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A limit theorem for Markov decision processes∗

Mathias Staudigl†

February 20, 2013

Abstract

In this paper we prove a deterministic approximation theorem for a sequence of
Markov decision processes with finitely many actions and general state spaces as they
appear frequently in economics, game theory and operations research. Using viscosity
solution methods no a-priori differentiabililty assumptions are imposed on the value
function. Applications for this result can be found in large deviation theory, and some
simple economic problems.

Keywords: Markov decision processes, Optimal Control, Viscosity solutions, Stochastic
Approximation
JEL Classification Numbers: C02, C44, C61

1. Introduction

In this paper we study the following standard sequential decision problem. Consider a

controlled Markov chain {Xεn}n∈N0
defined on some probability space (Ω,F ,P), and taking

values in Rd. The evolution of this process is controlled by an action process {Aεn}n∈N0
,

which is assumed to take values in a finite set of available actions A . The controlled

evolution of the state is assumed to follow the system equation

(1)















Xε
n+1
= Xεn + ε f ε

n+1
(Xεn,A

ε
n) ∀n ∈N0

Xε
0
= x ∈ X ⊂ Rd.
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Assume that real time is a continuous variable, taking values in the set of non-negative

real numbers t ∈ R+. Fitting the discrete process {(Xεn, Â
ε
n)}n∈N into continuous time by

defining processes

X̂ε(t) = Xεn, and Âε(t) = Aεn

for t ∈ [nε, (n+1)ε), n ∈N0, we obtain a jump process, with deterministic periods between

consecutive jumps of length ε. Consider a decision maker, whose objective is to maximize

his total sum of stage payoffs over an infinite time horizon and discount factor λε := e−rε.

Assume that the decision maker is an expected utility maximizer so that his preferences

are given by

U(x, σ) = Eσx













∞
∑

n=0

(1 − λε)λ
n
εu(Xεn,A

ε
n)













,

or in continuous-time formulation

Eσx

[∫ ∞

0

re−rtu(X̂ε(t), Âε(t))dt

]

.

The mapping σ is a (behavior) strategy for the decision maker, essentially describing a

probability distribution over actions at each decision node. Precise definitions are given

in Section 2.1.

As a comparison problem consider the deterministic optimal control problem

sup
α∈S

∫ ∞

0

re−rtu(yx(t, α), α(t))dt

s.t. ẏx(t, α) = b(yx(t, α), α(t)), yx(0, α) = x

where S is the set of measurable open-loop controls α : R+ → ∆(A), and b is a suit-

ably defined Lipschitz continuous and bounded vector field. In this paper we address

the question under which conditions solutions (i.e. value function and the strategies) of

the stochastic sequential decision model, with decisions made on the discrete time grid

{0, ε, 2ε, . . .}, converge to solutions of the deterministic optimal control problem described

above. The motivation for studying this question are two-fold. The first motivation is

guided by practical considerations. There are some arguments in favor of using deter-

ministic continuous optimal control problems over the stochastic discrete decision pro-

cesses. Solving the stochastic decision problem numerically is often a computationally
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very intensive task, due to the ”curse of dimensionality” of dynamic programming.1 The

deterministic optimal control problem is often amenable to efficient numerical methods

which seem to perform better than algorithms based on dynamic programming. Sec-

ond, in some situations, the continuous deterministic formulation allows for an analytic

treatment of the decision problem, using either Viscosity solution methods, or the more

traditional Pontryagin Maximum principle. Hence, if one has the theoretical justification

to replace the stochastic decision problem by a deterministic one, there are some good

reasons to do that. My second motivation for investigating this question is in establishing

convergence results for dynamic games in discrete time to dynamic games in continuous

time. The present paper is therefore the basis for a model in which the limit dynamic

game is characterized by a deterministic ordinary differential equation (i.e. a differential

game). A task for future research is to extend this to allow stochastic limiting dynamics,

in particular jump-diffusion processes.

Related convergence and approximation questions are at the core of optimal control

theory. Indeed the present study is heavily influenced by the so-called Markov chain

method developed by Kushner and Dupuis (2001). This is a powerful numerical approx-

imation tool to obtain feedback controls in stochastic and deterministic optimal control

problems. Similar approaches can be found in Capuzzo-Dolcetta and Ishii (1984); Gon-

zales and Rofman (1985); Falcone (1987) and Bardi and Capuzzo-Dolcetta (1997). Our

proof method uses weak convergence arguments, as these are more naturally adapted to

our probabilistic setting. The difference between these papers and the present one is the

nature of the question I am addressing. While the above mentioned literature is interested

to construct a numerical approximation scheme in order to approximate a given optimal

control problem, I instead ask the question, given a discrete controlled Markov chain

model, what is the limit as the discretization becomes arbitrarily fine? Therefore this

paper is closer in spirit to stochastic approximation theory (Benaı̈m, 1998). While writing

this paper I have learned from the paper by Gast et al. (2012). They establish a limit

result for a finite-horizon Markov decision process converging to a deterministic optimal

control problem. This paper differs from Gast et al. (2012) in the problem formulation as

well as in the proof techniques. First I study infinite horizon problems with discounting.

Second, my proof techniques are based on dynamic programming and viscosity solution

techniques, whereas Gast et al. (2012) rely on ideas from stochastic approximation theory.

Before developing the general analysis of the problem, let me introduce some concrete

1Note that for numerical implementation of the decision problem one needs to discretize the state space
somehow. Usually at this stage the curse of dimensionality kicks in.
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examples to which the limit results apply.

