,

πexpit (qit, qjt), otherwise.

Denote Σit = (ζit, qit) then a strategy Σi of firm i is Σi = (Σi1,Σi2, ...).
Each firm i = 1, 2 seeks to maximize the expected value of the discounted
sum of its one-period payoffs

Vi = (1− δ)
∞X
t=0

δtvit(Σit,Σjt).

To simplify the analysis, only fully symmetric equilibria are considered.
This implies Σ1t = Σ2t for all t ≥ 0 and thus πexp1 (q, q) = πexp2 (q, q) ≡
Πexp(q).

In what follows I will derive the best (symmetric) payoffs respectively for
tacit and explicit collusion. Finally, by comparing these payoffs, the optimal
collusive scheme is obtained.

2.1 Tacit collusion

Tacit collusion implies no meetings, i.e., ζ1t = ζ2t = N for any t ≥ 0, and the
objective of the firms is to find the most profitable collusive strategy in this
case. The following assumption simplifies the analysis and, in particular,
makes it easy to define the maximal punishment.

Assumption 1. K = 1
9A

2 or πNash = 0.

It states that the minmax payoff (which is 0 here) is sustained simply
by a reversal to the static Nash equilibrium.12

As it is proven in the Appendix, given that eθ is uniformly distributed, the
best collusive strategy Σ

nc
is stationary and consists in sticking to a collusive

12Under this interpretation, Πexp(q) = (pexp(2q)− c) q − K constitutes the difference
between the profit and the static Nash equilibrium profit.
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output, qnc, as long as the realized price, ep, is consistent with the target,
P (2qnc) = {pL(2qnc), pH(2qnc)}. In case of any detected deviation the firms
revert to the static Nash equilibrium forever. Formally, let ΣNash denote
the strategy when every period the firms play the static Nash equilibrium
then Σ

nc
is defined as follows.

(i) At t = 0 agree on some output qnc.
(ii) For any t ≥ 1 produce qnc if in the previous period the realized priceep ∈ P (2qnc), otherwise play ΣNash.

Note that the best collusive strategy differs from the one obtained in
Green and Porter (1984) and Abreu, Pearce and Stachetti (1986, 1990).
Following their approach one might think that Σ

nc
should specify a price

war (at least for some periods) whenever the realized price is low, i.e., ep =
pL(2q

nc). Recall, however, that in their setting the support of possible price
realizations is independent on the output levels which implies that firms’
deviations are never detected. When the market price falls below some
“trigger price” the firms switch on the price war in order to prevent any
potential deviation. The principal difference from their setting is that the
support P (Q) of the realized market prices now depends on the output levels
and is itself determined in equilibrium. In the model under study, for some
output levels the firms can infer with probability one that cheating has
occurred and therefore deviations are partially detected. As a result, the
analogous strategy is not necessarily optimal.

Let V
c
denote the payoff associated with the strategy Σ

nc
. Since Σ

nc
is

stationary then V
nc
= Πexp(qnc). As the Appendix shows, in order that Σ

nc

be an equilibrium strategy two types of no-deviation constraints must be
satisfied.

First, a firm may deviate openly and thus clearly reveal cheating. In
which case in the most profitable deviation it best responds to the collusive
output qnc. Since any deviation is most effectively deterred when the firms
resort to the worst available punishment, the no-open deviation constraint
takes the following form:

(1− δ)
h
Max

z
πexp(z, qnc)−Πexp(qnc)

i
≤ δΠexp(qnc). (ICopn)

The left hand side of ICopn is a one-period gain from deviation while the
right hand side is the value of discounted losses from abandoning collusion
forever afterwards.

Second, a firm may cheat in a hidden way, that is it may produce the
output level that reduce the likelihood (down to 1

2 , here) of detection of
cheating. As is well known for Cournot competition models, a cheating firm
tends to expand its output production. Thus, the intuition suggests (and it
is proven in the Appendix) that the most profitable deviation should involve
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a suboptimal increase of output, rH(qnc), so that when the demand is high
the price level mimics the one of the low-demand state, i.e.,

rH(q
nc) : pH (rH(q

nc) + qnc) = pL (2q
nc) .

Note that even when the firm produces rH(qnc), its deviation is revealed
if the low-demand state is realized. Since in the latter case the firms switch
on the punishment phase, the no-hidden deviation constraint takes the form:

(1− δ) [πexp(rH(q
nc), qnc)−Πexp(qnc)] ≤ δ

1

2
Πexp(qnc). (IChdn)

In choosing between the open and hidden deviations a firm thus faces
the following tradeoff. The gain from the hidden deviation is always lower
because a cheating firm suboptimally responds to the collusive output. How-
ever, the discounted value of the future losses from abandoning collusion is
also lower because its cheating is detected with probability 1

2 only.
The analysis so far implies that in tacit collusion the firms choose qnc

that solves the following program:

V
nc
(δ) = Max

qnc
Πexp(qnc)

s.t. ICopn and IChdn hold.
(P1)

Before proceeding with the characterization of a solution to P1, note
that the optimal response z∗(qnc) to the collusive output qnc is

z∗(qnc) = argmax
z

πexp(z, qnc) = qnc +
3

2
(qNash − qnc),

while the suboptimal response is rH(qnc) = qnc+2σ. In both cases, a cheating
firm finds it profitable to increase the output. An important point, however,
is that in the case of the hidden deviation the increase is determined by the
variance σ of the shock eθ. Thus, if σ is large enough then the suboptimal
response can be very inefficient, i.e., rH(qnc) can be far beyond z∗(qnc). In
which case the hidden deviation is no longer attractive and the corresponding
no-deviation constraint is per se irrelevant in program P1. To rule out such
situation, I make

Assumption 2. σ < 1

32 1− 1√
2

A.

