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The Evolution of R&D Networks

Herbert Dawid∗ Tim Hellmann †

June 21, 2012

Abstract

In this paper, we study a standard Cournot model where firms are
able to form bilateral collaboration agreements which lower marginal
cost. While a static analysis of such a model can be found in Goyal
and Joshi [5], we introduce an evolutionary model. Stable networks
(in the static sense) exhibit the dominant group architecture and can
be characterized with respect to the size of the group. However, in
contrast to Goyal and Joshi [5], we find that the group size of con-
nected firms in stochastically stable networks is generically unique and
monotonically decreasing in cost of link formation. Further, there ex-
ists a lower bound on the group size of connected firms such that a
non-empty network can be stochastically stable.

JEL Classifications: C72, C73, L13, O30
Keywords: R&D Networks, Oligopoly, Stochastic Stability

1 Introduction

The formation of R&D networks, where firms cooperate with respect to
their innovative activities, is an important feature of many industries (see
e.g. Hagedoorn [7], Powell et al. [13], Roijakkers and Hagedoorn [14]). In
many cases the firms cooperating on the R&D level are competitors in the
market, which gives rise to intricate strategic considerations when selecting
R&D cooperation partners. Given the empirical evidence of R&D collabora-
tions it is important to gain a sound understanding of the factors determin-
ing the structure of R&D networks. From a theoretical perspective Goyal
and Joshi [5] have studied the structure of pairwise Nash stable (PNS) R&D
∗Corresponding Author. Department of Business Administration and Economics
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networks in a seminal contribution. They consider a setting where links re-
duce marginal production costs of firms, which compete a la Cournot. They
show that the pairwise Nash stable (PNS) networks exhibit the dominant
group architecture (with one completely connected group and all other firms
isolated). However, a wide range of these types of networks (with respect
to the size of the dominant group) may be PNS. And although, the sizes
of the dominant group are sensitive to the cost of link formation, there is
no unique prediction with respect to the networks which will be observed.
Moreover surprisingly, the minimal size of the component in a non-empty
network is increasing in the cost of link formation for a certain cost range.
The analysis in Goyal and Joshi [5] is static and although dynamic models of
R&D network formation have recently been provided in different economic
frameworks (see e.g. Baum et al. [1],König et al. [11, 12]), a dynamic anal-
ysis of the standard Cournot setting considered in Goyal and Joshi [5] is so
far missing.

In this paper, we fill this gap and focus on the dynamics of R&D net-
works in a Cournot oligopoly. We assume in this two stage game, where
decisions about links are made in the first stage and quantities are chosen
in the second, that interaction on the collaboration network is faster than
the dynamics of the networks. This implies in our model that the unique
Nash equilibrium of the second stage, i.e. the equilibrium choice of quanti-
ties, is immediately established.1 For the evolution of collaboration links,
we employ the dynamic model of network formation by Jackson and Watts
[9]. In this framework, each link is considered one by one and the decision
makers play a myopic best-reply to the current state with high probability
and make mistakes with low probability. The resulting stochastically stable
networks select among the pairwise stable networks, and are those which
are observed most of the time in this dynamic model.

In the main result of our paper, we characterize the set of stochastically
stable networks. Trivially they also exhibit the dominant group architecture.
The size of the dominant group is monotonically decreasing in the cost of
link formation, solving the puzzle of non-monotonicity in Goyal and Joshi
[5]. Moreover, we find a generically unique prediction with respect to the
group size of the stochastically stable networks. Further, we show that there
exists a threshold of the dominant group size, below which only the empty
network can be stochastically stable. This result has interesting connections
to analytical findings on efficient networks; e.g. in a similar two stage game,
Westbrock [16] studies the efficient networks and also concludes that either
the empty network is efficient or there exists a lower threshold on the size
of the dominant group for efficient networks that are pairwise Nash stable.
Finally, it is worth noting that stochastically stable networks may lie outside

1In a model with multiple second stage equilibria a slow-fast dynamic needs to be
modeled explicitly as e.g. in Dawid and MacLeod [4].
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the set of PNS networks which are considered in Goyal and Joshi [5].

2 The Model

A set of N = {1, ..., n} ex ante identical firms participates in a two stage
game. To exclude uninteresting cases we assume n ≥ 3. Firms first form
bilateral agreements of collaboration. We denote by gn := {{i, j}|i, j ∈
N, i 6= j} the set of all possible collaboration agreements, which we call the
complete network. The set of all undirected networks is given by G = {g :
g ⊆ gn}. For notational convenience we denote by ij = ji := {i, j} ∈ g a
collaboration link between firm i and firm j in network g. Given a network
g ∈ G, the neighbors of player i are represented by the set Ni(g) := {j ∈
N | ij ∈ g}. We denote by ηi(g) := |Ni(g)| the degree of firm i and by
η−i :=

∑
j 6=i ηj the sum of all other firms’ degree. For a network g ∈ G and

a set of links l ⊆ gn \ g (which is also a network) let g + l := g ∪ l be the
network obtained by adding the links l to network g. Similarly, let g−l := g\l
denote the network obtained by deleting the set of links l ⊆ g from network
g ∈ G. Collaboration links can be interpreted as R&D agreements lowering
marginal costs of producing the homogeneous good. However, maintenance
of links is costly, with constant cost f per formed link.