1.1 Examples

1.2 Optimal pricing policy of a Monopoly

Consider an infinitely lived monopoly, who sets prices a ∈ A = {1, 2, . . . ,m}. The

monopolist can announce prices at the periods {0, ε, 2ε, . . .}. It faces a stochastic market

demand, following a Markovian dynamics {Xεn}n∈N0
with sample paths given by (1). The

vector field f εn (x, a) capture the random changes in market demand, given the current

demand is x and the quoted price is a ∈ A . The probability measures µεa(·|x) define the

law of the random changes in demand, given the current demand is x and the monopolist

announces a price a. The monopolist has a flow profit function u(x, a). A strategy for the

monopolist is to design an optimal pricing strategy {σn}
∞
n=0, where σn is a function of the

demand history to probability distributions over prices. Hence, the monopolists’ problem

is to maximize

U(x, σ) = Eσx













∞
∑

n=0

(1 − λε)λ
n
εu(Xεn,A

ε
n)













where x ∈ R is the initially given demand, assumed to be known to the monopolist. As

ε → 0 the monopolist is able to post prices in arbitrary short time spans, and thus can

react arbitrarily fast to the random market demand. If the market is sufficiently stable

where random fluctuations over very small time spans are negligible, a deterministic

approximation to this models seems to the sensible.

1.2.1 Optimal stopping

A firm hast to decide when to exit an industry. The state of the market is modeled by

a discrete-time Markov chain {Xεn}n∈N0
which lives on R+. For concreteness think of Xεn as

the market price in period n. Real time t takes values in the set of non-negative reals R+

and the firm receives information on the prevailing market price only at discrete points in

time contained in the grid {0, ε, 2ε, . . .}. The firm is small, and therefore cannot influence

the evolution of the price dynamics. However, it has a model for the time series of prices,

which is the AR(1) process given by eq. (1).

In each period the firm can decide whether to stay or exit the market. This is modeled

by a binary action set A = {0, 1}, where action 0 means to exit the market and 1 means to

stay in the market. In each period in which the firm stays in the market it has to pay a
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random fee −r(Xεn) < 0, and the state evolves according to an uncontrolled Markov chain

with transition function qε on a set of possible prices X ⊆ R+. If the firm decides to exit

the market in period N ∈ N it gets a terminal reward g(Xε
N

) and the evolution of prices

stops (or the firm does simply not monitor the price evolution anymore). The function g(·)

is non-negative (otherwise the firm would want to exit immediately) and bounded. This

problem is contained in our model setup by specifying the following data. The transition

dynamics are µε
0
(·|x) = δ0 and µε

1
(·|x) = qε(·|x) ∈ M+

1
(R), where qε(·|x) is a given probability

law modeling the uncontrolled evolution of the price time series. The utility rate function

is given by

u(x, a) =















−r(x) if a = 1,

g(x) if a = 0.

The objective function of the decision maker is

Uε(x, σ) = Eσx













∞
∑

n=0

(1 − λε)λ
n
εu(Xεn,A

ε
n)













where σ is a measurable function mapping histories of the state process into probability

distributions over actions (i.e. a strategy). Now suppose that the information about current

prices appears in periods of length ε. In real time, the price time series evolves therefore

according to the step process X̂ε, and the decision whether to exit the market or stay in the

market can be made at all time points which are multiples of the step size ε. In the limit

as ε approaches 0 the firm monitors the price evolution with more and more accuracy,

and can also react to the price dynamics at virtually any point in real time. The results

reported in this paper investigate such a scenario where in the limit as ε → 0 the limit

price dynamics can be modeled by a deterministic differential equation.

2. Problem formulation

2.1 The discrete problem

Let {(Xεn,A
ε
n)}n∈N0

be a stochastic process taking values in the setRd ×A , whose sample

paths satisfy the dynamical systems equation (1). Each Aεn is an A-valued random variable,

adapted to the filtration F ε
n = σ

(

Xε
0
, . . . ,Xεn

)

, and controlling the evolution of the state

process. The law of the random variables Aεn for n = 0, 1, 2, . . . are determined by a

(behavior) strategy. A strategy is a collection of functions σ = {σn}n∈N0
, where each σn(·)
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is a probability distribution over the finite set of actions A := {1, 2, . . . ,m}, adapted to

the sigma-algebra F ε
n .2 A strategy is Markov if for every n we can express the behavior

strategy σn in terms of a single function α : Rd → ∆(A), so that

(2) σn(a|x0, . . . , xn) = α(a|xn) ∀n ≥ 0, a ∈ A .

Markov strategies are of fundamental importance in Markov decision processes, as we

will see in due course. { f εn (x, a)}n∈N is a sequence of i.i.d random variables with common

law µεa(·|x) on Rd. The collection of probability distributions µε
1
(·|x), . . . , µεm(·|x) defined on

the Borel sets of Rd are the control measures of the Markov decision process.

Let Ω = (Rd × A)N0 denote the sample path space of the controlled Markov chain, and

let F denote the σ-algebra generated by the finite cylinder sets. By the Ionescu-Tulcea

Theorem (see e.g. Bertsekas and Shreve, 1978), each strategy σdefines a unique probability

measure Pσx on (Ω,F ) with the following characteristics

Pσx(Xε0 ∈ Γ) = δx(Γ),

Pσx(Xεn+1 ∈ Γ|X
ε
n = x,Aεn = a) = Qε(Γ|x, a),

Pσx(Aεn = a|Xε0, . . . ,X
ε
n) = σ(a|Xε0, . . . ,X

ε
n),

where Γ is Borel measurable subset of Rd. The probability measure Qε(·|x, a) models the

evolution of the state process, and is defined by

Qε(Γ|x, a) = µεa

(

1

ε
(Γ − x)|x

)

∀(x, a) ∈ Rd ×A .

Under this (canonical) construction of the controlled Markov chain we think of the random

variables Xεn and Aεn as the coordinate processes Xεn(ω) = xn and Aεn(ω) = an, for every

ω = (x0, a0, . . . , xn, an, . . .) ∈ Ω.

Given a strategy σ let Eσx denote expectations with respect to the probability measure

Pσx . The objective of the decision maker is to maximize his normalized expected infinite

horizon discounted utility

(3) Uε(x, σ) = Eσx













∞
∑

n=0

(1 − λε)λ
n
εu(Xεn,A

ε
n)













.

2Technically speaking, each σn is a stochastic kernel on A given (Rd)n+1. See Bertsekas and Shreve (1978)
for the precise measure-theoretic definition of stochastic kernels.
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The discount factor per unit time λε is defined as λε = e−rε. r > 0 is the discount rate, or

the interest rate per unit time. The factor (1 − λε) provides the correct normalization of

the stream of utilities. The maximized utility of the decision maker, or the value function,

is defined as

(4) Vε(x) = sup
σ

Uε(x, σ).

