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1 Introduction

The notion of external validity remains highly ambiguous. In their seminal
work Shadish, Cook and Campbell (2002, 38) define external validity as the
validity of inferences about whether a causal-effect relationship holds over
variation in treatments, outcome measures, units, and settings. By variation
they mean variation that is within the bounds observed in the original study,
as well as variation outside those bounds (Shadish, Cook and Campbell 2002,
83–84). By validity they mean “the approximate truth of an inference”, adding
that validity “is not a property of designs or methods” (their emphasis Shadish,
Cook and Campbell 2002, 34).

But how are we to judge the approximate truth of an inference (Shadish, Cook
and Campbell 2002, 35)? Is external validity a function of constant effect sizes
(Manski 2007, 26), or of constant causal direction (Shadish, Cook and Camp-
bell 2002, 91)? Is external validity a concern only when it involves extrap-
olation (Manski 2007, 26–28)? Finally, should we interpret external validity
as claims about the robustness of particular inferences or the generalizability
of a theory (Martel Garćıa and Wantchekon 2010)? All social scientists are
familiar with the quip that ‘experiments lack external validity”. Yet on what
basis is this claim made? On the basis that a particular study has not been
replicated, or on the basis of theoretical insights connecting features of the
original study to new populations of interest?

External validity is about theoretical generalization, or the ability to explain
and predict outcomes across variations in treatments, outcome measures, units,
and settings. In this study we first make the case for a causal approach to
external validity. Implicit in this causal notion of generalization is the idea that
all systematic heterogeneity has a causal explanation. That is, asymptotically,
once we remove chance variation, all remaining variation in effect sizes is causal
in nature. Consequently generalization is but the process of postulating and
inferring the causes behind systematic variation in causal effects.

This study introduces a set of structural definitions to better conceptualize
and understand generalization. We illustrate how two classes of causal expla-
nations, effect modulation and effect modification, can in principle explain all
causal heterogeneity. We also define causal mechanisms, showing how inter-
action is a functional form property of such mechanisms. And we show that
causal generalization is more robust than predictive generalization, or gener-
alization based on correlations devoid of a causal justification. Our humble
goal is simply to introduce practitioners to the use of graphical language for
generalizability.

Generalization is of great policy relevance, and is central to the scientific enter-
prise. Given a budget constraint and significant sunk costs most policy makers
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want to make sure policies shown to be successful elsewhere will also be suc-
cessful at home. This process might involve meetings of experts to discuss
the reasons why the policy may or may not work in the new context, paying
special attention to the circumstances where the policy proved successful, how
these might differ in the present context, why these differences may modify
the effect, and if so how. In effect this amounts to a discussion of the vari-
ous causes of the outcome. A times the context of other policy interventions
might be judged to be so different from the target environment that previous
policies are almost irrelevant, leading to what Manski (2007, §11) refers to as
predictive ambiguity. But how are those judgements made, and what sort of
information would be needed to avoid ambiguity. For example, using selection
diagrams Pearl and Bareinboim (2011) and Bareinboim and Pearl (2012) have
shown how predictive ambiguity can often be avoided by gathering additional
information from the target environment using observational studies.

To advance our understanding of external validity and generalization, and in
order to avoid ambiguities, this study relies on the structural causal language
of Directed Acyclic Graphs (DAGs). The choice of language is predicated on
the fact that external validity, as defined here, is essentially a causal question,
and DAGs are specially useful for encoding and communicating researchers’
private knowledge about causation. Indeed, it is on the basis of public causal
knowledge, as encoded in a DAG, that we can begin to provide unambiguous
justifications for why, when, and how a cause may have similar effects in
different contexts. Absent this knowledge decisions makers face fundamental
uncertainty, and it is anybody’s guess whether the policy will work or not.

2 Introduction to causal diagrams and models

This section introduces basic definitions to enable unambiguous talk about
generalization. The section may appear somewhat dry but it is critical that
these terms be understood. Ultimately there can be no scientific progress if
we don’t know what we are talking about when we are talking about general-
ization.1

Definition 1 (Graph). A graph is a collection G = 〈V,E〉 of nodes V =
{V1, . . . , VN} and edges E = {E1, . . . , EM} where the nodes correspond to
variables and the edges denote the relation between pairs of variables.