The following proposition establishes a key property of the solution to
P1.

PROPOSITION 1. There exist bδ1 and bδ2 such that 0 < bδ1 < bδ2 < 1 and
IC hdn is binding in program P1 for any δ ∈ (bδ1,bδ2).

Proof: see the Appendix.
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The proposition thus states that the no-hidden deviation constraint is
the relevant one for intermediate values of the discount factor. Intuitively,
the open deviation yields a large one-period gain but provides no possibility
to cheat in the future. In contrast, the hidden deviation yields a lower one-
period gain but induces the probability to repeatedly cheat in the future.
When the discount factor is small, a cheating firm values more the current
period profit and thus finds the open deviation more profitable. On the other
hand, when the discount factor is large, the firms can deter all deviations and
sustain the monopoly outcome. Hence, it is only for intermediate values of
the discount factor that the hidden deviation may weaken the sustainability
of tacit collusion.

The exact analytical expressions of bδ1 and bδ2 as functions of σ are found
to be complicated. To capture the impact of σ on bδ1 and bδ2 simulations
were performed. Two representative examples when A = 10, σ = 0, 1 and
σ = 0, 4 are shown on figures 1 and 2.

[Insert Figures 1 and 2 from the Appendix.]
The results confirm the intuition. For low values of σ the gain from the

hidden deviation is small which implies that the hidden deviation is more
attractive only when qnc is close to qNash. This results to the narrow interval
(bδ1,bδ2) located in a range of small δ’s. As σ increases, the interval (bδ1,bδ2)
broadens and shifts to the right. Finally, as σ approaches its upper bound,
the interval (bδ1,bδ2) shrinks and gradually disappears.

In order to gain the intuition about the magnitude of the losses due
to imperfect information, consider the task of the collusive firms when the
individual outputs are observable. Clearly, in this case only open deviations
must be deterred and therefore the firms seek to solve the following program:

V (δ) = Max
qnc
Πexp(qnc)

s.t.ICopn holds.
(P2)

Since the analytical expressions of V
nc
and V are complicated, I plot the

two-dimensional graph of 1− V
nc

V
as a function of the discount factor δ and

the ratio σ
A .

[Insert Figure 3 from the Appendix.]
As figure 3 shows, for some range of parameters the firms can lose more

than 40% of their average intertemporal profit due to the lack of perfect
information, i.e., when the no-hidden deviation constraint binds. In such
a case they have strong incentives to eliminate the informational gap by
means of communication.

2.2 Collusion with communication

Communication implies that the firms meet and exchange hard information
about past outputs. Since communication is costly, the firms should use it

11



in the most efficient way.
In particular, there is no use for a meeting at t = 0, since there is noth-

ing to reveal yet. Similarly, for t ≥ 1 for some price realizations the firms
can detect deviations without communication. Indeed, if the firms agree to
produce qc at period t and the realized market price is not consistent with
the targeted price, i.e., ep /∈ P (2qc), then it is clear even without commu-
nication that cheating has occurred. Conversely, if the price level assigned
to the high demand state is realized, i.e., ep = pH(2q

c), then one can in-
fer without communication that no deviation has occurred either, since the
hidden deviation that mimics the price assigned to the high demand state
is never profitable.13 Thus it is only when ep = pL(2q

c) that the firms are
uncertain about each other’s actions and may thus wish to communicate.
The most profitable collusive strategy Σ

c
with selective communication is

formally defined as follows.

(i) At t = 0 do not meet, i.e. ζi0 = N , and produce some output qc.

(ii) For any t ≥ 1:
• if in period t− 1 the realized price is ept−1 = pH(2q

c), then in period t
do not meet, ζit = N and produce qc,

• if in period t− 1 the realized price is ept−1 = pL(2q
c), then in period t

attend a meeting, ζit = C,

• produce qc in period t if the meeting has taken place and disclosed
information is consistent with the collusive agreement, i.e., qjt−1 = qc,

• play ΣNash if the meeting has not taken place when it should or the
realized price is not consistent with the target, i.e., ep /∈ P (2qc) or the meeting
reveals that one firm has actually deviated.

Let VH and VL denote the expected present value of firm’s profits given
that the previous period price realizations are pH and pL respectively. Since
the shock is uniformly distributed, one obtains

VH = (1− δ)Πexp + δ

µ
1

2
VL +

1

2
VH

¶
,

VL = (1− δ)(Πexp − ρF ) + δ

µ
1

2
VL +

1

2
VH

¶
.

Let V
c
denote the payoff associated with the strategy Σ

c
. Since Σ

c
pre-

scribes no meeting at t = 0 then V
c
= VH and simple calculations show

that

V
c
= Πexp − 1

2
δρF.

13See the Appendix for a formal proof.
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Thus, when the firms collude explicitly, they earn lower profits because
of the fine imposed in the event the meeting is detected.

