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Abstract 

Analysis of climate change is often computationally burdensome. Here, we present an 
approach for intelligently selecting a sample of climates from a population of 6800 
climates designed to represent the full distribution of likely climate outcomes out to 
2050 for the Zambeze River Valley. Philosophically, our approach draws upon 
information theory. Technically, our approach draws upon the numerical integration 
literature and recent applications of Gaussian quadrature sampling. In our approach, 
future climates in the Zambeze River Valley are summarized in 12 variables. Weighted 
Gaussian quadrature samples containing approximately 400 climates are then …/ 
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obtained using the information from these 12 variables. Specifically, the moments of the 
12 summary variables in the samples, out to order three, are obliged to equal (or be 
close to) the moments of the population of 6800 climates. Runoff in the Zambeze River 
Valley is then estimated for 2026 to 2050 using the CliRun model for all 6800 climates. 
It is then straightforward to compare the properties of various subsamples. Based on a 
root of mean square error (RMSE) criteria, the Gaussian quadrature samples 
substantially outperform random samples of the same size in the prediction of annual 
average runoff from 2026 to 2050. Relative to random samples, Gaussian quadrature 
samples tend to perform best when climate change effects are stronger. We conclude 
that, when properly employed, Gaussian quadrature samples provide an efficient and 
tractable way to treat climate uncertainty in biophysical and economic models.   

 

Tables and Figures appear at the end of the paper. 
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1 Introduction 

Socioeconomic analysis of the impacts of climate change has often proceeded on the 
basis of a limited number of future climate scenarios. For example, the World Bank’s 
study of the economics of adaptation to climate change (World Bank 2011) focused on 
four future climates. Recent work in Vietnam expanded the number of climates 
considered by analyzing all 56 climates employed for the Fourth Assessment Report 
(AR4) (Arndt et al. 2012). However, while these 56 climates exhibit significant 
variation, especially at country level scales, they do not represent a systematic attempt 
to populate the future distribution of potential climate outcomes for a given global 
climate policy scenario. Schlosser and Strzepek (2012) address this problem by 
generating hybrid frequency distributions (HFDs) for the Zambeze River Valley. These 
HFDs represent the best current attempt to describe the potential distribution of future 
climate outcomes out to 2050 for a particular region.  

While the HFDs provide an explicit discrete estimation of the distribution of future 
climates, they also present other practical problems. In particular, the climate 
distribution for the Zambeze River Valley is populated by 6800 distinct future climates. 
This is an inconveniently large number for socioeconomic analysis for purely 
computational reasons. For example, CliCrop is a slimmed-down crop model designed 
specifically for the analysis of climate change issues (Fant et al. 2012). Nevertheless, 
solving CliCrop for multiple crops, multiple sub-regions and multiple time periods 
would take weeks on a single processor. Output from CliCrop then serves as input to 
economy-wide economic models, which also have significant computational demands. 
And, this exercise has to be done for each set of 6800 climates corresponding to a 
particular global mitigation policy scenario. Finally, the ability of simulation models to 
decompose and thus help explain impacts forms a significant part of their value. 
However, decomposition requires running the models with various subsets of shocks 
imposed, which significantly increases the number of times that the full climate 
distribution would need to be run.  

In short, there are significant practical advantages to working with a more manageable 
subset of climates that represents the full distribution. In general terms, this is hardly a 
new problem. The impracticalities of obtaining information from an entire population 
are the genesis of sampling theory. Indeed, one defensible way to proceed with the 
problem at hand would be to chose a random subset of J climates from the population of 
6800 and restrict analysis to only those J climates. However, in this case, simple random 
sampling may well represent an unnecessarily uninformed approach to selecting 
climates. 

Our proposed approach to selecting climates is motivated, philosophically, by 
information theory (Shannon 1948; Judge and Mittelhammer 2012), which dictates that 
one should make complete use of available information while taking care not to impose 
any additional assumptions (information) either explicitly or implicitly. In our case, we 
know, for example, that persistent drying is highly likely to lead to reduced runoff, 
reduced hydropower output, and, for most crops, reduced yield. This knowledge opens 
the possibility of selecting climates on the basis of important aspects of the distribution 
of future climates. Technically, our approach follows the lead of Arndt, Kozlitina, and 
Preckel (2006) who employ Gaussian quadrature, a technique from the numerical 
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integration literature, to the problem of sampling in the presence of information about 
the behavior of the target variables of interest.  