Definition 2 (Directed Acyclic Graph). A directed acyclic graph (DAG) is
a graph that only admits: (i) directed edges with one arrowhead (e.g. →);

1In introducing these definitions I follow closely the presentation in Pearl (2009, §1.2),
as described in Martel Garćıa (2013). Some of these definitions are a direct quotation from
Martel Garćıa (2013).
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(ii) bi-directed edges with two arrowheads (e.g. L9999K); and (iii) no directed
cycles (e.g. X → Y → X), thereby ruling out mutual or self causation.

A path in a DAG is any unbroken route traced along the edges of a graph
– irrespective of how the arrows are pointing (e.g. X L9999K M → Y ). A
directed path, however, is a path composed of directed edges where all edges
point in the direction of the path (e.g. X → M → Y is a directed path
between the ordered pair of variables (X, Y )). Any two nodes are connected
if there exists a path between them, else they are disconnected.

Definition 3 (Causal Structure, adapted from Pearl (2009, 44, 203)). A causal
structure or diagram of a set of variables W is a DAG G = 〈{U,V},E〉 with
the following properties:

1. Each node in {U,V} corresponds to one and only one distinct element
in W, and vice versa;

2. Each edge E ∈ E represents a direct functional relationship among the
corresponding pair of variables;

3. The set of nodes {U,V} is partitioned into two sets:

(a) U = {U1, U2, . . . , UN} is a set of background variables determined
only by factors outside the causal structure;

(b) V = {V1, V2, . . . , VN} is a set of endogenous variables determined
by variables in the causal structure – that is, variables U ∪V; and

4. None of the variables in U have causes in common.

A causal structure or diagram provides a transparent graphical language for
communicating our private knowledge about what variables we believe are
relevant for a specific causal analysis, and how these variables stand in causal
relation to one another. Figure 1b, adapted from Morgan and Winship (2012,
fig. 6), is an example of a causal diagram. In this causal diagram variables
Ui are the unobserved background variables, and all other variables are the
endogenous variables in V (i.e. they all have at least one arrow pointing into
them).2 By convention solid nodes represent known and measured variables,
whereas empty nodes depict unmeasured ones.

Causal diagram G represents a possible theory of causation, one where expo-
sure to charter versus public school (C) affects test scores (Y ) via feelings of
self-worth (S).3 At the same time parental education (P ) and student ability

2Background variables are exogenous but not all exogenous variables are background
variables, see Pearl (2009, §5.4.3, 7.4.5)

3We are not asking that the reader believe this story. The point is simply to have some
plausible example of policy relevance.
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Figure 1: Panel (a) depicts a non-parametric structural equation model ex-
plaining how test scores (Y ) depend on student ability (A), feelings of self-
worth (S), neighborhood (N), parental education (P ), and unobserved back-
ground causes (UY ). Exposure to charter schools (C) is caused by ability,
parental education, and unobserved background causes (UC); and it affects
test scores via feelings of self-worth, a mediator. Panel (b) is the equivalent
graphical representation of the non-parametric structural model in Panel (a).
The causal diagram contains all the information needed for non-parametric
causal identification.

(a) Causal Model

y = fy(a, s, n, p, uy);

a = fa(ua);

s = fs(c, uc);

n = fn(p, un);

p = fp(up);

c = fc(a, p, uc);

uy ⊥ uc ⊥ un ⊥ ua ⊥ up ⊥ us.

(b) Causal Diagram (G)

A

YP

C

N

U
C

U
P

U
Y

U
N

U
A

U
S

S

(A) (unobserved, notice hollow circle) are both common causes of exposure
to charter schools, and of test scores. These two causes act as potential con-
founders. They both imply an association between charter schools and test
scores even if charter schools are without effect (e.g. even if we delete the
arrows in C → S, or S → Y from G). Parental education (P ) affects tests
scores directly, by helping with homework say, and indirectly, via the choice
of residential neighbourhood (N) and school type (C).

Causal diagrams invite the use of an intuitive terminology to refer to causal
relations. In a causal diagram C → S reads “C causes S”. We also say that
C is a parent of S, and S is a child of C, if C directly causes S, as in C → S.
For example, the parents of Y are denoted PA(Y ) = {P,N, S,A}.4 Similarly,
we say that C is an ancestor of Y , and Y a descendant of C, if C is a direct
or indirect cause of Y . Thus, P is both a direct cause of Y , as in C → Y ,
and an indirect cause, as in C → N → Y . We refer to non-terminal nodes in
directed paths as mediators. S is a mediator in the path X → S → Y .