In order that the output qc be produced along an equilibrium path it
must be immune to all possible deviations. Note that any deviation is now
systematically detected14 and a firm may deviate in two ways: it may either
raise its output or wave the meeting.

Consider first output deviations. A firm may cheat either in a period of
no meeting or after the meeting has taken place. In both cases the most
profitable deviation implies that a cheating firm optimally responds to the
collusive output, qc, and the no-deviation constraint is thus the same

(1− δ)Max
z

πexp(z, qc) ≤ (1− δ)Πexp(qc) +
1

2
δ (VH + VL) ,

which is equivalent to

(1− δ)
h
Max

z
πexp(z, qc)−Πexp(qc)

i
≤ δ

µ
Πexp(qc)− 1

2
ρF

¶
. (ICq)

By comparing ICopn and ICq, one can see that the discounted value of the
losses from abandoning collusion is lower when the firms collude explicitly.
This is because when collusion breaks down, the firms stop communicating
and hence are no longer exposed to the fine.

Now, if a firm deviates by waving the meeting it saves on the expected
fine. The no-deviation constraint in this case takes the following form:

0 ≤ (1− δ) (Πexp(qc)− ρF ) +
1

2
δ (VH + VL) ,

which is equivalent to

(1− δ) [ρF −Πexp(qc)] ≤ δ

µ
Πexp(qc)− 1

2
ρF

¶
. (ICmeet)

As ICq and ICmeet show, explicit collusion may not be sustained if the
cost of communication, i.e., the expected fine, is too large. Therefore, I
make

Assumption 3. ρF < 4
¡
A
12

¢2
.

This assumption states that the expected fine must not exceed the max-
imal joint collusive profit. As the Appendix shows, it ensures that there
exists a range of discount factors where the firms can collude with commu-
nication. Furthermore, in such a case the ICmeet constraint is never binding
and can thus be omitted.
14Cheating is either revealed by the current period price realization or during the next

period meeting.
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The analysis implies that in explicit collusion the firms choose qc that
solves the following program:

V
c
(δ) = Max

qc
Πexp(qc)− 1

2δρF

s.t. ICq holds.
(P3)

The following proposition characterizes key properties of the solution to
P3.

PROPOSITION 2. There exist δ01 and δ02 such that 0 < δ01 < δ02 < 1 and
(i) a solution to P3 exists only if δ ∈ [δ01, 1),
(ii) IC q is binding in program P3 for any δ ∈ [δ01, δ02).
Proof: see the Appendix.

The proposition thus states that explicit collusion cannot be sustained for
small values of the discount factor. To gain the intuition of this result, recall
that in this case even without communication a sustainable collusive output
should be close to the static Nash equilibrium one. This implies that the
benefits from collusion are small. Therefore if, in addition, communication is
costly then explicit collusion may either not be profitable or not sustainable.
On the other hand, when the discount factor is large then, as before, the firms
can sustain the monopoly outcome. Hence, it is only for an intermediate
range of discount factors that ICq can be binding.

2.3 The optimal collusive scheme

This section derives the best collusive strategy. The analysis is based on the
comparison of the value functions V

nc
(δ) and V

c
(δ) defined as the solutions,

correspondingly, to programs P1 and P3.

PROPOSITION 3. When ρF is not too large, then there exist an interval
∆ ⊆ (bδ1,bδ2) such that V nc

(δ) < V
c
(δ) for any δ ∈ ∆.

In words, when the expected fine is not too large then for some interme-
diate values of the discount factor the firms prefer collusion with communi-
cation to tacit collusion.

As this proposition is central to the paper, the proof is included in the
text. To begin, consider programs P1 and P2. Since the objective functions
in P1 and P2 coincide and the solution to P1 must satisfy an additional
constraint, i.e., IChdn, then it must be V

nc
(δ) ≤ V (δ). Note that one can

have V
nc
(δ) < V (δ) only when the IChdn constraint is binding. Therefore,

by applying proposition 1, one obtains

V
nc
(δ) = V (δ) for any δ ∈ (0,bδ1] ∪ [bδ2, 1), (2)

V
nc
(δ) < V (δ) for any δ ∈ (bδ1,bδ2). (3)

14



Consider now programs P2 and P3. Since the objective function in P3 is
lower than the one in P2 and the ICq constraint is stronger than the ICopn

constraint then it must be V
c
(δ) < V (δ) for any ρF > 0. Note also that

ICq is a continuous function of ρF and in the limit when ρF tends to zero
ICq and ICopn coincide. Also, the objective function in P3 approaches Πexp

when ρF → 0. This implies that in the limit when ρF → 0 it must be that
V
c
(δ) approaches V (δ). It then follows that for sufficiently small values of

ρF one can make the difference between V
c
(δ) and V (δ) as small as desired.

Given that V
nc
(δ) is lower than V (δ) only for δ ∈ (bδ1,bδ2), there must exist

δ0 ∈ (bδ1,bδ2) such that V nc
(δ0) < V

c
(δ0) when ρF is sufficiently small. Since

V
c
(δ) and V

nc
(δ) are continuous functions, there must also exist an interval

∆ in the neighborhood of δ0 such that V nc
(δ) < V

c
(δ) for any δ ∈ ∆. Finally,

(3) implies ∆ ⊆ (bδ1,bδ2). ¥
In order to illustrate the result of proposition 3, simulations were per-

formed. Figures 4 and 5 correspond to the case when A = 10, σ = 0.4,
ρF = 0.3 and ρF = 1.