In the second stage, firms compete in the market by choosing quanti-
ties.2 We assume that marginal cost of producing the homogeneous good
is constant for each firm and for i ∈ N given by ci(g) = γ0 − γηi(g)
with γ < γ0

n−1 . Let qi ∈ R+ be the quantity chosen by firm i and let
q = (q1, .., qn) ∈ Rn

+ be the profile of quantities chosen. We assume that
market demand is linear and given by P (q) = max[0, α −

∑
j∈N qj ]. As-

suming positive prices, the profit of firm i ∈ N in the second stage can be
derived to be, π̃i(q, g) = (α−

∑
j∈N qj)qi − qici(g). Taking the network g as

given, firms try to maximize profits. The interior Cournot equilibrium can
be calculated to be,

qi(g)∗ :=
(α− γ0) + nγηi(g)− γ

∑
j 6=i ηj(g)

n+ 1
,

which is strictly positive assuming α − γ0 − γ(n − 1)(n − 2) > 0. Thus, in
equilibrium of the second stage, profits are π̃i(g) = (qi(q)∗)2. Adjusting for
the cost of link formation and noting that payoff only depends on the degree
distribution, we denote, abusing notation:

πi(ηi, η−i) := πi(g) :=
((α− γ0) + nγηi(g)− γη−i(g))2

(n+ 1)2
− ηi(g)f. (1)

2A more detailed derivation of the second stage equilibria can be found in Goyal and
Joshi [5].
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So far the static model is in line with Goyal and Joshi [5]. We now
present a dynamic model of network formation. We assume that adjust-
ment in the quantity choice stage is fast compared to the rate by which
changes in the network occur. Thus, we consider a dynamic model of net-
work formation such that the (unique) equilibrium in the second stage is
immediately adapted for each change in the network.3 To model the net-
work dynamics we employ the stochastic process introduced by Jackson and
Watts [9]: time is discrete t = 0, 1, ... and at t = 0 an arbitrary network
is given. We denote the network at time t ∈ N by gt. At each point in
time t, one link is selected by a probability distribution which is identical
and independent over time with full support, i.e. p(ij) > 0 for all ij ∈ gn.
If the selected link is already contained in gt then both firms decide to
keep or delete the link and if not both firms decide whether to add or not
to add the link. These decisions are myopic and based on marginal pay-
offs from the given link, ∆+

i (ηi, η−i) := πi(ηi + 1, η−i + 1) − πi(ηi, η−i) and
∆−i (ηi, η−i) := πi(ηi, η−i)−πi(ηi−1, η−i−1) which can be calculated to be:4

∆+
i (ηi, η−i) =

γ(n− 1)
(n+ 1)2

[
2(α− γ0) + γ(n− 1) + 2γnηi − 2γη−i

]
− f

∆−i (ηi, η−i) =
γ(n− 1)
(n+ 1)2

[
2(α− γ0)− γ(n− 1) + 2γnηi − 2γη−i

]
− f

The link ij /∈ gt is then added if ∆+
i (ηi, η−i) > 0 and ∆+

j (ηj , η−j) ≥ 0,
while it is not added else. Similarly a link ij ∈ gt is kept if ∆−k (ηk, η−k) ≥ 0
for both k ∈ {i, j}, while it is deleted else. With high probability 1 − ε
the decision of the players is implemented while with low probability ε
the decision is reversed, which can be interpreted as firms making a mis-
take or a mutation. The such defined stochastic process is an ergodic
Markov process on the state space of G with unique limit distribution µε

depending on the probability of mistakes. The networks g ∈ G such that
limε→0 µ

ε(g) > 0 are called stochastically stable (see e.g. Young [17]). By
construction the absorbing states of the unperturbed process (for ε = 0) are
the pairwise stable networks (PS), i.e. the networks g ∈ G such that for
all i ∈ N : ∆−i (ηi(g), η−i(g)) ≥ 0 and for all pairs i, j ∈ N with ij 6∈ g:
∆+
i (ηi(g), η−i(g)) > 0 ⇒ ∆+

j (ηj(g), η−j(g)) < 0.5 The condition for pair-
wise stability is weaker than that for pairwise Nash stability, used in Goyal

3Although it is well known that the equilibrium in multi-firm Cournot oligopolies is
unstable under a standard best response dynamics due to overshooting (see Theocharis
[15]), assuming a certain degree of inertia in the dynamics makes the equilibrium stable
(see Dawid [3]) and in our analysis it is implicitly assumed that the inertia in quantity
adjustment is sufficiently large such that the unique Cournot equilibrium is reached for
any given R&D network.

4For notational convenience we will drop the dependence of ηi(gt) on gt whenever the
reference is clear.