In addition to laying out causal theories graphically, and with intuitive termi-

4By convention we confine the set of parents of Y to variables in V. Hence we do not
include UY in the set PA(Y ) even though UY is a direct cause of Y . One can think of such
background variables as unobserved disturbances.
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nology, causal diagrams have two additional properties. First, by Definition 3
a DAG of a set of variables W only qualifies as a causal diagram if it includes
all common causes of the variables in W (see point 4 in the definition).5 This
ensures the diagram has some nice properties, including the ability to read
conditional independencies directly.6 For example, the diagram tells us that
under the null of no effect (e.g deleting C → S in causal diagram 1b), and
conditional on P and A, charter schools and test scores are distributed inde-
pendent of each other. If C and Y remain associated despite controlling for
these variables, then we read that as evidence that they are causally related
under the assumptions laid out in causal diagram 1b.7

Second, the definition of causal diagrams relies on directed edges (e.g. arrows)
in place of explicit functional relations to depict causal relations between vari-
ables in the graph. This is a feature not a bug. Detailed knowledge about
specific functional forms is often completely unnecessary for causal identifi-
cation. To wit, this diagrammatic representation of functional relations is in
accordance with how most people store their causal knowledge. For example,
most of us know that smoking causes lung cancer but few, if any of us, know
the precise functional relation linking them together.

Figure 1 also shows that every causal model has a corresponding causal dia-
gram (Figures 1a and 1b respectively). A causal model is defined as follows:

Definition 4 (Causal Model, adapted from Pearl (2009, 203)). A causal model
M replaces the set of edges E in a causal structure G by a set of functions
F = {f1, f2, . . . ., fN}, one for each element of V, such that M = 〈U,V,F〉. In
turn, each function fi is a mapping from (the respective domains of) Ui ∪PAi

to Vi, where Ui ⊆ U and PAi ⊆ V\Vi and the entire set F forms a mapping
from U to V. In other words, each fi in

vi = fi(pai, ui), i = 1, 2, . . . , N,

assigns a value to Vi that depends on (the values of) a select set of variables
in V ∪ U , and the entire set F has a unique solution V(u).

Like the causal diagram, a causal model is completely non-parametric. For
example, casual model 1a specifies that being exposed to a charter schools is

5If two variables in W have a cause Z in common (e.g. UY ← Z → UA) but Z 6∈W,
then DAG G is not a causal diagram. To make it one Z should be included in W and UY

and UA included in the set of endogenous variables V.
6Formally a causal diagram meets the Causal Markov Condition, see Pearl (2009, 19, 30)

for details.
7Causal diagrams are specially useful for determining the conditions under which a de-

sired quantity of interest is identified. See Morgan and Winship (2007, §1.6) for a gentle
introduction, and Martel Garćıa (2013) for a recent application to identification of causal
effects in experiments subject to attrition.
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a function c = fc(a, p, uc). This function is compatible with any well defined
mathematical expression in its arguments like c = α + β1a + β2p + uc, or
c = α + β1a+ β2p+ β3a× p+ uc.

Causal models, like causal diagrams, are completely deterministic: Probability
comes into the picture through our ignorance of background conditions U,
which we summarize using a probability distribution P(u). In turn, P(u)
induces a probability distributions P(v) over all endogenous variables in V.8

Definition 5 (Probabilistic Causal Model, Pearl (2009, 205)). A probabilistic
causal model Γ is a pair 〈M,P(u)〉, where M is a causal model and P(u) is a
probability function defined over the domain of U.

Finally, social scientists often talk about generalizability in terms of causal
mechanisms. But what are causal mechanisms, and what is the difference
between a model and a causal mechanism, if any? The present framework
allows us to define such mechanisms precisely:

Definition 6 (Causal Mechanism). A causal mechanism is any F′ ⊆ F, where
F is the set of functions in causal model M = 〈U,V,F〉.

For example, in Figure 1a function fy is a causal mechanism generating y, and
so too is the set F of all mechanisms in model M. The difference between
these two mechanisms is that fy takes some endogenous variables as inputs,
whereas mechanism F takes only background variables as inputs. For instance,
in causal model 1a we say that ability (A) causes test scores (Y ) via mechanism
FA,Y = {fc, fs, fy}.

After this brief introduction to causal diagrams we turn to the formal defini-
tions needed to understand interventions, heterogeneity, and generalization.