In short, we postulate that salient aspects of the distribution of future climates can be 
summarized via the calculation of a limited number (12 in our case) of summary 
variables that describe the climate distribution. We then select and appropriately weight 
a set of climates where, for the 12 summary variables in question, the moments of the 
distribution of the sample equal the moments of the parent distribution out to order 
three. Hence, the sample and the parent distribution share the same mean, variance, and 
skewness terms for the identified 12 summary variables. If there exists an order three 
polynomial in the 12 summary variables that provides a good approximation to the 
outcomes of interest, then the selected sample, called a Gaussian quadrature, will 
provide a good approximation to the moments of the outcome variables.  

We test this proposition in the Zambeze River Valley using the HFDs mentioned above 
and the CliRun model of runoff (Strzepek et al. 2011). CliRun is practical to solve for 
the entire set of HFDs corresponding to two future scenarios: (i) unconstrained 
emissions (UCE) where no policy actions are taken to limit greenhouse gas emissions 
out to 2050 and (ii) restraints on global emissions to prevent global greenhouse gas 
concentrations from exceeding 560 ppm CO2 equivalent, which is labeled ‘level one 
stabilization’ (L1S) in Webster et al. (2011). For each scenario, we compare 100 
Gaussian quadratures and 100 random samples of the same size with the ‘true’ 
distribution of runoff results (i.e., the distribution derived from running all 6800 
climates through CliRun). We focus on the change in annual average runoff in the 
eastern and western Zambeze due to climate change. We find that the quadratures 
perform well particularly in the UCE scenario and in later periods (the 2040s) when 
climate change impacts are more pronounced. 

The remainder of this paper is structured as follows. Section 2 briefly reviews the theory 
underlying the proposed approach. Section 3 presents the actual procedures employed 
for selecting future climates. Section 4 considers the performance of these samples 
relative to random samples of similar size. Section 5 concludes that the approach 
described here, judiciously implemented, holds considerable promise. Section 5 also 
provides directions for future research.  

2 Theory and methods 

2.1 Gaussian quadrature 

In general, the task of calculating the moments of the distribution of the outputs of a 
process (denoted as ݂(ݔ)) with random inputs drawn from the distribution ݃(ݔ) over 
the domain Ω can be viewed as a problem of integration as shown in equation (1). 
Frequently, an analytical solution to the right hand side of equation (1) does not exist; so 
it becomes necessary to evaluate the integral numerically in order to obtain an 
approximation. These approximations are often a weighted sum of evaluations of the 
integrand as shown on the left hand side of equation (1)  
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where the vector xj represents the points where ݂(ݔ) is evaluated and wj are the weights 
associated with each evaluation. There are many ways to choose the points and weights.  

One specific approach to selecting points and weights is to randomly choose a large 
number of points, J, from the distribution ݃(ݔ) within the domain Ω and assign equal 
weight, wj=1/J, to each point. If J is sufficiently large, the method will produce a close 
approximation to the integral under very general conditions. Due to these properties—
and given present-day computer technology—this Monte Carlo approach turns out to be 
very convenient in many cases. However, when the evaluation of the function ݂(ݔ) is 
computationally burdensome, reducing the number of required evaluations, without an 
excessive loss in accuracy, becomes attractive. 

Haber (1970) reviews formulae for finding accurate and efficient approximations to 
definite integrals. One set of formulas, called Gaussian quadratures, are especially 
appealing due to their computational efficiency under broad conditions. Gaussian 
quadratures efficiently estimate definite integrals when the integrand is well 
approximated by a polynomial in ݔ of degree d. By choosing a polynomial of 
sufficiently high degree, any smooth integrand can be well approximated. Usefully, if 
the integrand is, in fact, a polynomial of order d or less, then the Gaussian quadrature 
approximation to the definite integral will be exact.  