5The definition of Jackson and Wolinsky [10] is adapted here to our framework.
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and Joshi [5], since PNS requires that in addition to the PS conditions that
πi(ηi, η−i)− πi(0, η−i − ηi) ≥ ηif holds for all i ∈ N .

3 The Evolution of Collaboration Networks

In order to study the set of stochastically stable networks, we first charac-
terize the set of pairwise stable networks. Note that

∆+
i (ηi + k, η−i + k)−∆+

i (ηi, η−i) =
2kγ2(n− 1)2

(n+ 1)2
> 0 (2)

which implies that πi(g) is convex in own links and

∆+
i (ηi, η−i + 2k)−∆+

i (ηi, η−i) = −4kγ2(n− 1)
(n+ 1)2

< 0 (3)

which implies that πi(g) satisfies the strategic substitutes property.6 From
the convexity property (and ex ante identical firms), it follows directly that
only networks with dominant group architecture such that there exists one
completely connected group of firms of size k and all other firms isolated,
denoted by gk, can be pairwise stable.7 In the following the pairwise stable
networks gk are characterized in terms of the size of the dominant group.

Proposition 1. There exist numbers (0 <)F0 < F1 < F2 with the following
properties:

1. for f < F0 the complete network gn is the unique PS network,

2. for F0 ≤ f < F1, there exists k(f) ∈ N, 1 < k(f) < n such that
PS =

{
gk(f), ..., gn

}
,

3. for f = F1 we have PS = {g1, ..., gn},

4. for F1 < f ≤ F2, there exists k(f), k̄(f) ∈ N : 1 < k(f) ≤ n+2
2 ≤

k̄(f) < n and k(f)+k̄(f) = (n+2) such that PS =
{
g1, gk(f), ..., gk̄(f)

}
,

5. for f > F2 the empty network g1 is the unique PS network.

The pattern of pairwise stable networks exhibits similar structure as the
pattern of pairwise Nash stable networks in Goyal and Joshi [5]. In fact the

6Convexity captures a positive externality of own links and strategic substitutes cap-
tures a negative externality of other firms’ links on marginal utility of a given link. For
formal definitions of thees properties see, among others, Goyal and Joshi [6] and Hellmann
[8].

7See Goyal and Joshi [6], Lemma 4.1 for an analogous statement for pairwise Nash
stable (PNS) networks. The proof trivially also holds for pairwise stable networks.
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set of PS networks contains the set of PNS networks.8 Two properties are
notable when comparing the two sets. First, the cost threshold such that
the complete network stops being PS coincides with the threshold such that
the empty network starts becoming PS. Second, for the non-monotonicity
part of k(f), i.e. F1 < f < F2, the minimal k and the maximal k such that
gk, k 6= 1 is PS are symmetric around n+2

2 . These two observations do not
hold for the PNS networks in Goyal and Joshi [6]. For an illustration of the
PS and PNS networks, see also Figure 1.

Proposition 1 completely characterizes the set of pairwise stable net-
works. The only other possible recurrent classes of the unperturbed process
(s.t. ε = 0) are closed cycles.9 The following Lemma shows, that there do
not exist closed cycles in our model.

Lemma 1. In the model of collaboration networks where payoff satisfies (1),
there does not exist a closed cycle.

Thus the only recurrent classes are the singleton states of pairwise stable
networks. We now employ the techniques by Jackson and Watts [9] to find
the stochastically stable networks. Since the set of stochastically stable net-
works is the set of networks with minimal stochastic potential, this requires
the computation of the stochastic potential of a network. The stochastic
potential is defined as the sum of all transition costs of the minimal cost
(directed) tree connecting all networks, where the transition cost between
two networks is given by the minimal number of mutations to move from one
network to another. Since all other states are transient, we may restrict the
construction of the minimal cost tree to the set of pairwise stable networks,
i.e. we construct minimal resistance trees for each gk. To denote the tran-
sition costs for k ≥ 2, let c+(k) denote the minimal number of mutations
necessary to move from gk to gk+1 and let c−(k) denote the minimal number
of mutations necessary to move from gk to gk−1. Moreover, denoting

κ(k) := arg min
k̃∈{0...k}

(
∆+
i (k̃, k(k − 1) + k̃) ≥ 0

)
, (4)

we get c+(k) = κ(k) and c−(k+ 1) = k−κ(k), which is proved in Lemma 2.

Lemma 2. Let k ≥ 2 and let gk and gk+1 be pairwise stable. Then the
minimal number of mistakes to move from gk to gk+1 is given by c+(k) =
κ(k) and minimal number of mistakes to move from gk+1 to gk is given by
c−(k + 1) = k − κ(k).

Lemma 2 shows that the number of mistakes necessary to move between
two dominant group networks, gk, gk+1 is determined by κ(k). For a PS
network gk, the number κ(k) is the minimal number of links an isolated firm

8This holds trivially due to the definition of PS and PNS, see Bloch and Jackson [2].
9For a definition of improving paths and closed cycles, see Jackson and Watts [9].
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needs to be given in order to have an incentive to form a link. Note that a
firm in the dominant group always has an incentive to form a link.