3 Intervention, causal heterogeneity, and gen-

eralization

In this section we investigate effect heterogeneity ignoring causal identification
issues. We start by laying out the notion of an intervention, then we exam-
ine the nature and causes of causal heterogeneity. Throughout we assume a
perfectly randomized controlled experiment in one setting, and then consider
why and how the exact same intervention may have different results in different
settings.

8This is exactly the same as characterizing disturbance terms in a regression context
using some distribution, like ε ∼ N (0, σ2).

6



Figure 2: Causal diagram and model representing an intervention whereby a
researcher is completely able to set variable C to any desired value, like c′.
Graphically this kind of control is represented by deleting all arrows point-
ing into C, which captures the idea that nothing causes C other than the
researcher’s intervention. In terms of the causal model the intervention ‘wipes
out’ fc by forcing the value of c′.

(a) Causal Model

y = fy(a, s, n, p, uy);

a = fa(ua);

s = fs(c, us);

n = fn(p, un);

p = fp(up);

c = c′;

uy ⊥ un ⊥ ua ⊥ up ⊥ us.

(b) Causal Diagram

A

YP

C

N

U
P

U
Y

U
N

U
A

U
S

S

3.1 Intervention

To continue with the charter schools example suppose causal diagram 1b in
Figure 1 is a faithful representation of all that we know at time t about the
effect of charter schools (C, versus public schools) on test scores (Y ), and
of possible confounders of this effect like parental education P and student
ability A. Testing and estimating the effect of C on Y with observational
data is complicated by the fact that student ability is both a confounder and
unobserved, so we cannot control for it. Consequently we decide to carry out
a randomized controlled trial on a convenience sample S from the population
of interest P . In particular, an equal number of students in S are randomly
assigned to public schools and the rest to charter schools.

Figure 2 is the intervention equivalent of Figure 1 assuming c is under the com-
plete conrol of the researcher. We call this an intervention do(c) and what it
does is replace the second equation in causal model 1a with c = c′, generating
the new intervention causal model 2a in Figure 2. In effect experimental inter-
vention deletes all arrows pointing into C, thereby eliminating any possibility
of confounding. If the randomized controlled experiment is well implemented
any endline association between c and y among the set of expermental subjects
S cannot be due to some unobserved cause in common, or confounder, but to
a causal effect of c on y.9

9There are other ways to represent experimental interventions in the context of a causal
model (see Pearl (2009, §3)). One possibility is to replace fc(a, p, uc) with f ′c(a, p, z, uz)
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Experimental outcomes are uncertain. The experimenter sets the value of C
but Nature sets the value of all other background variables U. In effect, an
experiment is a probabilistic causal model (see Definition 5) Γ = 〈M,PS(u, c)〉,
where M is intervention causal model 2a in Figure 2, and PS(u, c) is the
joint distribution of background variables u and intervention variable c in
sample S. By randomization PS(u, c) = PS(u) PS(c). Nature then solves this
probabilistic model and yields the intervention distribution PS(y|do(c)) defined
over each randomized level of c ∈ {c′, c′′}.10 This distribution describes the
outcome data from the experiment, and it can be queried to calculate any
quantity of interest Q(Γ). For example, for any two distinct values c′ and c′′

of c, the average treatment effect is defined as:

Q(Γ) = E[y|do(c′)]− E[y|do(c′′)].

Suppose Q(Γ) is statistically and substantively significant. How can we use
this information to predict Q(Γ) in a different sample S∗ from the same pop-
ulation P (e.g. S∗ ⊆ P)?11 Moreover, what factors can give rise to systematic
difference across samples? And what might be the causes of heterogeneity in
the causal model?

3.2 Heterogeneity

We begin this section with some intuition, and then follow with some formal
definitions needed for the analysis of heterogeneity.

3.2.1 Intuition

Structural causal models are completely non-parametric and potentially het-
erogeneous. To begin with, consider the sub-model C → S ← US of causal di-
agram 2b in Figure 2. Because C is under the direct control of the researchers,
all variation in S across different samples will come from the background vari-
able US. This can be problematic for two reasons. First, variables C and
US may happen to interact in mechanism fs(c, us) (we will define interaction
below), in which case Q(Γ) may be sensitive to changes in the distribution of
the background variables P(u). If so we say Uy is a moderator of the effect of
S on Y . Second, such changes in the distribution of background variables are
likely to happen. The original experimental sample S is a convenience sample

and z = z′, which captures the notion that the researcher only has access to an imperfect
instrument z for controlling C (imperfect because Nature still has some say in generating
c).