To obtain a Gaussian quadrature of order d, one must solve the following system of 
equations:  
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, and ܯ is the dimension of the vector ݔ. The 

right-hand sides of the above set of equations represent the moments of ݔ about the 
origin. The total number of equations in the system will be equal to the number of 
unique moments up to order d:  
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For instance, if we have 12 variables and draw an order-3 quadrature, the number of 
equations in the system will be 455.  

A theorem due to Tchakaloff (1957) proves that this system can always be solved with 
no more than J points, all of which have positive weight and lie within the domain of 
integration. In general, there are multiple solutions to the system of equations in (2) 
implying that Gaussian quadratures are not unique. Note that, as the dimensionality of 
integration, M, and/or the order of approximation, d, expands, the upper bound on the 
number of points in the quadrature, J, increases rapidly. As a result, Gaussian 
quadrature may not be practical for integration problems of high dimensionality or for 
problems with integrands that require a very high order polynomial to achieve an 
adequate approximation. Nevertheless, experience with integration problems of 
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dimension 12 or less with smooth integrands suggests large efficiency gains even when 
the order of approximation is relatively low (d=3) (De Vuyst and Preckel 1997).  

2.2 Gaussian quadrature climate sampling 

The problem at hand maps reasonably well to the theoretical development presented 
above. In our case, the integrand is the CliRun model and ݔ contains random climate 
variables as derived from the HFDs. There are two departures from straightforward 
numerical integration via Gaussian quadrature as described above. First, our case 
pertains to discrete distributions rather than the continuous distributions employed 
above. Given the number of climates in the parent HFD, this departure is not 
particularly problematic. Second, and more importantly, the random vector of climate 
outcomes, ݔ, entering CliRun is of massive dimensionality (M). From equation (3), the 
straightforward application of Gaussian quadrature is not practical due to the number of 
points required.  

To surmount this difficulty, we hypothesize that substantial information inherent in the 
distribution of climate outcomes can be summarized in a limited number of variables, ݖ. 
It is then straightforward to obtain a Gaussian quadrature of order d by solving the 
system of equations in (2) on the basis of the moments of ݖ (DeVuyst and Preckel 
2007). By definition, the moments of the summary variables ݖ from the sample 
distribution will equal the moments of the population distribution up to order d. 
However, the Gaussian quadrature on ݖ will not perfectly represent the moments of ݔ. 
In this respect, the quality of approximation of the moments of the final outcome 
variables (the outputs of CliRun) depend upon the strength of relationship between the 
moments of ݖ and the moments of ݔ.  

Following Arndt, Kozlitina, and Preckel (2006), the issue can be posed in a manner 
more amenable to investigation. Assume that there exists a function ℎ(ݖ) that 
approximates CliRun (݂(ݔ)) with error 

ezhxfy +== )()(    (4) 

If we assume, for a discrete population of size N, that the expected value of the error 
term is approximately zero, then the mean of y is equal to:  
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Without loss of generality, we can assume that ℎ(ݖ) is in fact a polynomial of order d or 
less. Hence, a Gaussian quadrature of order d (or more) will exactly approximate the 
right-hand side of equation (5). However, since we do not observe ℎ(ݖ), the Gaussian 
quadrature approximation to the mean of y must rely on ݂(ݔ) and hence includes a 
systematic component, ℎ(ݖ), and an error term 
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From equation(6), it is clear that the accuracy of the quadrature-based estimate of the 
mean of y depends in significant measure on the quality of approximation of ݂(ݔ) by a 
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polynomial of order d, ℎ(ݖ). In the (highly unlikely) event that ℎ(ݖ) exactly 
approximates ݂(ݔ) within the relevant domain, Ω, then the Gaussian quadrature 
approximation to the mean of y will be exact. This is obviously superior to a random 
sample of climates. If, on the other hand, the relationship between ℎ(ݖ) and ݂(ݔ) within 
the domain Ω is weak, then the properties of the Gaussian quadrature sample are 
difficult to discern and are not likely to be appealing. In addition, unequal weights are 
effectively applied to the error term in equation (6), likely increasing the variance of the 
estimate relative to a random sample of similar size.  