From Proposition 1 we have for f < F1 that if gk and gk̃ are PS for k < k̃
then also gk

′
is PS for all k′ ∈ N such that k < k′ < k̃. The only case of there

being a gap (in terms of the size k) between two pairwise stable networks gk

is for g1 and gk(f) if F1 < f < F2. Thus we get that the stochastic potential
of a network gk with k ≥ 2 is given by

r(gk) = c(g1, gk(f)) +
k−1∑
l=k(f)

c+(l) +
k̄(f)∑
k+1

c−(l),

where k(f) and k̄(f) is the minimal respectively maximal number k ∈
{2, ..., n} such that gk is pairwise stable and c(g1, gk(f)) is the minimal num-
ber of mistakes to move from the empty network to gk(f), which is set to 0 if
the empty network is not pairwise stable. Denoting by ∆r(k) the difference
in stochastic potentials between two networks, gk and gk+1, k ≥ 2, we get:

∆r(k) := r(gk+1)− r(gk) = 2κ(k)− k.

To characterize stochastically stable networks in Proposition 2, we show first
that ∆r(k) is weakly decreasing in k ∈ N up to k = n−1

4 and then weakly
increasing. Thus, the network(s) gk which satisfy the necessary condition,
∆r(k) ≥ 0 and ∆r(k−1) ≤ 0,10 are the only candidates for stochastic stabil-
ity besides the empty and complete network. In the following we characterize
the stochastically stable networks.

Proposition 2. There exist numbers F ∗0 , F
∗
1 ∈ R such that F0 < F ∗0 < F1 <

F ∗1 < F ∗2 < F2 such that:

1. for f < F ∗0 the complete network gn is uniquely stochastically stable.

2. for F ∗0 < f < F ∗1 there exists a function k∗(f) : [F ∗0 , F
∗
1 ] 7→ {n−1

4 , n−1}
such that either the network gk

∗
is uniquely stochastically stable or gk

∗

and gk
∗+1 are the only stochastically stable networks. Moreover, k∗(f)

is weakly decreasing in f .

3. for F ∗1 ≤ f ≤ F ∗2 the empty network and the network gk
∗

(respectively
the networks gk

∗
and gk

∗+1) are stochastically stable.

4. For f > F ∗2 the empty network g1 is uniquely stochastically stable.

The proof is presented in the appendix. It may be helpful to illustrate
the result of Proposition 2 by Figure 1.

10Since ∆r(k) ≥ 0 implies r(gk+1) ≥ r(gk) and ∆r(k − 1) ≤ 0 implies r(gk−1) ≥ r(gk),
and the stochastically stable networks are those which minimize stochastic potential.
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pairwise Nash st.

pairwise st.

stoch. st.

0F
1F 2F*

2F*
1F*

0F

k

f

Figure 1: The set of pairwise stable (gray area), pairwise Nash stable (ruled
area) and stochastically stable networks (blue).

The stochastically stable networks follow a clear pattern. First, the size
of the connected component in stochastically stable networks is (weakly)
decreasing with cost of link formation, although the sizes of PS and PNS
networks exhibit a non-monotonicity property for a certain cost range. Sec-
ond, there exists a lower bound of the component size of stochastically stable
networks. Third, as Figure 1 indicates, the stochastically stable networks
may lie outside the set of PNS networks characterized by Goyal and Joshi
[5].11 Thus, the dynamics of network formation introduced by Jackson and
Watts [9] may converge to networks which are not pairwise Nash stable, i.e.
where firms would be better off deleting all their links. The reason for this
is that multiple link decisions are not considered in the dynamic model by
Jackson and Watts [9]. A motivation for such a dynamics may be in our
context that link revision opportunities only arrive at certain times due to
long lasting contracts (for existing links) or occasionally meetings between
firms (to create new links). Therefore a model where each link is considered
one by one and firms behave myopically is reasonable. From a more gen-
eral perspective, the observation that stochastically stable networks might
not be pairwise Nash stable, shows that this concept can in general not be
supported by a dynamic foundation, which has the usual properties of evo-
lutionary dynamics, that changes in the state from one period to the next

11The parameter constellation underlying this figure is n = 25, γ0 = 2, γ = 0.05, α = 35.
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are local.
Comparing the stochastically stable networks characterized here with

the welfare maximizing networks (see Westbrock [16]) shows that no general
statements can be made whether the stochastically stable networks are more
or less dense than the efficient ones. Numerical calculations not presented
here show that for different values of link formation costs both cases can
occur.