10The researcher cannot solve the model because she never observes P(u).
11We focus on the external validity of quantities of interest as this is a less demanding

task than predicting P(y∗|do(x)). The latter requires knowledge of all the causes of Y
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from population P , and so not representative of all background conditions in
the population. Consequently, PS∗(c, us) in a new sample S∗ is very likely to
differ from PS(c, us), even if PS(c) ≡ PS∗(c).12 In sum, if fs(c, us) involves
some interaction, and if PS∗(c, us) 6= PS(c, us), then changes in background
conditions are likely to bring about changes in Q(Γ).

Second, consider the full mechanisms by which C is theorized to exert its
causal influence on Y as described by causal diagram 2b in Figure 2. As in
the previous example, heterogeneity can arise if US and C interact in mecha-
nism fs, and PS(u, c) 6= PS∗(u, c) in new sample S∗. Heterogeneity can also
arise if variable S interacts with any other argument of fy, including variables
A,N, P, UY . These variables can all – singly or jointly – moderate the effect
of S on Y . Importantly, variables A,N, P are all endogenous, that is deter-
mined, at least in part, by PS(u). This is another reason why background
conditions matter. Conditioning on observable variables is a way to account
for the influence of unobservable background conditions.

In addition to moderators, variable Us can also act as a modulator of the effect
of C on Y . Modulator because it can regulate the effect of C on Y through
its moderator effect on mediator S (assuming it has such a moderator effect).
The focus on the total effect of C on Y allows us to introduce meaningful
new labels, like modulator, which goes to show how the conceptualization of
heterogeneous effects arises naturally from the causal structure.

3.2.2 Formal definitions

Definition 7. (Causal Effect Structure) A causal effect structure for the effect
of a set of variables X on a set of variables Y in causal model M, is a set of
variables EX,Y such that it only includes X, and all descendants of X along
all directed paths from variables in X to variables in Y

For example, the causal effect structure for the effect of C on Y according to
causal model 2a is the set EC,Y = {C, S}. Conventionally such a set of causes
and mediators is what researchers have in mind when they think of “mech-
anisms”, but this is at odds with how we defined mechanisms in Definition
6. Besides, it is easy to see that knowing this “mechanism” is not enough
to guarantee replication out of sample. In particular, the faithfulness of the
replication may also depend on other causes of Y or S, not in EC,Y , that may
interact with the causal effect structure, like variable US and all parents of Y
other than S in causal diagram 2.

12Even if the original experiment had been carried out on the full population P, PS∗(c, us)
will likely differ due to the randomized nature of c.
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Definition 8. (Direct Causal Context) A direct causal context for the effect
of one set of variables X on another set of variables Y in causal model M is
a a set of variables CX,Y such that:

1. it excludes the casual effect structure EX,Y ;

2. it includes all remaining parents of Y ; and

3. it includes all parents of all mediator variables in EX,Y .

For example, in causal diagram 2b the direct causal context for the effect of
C on Y is CC,Y = {A,N, P, US, UY }. Conditioning on this set of variables
guarantees replication in any other setting, without committing ourselves to
any functional form assumptions about interactions. That is, these variables
may, or may not, interact with other variables in the causal effect structure but
so long as they are conditioned on, faithful replication is guaranteed. Obviously
this conditioning strategy fails if some of these variables are unobserved and
have moderator effects. The second instance where conditioning strategies fail
is when we are asked to replicate in settings that fall outside the original range
of observation.

Definition 9. (Probabilistic Direct Causal Context) A probabilistic causal
context for the effect of one set of variables X on another set of variables Y in
probabilistic causal model Γ is a distribution P(CX,Y ), defined over a direct
causal context CX,Y .

Suppose the direct causal context CC,Y in causal diagram 2b is fully observed
in sample S as P(a, n, p, us, uy).