The wisdom of the application of the approach then depends substantially upon the 
quality of approximation of ݂(ݔ) by ℎ(ݖ). When full information is available, an 
obvious measure of the quality of this approximation is the R-squared from a standard 
least squares regression procedure of y on an order d polynomial in ݖ. For instance, for 
an order-3 quadrature, the regression equation would take the following form: 
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where i≤ j≤ k. We turn now to an application of the approach and its empirical 
properties 

3 Runoff in the Zambeze River Valley underclimate change 

3.1 Description of the Zambeze River Valley  

The Zambeze River Valley, covering about 1.37 million km2, is complex from various 
perspectives—namely in terms of climate, infrastructure, and economics. The Zambeze 
River flows primarily west to east, where the longest stretch begins in Angola and 
empties in the delta near the centre of the Mozambican coastline. Also, a large amount 
of streamflow collects in Malawi and southern Tanzania flowing south and meeting the 
Zambeze about 160 km from the ocean (FAO 1997). The area is characterized by a 
strong rainy season during the summer months between October and March when the 
inter-tropical convergence zone moves over the basin from north to south. Heavy 
precipitation is followed by an annual dry season during the winter months providing a 
substantial decrease in streamflow and soil moisture compared to the summer. The 
climate varies from hot and dry in the west around the Kalahari Desert to warm and 
humid in the east along the coast of Mozambique. For our purposes, the geographic area 
under study also includes Mozambique as shown in Figure 1. We also split the area into 
two sections, east and west, in order to capture the unique climate and hydrologic 
characteristics of each area.  

3.2 Summary of hybrid frequency distributions climate predictions for 
unconstrained emissions and level one stabilization 

The primary climate variables needed for the subsequent climate impact modeling, 
derived from the two HFD scenarios, are near-surface temperature and precipitation. 
Changes in climate compared to the base scenario (no climate change) were calculated 
monthly as a difference from the base mean for the years 2000–2100. These differences 
were then smoothed using a simple 11-year moving average. The smoothed differences 
are applied to a historical climate dataset directly. For this study we use the Climate 
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Research Unit’s monthly time series data 1951–90 (Mitchell and Jones 2005) for the 
base climate. The changes in climate by 2050 compared to the last decade of the 20th 
century are shown in Figure 2. As shown, the UCE scenario presents a warmer future 
climate than the L1S policy case. In terms of precipitation, there are only subtle 
differences for the median prediction in the two policies with a higher chance of an 
increase. The more defining characteristic of the predicted climate in the UCE policy 
case compared to L1S is the distribution shape, where the UCE predictions show a 
much wider distribution. This characteristic is especially noticeable in the tails of the 
predicted precipitation change, implying that UCE policies will result in a higher 
possibility of extreme climate differences by 2050 increasing the uncertainty of the 
future. Also, the data shows that the west is slightly more sensitive to the changes in 
policy in terms of climate value differences than the east.  

3.3 Summary of CliRun and full distribution of mean runoff results: east and west  

CliRun is a rainfall runoff hydrologic model designed specifically for understanding the 
impact of changes in climate on surface water availability. Based on the set of equations 
solved in CliRun, the model is nonlinear, continuous, and differentiable. A typical 
CliRun modeling procedure involves two stages: calibration and scenario modeling.  

CliRun was calibrated using runoff data generated by the University of New Hampshire 
in collaboration with the Global Runoff Data Centre (UNH-GRDC; Fekete, 
Vörösmarty, and Grabs, 2002). Changes in climate from the full HFD climate pool were 
applied to the historical monthly mean climate over selected representative basins in the 
Greater Zambeze River Valley. Distributions of change in runoff for the east and west 
regions are shown in Figure 3. The same patterns persist from the changes in climate 
shown previously in Figure 2, where UCE presents a distribution with greater variance 
than L1S. Another characteristic to note about these distributions is that the western 
region is considerably less variable than the east for both policy cases. This difference 
in variance is likely an artifact of the base climate. The eastern region is wetter, on 
average, than the western region, producing more annual runoff and resulting in a 
greater variance of runoff differences.  