Here the supremum is taken over all strategies available to the decision maker. A standard

result in Markov decision processes is that the decision maker does not gain much by using

more complicated strategies than Markov strategies. Indeed, for every fixed ε > 0 it is well

known (see e.g. Puterman, 1994) that the decision maker can choose a Markov strategy

αε : Rd → ∆(A) which solves the decision problem, i.e.

Vε(x) = Uε(x, αε) ∀x ∈ Rd.

2.1.1 Standing hypothesis

This section provides a collection of all the technical assumptions we impose on the

problem data. The first assumption is a continuity assumption on the drift of the state

process {Xεn}n∈N0
, defined as the conditional mean increment of the process. We denote the

drif bε : Rd × A → Rd by

(5) bε(x, a) := Eσx

[

1

ε

(

Xεn+1 − Xεn
)

| Xεn = x,Aεn = a
]

=

∫

Rd

zµεa(dz|x).

Assumption 2.1. The function bε : Rd × A → Rd is Lipschitz continuous and converges to a

Lipschitz continuous function b : Rd × A → Rd locally uniformly on compact sets.

In the convergence proof we will make the following fairly standard uniform integra-

bility assumption on the control measures.

Assumption 2.2. The control measures µε
1
(·|x), . . . , µεm(·|x) are supported on a common compact

subset K ⊂ Rd for each x ∈ Rd.

This assumption implies that the vector fields b(x, a) are contained in the closed convex

hull of the compact set K . Hence, the averaged vector field of the dynamics is uniformly

bounded by some constant Mb > 0, so that

(6) sup
x∈Rd

||b(x, a)|| ≤Mb ∀(x, a) ∈ Rd × A .

–7–



Now we impose some restriction on the utility flow function of the decision maker.

Assumption 2.3. The utility flow function u : Rd × A → R is uniformly bounded and Hölder

continuous for each action a ∈ A :

sup
x∈Rd

|u(x, a)| ≤Mu ∀a ∈ A , and(7)

|u(x, a) − u(y, a)| ≤ Mu||x − y||γ ∀x, y ∈ Rd, a ∈ A(8)

for some constants Mu > 0 and γ ∈ [0, 1].

The final assumption we make concerns the scaling relationship between the variance

of the increments of the state process and the step size ε. This assumption is essential in

making the deterministic approximation result work, as it says that in the limit of small

step sizes, sample paths of the state process look like solutions of an ordinary differential

equation with drift b. This will be made precise in Section 6, where the technical details

are provided.

Assumption 2.4. The covariance matrix of the increments of the state process {Xεn}n∈N0
satisfies

the scaling relationship

(9) Varσx
[

Xεn+1 − Xεn|X
ε
n = x,Aεn = a

]

≤ ε2Mv

for every (x, a) ∈ Rd ×A , for some uniform constant Mv ≥ 0.

2.2 The Limit Problem

The limit problem is a deterministic optimal control problem where the decision maker

wants to maximize his total discounted utility over an infinite time horizon. Extend the

utility rate function to the domain Rd × ∆(A) linearly, so that u(x, α) :=
∑

a∈A u(x, a)α(a).

Similarly, extend the drift b to Rd × ∆(A) by b(x, α) :=
∑

a∈A b(x, a)α(a). The value function

of the optimal control problem is defined as

v(x) := sup
α∈S

U(x, α),(OC)

where

(10) U(x, α) :=

∫ ∞

0

re−rtu(yx(t, α), α(t))dt

–8–



is the utility function of the decision maker under the deterministic strategy α ∈ S which

induces the state dynamics

(11) ẏx(t, α) = b(yx(t, α), α(t)), yx(0, α) = x.

Existence and uniqueness to solutions of the differential equation (11) is guaranteed by

Assumption 2.1. The set of strategies the decision maker can choose is the set of measurable

functions α : R+ → ∆(A),

S := {α : R+ → ∆(A)|α(·) measurable}.

Note that these functions are defined without any reference to the current state and hence

are open-loop controls.

The following technical lemma establishes that the value funcion of the deterministic

optimal control problem (OC) is an element of the space of continuous bounded functions

v ∈ Cb(R
d : R).

Lemma 2.5. Under Assumptions 2.1, 2.2 and 2.3 the value function v : Rd → R satisfies

(12) |v(x)| ≤Mu ∀x ∈ Rd,

and it is Hölder continuous with coefficient γ ∈ (0,min{ r
Mb
, 1}).

Proof. The proof of this Lemma is based upon standard arguments, which can be found

in Bardi and Capuzzo-Dolcetta (1997). The uniform boundedness of the value function is

a trivial consequence of the uniform boundedness of the utility flow function u, stated in

Assumption 2.3. Indeed, for any strategy α ∈ S , we have

U(x, α) =

∫ ∞

0

re−rtu(yx(t, α), α(t))dt ≤Mur

∫ ∞

0

e−rtdt = Mu.

For the second statement, pick two points x1, x2 ∈ R
d and fix a strategy α ∈ S such that

v(x1) − δ ≤ U(x1, α).

Such a strategy exists by definition of the supremum. Now v(x2) ≥ U(x2, α), and w.l.o.g

we assume that v(x1) > v(x2). Then

|v(x1) − v(x2)| ≤ |U(x1, α) + δ −U(x2, α)|

–9–



= |

∫ ∞

0

re−rt[u(yx1
(t, α), α(t)) − u(yx2

(t, α), α(t))]dt + δ|.

By eq. (8) and standard estimates on solutions to ordinary differential equations, we see

that

|u(yx1
(t, α), α(t)) − u(yx2

(t, α), α(t))| ≤Mu||yx1
(t, α(t)) − yx2

(t, α(t))||γ

≤Mu||x1 − x2||
γe−Mbγt.

Using this estimate in the previous display shows that

|v(x1) − v(x2)| ≤ Mu||x1 − x2||
γ|

∫ ∞

0

e(−r+γMb)tdt| + 2δ.