13 Now suppose we draw another sample S∗ ⊆
P , and we observe values a∗, n∗, p∗, u∗s, u

∗
y s.t. P∗(a∗, n∗, p∗, u∗s, u

∗
y) > 0 but

P(a∗, n∗, p∗, u∗s, u
∗
y) = 0. In this case the conditioning needs of the target

environment go beyond the conditions available in the source environment
(e.g. they are outside the support of P(a, n, p, us, uy)). Predicting quantities of
interest for instances where P(a∗, n∗, p∗, u∗s, u

∗
y) = 0 will require extrapolation

or interpolation, namely making some functional form assumptions about all
mechanisms that take elements of CC,Y as inputs.14

Definition 10. (Interaction (adapted from VanderWeele (2009, 864))) For a
given probabilistic causal model Γ, there is said to be an interaction between
two or more parents of an effect Y , call them set X and set Z, if the quantity

13E.g. suspend belief and assume we can observe a, us, uy.
14Discussing the relevant methods of extrapolation or interpolation is well beyond the

scope of this study. The main criterion is that they give good predictions.
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of interest computed from Y , Q(Γ), is such that:

Q [P (Y |do(x′), do(z′)) ,P (Y |do(x′′), do(z′))]
6=
Q [P(Y |do(x′), do(z′′)),P(Y |do(x′′), do(z′′))] ,

for some distinct (possibly vector valued) observations x′ and x′′ of X, and z′

and z′′ of Z.

Interaction is a functional form property of mechanisms. By the definition of
a mathematical function we do not need to know the function itself, only its
arguments and the values they take, in order to be able to accurately predict
quantities of interest across settings using previous realizations. For example,
if we are only interested in studying how the effect of a cause X on an effect
Y varies across contexts, then we only need to know the arguments to the
derivative of f ∗y with respect to X, where f ∗y is the reduced form mechanism
for the effect of X on Y . This mechanism is at most a function of variables
in causal context CX,Y that interact with variables in causal effect structure
EX,Y . That is, the variables needed to fully explain the variation of the effect
out of sample is a set H ⊆ {CX,Y ,EX,Y }

Because interactions are a property of the set of mechanisms F in causal
model M, model transformations can be used to limit interactions.15 But
here we must think of transformations as functional form transformations of
mechanisms F in model M, and not as simple variable transformations.

Definition 11. (Direct Causal Context Interaction) In considering the effect
of a set of variables X on another set of variables Y in model M, we say
there is a direct causal context interaction of the effect of X on Y according
to quantity of interest Q(Γ) whenever any subset EI of causal effect structure
EX,Y , interacts with any subset CI of causal context CX,Y . We refer to the
set of interacting sets as IX,Y = {EI ∪ CI}. If there are no causal context
interactions IX,Y = ∅.

Being completely non-parametric causal diagrams do not convey any func-
tional form information. One possibility is to expand the notation to convey
the location of interacting variables. For example, suppose exposure to charter
schools interacts with background conditions US. We might label the variables
IC,S = {C,US} explicitly in the causal diagram using edges with square (�)
origins, as shown in Figure 3, where filled squares refer to observed variables
(C), and unfilled ones to unobserved variables (US). Graphically, the process
of generalization, or of explaining away heterogeneity, requires abstracting and

15At times this has consequences for prediction out of sample on the original scale
(Kennedy 1983).
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measuring from background US the observable variables generating the het-
erogeneity thus replacing the empty square with an empty circle in UY . We
call such (semi-parametric) diagrams interaction causal diagrams.16

Figure 3: Interaction causal diagram. Direct causal context interactions are
denoted with an empty square if unobserved (US), or a full square if observed
(UC), where we assume IC,S = {C,US} (see Definition 11).
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Definition 12. (Robustness) The effect of a set of variables X on a set of
variables Y according to quantity of interest Q(Γ) is said to be robust if causal
model M admits no causal context interaction for this effect (IX,Y = ∅).

Robustness is a strong but powerful property of some causal models. One that
allows the researcher to completely ignore the causal context in predicting
a given quantity of interest out of sample. The graphical equivalent is an
interaction causal diagram without any square nodes.

3.3 Generalization

The process of generalization involves explaining away causal heterogeneity.
Suppose we started with causal diagram 2b in Figure 2, and that repeated
experimentation across samples from population P show significant variation
in the effect of charter schools (C) on self-regard (S), and hence on test scores

16Pearl and Bareinboim (2011) use a similar notation – though not focused only on inter-
actions –, which they call selection diagrams.
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(Y ). Suppose we observe much less variation in this effect within levels of the
residential neighbourhood variable (N), than across levels of it. Could it be
that N is a cause of S, that we should replace fs(c, us) with f ′s(c, n, us), and
that, conditional on N , US no longer modifies the effect of C? It might be
that feelings of self-worth are relative to a students neighbourhood, as in feeling
privileged to be in a charter school within a poverty ridden neighbourhood.
We could carry out a two-way randomization of students to neighbourhoods
and schools to test this hypothesis. We might find that the evidence is indeed
consistent with mechanism f ′s(c, n, us), and that, conditional on N , there is no
evidence US interacts with C (or N).