4 Selecting future climates 

4.1 Developing climate summary variables  

Using appropriate climate statistics that best explain the resulting climate impacts 
important for the subsequent modeling is an essential step in the process. These 
summary variables define the differences and similarities between the various scenarios, 
guiding the final selection. So the variables chosen need to be descriptive in terms of the 
impact modeling efforts, relatively simple to calculate and few in number. In addition, 
the quadratures developed here are intended for use in crop, flooding, infrastructure, and 
economic models as well as for the CliRun model. Hence, the variables are chosen to 
reflect the diversity of likely impacts of climate change and not exclusively for the 
purposes of approximating runoff output from CliRun. 

As mentioned previously, the entire region was split into two sub-regions, east and west, 
in order to capture some of the geographically significant differences. 12 climate 
variables were chosen, six for each region. The first three variables were maximum 
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monthly precipitation in 2050, and maximum monthly change in temperature for both 
2030 and 2050. These variables were selected to take into account the impacts of 
climate to infrastructure, where high temperatures and heavy rainfall can greatly 
compromise the integrity of roads and buildings. The next two variables chosen in each 
region were the climate moisture index (CMI) for both 2030 and 2050. The CMI is a 
simple measure of annual aridity depending on total annual precipitation and potential 
evapotranspiration directly. CMI ranges from -1 to +1, where -1 is very dry and +1 is 
very humid. This variable was used as a simple measure to indicate changes in soil 
moisture and surface water availability important for the water resource modeling 
efforts. Changes in CMI are also important for changes in agricultural yield, irrigation 
water availability, and hydropower generation. The sixth variable chosen is the standard 
deviation of the change in seasonal precipitation in 2050. In the Zambeze basin, this 
value would indicate a shift in the growing season, which farmers attempt to line up 
with the rainy season in such a way as to obtain the highest yield. A significant shift in 
the rainy season could greatly impact crop production and irrigation demand.  

4.2 Operational procedures and rationale for additional constraints  

Having selected 12 variables (ݖ) which are intended to summarize the complete 
distribution of the climate variables (ݖ), it is straightforward to calculate the moments of ݖ up to order d (mean, variance, skewness, and all cross terms). Not coincidentally, the 
number of moments is equal to the Tchakaloff bound, which includes moment zero (the 
sum of the weights must equal one). From equation (3), we see that, with 12 variables 
and d=3, the upper bound on the number of points in a Gaussian quadrature is 455. 
Alternatively viewed, equation set (2) contains 455 equations.  

Note that equation set (2) is linear in the weights, w. Hence, equation set (2) can form 
the constraint set of a linear program with 6800 columns (equal to the number of HFD 
climates) and 455 rows. Further, note that the linear program is feasible. By 
construction, the system will be satisfied when all weights are set at 1/6800. Algorithms 
that produce extreme point solutions, such as the simplex method, will solve the system 
with a maximum of 455 strictly positive weights as long as starting values for all 
weights at zero (De Vuyst and Preckel 2007). We use the GAMS software suite 
(Brooke, Kendrick, and Meeraus 1992) to draw the quadratures. 

If only one quadrature is desired, then a degenerative objective, such as y=1, can be 
employed. In our case, we wish to draw multiple quadratures (recall that they are not 
unique) in order to compare the properties of the quadratures with the properties of a 
series of random samples. To accomplish this, we employ a standard linear 
programming objective equal to the sum of weights multiplied by a coefficient (ݕ =∑ ܿ ∗ ଼ୀଵݓ ). For the first quadrature, the values of the coefficients, c, are set equal to 
one (note that this objective replicates the moment zero constraint; hence the value of 
the objective will be equal to one). In order to obtain the second objective, the 
coefficient on each weight that was non-zero (e.g., included in the first quadrature) is 
incremented by one. Hence, for all climates included in the first quadrature, the 
corresponding coefficient, c, on the weight, w, in the objective function will be set at 
two. This process is then repeated. So, if a climate (also called a point in the quadrature) 
has appeared in both the first and second quadratures, it will have a coefficient of three. 
If the point has appeared in either quadrature one or two, it will have a value of two. If it 
has not appeared in either of the first two quadratures, it will have value one. This 
objective is minimized thus encouraging the routine to choose different climates to enter 
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the quadrature while still satisfying the constraint set. This procedure results in 100 
distinct quadratures. 