To ensure that the integral on the right-hand side of this estimate converges, we consider

three cases. If r > Mb then the condition γ < r/Mb is sufficient for convergence. In

particular γ = 1 can be chosen, which shows that the value function is Lipschitz in this

case. If r = Mb any choice γ ∈ (0, 1) can be made. Finally if r < Mb then we need to pick

0 ≤ γ < r/Mb. This completes the proof the Lemma. �

The dynamic programming approach to deterministic optimal control theory allows

us to characterize the value function as a solution to a partial differential equation of the

first-order, known as the Hamilton-Jacobi-Bellman equation. The Hamiltonian associated

to the optimal control problem (OC) is given by

H(x, p) = max
a∈A

{

〈p, b(x, a)〉 + ru(x, a)
}

.

Note that here we have already used the fact that the maximum value of the Hamiltonian

expression will be attained at a pure action. It is well-known that, under the technical

assumptions made in this paper, the value function v is the unique viscosity solution of

the Hamilton-Jacobi-Bellman equation

(HJB) rv(x) −H(x,Dv(x)) = 0 ∀x ∈ Rd.

See Bardi and Capuzzo-Dolcetta (1997), chapters II and III. Since the Hamiltonian maxi-

mization condition can be formulated to optimize over elements in the finite action set A ,

it follows that

v(x) = sup
α∈S #

∫ ∞

0

re−rtu(yx(t, α), α(t))dt

–10–



where S # ⊂ S is the space of measurable A-valued open-loop strategies. Measurable

functions may display very irregular behavior so that strategies in the set S # will not

in general provide good candidates for discrete approximations. Rather we would like

to exhibit controls which may only be δ-optimal, but be at least piecewise constant.3

Adapting results reported in Capuzzo-Dolcetta (1983), we will show that such suboptimal

controls generally exist for the problem at hand. The proof is constructive, and is strongly

related to the Markov decision process introduced in the previous section. To construct

piecewise constant suboptimal strategies we replace the optimal control problem by a

deterministic dynamic programming problem, which can be interpreted as the mean-

field model of the Markov decision process. For each ε > 0 let

S #
ε := {α ∈ S |α(·) is piecewise constant on [nε, (n + 1)ε), n ∈N0}.(13)

For each strategy α ∈ S #
ε define a controlled trajectory recursively on the time grid

{0, ε, 2ε, . . .} by

yεx(nε, α) = x + ε

n−1
∑

k=0

b(yx(kε), α), α(kε)),

yεx(0, α) = x.

Interpolate the state trajectory by setting yε(t, α) = yε(nε, α) for each t ∈ [nε, (n + 1)ε), n ∈

N0. In terms of this continuous time interpolation it is easily seen, recalling the identity

λε = e−rε, that

U(x, α) =

∞
∑

n=0

(1 − λε)λ
n
εu(yεx(nε, α), α(nε))

= r

∫ ∞

0

e−rtu(yεx(t, α), α(t))dt ≤ v(x)

where the last inequality follows from the maximality of the value function. This holds

for every piecewise constant strategy α ∈ S #
ε . The meaning of this is obvious. The decision

maker cannot obtain a higher utility by constraining himself to the smaller set of strategies

S #
ε . Let

(OCε) vε(x) := sup
α∈S #

ε

U(x, α),

3Note that if α ∈ S # is piecewise continuous it must be piecewise constant on the intervals of continuity.
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and let us put the record that, for each ε > 0, we have vε ≤ v pointwise. We now establish

some simple, but useful, properties of the value function vε.

Lemma 2.6. The dynamic programming problem (OCε) has a solution, and the value function

vε is unique. Moreover, it is uniformly bounded by the constant Mu and Hölder continuous with

exponent γ ∈
(

0,min{ r
Mb
, 1}
)

.

Proof. The proof of this Lemma is fairly standard, and so we only provide a sketch of

the proof. First we show existence and uniqueness of solutions to (OCε), using standard

arguments. Define the operator Tε, acting on bounded functions v : Rd → R, by

Tεv(x) = max
a∈A
{(1 − λε)u(x, a) + λεv(x + εb(x, a))}

Since λε ∈ (0, 1) for each ε > 0, it is easy to see that Tε defines a contraction mapping

on the space of bounded functions on Rd. With the supremum norm this is a Banach

space, and the Banach fixed point theorem states that there exists a unique function vε

such that Tεv
ε = vε pointwise. Standard arguments then show that vε is the value function

of the restricted problem (OCε). The uniform boundedness and Hölder-continuity of the

function vε follow directly from the proof of Lemma 2.5. �

Next, we construct a deterministic Markov strategy aε : Rd → A which solves the

problem (OCε). For each x ∈ Rd let

(14) aε(x) := max
{

a ∈ A |vε(x) = (1 − λε)u(x, a) + λεv
ε(x + εb(x, a))

}

.

Based on this Markov strategy, we define a piecewise constant strategy in continuous time

by setting

yεx(t) = yεx(nε) = x + ε

n−1
∑

k=0

b(yεx(kε), aε) ∀t ∈ [nε, (n + 1)ε), n ≥ 0,

and, for fixed initial condition x ∈ Rd,

(15) αε(t) := aε(yεx(t)) ∀t ≥ 0.

It follows that

vε(x) =

∫ ∞

0

re−rtu(yεx(t), αε(t))dt = U(x, αε).

–12–



This can be shown using the well-known one shot-deviation principle of discrete dynamic

programming. It remains to check the consistency of the approximation procedure as

ε→ 0+.

Lemma 2.7. vε → v as ε→ 0+, where v is the unique viscosity solution to (HJB).

Proof. For each ε > 0 the value function vε is uniformly bounded and Hölder continuous.

By the Arzelà-Ascoli theorem we can assume that there exists a subsequence {vε j} j∈N such

that ε j → 0+ as j→∞, and along which vε j → v locally uniformly on Rd. To complete the

proof, we will show that v is a viscosity solution of (HJB). This is done by showing that v is

simultaneously a viscosity sub and supersolution of (HJB). Let φ ∈ C 1(Rd : R) be a given

map. The bounded and continuous function v ∈ Cb(R
d : R) is a viscosity subsolution of

(HJB) if, whenever the function v − φ has a local maximum at a point x, then

(16) rv(x) −H(x,∇φ(x)) ≤ 0.

v ∈ Cb(R
d : R) is a viscosity supersolution of (HJB) if, whenever the function v − φ has a

local minimum at a point x, then

(17) rv(x) −H(x,∇φ(x)) ≥ 0.