4 Conclusion

Considering a stochastic evolutionary process of network formation for col-
laboration networks between firms who later compete in a Cournot oligopoly,
we find that the long–run equilibria, i.e. the stochastically stable networks,
exhibit interesting properties. First, we get a generically unique selection
of the pairwise stable networks. Second, the size of the dominant group is
monotonically decreasing in the cost of link formation. For a certain cost
range, static stability notions, like pairwise stable and pairwise Nash stable
networks, do not exhibit such a monotonicity property. Third, there exists
a lower threshold on the size of the dominant group such that below that
threshold only the empty network is pairwise stable. This may be inter-
preted in a way such that there needs to be a number of firms to join a
certain project in order for the project to succeed in the long–run. Interest-
ingly, our forth observation of the long–run equilibria is that they usually
are not contained in the set of pairwise Nash stable networks. Thus, even
though firms may be better off leaving the dominant group, in the long–run
the large networks survive.
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APPENDIX

Proof of Proposition 1
Since only the networks of type gk (with one completely connected com-

ponent of size k and all other firms isolated) can be pairwise stable,12 we
only have to consider incentives to add a link for an isolated player or in-
centives to delete a link for a connected player. In a network gk, an isolated
firm has no incentive to add a link if ∆+

i (0, k(k − 1)) < 0 and a connected
firm has no incentive to delete a link if ∆−i (k − 1, (k − 1)2) ≥ 0. Note that
we have

∆+
i (0, k(k − 1)) < 0

⇔ γ(n− 1)
(n+ 1)2

[
2(α− γ0) + γ(n− 1)− 2γk(k − 1)

]
< f (5)

and
∆−i (k − 1, (k − 1)2) > 0

⇔ γ(n− 1)
(n+ 1)2

[
2(α− γ0)− γ(n− 1) + 2γ(k − 1)(n+ 1− k)

]
> f (6)

Thus, the complete network is stable as long as ∆−i (n − 1, (n − 1)2) ≥
0 which implies that f ≤ F1 := γ(n−1)

(n+1)2

[
2(α − γ0) + γ(n − 1)

]
and the

empty network is stable as long as ∆+
i (0, 0) ≤ 0 which implies that f ≥

γ(n−1)
(n+1)2

[
2(α − γ0) + γ(n − 1)

]
= F1. Moreover, note that ∆+

i (0, k(k − 1)) is

strictly decreasing for k ≥ 1 and ∆−i (k − 1, (k − 1)2) is strictly increasing
for k < n+2

2 and strictly decreasing for k > n+2
2 . In particular we then get

that for f = F1 all networks gk are pairwise stable. Since ∆+
i (0, k(k − 1))

is strictly decreasing for k ≥ 1, the complete network is uniquely pair-
wise stable if ∆+

i

(
0, (n − 1)(n − 2)

)
> 0 which implies that f < F0 :=

γ(n−1)
(n+1)2

[
2(α − γ0) + γ(n − 1)(5 − 2n)

]
. Moreover, since ∆−i (k − 1, (k − 1)2)

attains its maximum at and is symmetric around k = n+2
2 and since k can

only adopt natural numbers between 1 and n−1, we get that the empty net-
work is uniquely pairwise stable if ∆−i

(
dn+2

2 e − 1,
(
dn+2

2 e − 1
)2)

< 0 which

implies that f > F2 := γ(n−1)
(n+1)2

[
2(α− γ0)− γ(n− 1) + 2γ(dn2 e)(n− d

n+2
2 e)

]
.

The remainder of the statement follows straightforwardly from the slope of
∆+
i (0, k(k − 1)) and ∆−i (k − 1, (k − 1)2).13

Proof of Lemma 1 We show that from any network g ∈ G there exists
an improving path to a pairwise stable network.14 Without loss of gener-

12Goyal and Joshi [5], Lemma 4.1 trivially also holds for pairwise stability.
13See also Figure 1 for an illustration. The proof here is rather kept concise. Goyal and

Joshi [5] provide a more elaborate proof for the result on PNS networks, see Goyal and
Joshi [5], Proposition 4.1.

14For the definitions of improving paths and cycles, see Jackson and Watts [9]

12



Dawid–Hellmann

ality the players are ordered to size of ηi, such that η1 ≥ η2 ≥ ... ≥ ηn
(otherwise reorder according to a permutation). By convexity and strate-
gic substitutes we have that also ∆+

i (ηi(g), η−i(g)) ≥ ∆+
j (ηj(g), η−j(g)) and

∆−i (ηi(g), η−i(g)) ≥ ∆−j (ηj(g), η−j(g)) for all i > j. We now employ the fol-
lowing algorithm which preserves the order: If there exists players j ∈ N who
want to delete a link, i.e. such that ∆−j (ηj(g), η−j(g)) < 0, then start with
the player with the largest number k for whom ηk(g) > 0, i.e. start with the
player k ∈ N with smallest positive ηk which implies ∆−k (ηk(g), η−k(g)) < 0
since ∆−k is lowest among all players with positive ηk(g). By convexity, k
has an incentive to then delete all of his links. Continue with players delet-
ing all of their links according to this order (starting from the last player
such that ∆−k (ηk(g), η−k(g)) < 0 and ηk(g) > 0) until this is no longer pos-
sible. Then this network is pairwise stable or there exists players who want
to add links. Due the predefined order and the fact that ∆+

i (ηi, η−i) and
∆−i (ηi, η−i) are increasing in ηi and decreasing in η−i this can only be the
players with connections. Now start with the players first in order and add
links for any player until one recipient declines a connection. Either that
network is pairwise stable or we apply the procedure again by deleting links
from the last player in order such that ηk > 0. Since the number of players
is finite, the algorithm finally terminates at a pairwise stable network gk.