That neighbourhood causes feelings of self-worth is one possibility. Another
possibility is that N is an effect of US, or, more likely perhaps, that they share
an unobserved cause in common (Z); in which case N serves as a proxy for
their cause in common. More generally, the knowledge that N correlates with
the quantity of interest might seem sufficient to condition and predict effects
out of sample. We refer to this as the prediction or robustness approach to
generalization. By contrast, generalization offers a theory driven analytical
approach to validity (Martel Garćıa and Wantchekon 2010).

Generalization differs from pure prediction in two crucial aspects. First, it
provides theoretically motivated explanations for the causes of heterogeneity.
In effect, the process of generalization involves observation, theorizing, ab-
stracting potential moderators from within the set of background variables,
and including them explicit in the model as endogenous variables. The sec-
ond difference between generalization and the predictive approach is that the
former is, at least in principle, more robust than the former. Of course, both
causal models and purely predictive ones can be proved wrong by the data.
The question is how much more fallible are they. Intuitively, causal explana-
tions are more direct and so more robust. In the previous example, if N is
shown to cause S, then heterogeneity of the effect of C on S can still arise if
there are more variables amongst the background conditions that interact with
C. However, if N is only a proxy for some hidden cause Z in common with
US, then heterogeneity in the conditional effect can arise at multiple points.
For example, due to interactions between UN and Z, or Z and US, in addi-
tion to between US and C. This is three times more opportunities for failure
compared to the direct causal explanation.17

Finally, if for some reason we are only interested in predicting the effect of
C on S out of sample, then we can ignore most other variables in causal
diagram G. That is, the relevant causal context is specific to the causal relation
under study. In this instance, pruning G can help focus our attention on

17The robustness of the causal interaction approach stems from the Causal Markov Con-
dition. At the same time establishing causality is more involved and expensive, so there is
a tradeoff between robustness and convenience.
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possible moderators within the background variables in US. Causal diagrams
make explicit the relevant causal context to be considered for predicting out
of sample.

4 Conclusion

Few scientists begin an experimental investigation by laying out their best
guess about the structure of the causal effect, the causal context, and the
likely sources of heterogeneity. With the advent of causal diagrams there is
little excuse for this practice, as anyone can draw arrows, circles, and squares.
In the interest of generalization we would encourage practitioners to lay out
threats to external validity explicitly at the outset of the study design in an
interaction causal diagram . This way they can plan in advance what sorts of
measurements should be taken for generalization, highlight potential threats
to generalization, and suggests what measurements might be taken to predict
the effect of intervening in a different context.

In some instances theories or educated guesses might not be available but
there might be plenty of data on covariates. In these situations it is natural
to search the covariate space for evidence of interactions. This can generate
new hypotheses to be tested out of sample, including testing whether these
covariates are part of the causal context of effect structure, or only proxies for
such variables. We would want to test this because, as already noted, causal
knowledge is more robust than knowledge about correlations. Also, the ap-
proach we have taken thus far relies mainly on non-parametric stratification,
though there is much to be said about using hierarchical models for summa-
rizing the inference, especially when there are numerous strata, or they are
thinly populated.

Generalization is key to science yet its meaning remains highly ambiguous.
Most extant theories have defined generalization in an ex post fashion, empha-
sizing whether a particular inference holds out of sample. Such a robustness
approach obviates the need for theory driven research, emphasizing instead
replications across all imaginable contexts. Building on the analytical ap-
proach of Martel Garćıa and Wantchekon (2010), and the more recent struc-
tural approach of Pearl and Bareinboim (2011), this study argues for a theory
driven approach. Specifically, interaction causal diagrams can be used to en-
code ex ante potential sources of heterogeneity on the basis of existing knowl-
edge and theories; to guide the design of experiments, follow-up experiments
and measurements that might be needed to further justify external validity
claims; and to communicate simply, clearly, and transparently to the broad-
est audience possible what the researchers know about the sources of causal
heterogeneity. Science is a communal endeavor that ought to begin with clear
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definitions and accessible language.
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