Note that v in this characterization need not be differentiable in any sense. We now come

to the verification. Take φ ∈ C 1(Rd : R) and x0 ∈ R
d a local maximum point for v−φ. Then

there exists a closed ball B centered at x0 such that

(18) (v − φ)(x0) ≥ (v − φ)(x) ∀x ∈ B.

For each j ∈ N pick x
j

0
∈ arg maxx∈B(vε j − φ)(x). By the continuity of the value function

vε j and the local uniform convergence to v it follows that x
j

0
→ x0. Then, for j sufficiently

large, the boundedness of the drift eq. (6) implies that x
j

0
+ ε jb(x

j

0
, a) ∈ B for all a ∈ A .

Therefore, eq. (18) implies that

(19) vε j(x
j

0
+ ε jb(x

j

0
, a)) − vε j(x

j

0
) ≤ φ(x

j

0
+ ε jb(x

j

0
, a)) − φ(x

j

0
) ∀a ∈ A .

The discrete dynamic programming equation corresponding to problem (OCε) states that

0 = max
a∈A

{

(1 − λε j)u(x
j

0
, a) + λε jvε j(x

j

0
+ ε jb(x

j

0
, a)) − vε j(x

j

0
)
}
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for every j ∈N. This, together with eq. (19), implies that

0 = max
a∈A

{

(1 − λε j)[u(x
j

0
, a) − vε j(x

j

0
+ ε jb(x

j

0
, a))] + vε j(x

j

0
+ ε jb(x

j

0
, a)) − vε j(x

j

0
)
}

≤
{

(1 − λε j)[u(x
j

0
, a) − vε j(x

j

0
+ ε jb(x

j

0
, a))] + φε j(x

j

0
+ ε jb(x

j

0
, a)) − φε j(x

j

0
)
}

.

Since φ ∈ C 1(Rd : R), the mean-value theorem implies that

φε j(x
j

0
+ ε jb(x

j

0
, a)) − φε j(x

j

0
) = ε j〈∇φ(x

j

0
+ θ jε jb(x

j

0
, a)), b(x

j

0
, a)〉

for every j ∈N and some θ j ∈ [0, 1]. Hence,

0 ≤ max
a∈A

{

(1 − λε j)[u(x
j

0
, a) − vε j(x

j

0
+ ε jb(x

j

0
, a))] + ε j〈∇φ(x

j

0
+ θ jε jb(x

j

0
, a)), b(x

j

0
, a)〉
}

Dividing by ε j and observing that

1

ε j
(1 − λε j) =

1

ε j
(1 − e−rε j

)→ r

as j→∞, we conclude that

0 ≤ −rv(x0) +H(x,∇φ(x0))⇔ rv(x0) −H(x0,∇φ(x0)) ≤ 0.

This shows that v satisfies the viscosity subsolution condition (16). The proof that v it also

satisfies the viscosity supersolution condition (17) is done, mutatis mutandis, in the same

way and omitted. �

Proposition 2.8. The sequence of strategies {αε}ε∈(0,1) is a maximizing sequence:

U(x, αε)→ sup
α∈S #

U(x, α) = v(x).

as ε→ 0+.

Proof. For each ε > 0 we know that vε(x) = U(x, αε). By the arguments of the previous

Lemma, the value function vε converges locally uniformly to the viscosity solution v. By

uniqueness of solutions in the present case, it follows that v is the value function of the

optimal control problem (OC). �

By means of this proposition the strategies αε guarantee the decision maker a subop-

timal payoff which approximates the maximal payoff when ε is only chosen sufficiently
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small. In particular, for every δ > 0 there exists a εδ > 0 such that

U(x, αε) ≥ v(x) − δ ∀ε ∈ (0, εδ).

3. The Main result

Having described in detail the Markov decision process, and its limit problem, we

come now to the main result of this paper.

Theorem 3.1. Under assumptions 2.1-2.4 we have Vε → v as ε→ 0.

The proof of this theorem is based on weak convergence arguments as used in Kushner

and Dupuis (2001) and Dupuis and Ellis (1997). The main steps of the proof are as follows.

First we define continuous-time interpolations of the controlled Markov chain and the

action process which will provide the approximation of the controlled pairs for the limit

problem. Consider the step-functions

X̂ε(t) = Xn, Âε(t) = Aεn ∀t ∈ [nε, (n + 1)ε), n ∈N0.(20)

X̂ε is a random element of the space of right-continuous functions with left limits, denoted

by D(R+ : Rd), and Âε is a random element of D(R+ : A). Both these spaces are complete

separable metric spaces, when endowed with the Skorohod metric (see e.g. Billingsley,

1999). In terms of these step functions the utility to the decision maker under the strategy

σ is given by

Uε(x, σ) = Eσx

[∫ ∞

0

re−rtu(X̂ε(t), Âε(t))dt

]

= Eσx













∞
∑

n=0

(1 − λε)λ
n
εu(X̂ε(nε), Âε(nε))













.

Hence, by just transporting the controlled Markov chain and the action process to their

respective function spaces does not change the value the decision maker can achieve. In

Section 6.1 we show that the sequence of interpolated processes {(X̂ε(t), Âε(t)), t ≥ 0} are

tight in their respective function spaces and suitable topologies. By the Prohorov theorem

this guarantees that every sequence has a convergent subsequence. Using a suitable

representation of the action process in terms of mixed actions (this will be made precise

in section 6), this sequential compactness result allows us to prove that there exists a well

defined limit process (X̄, ν), where X̄ is a stochastic process taking values in the space of
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continuous functions C (Rd : R) and ν is a stochastic process taking values in S .4 The two

are coupled by the stochastic integral equation

(21) X̄(t) = x +

∫ t

0

b(X̄(s), ν(s))ds.