[Insert Figures 4 and 5 from the Appendix.]

As figure 4 shows, when the expected fine is sufficiently large, the aver-
age intertemporal payoff obtained in explicit collusion is always lower than
the one obtained in tacit collusion. If instead the value of the expected fine
is reduced, the firms can obtain a higher payoff in collusion with commu-
nication for some δ ∈ (bδ1,bδ2) as it is shown on figure 5. The simulations
thus confirm the intuition. That is, in choosing the most profitable type of
collusion the firms tradeoff information costs associated with imperfect ob-
servation of individual outputs against communication costs associated with
the risk that the cartel is uncovered by the CA. Since information costs are
absent for small and large values of the discount factor then it is only for
some intermediate values of the discount factor the firms may prefer explicit
collusion to tacit one.

3 Conclusion

The paper shows that communication can help sustain collusion. While
there may be other reasons as for why collusive parties may want to meet,
I have focused on the case when communication allows the firms to resolve
uncertainty about past behavior. The analysis is based on the comparison
of two collusive schemes: with and without communication. In tacit col-
lusion the firms are hurt by the lack of complete information, whereas in
explicit collusion they face the risk of being fined in the event the meet-
ing is uncovered by the CA. The main finding of the paper is that as long
as the punishment for illegal behavior is not too large, the optimal collu-
sive scheme involves communication, when prices are low, for some range of
discount factors.
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Though the analysis has been performed for the case of a single additive
stochastic shock, the results would be robust to alternative specifications of
uncertainty. For example, one may think of a different probability distrib-
ution of the shock or multiple shocks which take on more than two values.
What is crucial for the results obtained is that in all such cases one still
maintains the assumption that communication eliminates uncertainty about
past behavior which in turn implies the same tradeoff between informational
costs and a legal fine.

The paper delivers some implications related to the cartel stability and
the antitrust policy to fight collusion. Namely, it provides an economic
rationale behind the meetings held by collusive firms and emphasizes the
role of communication as a powerful mechanism to facilitate collusion. Used
as a means to resolve uncertainty about individual actions taken in the
past, it serves solely for the purpose of collusion. Finally, the paper suggests
the explanation of why the firms may prefer explicit collusion and care less
about the hard evidence left by the meeting. In the model under study, such
collusive strategy appears to be optimal only if the expected punishment for
cartel behavior is sufficiently small.

APPENDIX

A The Best Collusive Strategy in Case of Tacit Collusion

In this section the best collusive strategy is derived when firms choose
tacit collusion. The proof is given for the case of symmetric (sequential)
equilibria.

In general, a strategy Σi for firm i is a sequence of functions that specify
an output production qit ∈ S at period t conditioning on firm i’s own past
outputs and past realizations of the random price ep ∈ P (q1 + q2).

Let U ∈ R+ denote the set of all symmetric (sequential) equilibrium
payoffs V nc of the game. U is nonempty because the strategy, ΣNash, that
specifies playing the static Nash equilibrium outcome every period whatever
the history is, constitutes a (sequential) equilibrium.

Define V nc = inf U and V
nc
= supU . Let Σ

nc
and Σnc be the equilibrium

strategies that correspond to V
nc
and V nc, respectively.

Note that the present setting differs from the one developed by Abreu,
et. al. (1986, 1990) in that the support of the price realization depends on
firms’ actions. To illustrate the main problem in this case, suppose that in
the first period in a sequential equilibrium the firms are to produce q. If firm
1 cheats and some price bp outside the support P (2q) is realized then firm 2
concludes that firm 1 has deviated but it cannot infer with probability one
what the other firm’s continuation strategy is: firm 1’s continuation strategy
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may depend on its first-period action which is unobservable to firm 2.15 The
continuation profile need not be an equilibrium and a firm 1’s continuation
payoff can be even lower than the one obtained in the worst sequential
equilibrium. This implies that the link between sequential equilibrium and
admissibility of the continuation payoff with respect to U is broken after
firms’ own deviations.

Assumption 1, however, allows us to avoid this problem. Indeed, as
is well known, any deviation is most effectively deterred when the worst
punishment is inflicted, i.e., after any deviation a firm obtains its minmax
payoff. Assumption 1 ensures that the minmax payoff is sustained by a
reversal to the static Nash equilibrium, i.e., Σnc = ΣNash and V nc = 0,
and thus implies that one can set the continuation payoff function equal to
zero whenever the realized price ep falls outside the set of equilibrium prices
P (2q).

Consider now a symmetric equilibrium strategy where each firm makes
its actions depend only upon past signal realizations. As it is shown in
Abreu, et. al. (1986, 1990), any symmetric strategy equilibrium profile can
then be factored into a single-period symmetric output q and a continuation
payoff function V : R+ → R+, such that V (ep) ∈ U for any ep ∈ P and

(1− δ)Πexp(q) + δE [V (ep(2q)] (A1)

≥ (1− δ)πexp(z, q) + δE [V (ep(z + q))] for z ∈ S.

Using the fact that factorization (A1) holds, I can prove the following

lemma.
Lemma 1. U is compact.