Proof of Lemma 2 Note that in any pairwise stable network gk, k 6= n−1
any connected player wants to form a link with an isolated player i ∈ N
by Proposition 1. However, since gk is assumed to be pairwise stable, we
have that ∆+

i (0, k(k − 1)) < 0, i.e. the isolated players decline the connec-
tion. Note that there are two ways to increase player i′s incentive to form
a link, by deleting links between two connected players because of strate-
gic substitutes or build links between i and connected players. However,
the effect of the former is dominated by the latter since (2) and (3) holds.
Thus, player i wants to form links by himself as soon as she has formed
arg mink̃∈{0...k}

(
∆+
i (k̃, k(k − 1) + k̃) ≥ 0

)
links. Note that because of con-

vexity in own links and strategic substitutes the connected players still want
a link with player i, implying that there exists a zero resistance path to the
network gk+1. The other direction is analogous.

Proof of Proposition 2 If there exists a unique pairwise stable network,
then it follows directly that it is stochastically stable. Hence, Proposition 1
directly implies that the fully connected network is stochastically stable for
f < F0 and the empty network for f > F2. Hence we restrict attention
to F0 ≤ f ≤ F2. In this range there are several PS networks and the
subset of the PS networks with minimal stochastic potential gives the set of
stochastically stable networks (see e.g. Young [17]).
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Let us first compare the stochastic potential of networks gk with k ≥
k. The stochastic potential of a PS network gk, k ∈ [k(f), k̄(f)] is given
by r(gk) = c(g1, gk) +

∑k−1
l=k c

+(l) +
∑k̄

l=k+1 c
−(l), where c(g1, gk(f)) is the

minimal number of mistakes necessary to move from the empty network
g1 to gk(f), which is zero if g1 is not pairwise stable and where k̄(f) =
n, if the complete network is pairwise stable. By Lemma 2 we have for
the difference in stochastic potential between two adjacent PS networks
∆r(k) = r(gk+1)−r(gk) = 2κ(k)−k, where κ(k) is given by (4). In order to
characterize the discrete κ(k) let h(k) be the implicit function h(k) := {h ∈
R : ∆+

i (h, k(k− 1) +h) = 0}. Since ∆+
i (h, k(k− 1) +h) is strictly increasing

in h the solution is unique for every k ∈ {1, ..., n− 1}. Solving for h we get

h(k) =
k2 − k
n− 1

+
f − 2(α− γ0)− γ(n− 1)

2γ(n− 1)
, (7)

and hence κ(k) = dh(k)e, if 0 ≤ h(k) ≤ k. Otherwise if h(k) < 0 then κ(k) =
0 and if h(k) > k then κ(k) = k. Taking the continuous approximation of
∆r we get ∆̃r(k) = 2h(k)−k which yields ∂∆̃r(k)

∂k = 2h′(k)−1 = (4k−2)−n−1
n−1 .

Thus, ∆̃r(k) is strictly decreasing/increasing for k < / > (n + 1)/4, has a
global minimum at k = (n+1)/4 and ∆̃r(k) < 0 for k = (n+1)/4. Consider-
ing the continuous approximation ∆̃r(k) the main intuition of the proof can
be seen straightforwardly. For small enough f , we have ∆̃r(k) < 0 for all k
implying that the complete network is stochastically stable. Otherwise there
exists a unique k∗(f) with ∆̃r(k∗(f)) = 0 and ∆̃r(k) > 0 for all k > k∗(f).
This means that k∗(f) is a local minimizer of the stochastic potential r(gk).
Moreover, k∗(f) ≥ n+1

4 . The only other candidate for a global minimizer is
k = 1, i.e. the empty network. Since k is the size of the dominant group,
k can only be an integer. Moreover, the number of mistakes κ(k) can only
take on integer values. In the following we therefore prove the statement by
considering ∆r(k) = 2κ(k)− k = 2dh(k)e − k. Note that a necessary condi-
tion for a minimizer k∗(f) of r(gk) is that ∆r(k∗(f)) ≥ 0 (since this implies
that r(gk

∗(f)+1) ≥ r(gk∗(f))) and ∆r(k∗(f)− 1) ≤ 0 (since this implies that
r(gk

∗(f)) ≤ r(gk∗(f)−1)).
We first show the following auxiliary Lemmas which are helpful in re-

stricting the set of possible minimizers of the stochastic potential. We then
show the statement.

Lemma 3. There does not exists a stochastically stable network gk such
that 2 ≤ k ≤ n−1

4 .

Proof. Note that h(k + 1) − h(k) = 2k
n−1 ≤

1
2 if and only if k ≤ n−1

4 which
yields dh(k + 1)e − dh(k)e ≤ 1 for all k ≤ n−1

4 and from dh(k)e − dh(k −
1)e = 1 it follows that dh(k + 1)e − dh(k)e = 0 for all k ≤ n−1

4 and from
dh(k+1)e−dh(k)e = 1 it follows that dh(k)e−dh(k−1)e = 0 for all k ≤ n−1

4 .