For every element of the probability space variable, the pair (X̄(ω), ν(ω)) defines an ad-

missible control pair for the deterministic optimal control problem (OC). Consequently,

the strategy ν(ω) is an element of the set S , and therefore cannot give the decision maker a

larger utility as he could obtain by solving the deterministic problem directly. This forms

the basis for the proof that lim supε→0 Vε(x) ≤ v(x). To show equality of the value func-

tions, we need to show that also lim infε→0 Vε(x) ≥ v(x). This will be shown by adapting

the deterministic piecewise constant strategy αε constructed in eq. (15), and using this

strategy as a strategy for the Markov decision process. The details of all these arguments

are provided in Section 6.

4. Conclusion

We have focused in this paper on a very standard stochastic optimal control prob-

lem, and studied its convergence to a deterministic continuous-time problem. The key

assumption which allowed us to prove this deterministic limit result was the ”asymptoti-

cally vanishing” variance of the increments of the state process. Without this assumption

a diffusion, or even a jump-diffusion approximation would be more appropriate. Second,

we have focused in this paper on the theoretically important case in which the decision

maker has only finitely many actions among which he can choose. There are no problems

in allowing the set of actions to be a convex compact subset of Rm. The arguments of this

paper go through without any change at all, and in fact turn out to be simpler, as under

this assumption, paired with the continuity hypothesis on the utility flow function u, it

is well-known that the decision maker can use a deterministic Markov strategy which

as optimal strategy in the Markov decision process (see e.g. Puterman, 1994). A more

challenging question, and one which actually motivated me to look at this problem, is to

extend the current result to stochastic games with imperfect public monitoring. In this

extended setting the state process {Xεn}n∈N0
is interpreted as the public signal process the

players can observe. Strategies as defined in this paper, which are contingency plans

conditioning only on the realizations of the signal process, are called public strategies.

4In the control-theoretic literature this relaxation procedure is standard since the classical works of Warga
(1972). See section 6.1 for the precise definition of the relaxed representation of the action process.
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The deterministic limit case is then only one of many scenarios one could study, and in

fact might not be the most interesting one. A challenging problem is to prove a limit

theorem where the limit signal process evolves according to a jump diffusion process as

in the recent paper by Sannikov and Skrypacz (2010). We leave this problem for future

research.

5. Proofs

Let {(Xεn,A
ε
n)}n∈N0

be the Markov decision process. For each ε > 0 the law of the action

process is described by a feedback strategy σε, being a stochastic kernel on A given Rd.

In the following we assume that the initial condition of the state process is the fixed

point x ∈ X ⊂ Rd. There are no problems in making the alternative assumption that the

initial condition is drawn from a distribution ρ supported on a compact set X ⊂ Rd. The

pair process {(Xεn,A
ε
n)}n∈N0

induces the law Pσ
ε

x ≡ Pε defined on the measure space (Ω,F ),

where Ω := (X × A)N0 and F the sigma-field generated by the finite cylinder sets. Weak

convergence arguments are used in the sequel, investigating the limit behavior of the

sequence of laws {Pε}ε∈(0,1). Recall that a sequence of probability measures {Pε} converges

weakly to a limit measure P if

lim
ε→0

∫

Ω

f (ω)dPε(ω) =

∫

Ω

f (ω)dP(ω)

for all bounded continuous random variables f : Ω → R. We will use this notion of

convergence to speak about limits of the continuous-time process {(X̂ε(t), Âε(t)}t≥0, defined

in (20). Once we have settled the convergence issue, we will be able to determine the limit

of the value function {Vε}ε∈(0,1).

5.1 Convergence of interpolated processes

By definition, we have

Xεn(ω) = Xε0(ω) + ε

n−1
∑

k=0

f εk+1(Xεk(ω),Aεk(ω)).

Call Zε
n+1
= f ε

n+1
(Xεn,A

ε
n) the random (normalized) increment of the state process in stage

n of the algorithm, and Ẑε(t) = Zε
n+1

for t ∈ [nε, (n + 1)ε) its corresponding step process.

Using the step processes X̂ε and Âε introduced in eq. (20), we can write the above recursive
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relation as an integral equation

X̂ε(t, ω) = X̂ε(0, ω) +

∫ nε

0

Ẑε(s, ω)ds.

Introducing the random variable

Mε
n = ε

(

Zεn+1 − bε(Xεn,A
ε
n)
)

,

we obtain the representation

X̂ε(t, ω) = X̂ε(0, ω) +

∫ nε

0

bε(X̂ε(s, ω), Âε(s, ω))ds +

n
∑

k=0

Mε
k(ω).

Given the definition of the function bε, the following Lemma is very simple.

Lemma 5.1. The process {
∑n

k=0 Mε
k
}n∈N0

is a martingale with respect to the filtration G εn =

σ
(

Xε
0
,Aε

0
, . . . ,Xεn,A

ε
n

)

.

It follows that {||
∑n

k=0 Mε
k
||2}n∈N0

is a submartingale with respect to G εn . This translates

in a straightforward way to the continuous-time submartingale t 7→ ||M̂ε(t)||2, where

M̂ε(t) =

∫ nε

0

(Ẑε(s) − bε(X̂ε(s), Âε(s))ds ∀t ∈ [nε, (n + 1)ε).

An application of the submartingale inequality (Theorem 3.8 in Karatzas and Schreve,

2000) gives the bound

Pσx

[

sup
0≤t≤T

||M̂ε(t)||2 ≥ λ

]

≤
1

λ
Eσx ||M̂

ε(T)||2

for every λ > 0 and T < ∞.

Using assumptions 2.4 and 2.2, the expectation on the right-hand side of this inequality

is on the order of o(ε). Therefore

(22) lim
ε→0

Pσx

[

sup
0≤t≤T

||M̂ε(t)||2 ≥ λ

]

= 0

for every strategy σ and initial state x ∈ X .