Proof: Let W be an arbitrary set. We say that a pair (q, V (·)) is admis-
sible with respect to W if

(i) V (p) ∈ co(W )16 for any p ∈ [0, pmax],
(ii) (A1) is satisfied.

Define the operator B(W ) as follows:

B(W ) = {w ∈ R : w = (1− δ)Πexp(q) + δE [V (ep(2q)] ,
(q, V (·)) is admissible w. r. t. W} .

According to Abreu, et. al. (1986, 1990), U is the largest bounded
invariant set generated by the operator B, i.e., U = B(U). Hence, in order
to prove compactness of U it suffices to show that B is compact.

15When the shock takes on two values, p can result either from an output expansion
and the low demand state or from an output contraction and the high demand state.
16We assume that there exists a public randomization device that convexifies the set W.
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Let W ⊂ R be a nonempty and compact set. Since Πexp(·) is bounded
then B(W ) is also bounded.

To show that B(W ) is closed, consider a sequence
©
wk
ª ⊂ B(W ) which

converges to some w∞. I need to show that w∞ ∈ B(W ).
By the definition of B(W ), there exists a pair

¡
qk, V k(·)¢ which is admis-

sible w.r.t. W and obtains the value wk.Recall that ep(2q) ∈ { pH(2q), pL(2q)}.
Denote V k

H = V k(pH(2q
k)), V k

L = V k(pL(2q
k)) and wmin = minW and de-

fine bV k(·) as follows:

bV k(p) =

½
V k
l , if p = pl(2q

k), l = H,L
wmin, otherwise.

Thus, (qk, bV k(·)) is equivalent to the vector ¡qk, V k
H , V

k
L , wmin

¢
. It is

straightforward to see that the pair (qk, bV k(·)) is admissible w.r.t. W and
delivers the same value wk, i.e.,

wk = (1− δ)Πexp(qk) +
1

2
δ(V k

H + V k
L ).

Let us denote

G(qk, V k
H , V

k
L ) ≡ max

z∈S
(1− δ)πexp(z, qk) + δE

hbV k(ep(z + qk))
i
.

Denote rH an output such that when the demand is high, the realized
market price corresponds to the low demand state, i.e.,

rH(q) : pH(rH + q) = pL(2q).

In the same way, denote rL an output such that when the demand is
low, the realized market price corresponds to the high demand state, i.e.,

rL(q) : pL(rL + q) = pH(2q).

It is easy to verify that rH(q) = 2σ + q and rL(q) = q − 2σ.Define

z∗(q) = argmax
s∈S

πexp(z, q) = max{1
2
(A− q), 0).

I can write now

G(qk, V k
H , V

k
L ) = max

n
(1− δ)πexp(z∗(qk), qk) + δwmin, (A2)

(1− δ)πexp(rH(q
k), qk) +

1

2
δ(V k

L + wmin),

(1− δ)πexp(rL(q
k), qk) +

1

2
δ(V k

H +wmin)

¾
.
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Since πexp(·) is continuos then, as (A2) implies, G(qk, V k
H , V

k
L ) is a con-

tinuos function of
¡
qk, V k

H , V
k
L

¢
. Similarly, since Πexp(·) is continuos then wk

is a continuous function of
¡
qk, V k

H , V
k
L

¢
.

The analysis so far implies that if a sequence
¡
qk, V k

H , V
k
L

¢
converges

to (q∞, V∞H , V∞L ) then wk → w∞. The fact that
¡
qk, V k

H , V
k
L

¢
is admissible

w.r.t. W implies

(1− δ)Πexp(qk) +
1

2
δ(V k

H + V k
L ) ≥ G(qk, V k

H , V
k
L ).

Since both sides of the above inequality are continuos functions of
¡
qk, V k

H , V
k
L

¢
then the limit, (q∞, V∞H , V∞L ) is admissible w.r.t. W. That proves w∞ ∈
B(W ) and, therefore, B(W ) is compact. ¥

Since U is compact then V
nc ∈ U. Consider the following strategy

Σnc(q).17

(i) At t = 0 produce q.
(ii) For any t ≥ 1 : play Σnc if in the previous period the realized priceep ∈ P (2q), otherwise play ΣNash.

Lemma 2. If the collusive output is equal to q at some point on an equi-
librium path then Σnc(q) is an equilibrium strategy.

Proof: Let V nc(q) denote the payoff obtained from the strategy Σnc(q),
that is

V nc(q) ≡ (1− δ)Πexp(q) + δV
nc
. (A3)

In order that Σnc(q) be an equilibrium strategy, it must be immune to all
possible deviations.

Open deviations

Denote ep(z+ q) ≡ a+eθ− (z+ q), i.e., ep(z+ q) is the realized price when
a deviating firm produces z.

In the open deviation a firm chooses z such that ep(z + q) /∈ P (2q) and
earns πexp(z, q). Using ΣNash as the punishment, the no-open deviation con-
straint thus takes the form:

(1− δ) [πexp(z, q)−Πexp(q)] ≤ δV
nc
for any z s.t. ep(z + q) /∈ P (2q). (A4)

Now, I show that if q satisfies (A1) then (A4) must hold. Indeed, (A1)
implies

17 In general, one could consider strategies when, along the equilibrium paths, the actions
are contingent on the realized shocks (e.g. for p = pH(2q) and p = pL(2q) firms chose
different quantities). The uniform distribution of the shocks allows us to restrict attention
on simpler strategies of the form Σnc(q).
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(1− δ) [πexp(z, q)−Πexp(q)] ≤ δE [V (ep(2q))− V (ep(z + q))] for any z.