14
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Suppose now that there exists a 2 ≤ k ≤ n−1
4 such that gk is stochasti-

cally stable. Necessary for stochastic stability of gk is that ∆r(k) ≥ 0 and
∆r(k − 1) ≤ 0.

First, let k be odd. Then ∆r(k) ≥ 0 ⇔ dh(k)e ≥ k
2 implies that

both inequalities must be strict, since k
2 /∈ Z. Then because of k ≤ n−1

4

either dh(k − 1)e = dh(k)e which trivially implies that dh(k − 1)e > k−1
2 or

dh(k − 1)e = dh(k)e − 1 which implies that dh(k − 1)e > k
2 − 1, and, hence

dh(k−1)e ≥ k
2 −

1
2 since dk2 −1e = k

2 −
1
2 . Thus, ∆r(k) ≥ 0 for k odd implies

∆r(k − 1) ≥ 0. Moreover if ∆r(k − 1) = 0 then dh(k − 1)e = dh(k)e − 1
and thus we have dh(k− 1)e = dh(k− 2)e implying that ∆r(k− 2) > 0, and
hence, r(gk−2) < r(gk), contradicting stochastic stability of gk.

Now let k be even and suppose ∆r(k) ≥ 0. First, consider ∆r(k) > 0 ⇔
dh(k)e > k

2 . Thus, dh(k)e ≥ k
2 + 1 since k

2 ∈ Z. As above let dh(k − 1)e =
dh(k)e−1 (the other case dh(k−1)e = dh(k)e trivially implies ∆r(k−1) > 0.)
Then dh(k − 1)e = dh(k)e − 1 ≥ k

2 >
k−1

2 , implying ∆r(k − 1) > 0. Finally
suppose that ∆r(k) = 0. First, if dh(k−1)e = dh(k)e then ∆r(k−1) > 0 and
we are in the case above, where k is odd. Second if dh(k− 1)e = dh(k)e − 1
then we must have dh(k + 1)e = dh(k)e, implying that ∆(gk+1) < 0 which
implies that r(gk+2) < r(gk+1) = r(gk), contradicting stochastic stability of
gk.

Lemma 4. Assume that mink∈{1,...n−1}∆r(k) < 0 and ∆r(n−1) ≥ 0. Then,
there either exists a unique k∗(f) ∈

{
n−1

4 , . . . , n− 1
}

with ∆r(k∗ − 1) <
0,∆r(k∗) > 0,∆r(k) ≤ 0, ∀n−1

4 ≤ k < k∗ − 1 and ∆r(k) ≥ 0, ∀k∗ < k ≤
n− 1 or a unique k∗(f) ∈

{
n−1

4 , . . . , n− 1
}

with ∆r(k∗) = 0,∆r(k∗ − 1) <
0,∆r(k∗+ 1) > 0,∆r(k) ≤ 0, ∀n−1

4 ≤ k < k− 1∗ and ∆r(k) ≥ 0, ∀k∗+ 1 <
k ≤ n− 1. Furthermore, k∗(f) is weakly decreasing with respect to f .

Proof. We show first that ∆r(k) > 0 implies ∆r(l) ≥ 0 for all l > k. Suppose
that there is a k > n−1

4 such that ∆r(k) > 0 ⇔ dh(k)e > k
2 . If k is even

then k
2 ∈ Z and hence dh(k)e > k+1

2 implying dh(k + 1)e ≥ dh(k)e > k+1
2 ,

and thus ∆r(k + 1) > 0. If k is odd then k
2 /∈ Z and hence dh(k)e ≥ k+1

2

implying dh(k+ 1)e ≥ dh(k)e ≥ k+1
2 , and thus ∆r(k+ 1) ≥ 0. Note however

that if ∆r(k+1) = 0 then it must be that dh(k+1)e = dh(k)e implying that
dh(k+ 2)e ≥ dh(k+ 1)e+ 1,15 and, hence, ∆r(k+ 2) > 0. Thus if ∆r(k) > 0
then ∆r(l) ≥ 0 for all l > k.

Second, we note that mink∈{n−1
4
,...n−1}∆r(k) < 0. Assume to the con-

trary that ∆r(k) ≥ 0 for all k ∈
{
n−1

4 , . . . , n− 1
}

. From Lemma 3 it then
follows that ∆r(k) ≥ 0 for all k ∈ {1, ..., n−1

4 }, since ∆r(k) ≥ 0 for k = n−1
4

contradicting the the assumption mink∈{1,...n−1}∆r(k) < 0.

15Since for k ≥ n−1
4

, h(k + 1) − h(k) = 2k
n−1

≥ 1
2

and thus dh(k + 1)e − dh(k)e = 0
implies dh(k + 2)e − dh(k + 1)e = 1.