The pair (X̂ε, Âε) can be thought of as mappings fromΩ to the space of cadlag functions

with image in Rd × A , denoted by D(R+ : Rd × A). The problem with this space is that
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it does not have the useful compactness properties to speak about convergence of the

action process. The action process {Âε(t, ω), t ≥ 0} is for each ω ∈ Ω a deterministic right-

continuous step function taking values in the discrete set A . Given its discrete nature we

cannot talk about function convergence in an ordinary sense. To speak about convergence

of this process we interpret the pure action Âε(t) as a behavior strategy taking values in

the simplex ∆(A). To achieve this, we define the mixed action process by

(23) νεa(t, ω) = δÂε(t,ω)(a) :=















1 if Âε(t, ω) = a,

0 otherwise.

Clearly the random variable νε(t, ω) is an element of the mixed action simplex ∆(A)

and the map t 7→ νε(t, ω) is an element of the space of open-loop controls for the limit

problem S = {α : R+ → ∆(A)|α(·) measurable} for each fixed ω ∈ Ω.5 Denote by S |[0,T]

the subspace of open loop controls restricted to the domain [0,T]. The usefulness of

introducing this abstract concept comes from the following technical fact. Say that a

sequence {ν j} j∈N ⊂ S |[0,T] converges weak∗ to a limit ν ∈ S |[0,T] if for every integrable

function f : A × [0,T]→ Rwe have

lim
j→∞

∫ T

0

∑

a∈A

f (a, t)ν
j
a(t)dt = lim

j→∞

∫ T

0

∑

a∈A

f (a, t)νa(t)dt

The following result follows from general functional analytic facts (essentially Alaoglu’s

theorem).

Lemma 5.2. The set S |[0,T] is sequentially compact in the weak∗ topology, i.e. every sequence

{α j} ⊂ S |[0,T] has a weak∗ convergent subsequence with limit in S |[0,T].

Proof. See e.g. Lemma 5.1. in Capuzzo-Dolcetta and Ishii (1984). �

Defining a topology on S by saying that a sequence of open-loop controls {α j} converges

weak∗ to a limit α if and only if each restriction α j|[0,T] converges to the restriction α|[0,T]

shows that S is a weak∗ compact subset of L∞(R+,∆(A)). To summarize, for every ω ∈ Ω

and every sequence of relaxed controls {νε j(ω)} j∈N with ε j → 0 as j → ∞, there exists a

weak∗ converging subsequence with limit ν(ω) ∈ S . Therefore, we can state the following

technical fact.

Lemma 5.3. The family of open-loop strategies {νε}ε∈(0,1) is sequentially compact in S with respect

to the weak∗ convergence. Therefore, for every ω ∈ Ω there exists a sequence ε j(ω)→ 0 as j→ for

5t 7→ νε(t, ω) is a step function, thus trivially measurable.
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which νε j(ω)(ω)→ ν(ω) in the weak∗ sense. The so obtained limit process is denoted by ν and is a

random element of the space of open loop strategies S .

We now finalize the proof of the convergence of the interpolated sample paths by

showing that the family of D(R+ : Rd) valued random variables {X̂ε(t); t ≥ 0}ε∈(0,1) is

relatively compact with limit in C (R+ : Rd).

Lemma 5.4. The family of D(R+ : Rd) valued processes {X̂ε}ε∈(0,1) is relatively compact, i.e. for

every subsequence there exists a subsubsequence such that X̂ε
j
⇒ X̄ in distribution.

Proof. For x ∈ D(R+ : Rd) define the modulus of continuity by

w(x, δ,T) = inf
{ti}

max
1≤i≤n

sup
s,t∈[ti−1 ,ti)

||x(s) − x(t)||∞

where the sequence {ti} ranges of all partitions of the form 0 = t0 < t1 < . . . < tn−1 < T ≤ tn

with min1≤i≤n(ti − ti−1) > δ. For every fixed ε > 0 pick δ = ε
2
. Then the sequence

ti = iε, i = 0, 1, . . . , ⌈T/ε⌉ is admissible, and we see that

max
i

max
s,t∈[(i−1)ε,iε)

||X̂ε(t) − X̂ε(s)||∞ = max
1≤i≤n

||ε f εi (Xεi−1,A
ε
i−1)||∞.

By Assumption 2.2, the random vector fields { f εn } take values in the compact set K and

can therefore be uniformly embedded in a compact cube Γ ⊂ Rd. It follows that for every

ω ∈ Ω, ε > 0 and T > 0 we have

lim
δ→0

w(X̂ε(ω), δ,T) = 0.

Using assumption 2.2 once again, we see that for every T > 0 the sample paths of the

step process X̂ε are contained in a compact cube ΓT ⊂ R
d with probability 1. Theorem 7.2

in Ethier and Kurtz (1986) states that under these two conditions the family of processes

{X̂ε}ε∈(0,1) is relatively compact in D(R+ : Rd). �

By now we have shown that the random pair (X̂ε, νε) : Ω→ D(R+ : Rd ×A) converges

in law to a pair process (X̂, ν). In terms of the induced probability measures this has the

following meaning. Let P̂ε = Pεx ◦ (X̂ε, νε)−1 be the induced law of the process (X̂ε, νε)

on D(R+ : Rd × A), with marginals P̂ε
1

on D(R+ : Rd) and P̂ε
2

on D(R+ : ∆(A)) ⊂ S ,

respectively.6 We now proceed to show that the limit state process X̄ has almost surely

6Note that the space D(R+ : ∆(A)) is very similar to the space S #
ε , defined in eq. (13). However, now we

allow the step function to take values at any point on the simplex ∆(A).
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continuous sample paths.

For every x ∈ D(R+ : Rd) define

J(x) :=

∫ ∞

0

e−s min{J(x, s), 1}ds

with

J(x, s) := sup
0≤t≤s

||x(t) − x(t−)||∞

and x(t−) ≡ limτ→t− x(τ). Then, for every s > 0, it follows that

J(X̂ε, s) ≤ ε sup
k∈K

||k||∞

and therefore

J(X̂ε(ω)) ≤ ε sup
k∈K

||k||∞ → 0 for ε→ 0

for every ω ∈ Ω. Passing to a subsequence, we can assume that X̂ε ⇒ X̄ in distribution.