Using the definition of V
nc
and the fact that V nc = 0, one obtains

V (ep(2q))− V (ep(z + q)) ≤ V
nc
for any z.

This establishes (A4).

Hidden deviations

Two cases must be considered. First, a cheating firm may deviate by
suboptimally expanding its output production in order to mimic the price
of the low-demand state when in fact the demand is high. In which case it
produces rH(q) which solves the following equation:

pH(rH(q) + q) = pL(2q).

It can be easily verified that rH(q) = 2σ + q and the one-period profit
from cheating is

πexp(rH(q), q) = Π
exp(q) + 6σ

∙³
qNash − q

´
− 2
3
σ

¸
. (A5)

The intertemporal payoff from such deviation is

(1− δ)πexp(rH(q), q) + δ

µ
1

2
V
nc
+
1

2
× 0
¶
.

The no-deviation constraint thus takes the form

(1− δ) [πexp(rH(q), q)−Πexp(q)] ≤ δ
1

2
V
nc
. (A6)

Now, I show that if q satisfies (A1) then (A6) must hold. Indeed, (A1),
in particular, implies

(1− δ) [πexp(rH(q), q)−Πexp(q)] ≤ δE [V (ep(2q))− V (ep(rH(q) + q))] .

Given that the shock is uniformly distributed and V (pH(rH(q) + q)) =
V (pL(2q)), one obtains

E [V (ep(2q))− V (ep(rH(q) + q))] =
1

2
V (pH(2q))−1

2
V (pL(rH(q)+q)) ≤ 1

2
V
nc
.

Thus, (A6) is established.
If a cheating firm suboptimally contracts its output in order to mimic

the high-demand when in fact the demand is low then it produces rL(q)
which solves the following equation:
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pL(q − rL(q)) = pH(2q).

One easily verifies that rL(q) = q − 2σ and the one-period profit from
cheating is

πexp(rL(q), q) = Π
exp(q)− 6σ

∙³
qNash − q

´
+
2

3
σ

¸
.

Since πexp(rL(q), q) < Πexp(q), such deviations induce losses and there-
fore are never profitable. ¥

The following lemma says that, without loss of generality, in searching
for the best collusive strategy one can restrict attention on studying Σnc(q)
only.

Lemma 3. The set of outputs q that can be sustained at some point on an
equilibrium path is a closed interval I, which is the set of outputs satisfying

(1− δ)
h
Max

z
πexp(z, q)−Πexp(q)

i
≤ δV

nc
, (A7)

(1− δ) [πexp(rH(q), q)−Πexp(q)] ≤ δ
1

2
V
cn
. (A8)

Proof: From lemma 2, it follows that if q is sustained at some point on
an equilibrium path, then

(1−δ)Max

(
sup

p(z+q)/∈P (2q)
[πexp(z, q)−Πexp(q)] , 2 [πexp(rH(q), q)−Πexp(q)]

)
≤ δV

nc
.

(A9)
Conversely, if this condition is satisfied for some q then Σnc(q) is an

equilibrium strategy in which firms produce q in the first period. Therefore,
an output q can be sustained at some point in an equilibrium if and only if
it satisfies (A9).

Let z∗(q) ≡ argmax
z

πexp(z, q). Following lemma 2, that it can never be

z∗(q) = rL(q). Now, if z∗(q) 6= rH(q) then (A9) and the pair (A7)-(A8)
are clearly equivalent. If z∗(q) = rH(q) then (A8) becomes stronger than
(A7) and coincides with (A9). That proves that overall (A9) and the pair
(A7)-(A8) are equivalent.

Lastly, since the left-hand sides of (A7) and (A8) are convex functions
of q, the set of quantities satisfying both constraints is a closed interval. ¥

Define

q∗ = argmax
q∈I
Πexp(q). (A10)
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The following lemma states that in searching for the most profitable col-
lusive strategy, one can restrict attention to the class of stationary equilibria.

Lemma 4. Σ
nc
is a stationary equilibrium strategy.

Proof: Since Σnc(q∗) is some equilibrium strategy and V
nc
is the highest

equilibrium payoff, then, by using (A3), one obtains

V nc(q∗) = (1− δ)Πexp(q∗) + δV
nc ≤ V

nc
,

which implies Πexp(q∗) ≤ V
nc
.

Now, let {qnct }∞t=0 denote the profile of outputs induced by the strategy
Σ
nc
. Since Σ

nc
is an equilibrium strategy then, according to Lemma 3, qnct

must satisfy (A7)-(A8) for any t. Then, from the maximization task (A10) it
follows that Πexp(q∗) ≥ Πexp(qnct ) for any t and, therefore, V

nc ≤ Πexp(q∗).
I thus have

V
nc ≤ Πexp(q∗) ≤ V

nc
,

implying Πexp(q∗) = V
nc
, which is possible only if the firms produce q∗ at

every period. Thus, the best collusive equilibrium strategy Σ
nc
defines a

stationary path along which each firm produces q∗ at every point of time. ¥
Lemma 5. The maximum equilibrium payoff V

nc
is the solution to

V
nc
=Max

q
Πexp(q)

s.t.(1− δ)
h
Max

z
πexp(z, q)−Πexp(q)

i
≤ δΠexp(q),

(1− δ) [πexp(rH(q
nc), qnc)−Πexp(qnc)] ≤ δ 12Π

exp(qnc).