15
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Given that mink∈{n−1
4
,...n−1}∆r(k) < 0 define k∗(f) by k∗(f) := 1 +

max
[
k ∈

{
n−1

4 , . . . , n− 1
}
|∆r(k) < 0

]
.16 If ∆r(k∗) > 0 the statements of

the first of the two cases given in the text of the Lemma follow directly
from our arguments above. If ∆r(k∗) = 0, it follows, due to the definition
of ∆r(k), from ∆r(k∗) = 0 that ∆r(k∗+ 1) 6= 0, and due to the definition of
k∗ we must have ∆r(k∗ + 1) > 0. Similarly, we must have ∆r(k∗ − 1) < 0.
Hence, we obtain the statements concerning the second case given in the
Lemma. Finally, the claim that k∗ is weakly decreasing with respect to f
follows from the observation that h(k) is increasing in f , which implies that
∆r(k) is weakly increasing in f . Accordingly, k∗ decreases (weakly) as f is
increased.

In order to prove the claims of the Proposition, we first observe that for
sufficiently small values of f , where ∆r(n− 1) < 0, we have that ∆r(k) < 0
for all k ∈ {1, ...n−1} implying that the stochastic potential is minimized for
the complete network and the complete network is the unique stochastically
stable network.

In what follows we therefore focus on values of f where ∆r(n − 1) ≥ 0.
We consider first the case F0 ≤ f < F1. As shown in Proposition 1 the set
of candidates for stochastically stable networks is given by {gk(f), . . . , gn},
where k(f) is the smallest k such that ∆+

i (0, k(k − 1)) < 0. This property
implies that for k∗(f) < k(f) we must have c+(k∗(f)) = 0. Given that we
have c−(k) > 0 for all k ∈ {2, . . . , n} and f < F1, this implies ∆r(k∗(f)) =
c+(k∗(f)) − c−(k∗(f) + 1) < 0, which contradicts Lemma 4. Hence, we
must have k∗(f) ≥ k(f) and therefore min{k∈{1,...n−1}∆r(k) < 0. Direct
application of Lemma 4 now establishes that among the PS networks the
minimal stochastic potential is attained for gk

∗
, if ∆r(k∗) > 0, or for each

of the networks gk
∗

and gk
∗+1, if ∆r(k∗) = 0.

Considering F1 ≤ f < F2 we observe first that r(g1) − r(gk(f)) =
c(gk(f), g1) − c(g1, gk(f)) is (weakly) decreasing in f and negative for suf-
ficiently large f . On the one hand, we have that c(g1, gk(f)) is (weakly)
increasing in f , which follows because if ∆+

i (ηi, η−i) < 0 for some f , then
∆+
i (ηi, η−i) < 0 for all f ′ > f. Moreover, k(f) is increasing in f . The same

argument implies that c(gk(f), g1) = c−(k(f)) is (weakly) decreasing in f .
Obviously, we have r(g1) = 0 for sufficiently large f , which implies that
r(g1) − r(gk(f)) < 0 for sufficiently large f . From the arguments above it
follows that there exists an interval [f̃l, f̃h] such that

r(g1)− r(gk(f))


> 0 f < f̃l
= 0 f ∈ [f̃l, f̃h]
< 0 f > f̃h.

16For convenience we will drop the dependence on f .

16



Dawid–Hellmann

As the next step of the proof we establish that gk(f) is never stochastically
stable. To this end, we show that k∗(f) ≥ k(f) for all f ≤ f̃h. Given the
(weak) monotonicity of k∗(f) and k(f) it suffices to show this claim for
f = f̃h. Assume that k∗(f̃h) < k(f̃h). Then, k∗(f) is not pairwise stable
and thus we have c(gk

∗
, g1) = 0. Furthermore, due to the definition k∗(f̃h)

it follows from Lemma 4 that r(gk(f̃h)) > r(gk
∗(f̃h)). This implies

r(g1) ≤ r(gk∗(f̃h)) + c(gk
∗
, g1) = r(gk

∗(f̃h)) < r(gk(f̃h))

and we obtain a contradiction to r(g1) = r(gk(f̃h)). Hence k∗(f) ≥ k(f) for
all f ≤ f̃h. Since, by definition gk

∗
always has a lower stochastic poten-

tial than gk, this shows that the only candidates for stochastically stable
networks are g1 and gk

∗
(sometimes together with gk

∗+1). Considering the
difference in stochastic potential between these two networks we have

r(g1)− r(gk∗(f)) = c(gk(f), g1)− c(g1, gk(f)) +
k∗−1∑
k=k

(−∆r(k))

We know already that the first term is (weakly) decreasing in f . For the
sum, we know that for each k the term (−∆r(k)) is decreasing in f . Fur-
thermore, the number of summands (weakly) decreases for increasing f
and each summand is non-negative, because of k < k∗. Altogether, we
obtain that r(g1) − r(gk∗(f)) is weakly decreasing with respect to f . Ar-
guments analogous to above establish that the difference is negative for
sufficiently large f . The claims of the Proposition follow now directly by
setting F ∗0 = min[f |k∗(f) = n− 1], F ∗1 = min[f |r(g1)− r(gk∗(f)) = 0], F ∗2 =
max[f |r(g1)− r(gk∗(f)) = 0].
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