For the problem at hand, some additional constraints are applied. As explained in 
Schlosser and Strzepek (2012), the 6800 climates are derived from 400 runs of the 
integrated global systems model combined with the regional results for the Zambeze 
river valley from 17 general circulation models (GCMs). We add additional constraints 
that assure that the mean, variance, and skewness (excluding covariance and cross 
skewness terms) is met for each GCM for four of the 12 summary variables (the four are 
related to precipitation). In addition, we place upper and lower bounds on the weight 
associated with each GCM. As a result of these constraints, all quadratures will be 
selected based on a range of GCMs, which is desirable. At the same time, these 
additions represent 204 (=4*17*3) additional equality constraints and 34 inequality 
constraints to the system, which increases the number of points required in the 
quadrature. To reduce the number of points, we relax the conditions on skewness and 
cross skewness terms in equation set (2). The quadratures must generate skewness and 
cross skewness terms within 1 percent of the value for the full population.  

While the Tchakaloff bound provides an upper limit on the number of points in the 
quadrature, quadratures can often be found with fewer points. For the problem at hand, 
quadratures contained between 363 and 432 points with a mean of 411 for the UCE 
scenario and between 341 and 409 points with a mean of 389 for the L1S scenario. We 
turn now to how well these quadratures predict key outputs from CliRun. 

5 Performance of the Gaussian quadrature samples 

5.1 Comparison versus random samples 

The performance of the Gaussian quadrature approach is verified through a comparison 
with random samples. As discussed above, the number of points in each of the 100 
quadratures can vary. To account for this, random samples are drawn of size equal to 
the corresponding quadrature. In other words, if the fifth quadrature obtained has size 
410, then the fifth random sample drawn will also have size 410. In addition, as 
discussed in Section 4.2, various constraints were added to the linear programming 
problem to guarantee that each of the 17 GCMs used to develop the climate HFDs are 
represented. Similarly, stratified random samples were drawn across the 17 GCMs.  

To compare the random samples with the Gaussian quadrature samples, we focus on 
predicted runoff for the eastern and western Zambeze for the years 2026–50. We 
calculate the average RMSE of the first and second moments of climate change induced 
anomalies in runoff for each year from 2026–50 across the 100 Gaussian quadrature and 
random samples. To facilitate comparison, we take the ratio of these two average 
RMSEs with the Gaussian quadrature sample in the numerator and the random sample 
in the denominator. Hence, a ratio value less than one indicates superior performance of 
the Gaussian quadrature sample.  

Table 1 illustrates the average of the ratio across all years (2026–50). In all instances, 
Gaussian quadrature samples outperform random samples on average. Gaussian 
quadrature samples perform better relative to random samples under the UCE scenario 
compared with the L1S scenario. In addition, runoff in the eastern Zambeze is more 
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accurately predicted, relative to random samples, than runoff in the western Zambeze. 
Overall, efficiency gains are particularly strong in the UCE scenario and in the east. For 
Level 1 Stabilization, the quadratures produce gains, but these gains are of a lesser 
magnitude and are quite small for moment 2 in the west.  

Further insight can be obtained by examining the time path of the ratios. These time 
paths are shown in Figures 4–7, from which a number of interesting additional 
observations emerge. First, in all instances, the performance of the quadratures 
improves with time. By 2050, the quadratures are outperforming random samples by 
10–55 percent. Second, the trend improvement in moment 2 is more rapid in all 
instances. Third, there is a tendency for the quadratures to do well relative to the linear 
trend line around 2030 (e.g., below the trend line), relatively poorly in the late 2030s, 
and relatively well in the late 2040s. Recall that the vector ݖ contained variables 
summarizing the period around 2030 and 2050. Hence, the quadratures appear to be 
doing well nearer to the periods referred to in the vector ݖ. 

As discussed in Section 2, regression analysis whereby the target runoff variables are 
regressed against the ݖ vector using the full sample can provide some insight into these 
results. Performance of the quadratures relative to random samples also depends upon 
the performance of the random sample. Ceterus paribus, the expected RMSE of a 
random sample will increase as the standard deviation of the target variable, y, 
increases. With Gaussian quadrature, two factors are at work: the approximation of 
systematic variation as captured by ℎ(ݖ), which is very efficient, and the estimation of 
the error term, e, which is inefficient due to the presence of unequal weighting (Arndt, 
Kozlitina, and Preckel 2006).  