(A11)

Proof: Since Σ
nc
is stationary, then the constraints in (A11) are the no-

deviation constraints to be satisfied along the equilibrium path. Let qnc be
the solution to program (A11). One needs to prove that qnc = q∗.

On the one hand, since V
nc
is the highest equilibrium payoff, then

Πexp(q∗) ≤ V
nc
= Πexp(qnc). On the other hand, since qnc ∈ I, then from

(A10) it follows that Πexp(qnc) ≤ Πexp(q∗). Thus, Πexp(qnc) = Πexp(q∗) and
the proof is complete. ¥

B The Proof of Proposition 1

Given the linear demand function (1), the profit from the open deviation
is

Max
z

πexp(z, qnc) = Πexp(qnc) +
9

4

h
qNash − qnc

i2
. (B1)

Recall that Πexp(qnc) is the difference between the profit and the static
Nash profit and thus can be written as
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Πexp(qnc) = 2
h
qNash − qnc

i ∙1
6
A−

³
qNash − qnc

´¸
. (B2)

Let us denote s = qNash − qnc. By using (A4), (B1) and (B2), I rewrite
the ICopn and IChdn constraints in the following form

9

4
s2 ≤ δ

1− δ
2s

µ
1

6
A− s

¶
, (fICopn)

12σ

µ
s− 2

3
σ

¶
≤ δ

1− δ
2s

µ
1

6
A− s

¶
. (fIChdn)

Notice that for any s < 0 the fICopn constraint can never be satisfied,
thus I consider only s ≥ 0 (which implies qnc ≤ qNash). Now, program P1
can be stated as

Max
s≥0

δ
1−δ2s

¡
1
6A− s

¢
s.t. fICopn and fIChdn hold.

(B3)

Define S(σ) the set of s such that s ≥ 0 and the fIChdn constraint is
stronger than the fICopn one. By comparing the left hand sides of fIChdn andfICopn I find that S(σ) = [s, s] , where

s(σ) =
8

3

µ
1− 1√

2

¶
σ and s(σ) =

8

3

µ
1 +

1√
2

¶
σ.

For a given σ, the graphs of 94s
2 and 12σ

¡
s− 2

3σ
¢
are drawn on figure

6.
Denote u(s, δ) ≡ δ

1−δ2s
¡
1
6A− s

¢
, then the solution to unconstrained

maximization of u(s, δ) is 1
12A, which corresponds to the monopoly outcome,

qnc = 1
4A =

1
2q

M .
Figure 6 illustrates different positions of the graph of u(s, δ) for different

values of δ and given that A is fixed (hereA is chosen such that s < 1
12A < s).

Notice that the graph of u(s, δ) shifts upward when δ rises, i.e., for any δ1, δ2
and δ3 such that δ1 < δ2 < δ3 one obtains u1 < u2 < u3 where ui = u(s, δi).

The solution, snc, to (B3) is obtained as follows. Fix a value of A, then
snc is either equal to 1

12A or obtained as the point of intersection between
the curve of u(s, δ) and the upper frontier composed of the curves of 94s

2

and 12σ
¡
s− 2

3σ
¢
. Figure 6 thus shows which constraint, if any, in program

B3 is binding for given δ.
Let us define sopn(δ) and shdn(δ) as the solutions to the two no-deviation

constraints when they are binding

sopn(δ) :
9

4
s2 =

δ

1− δ
2s

µ
1

6
A− s

¶
,
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shdn(δ) : 12σ

µ
s− 2

3
σ

¶
=

δ

1− δ
2s

µ
1

6
A− s

¶
.

It can be verified that sopn(δ) and shdn(δ) are continuously increasing func-
tions of δ.

Depending on the value of A, three cases are possible.

Case 1. s < 1
12A < s or equivalently

1

32
³
1 + 1√

2

´A < σ <
1

32
³
1− 1√

2

´A.
In this case u(s, δ) attains its maximum at the point which belongs to

the interval (s, s) , as depicted on figure 6. When δ is small enough the
graph of u(s, δ) is the u1-curve which, as figure 6 shows, first crosses thefICopn constraint. This implies that the solution is snc = sopn. As long as δ
increases, the graph of u(s, δ) shifts upward. For some values of δ, it is as
depicted by the u2-curve and first crosses the fIChdn constraint. This implies
snc = shdn. When δ rises further, the graph of u(s, δ) is the u3-curve, which
in turn implies that both constraints in (B3) are slacked. The solution is
then snc = 1

12A.
Define bδ1 and bδ2 as solutions to the following equations:

bδ1 : sopn(bδ1) = shdn(bδ1) = s,

bδ2 : shdn(bδ2) = 1

12
A.

Since shdn(δ) is continuous then such bδ1 and bδ2 exist. Using the fact that
shdn(δ) is an increasing function of δ and s < 1

12A, I obtain
bδ1 < bδ2.