Theorem 10.2 in Ethier and Kurtz (1986) implies that X̄ is almost surely a random process

in C (R+ : Rd). To characterize this process, define the process

X̄ε(t, ω) = X̂ε(0, ω) +

∫ t

0

bε(X̂ε(s, ω), Âε(s, ω))ds

= X̂ε(0, ω) +

∫ t

0

bε(X̂ε(s, ω), νε(s, ω))ds.

Here we have extended the domain of the drift b toRd×∆(A) in the obvious way. Passing

to subsequences if necessary, we can assume that (X̂ε, νε) ⇒ (X̄, ν) in distribution. By

assumption 2.1 the drift converges locally uniformly to a Lipschitz continuous function

b. Together with the continuous mapping theorem (Ethier and Kurtz, 1986, p.103), this

implies that

lim
ε→0

∫ t

0

bε(X̂ε(s), νε(s))ds =

∫ t

0

b(X̄(s), ν(s))ds

for every t > 0 and in distribution. Since X̂ε(0, ω) = x with probability 1, we obtain

X̄ε ⇒ X̄, with

(24) X̄(t) = x +

∫ t

0

b(X̄(s), ν(s))ds.
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This completes the proof of the convergence of sample paths of the controlled Markov

chain.

P̂ε1 → P̂1, P̂ε2 → P̂2 ∈ M+1 (S )

5.2 Convergence of Values

To complete the proof of the main result we show that Vε → V for a compact set of

initial conditions X ⊂ Rd. Let {σε}ε∈(0,1) be the sequence of optimal Markov strategies for

the decision maker, so that for each ε ∈ (0, 1) we have

Vε(x) = Eεx

[∫ ∞

0

re−rtu(X̂ε(t), Âε(t))dt

]

Passing to a subsequence we may assume that (X̂ε, νε) ⇒ (X̄, ν) in distribution. By

the Skorohod representation theorem (Billingsley, 1999) there exists a probability space

(Ω̄, Ḡ ,P) on which we can define random variables (Yε, ρε), with joint law P̂ε, and which

converge almost surely to the processes (X̄, ν). Using this abstract results, we will not

distinguish between the random elements (X̂ε, νε) and (Yε, ρε), as they describe the same

processes in distribution. Then we actually have convergence of the random processes

except on a set of P−measure 0, denote by N. This construction allows us to use the

continuous mapping theorem as follows. Define the continuous function g : D(R+,R
d) ×

S → R by

g(φ, α) :=

∫ ∞

0

re−rtu(φ(t), α(t))dt.

Then, for each ω ∈ Ω̄ the number g(X̂ε(ω), νε(ω)) is the payoff of the decision maker under

the control pair (X̂ε, νε). Since u is continuous, it follows from the continuous mapping

theorem (Billingsley, 1999) that, for each ω̄ ∈ Ω̄ \N

lim
ε→0

g(X̂ε(ω), νε(ω)) = g(X̄(ω), ν(ω))

=

∫ ∞

0

re−rtu(X̄(t, ω), ν(t, ω))dt

= U(x, ν(ω))

≤ v(x).
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Applying the dominated convergence theorem, it follows that

lim
ε→0

∫

Ω̄

g(X̂ε(ω), νε(ω))dP(ω) =

∫

Ω̄

g(X̄(ω), ν(ω))dP(ω).(25)

Let E denote expectation on the probability space (Ω̄, F̄ ,P) provided by the Skorohod

representation. Then, eq. (25) implies that

lim sup
ε→0

Vε(x) = lim sup
ε→0

Eεx

[∫ ∞

0

re−rtu(X̂ε(t), νε(t))dt

]

= Ex

[∫ ∞

0

re−rtu(X̄(t), ν(t))dt

]

≤ v(x).

To finish the proof of Theorem 3.1, we need to show that also

lim inf
ε→0+

Vε(x) ≥ v(x).

The proof of this assertion is rather straightforward, thanks to the explicit approximation

procedure described in section 2.2. For each ε > 0 let αε denote the piecewise constant

control, taking values in the pure action set A , constructed in eq. (15). From Proposition

2.8 we know that for every δ > 0 there exists a εδ > 0 sufficiently small so that

U(x, αε) ≥ v(x) − δ ∀ε ∈ (0, εδ).

We adapt this strategy for the controlled Markov chain as follows. For each n ∈ N0 we

define a deterministic action process Aεn := αε(nε), without any explicit reference to the

current value of the state process. Hence, independent of the probability space variable

ω, we always implement the same action process {Aεn}n∈N. This defines an admissible

strategy for the decision maker which gives him a payoff of7

Ex













∞
∑

n=0

(1 − λε)λ
n
εu(Xεn,A

ε
n)













≤ Vε(xε).

With a slight abuse of notation, denote the left-hand side of this equation by Uε(x, αε). Set

X̂ε(t) = Xεn and νε(t) = δAεn for each t ∈ [nε, (n + 1)ε). Then, it follows from the sequential

compactness of relaxed controls (Lemma 6.3) that, passing if necessary to a subsequence,

7We omit to index the probability measure and its expectation by the strategy, as it is in one-to-one
correspondence with the deterministic action process in this case.
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the deterministic limit

lim
ε→0
νε = lim

ε→0
δαε(·) = ν

exists and defines an open-loop control in S (see also Capuzzo-Dolcetta and Ishii, 1984,

for a related argument). Along the same subsequence, it follows from arguments used in

section 6.1 that X̂ε ⇒ X̄ in distribution, where

X̄(t) = x +

∫ t

0

b(X̄(s), ν(s))ds.

Since the strategy used in this integral equation is deterministic and the initial condition

is fixed, this equation has a unique deterministic solution. Therefore X̄ is a deterministic

process which, by uniqueness, corresponds to the limit process of the controlled pair

(yεx, α
ε). Therefore, Proposition 2.8 implies that

lim inf
ε→0

Uε(x, αε) =

∫ ∞

0

re−rtu(X̄(t), ν(t))dt = v(x).

As Vε(x) ≥ Uε(x, αε) for every ε, we conclude that

lim inf
ε→0

Vε(x) ≥ lim inf
ε→0

Uε(x, αε) = v(x).

This completes the proof of Theorem 3.1.
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