Table 2 shows the average R-squared of regressions of runoff, y, on the summary 
variables, z. The regressions are run for each year from 2026–50 and for the eastern and 
western zones of the Zambeze. The average is taken over time. The table provides some 
insight into the results obtained. When comparing the UCE scenario with the L1S 
scenario, one notes that the R-squared values and standard deviation values are higher in 
the UCE scenario. This helps to explain the relatively good performance of the Gaussian 
quadrature sampling approach in the UCE scenario. The high R-squared provides a 
boost to the Gaussian quadrature approach while the relatively high standard deviation 
of the target variable decreases the performance of random samples.  

The relatively strong performance of Gaussian quadrature samples in the east compared 
with the West is also consistent with these explanations. Runoff in the east is both better 
predicted (higher R-squared) and more variable (higher standard deviation) in the UCE 
scenario. For L1S, the R-squared measures favor the west while the standard deviation 
measures favor the east.  

Similar to the ratios shown in Figures 4–7, examining the R-squared values through 
time provides further insight. These R-squared values are presented in Figures 8 and 9. 
In all cases, R-squared values trend upward with time. One can also note that R-squared 
relative to trend is higher around 2030, lower around the late 2030s, and higher towards 
the end of the first half of the 21st century, which is a mirror image of the tendency for 
the RMSE ratios. The upward trend in R-squared through time combined with a trend 
increase in the standard deviation of runoff (not shown) help to explain the performance 
improvement of Gaussian quadrature sampling through time as shown in Figures 4–7. 
Finally, a factor driving the more rapid trend increase in the relative performance of 
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Gaussian quadrature sampling in estimating moment 2 of the runoff anomalies is a more 
pronounced increase in the standard deviation of the square of the runoff anomalies. 

5.2 Selecting an optimal quadrature 

For the purposes of assessing the performance of Gaussian quadrature sampling, we 
have run the CliRun model for all 6800 climates and drawn multiple quadratures and 
multiple stratified random samples of the same size. This permits us to compare the 
relative performance using a RMSE criteria. However, in real applications of Gaussian 
quadrature sampling, ‘truth’ will not be known as we are expressly attempting to avoid 
running a chosen biophysical or economic model for all climates. In addition, we wish 
to choose only one Gaussian quadrature sample.  

To choose the selected Gaussian quadrature sample of the 100 generated, we choose the 
minimum of 
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across all 100 samples. This corresponds to choosing the quadrature with the smallest 
variance inflation factor relative to a random sample of the same size. The logic for this 
choice is derived from equation (6), which divides Gaussian quadrature sample 
estimates into systematic and error components. A priori, there is no reason to prefer 
one quadrature over another (except with respect to size, where smaller is better) for the 
estimation of the systematic component. However, the Gaussian quadrature sampling 
estimate of the error component can be compared to random sampling with unequal 
weights. In the absence of heteroskedasticity, the application of unequal weights is 
inefficient precisely because the denominator is smaller than the numerator in equation 
(8). Hence, the choice minimizes this inefficiency.  

In our case, the selected Gaussian quadrature samples are of size 426 for UCE scenario 
and size 398 for the L1S scenario. 

6 Conclusions, limitations, and future research 

We conclude that Gaussian quadrature sampling provides a promising approach to 
selecting an informed sample of future climates from a large population. Given the 
ubiquity of computing challenges in the climate change area, the technique quite likely 
has other applications. At the same time, the limitations of the Gaussian quadrature 
approach should also be borne firmly in mind. Without a sufficiently strong relationship 
between the summary variables (denoted here as ݖ) and the outcome variable of interest 
(denoted here as y), Gaussian quadrature samples can produce outcomes inferior to 
random samples. In addition, the economic biophysical model generating the outcome 
variable(s) of interest should be smooth.  
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With these caveats in mind, Gaussian quadrature sampling appears to offer considerable 
promise. While the mathematics of numerical integration formulae in general and 
Gaussian quadrature in particular is somewhat abstruse, the intuition is easily 
communicated. It is intuitively attractive to have the moments of a sample match the 
moments of the parent population. Once this concept has been explained, some simple 
examples often provide sufficient reinforcement (see, for example, Arndt, Kozlitina, and 
Preckel 1997 for the case of univariate quadratures). 