The analysis thus implies that in program B3

• the no-open deviation constraint is binding for any δ ∈
³
0,bδ1i,

• the no-hidden deviation constraint is binding for any δ ∈
³bδ1,bδ2´,

• both constraints are relaxed for any δ ∈
hbδ2, 1´, and the solution to

(B3) is

snc(δ) = min{sopn(δ), shdn(δ), 1
12

A}. (B4)

Case 2. s ≤ 1
12A or equivalently

24



σ ≤ 1

32
³
1 + 1√

2

´A.
By applying the same reasoning as in Case 1, I obtain snc = sopn for

small δ’s, snc = shdn for some moderate δ’s, snc = sopn for large δ’s and
snc = 1

12A when δ is very large.
Define bδ1 and bδ2 as follows18

bδ1 : sopn(bδ1) = shdn(bδ1) = s,

bδ2 : sopn(bδ2) = shdn(bδ2) = s,

sopn(δ =
9

17
) =

1

12
A.

Since shdn(δ) and sopn(δ) are continuous then such bδ1 and bδ2 exist. Using
the fact that shdn(δ) and sopn(δ) are increasing functions of δ and s < s <
1
12A, I obtain

bδ1 < bδ2 < 9
17 .

The analysis thus implies that in program B3

• the no-open deviation constraint is binding for any δ ∈
³
0,bδ1i ∪hbδ2, 917´,

• the no-hidden deviation constraint is binding for any δ ∈
³bδ1,bδ2´,

• both constraints are relaxed for any δ ∈ £ 917 , 1¢ and the solution to
(B3) is given by (B4).

Case 3. 1
12A ≤ s or equivalently

σ ≥ 1

32
³
1− 1√

2

´A.
As figure 6 shows, in this case fIChdn is never be binding and therefore

uncertainty does not impede collusion. The solution is

snc(δ) = min{sopn(δ), 1
12

A}.
¥
C The Proof of Proposition 2

18Notice that bδ1 is different in Case 2 and Case 3 because s depends on σ.
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Denote s = qNash − qc and uF (s, δ) ≡ δ
1−δ

£
2s
¡
1
6A− s

¢− 1
2ρF

¤
. By

using (B1) and (B2), I rewrite the ICq and ICmeet constraints as follows

9

4
s2 ≤ uF (s, δ), (fICq)

ρF − 2s
µ
1

6
A− s

¶
≤ uF (s, δ). (fICmeet)

Notice that if s ≤ 0 then uF (s, δ) < 0 and thus the fICq constraint
can never be satisfied. Therefore, I consider only s > 0 (which implies
qc ≤ qNash). Now, program P3 can be stated as

Max
s

uF (s, δ)

s.t. fICq and fICmeet hold.
(C1)

First of all, I show that the fICmeet constraint in C1 can be omitted.
Define SF = {s : s ≥ 0 and ρF − 2s ¡16A− s

¢ ≥ 9
4s
2}. One can verify that

SF = [0, sF ] , where

sF =
2

3
A

"r
1 + 9

ρF

A2
− 1
#
.

Assumption 3 ensures that sF < 1
12A. Suppose now that

fICmeet in C1 is
binding for some s0 then it must be s0 < sF . Since uF (s, δ) is concave and
attains its maximum at the point 1

12A while ρF − 2s
¡
1
6A− s

¢
is decreasing

on the interval
¡
0, 112A

¢
then a slight increase of s0 only weakens fICmeet and

at the same time raises the value of uF (s, δ) in C1. Hence, it is never optimal
to have fICmeet binding in C1.

To illustrate the solution to program C1, I refer to figure 7. Before
proceeding, note that assumption 3 ensures that there exists a non empty
set of s where uF (s, δ) > 0.

Figure 7 shows the graph of the fICq constraint, i.e., the curve of 94s
2, and

different positions of the uF (s, δ)-curve depending on the value of δ. Notice
also that uF (s, δ) is increasing with δ.

If δ is small enough then uF (s, δ) is located below 9
4s
2, as depicted by

the uF1-curve. This implies that there is no s ≥ 0 such that fICq is satisfied
and collusion is thus impossible.

When δ increases, uF (s, δ) shifts upward. As figure 7 makes it clear,
there exists δ01 such that for any δ > δ01 the fICq constraint can be satisfied.
δ01 is obtained when uF (s, δ

0
1) is tangent to

9
4s
2, as depicted by the uF2-curve.

Direct calculations lead to

δ01 =
9

1 + A2

4ρF

.
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When δ rises slightly above δ01, thefICq constraint in C1 becomes binding.
The graph of uF (s, δ) is the uF3-curve and the solution, sn = sq(δ) , is
defined as the largest root of the following equation:

9

4
s2 =

δ

1− δ

∙
2s

µ
1

6
A− s

¶
− 1
2
ρF

¸
.

A further increase of δ above δ02 leads to the situation where the graph
of uF (s, δ) is the uF4-curve, i.e., the fICq constraint is relaxed. In this case,
sc = 1

12A and firms can thus sustain the monopoly outcome.
Finally, δ02 is obtained from the following equation:

δ02 : sq(δ) =
1

12
A.

Direct calculations lead to

δ02 =
9

17− 288ρF
A2

One can verify that δ01 < δ02 < 1, and the proof is complete. ¥
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