With respect to future research, focus should be placed on the choice of summary 
variables, ݖ. For example, in the economics of climate change, results are normally 
driven by a relatively limited number of effects. These include average yield impacts 
weighted by the value added shares of crops, changes in hydropower production, and 
changes in the frequency or intensity of extreme events such as floods and cyclones. In 
this sense, the biophysical models that convert climate outcomes into economically 
meaningful impacts are prime candidates for creation of the ݖ summary variable vector. 
The issue, as mentioned in the introduction, is that many biophysical models are 
themselves computationally burdensome to solve. A potential solution lies in the 
development/use of simplified biophysical models that are informative with respect to 
the sign and magnitude of climate change impacts but are less refined, and hence faster 
to solve, than their more detailed cousins. These models could be used to develop the ݖ 
vector.  

With future climates summarized in terms of economically relevant impacts, a highly 
informed subsample of climates could be selected from the parent distribution. With this 
much more limited number of climates in hand, analysis could proceed by running the 
climate sample through the best possible biophysical and economic models in order to 
develop the best possible estimation of climate change impacts for each chosen climate 
scenario. This approach likely presents the most promising way forward for the problem 
at hand. 
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Table 1: Average ratio (Gaussian quadrature/random samples) of RMSE, 2026–50 

  Unconstrained emissions L1S 
  Moment 1 Moment 2 Moment 1 Moment 2 
West 0.740 0.764 0.931 0.991 
East 0.633 0.629 0.888 0.938 
Total 0.687 0.696 0.909 0.964 

 

 

Table 2: R-squared of regressions of y on z and standard deviation of y 

  R-squared Standard deviation 
  UE L1S UE L1S 
West 0.80 0.78 8.43 6.84 
East 0.85 0.75 8.47 6.81 
Total 0.83 0.76 8.48 6.74 

 

Figure 1: Map of the Greater Zambeze River Basin area  

 

Notes and source: the map is showing the western and eastern sub-regions. The color represents the CMI, 
a measure of aridity ranging from -1 (arid) to +1 (humid). CMI was calculated using climate data from the 
Climate Research Unit of East Anglia (Mitchell and Jones 2005) over the base period 1951–90. 
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Figure 2: Distributions of the projected change in annual near-surface temperature 

 

Notes: (a) in centigrade) and (b) precipitation (in mm/year) by 2050 with respect to the last decade of the 
20th century averaged over the west and east regions of the Greater Zambeze River Basin. Two policy 
scenarios are shown, UCE and L1S. The distribution is estimated using a kernel density approximation.  
Source: Authors’ caclulations. 

 

Figure 3: Distributions of the projected change in annual runoff in mm by 2050  

 

 

Notes: with respect to the base climate averaged over the west (a) and east (b) regions of the Greater 
Zambeze River Basin. Two policy scenarios are shown, UCE and L1S. The distribution is estimated using 
a kernel density approximation.  
Source: Authors’ caclulations. 
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Figure 4: Ratios of root of MSE for Gaussian quadrature/RS in the East for the UCE scenario 

 

Source: Authors’ caclulations. 

 

 

Figure 5: Ratios of root of MSE for Gaussian quadrature/RS in the West for the UCE scenario 

 

Source: Authors’ caclulations. 
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Figure 6: Ratios of root of MSE for Gaussian quadrature/RS in the East for the L1S scenario 

 

Source: Authors’ caclulations. 

 

 

Figure 7: Ratios of root of MSE for Gaussian quadrature/RS in the West for the L1S scenario 

 

Source: Authors’ caclulations. 
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Figure 8: R-squared of regression of runoff on z for each year, east 

 

Source: Authors’ caclulations. 

 

 

Figure 9: R-squared of regression of runoff on z for each year, west 

 

Source: Authors’ caclulations. 

 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2026 2030 2034 2038 2042 2046 2050

UE

L1S

Linear (UE)

Linear (L1S)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2026 2030 2034 2038 2042 2046 2050

UE

L1S

Linear (UE)

Linear (L1S)


